JP2012101991A - Molten glass transfer tube - Google Patents

Molten glass transfer tube Download PDF

Info

Publication number
JP2012101991A
JP2012101991A JP2010253907A JP2010253907A JP2012101991A JP 2012101991 A JP2012101991 A JP 2012101991A JP 2010253907 A JP2010253907 A JP 2010253907A JP 2010253907 A JP2010253907 A JP 2010253907A JP 2012101991 A JP2012101991 A JP 2012101991A
Authority
JP
Japan
Prior art keywords
tube
molten glass
pipe
peripheral surface
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010253907A
Other languages
Japanese (ja)
Other versions
JP5510748B2 (en
Inventor
Mikio Hiyama
幹雄 檜山
Keiji Takagi
啓司 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010253907A priority Critical patent/JP5510748B2/en
Publication of JP2012101991A publication Critical patent/JP2012101991A/en
Application granted granted Critical
Publication of JP5510748B2 publication Critical patent/JP5510748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve filling efficiency of molten glass in a molten glass transfer tube having a noble metal-made double tube structure in a vacant state at the time of start-up or the like, while facilitating temperature control of the molten glass during heating by applying an electric current, and saving electric power required for the heating.SOLUTION: The molten glass transfer tube 12 has a double tube structure comprising a noble metal-made outer tube 15 and a noble metal-made inner tube 16 connected to the inner peripheral surface of the outer tube 15 by a plurality of ribs 17 having through-holes 17a which communicate with one another in the tube axial direction. In a state where a space S2 between the inner surface of the outer tube 15 and the outer surface of the inner tube 16 is filled with molten glass G, the molten glass G is circulated in the internal space S1 of the inner tube 16 while heating the outer tube 15 by applying an electric current. The inner tube 16 is segmented into a plurality of pieces in the tube axial direction and made discontinuous, and the segmented separate inner tubes 16 are supported by the outer tube 15 via the ribs 17.

Description

本発明は、溶融ガラスを移送するための貴金属製の溶融ガラス移送管に関し、詳しくは、溶融ガラス中に発生する気泡の低減のために、溶融ガラス移送管を、外管と内管とからなる二重管構造としたものの改良技術に関する。   The present invention relates to a molten glass transfer tube made of a noble metal for transferring molten glass. Specifically, in order to reduce bubbles generated in the molten glass, the molten glass transfer tube includes an outer tube and an inner tube. The present invention relates to an improved technique for a double pipe structure.

一般に、例えば薄板ガラスなどのガラス物品を連続的に成形する場合、ガラス溶解室でガラス原料を加熱して溶融ガラスに溶解した後、その溶融ガラスが、清澄工程や撹拌工程などの各種工程を経て成形装置(成形体)へと連続的に供給される。この際、ガラス溶解室で溶解された溶融ガラスは、貴金属製の移送管の内部を流通させることで、成形装置まで移送される(例えば、特許文献1を参照)。   In general, when glass articles such as thin glass are continuously formed, for example, after the glass raw material is heated and melted in the molten glass in the glass melting chamber, the molten glass undergoes various processes such as a clarification process and a stirring process. It is continuously supplied to a molding apparatus (molded body). At this time, the molten glass melted in the glass melting chamber is transferred to a forming device by circulating the inside of a transfer pipe made of noble metal (see, for example, Patent Document 1).

ここで、特許文献2によれば、溶融ガラスを貴金属製の移送管内部に流通させると、その過程で、溶融ガラス中に酸素気泡が発生するとされている。そして、この酸素気泡をそのまま放置していると、成形装置によって成形されるガラス物品中に酸素気泡に起因する欠陥が形成されるという問題が生じ得る。特に、液晶ディスプレイパネルを始めとするフラットパネルディスプレイ用のガラス基板の場合には、高い製品品位が要求されていることから、酸素気泡に起因する欠陥が形成されている場合には要求品位を満たさずに不良品として取り扱わざるを得ない事態を招きやすい。   According to Patent Document 2, when molten glass is circulated inside a noble metal transfer tube, oxygen bubbles are generated in the molten glass in the process. And if this oxygen bubble is left as it is, the problem that the defect resulting from an oxygen bubble will be formed in the glass article shape | molded by a shaping | molding apparatus may arise. In particular, in the case of glass substrates for flat panel displays such as liquid crystal display panels, high product quality is required. Therefore, when defects due to oxygen bubbles are formed, the required quality is satisfied. It is easy to invite a situation that must be handled as a defective product.

上記のように溶融ガラス中に酸素気泡が形成される理由は、特許文献2によれば、次のように説明されている。すなわち、貴金属製の移送管の外部環境(例えば、外部環境の水素分圧が低い場合)によっては、貴金属製の移送管を溶融ガラス中の水分に由来する水素が透過して管外へと放出されやすくなる。その結果、溶融ガラス中の水分に由来する酸素濃度が上昇して溶融ガラス中に酸素気泡が生じ、その酸素気泡が原因となってガラス物品に欠陥が生じる。   The reason why oxygen bubbles are formed in the molten glass as described above is described as follows according to Patent Document 2. That is, depending on the external environment of the transfer pipe made of noble metal (for example, when the hydrogen partial pressure in the external environment is low), hydrogen derived from moisture in the molten glass permeates through the transfer pipe made of noble metal and releases out of the pipe. It becomes easy to be done. As a result, the oxygen concentration derived from moisture in the molten glass is increased, oxygen bubbles are generated in the molten glass, and the glass bubbles are defective due to the oxygen bubbles.

そのため、ガラス物品の高い品位を維持する上で、溶融ガラス中の酸素気泡を低減すべく、対策を講じることが必要不可欠となる。そこで、例えば、特許文献2には、溶融ガラスを流通させる移送管を、貴金属製の外管(外側の貴金属ジャケット)と、その内部にウェブによって接続された貴金属製の内管(内側の貴金属ジャケット)とからなる二重管構造(二重ジャケット)とし、溶融ガラス中の酸素気泡を低減することが提案されている。   Therefore, in order to maintain the high quality of the glass article, it is indispensable to take measures to reduce oxygen bubbles in the molten glass. Therefore, for example, in Patent Document 2, a transfer pipe for circulating molten glass includes a noble metal outer pipe (outer noble metal jacket) and a noble metal inner pipe (inner noble metal jacket) connected to the inside by a web. It has been proposed to reduce the oxygen bubbles in the molten glass.

詳細には、外管と内管の間の空間に溶融ガラスを充填させた状態で、ガラス物品の成形に使用される溶融ガラスを内管の内部に流通させる構成となっている。このようにすれば、外管と内管の間の溶融ガラスの存在により、内管の内部を流通する溶融ガラス中の水分に由来する水素が外部に透過するという事態が抑制されるため、内管の内部を流通する溶融ガラス中の水分に由来する水素と酸素のそれぞれの濃度が適正に保たれ、酸素気泡が形成され難くなる。   In detail, it is the structure which distribute | circulates the molten glass used for shaping | molding of a glass article to the inside of an inner tube in the state with which the molten glass was filled in the space between an outer tube and an inner tube. In this way, the presence of the molten glass between the outer tube and the inner tube suppresses the situation in which hydrogen derived from moisture in the molten glass flowing inside the inner tube permeates to the outside. The respective concentrations of hydrogen and oxygen derived from moisture in the molten glass flowing through the inside of the tube are appropriately maintained, and oxygen bubbles are hardly formed.

なお、特許文献2には、移送管で溶融ガラスを移送する際に、外管の両端部に電気加熱回路を接続して移送管を通電加熱することも開示されている。これは、移送管で移送される溶融ガラスを加熱して、移送管内部の溶融ガラスの粘度を適正に維持するためである。   Patent Document 2 also discloses that when the molten glass is transferred by the transfer tube, the transfer tube is connected to both ends of the outer tube to electrically heat the transfer tube. This is for heating the molten glass transferred by the transfer pipe and maintaining the viscosity of the molten glass inside the transfer pipe appropriately.

特開2007−145668号公報JP 2007-145668 A 特開2003−95663号公報JP 2003-95663 A

ところで、特許文献2では、電気加熱回路に接続される外管とリブを介して接続されている内管が管軸方向に連続していることから、電気加熱回路によって外管に通電すると、内管の全長に亘って電流が流れる。そのため、外管と内管がそれぞれ通電加熱されることになる。   By the way, in Patent Document 2, since the outer tube connected to the electric heating circuit and the inner tube connected via the rib are continuous in the tube axis direction, when the outer tube is energized by the electric heating circuit, Current flows over the entire length of the tube. Therefore, the outer tube and the inner tube are each heated by energization.

しかしながら、外管と内管との間には、リブを介して複雑な閉回路が形成されることから、外管と内管に流れる電流を正確に管理することが困難になる。すなわち、外管と内管の温度管理を厳密に行うことが困難となり、移送管の内部でも温度分布のバラツキが大きくなったり、場合によっては内管が異常加熱されて溶断され、内管の内部に溶融ガラスを流通できないという生産上の致命的な問題が生じるおそれがある。そのため、内管の内部空間を流通させる溶融ガラスの運搬が不安定になって、ガラス物品の成形に不具合を来たす要因となる。   However, since a complicated closed circuit is formed between the outer tube and the inner tube via a rib, it is difficult to accurately manage the current flowing through the outer tube and the inner tube. In other words, it becomes difficult to strictly control the temperature of the outer tube and the inner tube, the temperature distribution varies widely inside the transfer tube, or in some cases, the inner tube is abnormally heated and blown, and the inner tube May cause a fatal problem in production that the molten glass cannot be distributed. For this reason, the transportation of the molten glass flowing through the inner space of the inner tube becomes unstable, which causes a problem in forming the glass article.

また、外管と内管の双方に電流が流れる構成とすれば、通電領域の断面積が外管のみに電流が流れる場合に比べて相対的に大きくなるので、全体的な抵抗値が減って電流値が増加してしまう。その結果、通電加熱時の消費電力が不当に大きくなり、電力の省力化を図ることが極めて困難となる。   Also, if the current flows through both the outer tube and the inner tube, the cross-sectional area of the current-carrying region is relatively larger than when the current flows only through the outer tube, so the overall resistance value is reduced. The current value will increase. As a result, power consumption during energization heating becomes unreasonably large, and it is extremely difficult to save power.

さらに、外管と内管がそれぞれ管軸方向に連続していることから、内管の内部空間と、外管の内周面と内管の外周面との間の空間とが、それぞれ独立した空間となっている。そのため、移送管の始動時などに、空の移送管内に溶融ガラスを充填する際に、その2つの独立した空間に、別々に溶融ガラスを充填する必要があり、作業性が非常に悪い。   Furthermore, since the outer tube and the inner tube are each continuous in the tube axis direction, the inner space of the inner tube and the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube are independent from each other. It is a space. Therefore, when the molten glass is filled into the empty transfer pipe at the time of starting the transfer pipe or the like, it is necessary to separately fill the two independent spaces with the molten glass, and workability is very poor.

以上の実情に鑑み、本発明は、貴金属製の二重管構造を備えた溶融ガラス移送管において、通電加熱時における溶融ガラスの温度管理の容易化、及びその通電加熱に要する電力の省力化を図りつつ、移送管の始動時などの空の状態における溶融ガラスの充填効率を向上させることを技術的課題とする。   In view of the above circumstances, the present invention is a molten glass transfer tube having a double tube structure made of a noble metal, which facilitates temperature management of the molten glass at the time of energization heating and saves power required for the energization heating. It is a technical problem to improve the efficiency of filling molten glass in an empty state such as when the transfer pipe is started.

上記課題を解決するために創案された本発明は、貴金属製の外管と、管軸方向に連通する開口部を有する複数のリブによって前記外管の内周面に接続された貴金属製の内管とからなる二重管構造を備え、前記外管の内周面と前記内管の外周面との間の空間に溶融ガラスを充填させた状態で、前記外管を通電加熱しながら前記内管の内部空間に溶融ガラスを流通させる溶融ガラス移送管において、前記内管が、管軸方向で複数に分断されて不連続となっており、その分断された個々の内管が、前記リブを介して前記外管に支持されていることに特徴づけられる。   In order to solve the above problems, the present invention provides a noble metal inner pipe connected to an inner peripheral surface of the outer pipe by a noble metal outer pipe and a plurality of ribs having openings communicating in the pipe axis direction. A double tube structure comprising a tube, and while the outer tube is energized and heated while the outer tube is filled with molten glass in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube, the inner tube In the molten glass transfer pipe for circulating molten glass in the internal space of the pipe, the inner pipe is divided into a plurality of pieces in the pipe axis direction to be discontinuous, and the divided inner pipes are provided with the ribs. It is characterized by being supported by the outer tube via.

このような構成によれば、内管が管軸方向で複数に分断されて不連続となっていることから、管軸方向に隣接する個々の内管の間には空隙が形成される。そのため、分断された個々の内管がリブを介して外管に支持されていたとしても、外管の通電加熱時に、隣接する内管の間に直接電流が流れない。その結果、外管の通電加熱時には、主として外管に電流が流れるため、内管が通電加熱され難くなる。したがって、外管に流れる電流を管理するだけで、通電加熱時における溶融ガラスの温度管理を簡単且つ正確に行うことが可能となる。また、外管の通電加熱時に、内管に実質的に電流が流れないため、不必要な電力消費を抑え、通電加熱時に供給する電力の省力化を図ることもできる。更に、管軸方向に隣接する内管の間には上述のように空隙が形成されているため、移送管の始動時などにおいて、空の移送管に溶融ガラスを充填する際には、この空隙を介して溶融ガラスを流通させることができる。そのため、内管の内部空間と、外管の内周面と内管の外周面との間の空間にそれぞれ別々に溶融ガラスを充填させなくても、両空間に空隙を介して効率よく溶融ガラスを充填でき、作業効率の向上を図ることが可能となる。   According to such a configuration, since the inner pipe is divided into a plurality of parts in the pipe axis direction and is discontinuous, a gap is formed between the individual inner pipes adjacent to each other in the pipe axis direction. Therefore, even if each divided inner tube is supported by the outer tube via the rib, no current flows directly between the adjacent inner tubes when the outer tube is energized and heated. As a result, when the outer tube is energized and heated, a current flows mainly through the outer tube, so that the inner tube is hardly energized and heated. Therefore, the temperature of the molten glass can be easily and accurately managed during energization heating only by managing the current flowing through the outer tube. Moreover, since no current substantially flows through the inner tube when the outer tube is energized and heated, unnecessary power consumption can be suppressed, and the power supplied during energization heating can be saved. Further, since the gap is formed as described above between the inner pipes adjacent to each other in the tube axis direction, this gap is used when the empty transfer pipe is filled with molten glass at the time of starting the transfer pipe. It is possible to distribute the molten glass through Therefore, even if the molten glass is not separately filled into the inner space of the inner tube and the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube, the molten glass is efficiently introduced through the spaces in both spaces. It is possible to improve the working efficiency.

上記の構成において、前記外管が、その内周面と前記内管の外周面との間の空間に存在する溶融ガラス中に含まれる気泡を除去するための気体排出部を有することが好ましい。   Said structure WHEREIN: It is preferable that the said outer tube | pipe has a gas discharge part for removing the bubble contained in the molten glass which exists in the space between the inner peripheral surface and the outer peripheral surface of the said inner tube | pipe.

このようにすれば、外管の内周面と内管の外周面との間の空間に存在する溶融ガラス中に含まれる気泡を除去することができる。そのため、外管の通電加熱による熱伝導が、断熱性能を有する気泡に阻害されることなく、内管の内部空間を流通する溶融ガラスを効率よく加熱することが可能となる。   If it does in this way, the bubble contained in the molten glass which exists in the space between the internal peripheral surface of an outer tube | pipe and the outer peripheral surface of an inner tube | pipe can be removed. Therefore, it is possible to efficiently heat the molten glass flowing through the inner space of the inner tube without being hindered by heat-conductive air bubbles due to heat conduction by the outer tube.

上記の構成において、前記外管の外周面が、溶融ガラスで覆われていることが好ましい。   Said structure WHEREIN: It is preferable that the outer peripheral surface of the said outer tube | cover is covered with the molten glass.

このようにすれば、外管の内周面と内管の外周面との間の空間に存在する溶融ガラスの水分に由来する水素が、外管の外方に透過する割合を低減することができる。   In this way, the rate at which hydrogen derived from the moisture of the molten glass existing in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube permeates outwardly of the outer tube can be reduced. it can.

上記の構成において、前記外管が、前記外管の内周面と前記内管の外周面との間の空間に存在する溶融ガラスを排出するための溶融ガラス排出部を有することが好ましい。   Said structure WHEREIN: It is preferable that the said outer tube | pipe has a molten glass discharge part for discharging | emitting the molten glass which exists in the space between the inner peripheral surface of the said outer tube | pipe, and the outer peripheral surface of the said inner tube | pipe.

このようにすれば、外管の内周面と内管の外周面との間の空間に存在する溶融ガラスを、溶融ガラス排出部を通じて排出し、当該空間に新しい溶融ガラスを適宜補充することができる。   In this way, the molten glass existing in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube can be discharged through the molten glass discharge unit, and new molten glass can be appropriately replenished in the space. it can.

上記の構成において、前記内管の内部空間の溶融ガラスの流速が、前記外管の内周面と前記内管の外周面との間の空間の溶融ガラスの流速よりも速くなるように構成されていることが好ましい。なお、外管の内周面と前記内管の外周面との間の空間の溶融ガラスの流速には、当該空間の溶融ガラスが停滞している場合、すなわち、実質的に零となる場合も含む。   In the above configuration, the flow rate of the molten glass in the inner space of the inner tube is configured to be faster than the flow rate of the molten glass in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube. It is preferable. The flow rate of the molten glass in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube may be substantially zero when the molten glass in the space is stagnant. Including.

このようにすれば、外管の内周面と内管の外周面との間の空間に溶融ガラスを充填させた状態で、内管の内部空間に溶融ガラスを流通させている場合に、管軸方向に隣接する分断された内管の間の空隙を溶融ガラスが往来し難くなる。特に、内管の内部空間に流通され且つガラス製品の成形に利用される溶融ガラス中に、外管の内周面と内管の外周面との間の空間に存在する溶融ガラスが侵入する割合を効果的に低減することができる。   In this way, when the molten glass is circulated in the inner space of the inner tube with the molten glass filled in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube, the tube It becomes difficult for molten glass to pass through the gap between the divided inner pipes adjacent in the axial direction. In particular, the ratio of the molten glass existing in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube invading into the molten glass that is distributed in the inner space of the inner tube and used for molding glass products Can be effectively reduced.

上記の構成において、前記外管及び前記内管は、例えば、白金又は白金合金から形成される。   In the above configuration, the outer tube and the inner tube are made of, for example, platinum or a platinum alloy.

以上のように本発明によれば、貴金属製の外管と内管からなる二重管構造を備えた溶融ガラス移送管において、内管が管軸方向で複数に分断されて不連続となっていることから、外管の通電加熱時における溶融ガラスの温度管理の容易化と、その通電加熱に要する電力の省力化を同時に達成することができる。しかも、分断された内管の相互間に形成される空隙を利用して、移送管の始動時等において、空の移送管に対して効率よく溶融ガラスを充填することができる。   As described above, according to the present invention, in the molten glass transfer pipe having a double pipe structure composed of a noble metal outer pipe and an inner pipe, the inner pipe is divided into a plurality of pieces in the tube axis direction and becomes discontinuous. Therefore, the temperature management of the molten glass at the time of energization heating of the outer tube and the labor saving of the power required for the energization heating can be achieved at the same time. In addition, by utilizing the gap formed between the divided inner tubes, the empty transfer tube can be efficiently filled with molten glass at the time of starting the transfer tube.

本発明の一実施形態に係る溶融ガラス移送管を備えた板ガラスの製造装置の構成を示す図である。It is a figure which shows the structure of the manufacturing apparatus of the plate glass provided with the molten glass transfer tube which concerns on one Embodiment of this invention. 本実施形態に係る溶融ガラス移送管の縦断面図である。It is a longitudinal cross-sectional view of the molten glass transfer pipe concerning this embodiment. 本実施形態に係る溶融ガラス移送管の横断面図である。It is a cross-sectional view of the molten glass transfer tube according to the present embodiment. 本実施形態に係る溶融ガラス移送管の変形例を示す横断面図である。It is a cross-sectional view showing a modification of the molten glass transfer tube according to the present embodiment.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る溶融ガラス移送管を備えた板ガラスの製造装置の構成を示す図である。この製造装置1は、上流端に配置された溶解室2の下流側に、清澄室3を介して撹拌槽4が通じており、この撹拌槽4に、その下流側で溶融ガラスGの粘度調整を主として行う容積部であるポット5が通じている。更に、ポット5の下部には、下方に移行するに連れて径が漸次縮小する流路面積絞り部6が形成され、この流路面積絞り部6の下流端に小径管7が接続されると共に、この小径管7の下流側には、途中に曲成部8を有する大径管9が通じている。そして、この大径管9の下流端部10から成形体11に溶融ガラスGが供給され、この成形体11にて溶融ガラスGが板状の形態とされる。   FIG. 1 is a diagram showing a configuration of a plate glass manufacturing apparatus including a molten glass transfer tube according to an embodiment of the present invention. In this manufacturing apparatus 1, a stirring tank 4 is connected to a downstream side of a melting chamber 2 disposed at an upstream end via a clarification chamber 3, and the viscosity of the molten glass G is adjusted to the stirring tank 4 on the downstream side. The pot 5 which is a volume part which mainly performs is connected. Furthermore, a flow path area restricting portion 6 whose diameter gradually decreases as it moves downward is formed at the lower portion of the pot 5, and a small diameter pipe 7 is connected to the downstream end of the flow path area restricting portion 6. A large-diameter pipe 9 having a bent portion 8 is provided on the downstream side of the small-diameter pipe 7. And the molten glass G is supplied to the molded object 11 from the downstream end part 10 of this large diameter pipe | tube 9, and the molten glass G is made into a plate-shaped form in this molded object 11. FIG.

成形体11は、この実施形態では、断面が略くさび形をなし、オーバーフローダウンドロー法を実行するものであって、次のようにして溶融ガラスGを板状形態に成形する構成とされている。まず、成形体11の上部に形成されたオーバーフロー溝(図示省略)に溶融ガラスGを連続供給し、この溶融ガラスGをオーバーフロー溝から溢れさせて成形体11の両側の側壁面に沿って流下させる。そして、その流下させた溶融ガラスGをそれぞれ成形体11の下頂部で融合させて一枚の板状形態にする。その後、この形態の板状ガラス成形物が固化した段階で、これを引張りローラで挟持しつつ下方に引き抜くことにより、最終的に製品となるべき板ガラスが得られる。なお、このように製造された板ガラスは、例えば、厚みが0.1〜1.0mmであって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。   In this embodiment, the molded body 11 has a substantially wedge-shaped cross section and executes the overflow downdraw method. The molded body 11 is configured to mold the molten glass G into a plate shape as follows. . First, molten glass G is continuously supplied to an overflow groove (not shown) formed in the upper part of the molded body 11, and the molten glass G overflows from the overflow groove and flows down along the side wall surfaces on both sides of the molded body 11. . And the molten glass G which flowed down is united in the lower top part of the molded object 11, respectively, and it is set as one plate-like form. Thereafter, when the plate-shaped glass molded product of this form is solidified, it is pulled out downward while being held by a pulling roller, thereby obtaining a plate glass to finally become a product. In addition, the plate glass manufactured in this way is 0.1-1.0 mm in thickness, for example, Flat panel displays, such as a liquid crystal display and an organic EL display, Organic EL lighting, Substrates, such as a solar cell, and a protective cover Used for

そして、溶解室2と清澄室3の間、清澄室3と撹拌槽4の間、及び撹拌槽4とポット5の間が、溶融ガラス移送管12,13,14によって連結されている。なお、これら溶融ガラス移送管12,13,14は、実質的に同一の構成を備えているので、以下では、溶解室2と清澄室3との間を接続する溶融ガラス移送管12を例にとって具体的な構成を説明する。   The melting chamber 2 and the clarification chamber 3, the clarification chamber 3 and the agitation tank 4, and the agitation tank 4 and the pot 5 are connected by molten glass transfer pipes 12, 13, and 14. In addition, since these molten glass transfer pipes 12, 13, and 14 have substantially the same configuration, in the following, the molten glass transfer pipe 12 that connects the melting chamber 2 and the clarification chamber 3 is taken as an example. A specific configuration will be described.

図2に示すように、溶融ガラス移送管12は、貴金属製の外管15と、この外管15の内部に収容された貴金属製の内管16とからなる二重管構造を備えている。内管16と外管15を構成する貴金属としては、例えば、白金又は白金合金が挙げられる。   As shown in FIG. 2, the molten glass transfer tube 12 has a double tube structure including an outer tube 15 made of noble metal and an inner tube 16 made of noble metal housed in the outer tube 15. Examples of the noble metal constituting the inner tube 16 and the outer tube 15 include platinum or a platinum alloy.

内管16は、管軸方向で複数に分断されて不連続となっている。その分断された個々の内管16は、それぞれリブ17を介して外管15の内周面に接続された状態で、外管15に支持されている。   The inner tube 16 is divided into a plurality of pieces in the tube axis direction and is discontinuous. The divided individual inner pipes 16 are supported by the outer pipe 15 in a state of being connected to the inner peripheral surface of the outer pipe 15 via ribs 17.

リブ17は、各内管16の外周面の管軸方向の所定位置(例えば、各内管16の管軸方向中央部)に1つずつ設けられており、図3に示すように、内管16の外周面の管軸方向の同一位置で、その全周を包囲するように円板状に形成されている。更に、各リブ17は、管軸方向に連通する開口部を形成する貫通孔17aを有している。この貫通孔17aは、図示例では、リブ17の円周方向に間隔(例えば、等間隔)をおいて複数形成されている。なお、リブ17の開口部は、貫通孔17aに限定されるものではなく、例えば、図4に示すように、内管16の外周面に円周方向に間隔を置いてリブ17を形成し、その円周方向に隣接するリブ17の間の空隙で、管軸方向に連通する開口部を構成してもよい。ここで、図3及び図4では、説明の便宜上、耐火物18の図示は省略している。   One rib 17 is provided at a predetermined position in the tube axis direction of the outer peripheral surface of each inner tube 16 (for example, the central portion in the tube axis direction of each inner tube 16). As shown in FIG. It is formed in a disk shape so as to surround the entire circumference at the same position in the tube axis direction of the outer peripheral surface of 16. Furthermore, each rib 17 has a through hole 17a that forms an opening communicating with the tube axis direction. In the illustrated example, a plurality of the through holes 17a are formed at intervals (for example, equal intervals) in the circumferential direction of the ribs 17. The opening of the rib 17 is not limited to the through-hole 17a. For example, as shown in FIG. 4, the rib 17 is formed on the outer peripheral surface of the inner tube 16 at intervals in the circumferential direction. You may comprise the opening part connected to the pipe-axis direction by the space | gap between the ribs 17 adjacent to the circumferential direction. Here, in FIG.3 and FIG.4, illustration of the refractory 18 is abbreviate | omitted for convenience of explanation.

更に、図2に示すように、外管15の周囲は、耐火物18に覆われている。そして、外管15の外周面にもリブ19が設けられており、このリブ19によって、外管15が補強されると共に、耐火物18の内部に対して位置決めされている。図3に示すように、この外管15のリブ19も、管軸方向に連通する開口部を形成する貫通孔19aを有している。なお、この外管15のリブ19の開口部も貫通孔19aに限定されるものではなく、例えば、図4に示すように、外管15の外周面に円周方向に間隔を置いてリブ19を形成し、その円周方向にリブ19の間の空隙で、管軸方向に連通する開口部を構成してもよい。   Furthermore, as shown in FIG. 2, the periphery of the outer tube 15 is covered with a refractory 18. A rib 19 is also provided on the outer peripheral surface of the outer tube 15, and the outer tube 15 is reinforced by the rib 19 and positioned with respect to the inside of the refractory 18. As shown in FIG. 3, the rib 19 of the outer tube 15 also has a through hole 19a that forms an opening communicating with the tube axis direction. The opening of the rib 19 of the outer tube 15 is not limited to the through hole 19a. For example, as shown in FIG. 4, the rib 19 is spaced from the outer peripheral surface of the outer tube 15 in the circumferential direction. And an opening that communicates in the tube axis direction may be formed by the gaps between the ribs 19 in the circumferential direction.

そして、図2に示すように、板ガラスを製造する際には、外管15の内周面と内管16の外周面との間の空間S2に溶融ガラスGを充填させた状態で、内管16の内部空間S1に板ガラスの製造に利用する溶融ガラスGを流通させる。この理由は、内管16の外部の水素分圧を適正に保ち、空間S1を流通する溶融ガラスGから水素が外部に透過するのを防止するためである。   As shown in FIG. 2, when manufacturing the plate glass, the inner tube is filled with the molten glass G in the space S <b> 2 between the inner peripheral surface of the outer tube 15 and the outer peripheral surface of the inner tube 16. The molten glass G utilized for manufacture of plate glass is distribute | circulated in 16 internal space S1. The reason for this is to keep the hydrogen partial pressure outside the inner tube 16 properly and prevent hydrogen from permeating from the molten glass G flowing through the space S1.

更に、この実施形態では、外管15の外周面と耐火物18の内壁との間の空間S3にも、溶融ガラスGが充填されており、外管15の外周面が溶融ガラスGで覆われた状態となっている。このようにすれば、外管15の内周面と内管16の外周面との間の空間S2に存在する溶融ガラスGの水分に由来する水素が、外管15の外方に透過する割合を低減できる。   Furthermore, in this embodiment, the space S3 between the outer peripheral surface of the outer tube 15 and the inner wall of the refractory 18 is also filled with the molten glass G, and the outer peripheral surface of the outer tube 15 is covered with the molten glass G. It is in the state. In this way, the rate at which hydrogen derived from the moisture of the molten glass G existing in the space S <b> 2 between the inner peripheral surface of the outer tube 15 and the outer peripheral surface of the inner tube 16 permeates outward of the outer tube 15. Can be reduced.

このように溶融ガラスGを流通させる間、外管15の所定位置に設けられた電極20,21,22の間に接続された電源23,24により外管15を通電加熱し、溶融ガラスGの粘度を適正に維持するようになっている。   While the molten glass G is circulated in this way, the outer tube 15 is energized and heated by the power sources 23 and 24 connected between the electrodes 20, 21 and 22 provided at predetermined positions of the outer tube 15, and the molten glass G The viscosity is properly maintained.

ここで、内管16は、上述のように、管軸方向で複数に分断されて不連続となっていることから、管軸方向に隣接する個々の内管16の間には、空隙S4が形成される。その結果、分断された個々の内管16が、リブ17を介して外管15に接続されていても、外管15の通電加熱時に、分断された個々の内管16の間に直接電流が流れることがない。そのため、外管15の通電加熱時には、主として外管15に電流が流れることから、内管16が通電加熱されることがなくなる。したがって、内管16の異常加熱などによる加熱不良が生じ難く、外管15に流れる電流による外管15の加熱状態を主として管理するだけで、通電加熱時における溶融ガラスGの温度管理を簡単且つ正確に行うことができる。なお、リブ17は、個々の内管16毎に管軸方向の1箇所のみに取り付けられていることが好ましい。   Here, as described above, since the inner tube 16 is divided into a plurality of pieces in the tube axis direction and becomes discontinuous, there is a gap S4 between the individual inner tubes 16 adjacent in the tube axis direction. It is formed. As a result, even when the divided individual inner pipes 16 are connected to the outer pipe 15 via the ribs 17, current is directly applied between the divided individual inner pipes 16 when the outer pipe 15 is energized and heated. There is no flow. Therefore, when the outer tube 15 is energized and heated, a current flows mainly through the outer tube 15, so that the inner tube 16 is not energized and heated. Accordingly, it is difficult for heating failure due to abnormal heating of the inner tube 16 or the like, and the temperature management of the molten glass G during the heating with current is easily and accurately performed only by mainly managing the heating state of the outer tube 15 by the current flowing through the outer tube 15. Can be done. In addition, it is preferable that the rib 17 is attached to only one place in the tube axis direction for each individual inner tube 16.

また、外管15の通電加熱時に、内管16に実質的に電流が流れないため、不必要な電力消費を抑え、通電加熱時に供給する電力の省力化を図ることもできる。   Moreover, since no current substantially flows through the inner tube 16 when the outer tube 15 is energized and heated, unnecessary power consumption can be suppressed, and the power supplied during energization heating can be saved.

更に、板ガラスの製造装置1の始動時などにおいて、空の移送管12に溶融ガラスGを充填する際には、管軸方向に隣接する分断された内管16の間に形成される空隙S4を介して溶融ガラスGを流通させることができる。そのため、内管16の内部空間S1と、外管15の内周面と内管16の外周面との間の空間S2にそれぞれ別々に溶融ガラスGを充填させなくても、両空間S1,S2に空隙S4を介して効率よく溶融ガラスGを充填でき、作業効率の向上を図ることができる。   Further, when the empty glass transfer pipe 12 is filled with the molten glass G at the time of starting the plate glass manufacturing apparatus 1, the gap S4 formed between the divided inner pipes 16 adjacent to each other in the pipe axis direction is formed. The molten glass G can be circulated through. For this reason, both the spaces S1, S2 can be obtained without separately filling the molten glass G into the internal space S1 of the inner tube 16 and the space S2 between the inner peripheral surface of the outer tube 15 and the outer peripheral surface of the inner tube 16. It is possible to efficiently fill the molten glass G through the gap S4, and to improve the working efficiency.

なお、隣接する内管16の間の空隙S4の間隔(管軸方向寸法)は、板ガラスの製造時において、内管16の内部空間S1と、外管15の内周面と内管16の外周面との間の空間S2との相互間で溶融ガラスGが流通しない程度に設定されていることが好ましく、具体的には、例えば10〜30mm程度であることが好ましい。もちろん、この場合でも、板ガラスの製造装置1の始動時など、溶融ガラスGの流速が板ガラスの製造時に比べて遅い場合には、隣接する内管16の間の空隙S4を通じて溶融ガラスGを、空間S1と、空間S2との間で流通させることは可能である。   In addition, the space | interval (tube-axis direction dimension) of the space | gap S4 between the adjacent inner tubes 16 is the inner space S1 of the inner tube 16, the inner peripheral surface of the outer tube 15, and the outer periphery of the inner tube 16 at the time of plate glass manufacture. It is preferably set so that the molten glass G does not circulate between the space S2 and the surface, and specifically, for example, it is preferably about 10 to 30 mm. Of course, even in this case, when the flow rate of the molten glass G is slower than that at the time of production of the plate glass, such as when the plate glass production apparatus 1 is started, the molten glass G is placed in the space through the gap S4 between the adjacent inner tubes 16. It is possible to circulate between S1 and space S2.

また、板ガラスの製造時では、内管16の内部空間S1の溶融ガラスGの流速が、外管15の内周面と内管16の外周面との間の空間S2の溶融ガラスGの流速よりも速くなるように設定されている。このようにすれば、溶融ガラスGの流速差により、隣接する内管16の間の空隙S4を溶融ガラスGが流通する事態を確実に防止できる。なお、空間S2の溶融ガラスGは、内管16の外側の水素分圧を適正に保つことを目的として配置されるものであるので、空間S2の溶融ガラスGは、停留した状態で流速が実質的に零となっていてもよい。同様の理由から、外管15の外周面と耐火物18の内壁との間の空間S3に存在する溶融ガラスGの流速も、実質的に零となっていてもよい。   Further, at the time of manufacturing the plate glass, the flow rate of the molten glass G in the inner space S1 of the inner tube 16 is greater than the flow rate of the molten glass G in the space S2 between the inner peripheral surface of the outer tube 15 and the outer peripheral surface of the inner tube 16. Is also set to be faster. If it does in this way, the situation where the molten glass G distribute | circulates the space | gap S4 between the adjacent inner pipes 16 by the flow velocity difference of the molten glass G can be prevented reliably. Since the molten glass G in the space S2 is arranged for the purpose of appropriately maintaining the hydrogen partial pressure outside the inner tube 16, the molten glass G in the space S2 has a substantial flow rate in a stationary state. It may be zero. For the same reason, the flow rate of the molten glass G existing in the space S3 between the outer peripheral surface of the outer tube 15 and the inner wall of the refractory 18 may be substantially zero.

外管15には、その内周面と内管16の外周面との間の空間S2の溶融ガラスG中に含まれる気泡を除去するための気体排出管25が設けられるとともに、この空間S2に存在する溶融ガラスGを排出するための溶融ガラス排出管26が設けられている。前者の気体排出管25を利用すれば、空間S2に存在する溶融ガラスG中に含まれる気泡を除去することができるため、外管15の通電加熱による熱伝導が、断熱性能を有する気泡に阻害されることなく、内管16の内部空間S1を流通する溶融ガラスGを効率よく加熱することが可能となる。また、後者の溶融ガラス排出管26を利用すれば、空間S2に存在する溶融ガラスGを、適宜排出して空間S2に新しい溶融ガラスGを補充することができる。なお、溶融ガラス排出管26は、図示しないが、流路を適宜開閉できる構成となっている。具体的には、例えば、溶融ガラス排出管26を通電加熱することで、溶融ガラス排出管26の内部で固化して流路を閉鎖している固化ガラスを再度溶解し、その流路を開放する構成とされている。これら気体排出管25及び溶融ガラス排出管26は、外管15の複数個所に設けられていてもよい。   The outer tube 15 is provided with a gas discharge tube 25 for removing bubbles contained in the molten glass G in the space S2 between the inner peripheral surface thereof and the outer peripheral surface of the inner tube 16, and in the space S2 A molten glass discharge pipe 26 for discharging the existing molten glass G is provided. If the former gas discharge pipe 25 is used, bubbles contained in the molten glass G existing in the space S2 can be removed, so that heat conduction by energization heating of the outer pipe 15 is obstructed by bubbles having heat insulation performance. Without this, the molten glass G flowing through the internal space S1 of the inner tube 16 can be efficiently heated. Further, if the latter molten glass discharge pipe 26 is used, the molten glass G existing in the space S2 can be appropriately discharged to replenish the space S2 with new molten glass G. In addition, although not shown in figure, the molten glass discharge pipe 26 becomes a structure which can open and close a flow path suitably. Specifically, for example, when the molten glass discharge pipe 26 is energized and heated, the solidified glass solidified inside the molten glass discharge pipe 26 and closing the flow path is melted again, and the flow path is opened. It is configured. The gas discharge pipe 25 and the molten glass discharge pipe 26 may be provided at a plurality of locations of the outer pipe 15.

なお、本発明は、上記実施形態に限定されるものではなく、種々の形態で実施することができる。例えば、上記の実施形態では、溶融ガラス移送管をオーバーフローダウンドロー法によって板ガラスを製造する製造装置に組み込んだ場合を説明したが、スロットダウンドロー法などの他のダウンドロー法によって板ガラスを製造する製造装置に組み込んでもよい。   In addition, this invention is not limited to the said embodiment, It can implement with a various form. For example, in the above-described embodiment, the case where the molten glass transfer tube is incorporated in a manufacturing apparatus that manufactures plate glass by the overflow downdraw method has been described. However, manufacture of manufacturing plate glass by another downdraw method such as the slot downdraw method is described. It may be incorporated into the device.

また、上記実施形態では、外管15の外周面を溶融ガラスGで覆う構成を説明したが、この溶融ガラスGは、外管15の外部へと透過する水素量などに応じて適宜省略することができる。   Moreover, although the said embodiment demonstrated the structure which covers the outer peripheral surface of the outer tube | pipe 15 with the molten glass G, this molten glass G is abbreviate | omitted suitably according to the amount of hydrogen which permeate | transmits the exterior of the outer tube | pipe 15, etc. Can do.

1 板ガラスの製造装置
2 溶解室
3 清澄室
4 撹拌槽
5 ポット
11 成形体
12 溶融ガラス移送管
15 外管
16 内管
17 リブ
17a 貫通孔
18 耐火物
19 リブ
19a 貫通孔
20,21,22 電極
23,24 電源
25 気体排出管
26 溶融ガラス排出管
G 溶融ガラス
DESCRIPTION OF SYMBOLS 1 Sheet glass manufacturing apparatus 2 Melting room 3 Clarification room 4 Stirrer tank 5 Pot 11 Molded body 12 Molten glass transfer pipe 15 Outer pipe 16 Inner pipe 17 Rib 17a Through hole 18 Refractory 19 Rib 19a Through hole 20, 21, 22 Electrode 23 , 24 Power supply 25 Gas discharge pipe 26 Molten glass discharge pipe G Molten glass

Claims (6)

貴金属製の外管と、管軸方向に連通する開口部を有する複数のリブによって前記外管の内周面に接続された貴金属製の内管とからなる二重管構造を備え、前記外管の内周面と前記内管の外周面との間の空間に溶融ガラスを充填させた状態で、前記外管を通電加熱しながら前記内管の内部空間に溶融ガラスを流通させる溶融ガラス移送管において、
前記内管が、管軸方向で複数に分断されて不連続となっており、その分断された個々の内管が、前記リブを介して前記外管に支持されていることを特徴とする溶融ガラス移送管。
A double pipe structure comprising a noble metal outer pipe and a noble metal inner pipe connected to the inner peripheral surface of the outer pipe by a plurality of ribs having openings communicating in the pipe axis direction; A molten glass transfer tube that circulates the molten glass in the inner space of the inner tube while energizing and heating the outer tube while the molten glass is filled in the space between the inner peripheral surface of the inner tube and the outer peripheral surface of the inner tube In
The inner pipe is divided into a plurality of pieces in the pipe axis direction to be discontinuous, and the divided inner pipes are supported by the outer pipe through the ribs. Glass transfer tube.
前記外管が、その内周面と前記内管の外周面との間の空間に存在する溶融ガラス中に含まれる気泡を除去するための気体排出部を有することを特徴とする請求項1に記載の溶融ガラス移送管。   The said outer tube | pipe has a gas discharge part for removing the bubble contained in the molten glass which exists in the space between the inner peripheral surface and the outer peripheral surface of the said inner tube | pipe, It is characterized by the above-mentioned. The molten glass transfer tube as described. 前記外管の外周面が、溶融ガラスで覆われていることを特徴とする請求項1又は2に記載の溶融ガラス移送管。   The molten glass transfer tube according to claim 1, wherein an outer peripheral surface of the outer tube is covered with molten glass. 前記外管が、その内周面と前記内管の外周面との間の空間に存在する溶融ガラスを排出するための溶融ガラス排出部を設けたことを特徴とする請求項1〜3のいずれか1項に記載の溶融ガラス移送管。   The said outer pipe | tube provided the molten glass discharge | emission part for discharging | emitting the molten glass which exists in the space between the internal peripheral surface and the outer peripheral surface of the said inner pipe | tube. The molten glass transfer tube according to claim 1. 前記内管の内部空間の溶融ガラスの流速が、前記外管の内周面と前記内管の外周面との間の空間の溶融ガラスの流速よりも速いことを特徴とする請求項1〜4のいずれか1項に記載の溶融ガラス移送管。   The flow rate of the molten glass in the inner space of the inner tube is faster than the flow rate of the molten glass in the space between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube. The molten glass transfer tube according to any one of the above. 前記外管及び前記内管が、白金又は白金合金から形成されていることを特徴とする請求項1〜5のいずれか1項に記載の溶融ガラス移送管。   The molten glass transfer tube according to any one of claims 1 to 5, wherein the outer tube and the inner tube are made of platinum or a platinum alloy.
JP2010253907A 2010-11-12 2010-11-12 Molten glass transfer tube Expired - Fee Related JP5510748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253907A JP5510748B2 (en) 2010-11-12 2010-11-12 Molten glass transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253907A JP5510748B2 (en) 2010-11-12 2010-11-12 Molten glass transfer tube

Publications (2)

Publication Number Publication Date
JP2012101991A true JP2012101991A (en) 2012-05-31
JP5510748B2 JP5510748B2 (en) 2014-06-04

Family

ID=46392871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253907A Expired - Fee Related JP5510748B2 (en) 2010-11-12 2010-11-12 Molten glass transfer tube

Country Status (1)

Country Link
JP (1) JP5510748B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009126A (en) * 2012-06-29 2014-01-20 Avanstrate Inc Glass substrate manufacturing method and manufacturing device
JP2020176032A (en) * 2019-04-18 2020-10-29 Agc株式会社 Device for manufacturing glass sheet
WO2020236768A1 (en) * 2019-05-23 2020-11-26 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866611A (en) * 1971-12-15 1973-09-12
JP2003095663A (en) * 2001-08-24 2003-04-03 Carl Zeiss:Fa Noble metal pipe to guide molten glass, its usage and method for the same
JP2004523449A (en) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング Coated metal parts for glass manufacturing
WO2008026606A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Molten glass conduit structure and vacuum deaerator utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866611A (en) * 1971-12-15 1973-09-12
JP2004523449A (en) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング Coated metal parts for glass manufacturing
JP2003095663A (en) * 2001-08-24 2003-04-03 Carl Zeiss:Fa Noble metal pipe to guide molten glass, its usage and method for the same
WO2008026606A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Molten glass conduit structure and vacuum deaerator utilizing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009126A (en) * 2012-06-29 2014-01-20 Avanstrate Inc Glass substrate manufacturing method and manufacturing device
JP2020176032A (en) * 2019-04-18 2020-10-29 Agc株式会社 Device for manufacturing glass sheet
JP7255337B2 (en) 2019-04-18 2023-04-11 Agc株式会社 Glass plate manufacturing equipment
WO2020236768A1 (en) * 2019-05-23 2020-11-26 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon

Also Published As

Publication number Publication date
JP5510748B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US10934200B2 (en) Apparatus and method for conditioning molten glass
JP7438285B2 (en) How to reduce the lifetime of air bubbles on the surface of glass melt
JP5510748B2 (en) Molten glass transfer tube
WO2018079810A1 (en) Glass production device, glass production method, glass supply pipe, and molten glass transport method
JP5652708B2 (en) Molten glass transfer tube
WO2006059575A1 (en) Glass production apparatus and process for producing glass
WO2020255633A1 (en) Glass transfer device
TW201326061A (en) Apparatus and methods for providing a clean glass-making environment
JP2014094843A (en) Molten glass transfer device
KR102497517B1 (en) Manufacturing method and melting furnace of glass article
JP5652707B2 (en) Molten glass transfer tube
JP6943136B2 (en) Glass melting furnace and manufacturing method of glass articles
KR20220020802A (en) glass conveying device
JP2020100531A (en) Method for manufacturing glass article
WO2021002244A1 (en) Glass article production device and production method
TWI835935B (en) How to make glass items
JP6435827B2 (en) Temperature control method for molten glass
WO2007091415A1 (en) Apparatus and method for manufacturing float plate glass
KR101743375B1 (en) Method and apparatus for making glass sheet
WO2023100688A1 (en) Glass article manufacturing method
JP6806456B2 (en) Glass substrate manufacturing method and glass substrate manufacturing equipment
WO2024118218A1 (en) Apparatus for glass manufacturing
TW202028130A (en) Method of controlling bubbles in a glass making process
TW201323359A (en) Method for molding float glass sheet and device for molding float glass sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5510748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees