JP2012101313A - Method for machining tooth surface of spiral bevel gear - Google Patents

Method for machining tooth surface of spiral bevel gear Download PDF

Info

Publication number
JP2012101313A
JP2012101313A JP2010251587A JP2010251587A JP2012101313A JP 2012101313 A JP2012101313 A JP 2012101313A JP 2010251587 A JP2010251587 A JP 2010251587A JP 2010251587 A JP2010251587 A JP 2010251587A JP 2012101313 A JP2012101313 A JP 2012101313A
Authority
JP
Japan
Prior art keywords
tooth
cutter
correction
gear
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010251587A
Other languages
Japanese (ja)
Other versions
JP5132753B2 (en
Inventor
Susumu Yanagiuchi
暹 柳内
Masatoshi Haruna
將敏 春名
Ichiro Moriwaki
一郎 森脇
Morimasa Nakamura
守正 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INASAKA GEAR Manufacturing CO Ltd
Original Assignee
INASAKA GEAR Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INASAKA GEAR Manufacturing CO Ltd filed Critical INASAKA GEAR Manufacturing CO Ltd
Priority to JP2010251587A priority Critical patent/JP5132753B2/en
Publication of JP2012101313A publication Critical patent/JP2012101313A/en
Application granted granted Critical
Publication of JP5132753B2 publication Critical patent/JP5132753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for machining a tooth surface of a spiral bevel gear, easily correcting a tooth trace by only controlling a rotation center position of a cutter, without requiring an expensive device or an advanced technique.SOLUTION: The method includes steps of: installing a gear 4 to be cut so that a center axis thereof passes an origin of coordinates, and that a tooth bottom conical surface is parallel to an X-Y plane; moving the cutter 1 in a Z-axis direction while rotating it, and moving a rotation center axis of a cutting edge 3 along an arc having the origin of coordinates as the center; correcting a trajectory of the rotation center axis of the cutting edge 3 so that the trajectory passes a large diameter-side correction position and a small diameter-side correction position which have been shifted in the X- and Y-axis directions by a large diameter-side correction value and a small diameter-side correction value converted based on correction target values at ends of large- and small-diameter sides of the tooth surface and a correction start position of the tooth surface, from a reference trajectory passing a large diameter-side reference position and a small diameter-side reference position; thereby forming areas which causes no tooth contact under no load at both ends of the tooth trace.

Description

本発明は、曲がり歯傘歯車の歯面加工方法に関する。   The present invention relates to a tooth surface processing method for a bent bevel gear.

曲がり歯傘歯車の歯面は、高価な専用歯切り盤及び専用カッタを用い、高度な計算プロセスを経た結果に基づき歯切りを行なうことによって形成している。最終的に行う歯当たりの微妙な修正は経験豊富な技能者の技能に期待するところが大であり、高額な費用と長い作業時間と特殊技能を必要とする。
即ち、ギア、ピニオンの歯面加工には、特殊な技術と経験、及び高度な計算に基づき、基準の座標位置から微小調整(機械テーブルの前後移動による微調整、ワークの軸方向移動による微調整、それぞれの軸心をずらすオフセット調整等)してマシンセッティングを行ない、カッタの傾きや位置等を求める必要があった。
The tooth surface of the bent bevel gear is formed by performing gear cutting based on the result of an advanced calculation process using an expensive dedicated gear cutter and a dedicated cutter. The subtle modification of the final tooth contact is highly expected from the skills of experienced technicians, and requires high costs, long working time and special skills.
In other words, for gear and pinion tooth surface processing, based on special techniques and experience, and advanced calculations, fine adjustment from the reference coordinate position (fine adjustment by moving the machine table back and forth, fine adjustment by moving the workpiece in the axial direction) It was necessary to perform machine settings by adjusting the offsets that shift the axes, and to determine the tilt and position of the cutter.

具体的に説明すると、通常、ギア、ピニオンの歯面は、JIS B 0174に示す「クランプ歯切り工具」、「曲がり歯傘歯車用カッタ」を用いて加工する。
ギア(大歯車)の歯面は、梯形断面の切れ歯を有するカッタを基準位置に取り付け、カッタを回転させながら軸方向に送るというカッタの簡単な動きで加工する。
ピニオン(小歯車)の歯面は、ピニオン歯面加工用の専用カッタで加工するが、相手ギアとの適切な歯当たりを得るために必ず歯当たり修整を含めた加工を行う。
歯当たり修整方法は、カッタ、ピニオン歯車の取付位置を基準位置から単一項目又は複数項目移動させる「マシンセッティング修整」状態で加工を行い、目標とする「歯当たり」を得るのが一般的であるが、マシンセッティング修整仕様を決定するには、高度な経験と技術が要求される。
More specifically, the tooth surfaces of gears and pinions are usually processed using a “clamp tooth cutting tool” and a “bend bevel gear cutter” shown in JIS B 0174.
The tooth surface of the gear (large gear) is processed by a simple movement of the cutter in which a cutter having a trapezoidal section of cutting teeth is attached to a reference position and the cutter is rotated and fed in the axial direction.
The tooth surface of the pinion (small gear) is processed with a dedicated cutter for processing the pinion tooth surface, but in order to obtain an appropriate tooth contact with the mating gear, processing including tooth contact modification is always performed.
Tooth contact correction method is generally to obtain the target “tooth contact” by processing in the “machine setting adjustment” state in which the mounting position of the cutter and pinion gear is moved from the reference position to a single item or multiple items. However, advanced experience and skills are required to determine machine setting modification specifications.

また、十分な歯車の強度、寿命、振動低減を得るためには、適切な歯当たり確保が必要であり、その指針として、曲がり歯傘歯車の歯当たりがJIS B 1741-1977に規定されている。この規定には、傘歯車の区分ごとに必要とされる歯筋方向及び歯丈方向における当たり長さが記載されていると共に、歯筋の両端から歯筋の長さのほぼ10%の部分に強い当たりがあってはならないと記載されている。
そして、目的に応じて設計者の意図する位置に歯当たりを確保するために、歯形及び歯筋に関して数回の修整トライを行なうこともあるが、その予測計算には高度な計算と経験と時間と費用を要するのが普通である。
In addition, in order to obtain sufficient gear strength, life, and vibration reduction, it is necessary to ensure appropriate tooth contact, and as a guideline, the tooth contact of a bent tooth bevel gear is defined in JIS B 1741-1977. . This regulation describes the contact length in the tooth trace direction and the tooth height direction required for each section of the bevel gear, and is approximately 10% of the length of the tooth trace from both ends of the tooth trace. It is stated that there should be no strong hits.
Depending on the purpose, in order to secure the tooth contact at the position intended by the designer, several correction trials may be performed on the tooth profile and the tooth trace, but the prediction calculation requires advanced calculation, experience, and time. It usually costs money.

従来、円盤状カッタを工具軸に取り付けると共に、被削歯車を主軸に取り付け、工具軸を3軸方向に移動させることにより、被削歯車のピッチ円錐角に回転平面が合わされた円盤状カッタを公転させて、仮想冠歯車を出現させるまがりばかさ歯車製造方法が記載されている(特許文献1参照)。
上記従来の方法によれば、曲がり歯歯車用の歯切専用機を用いることなく、汎用の工作機械によって曲がり歯傘歯車の歯面を加工することができる。しかし、この方法は、適切な歯当たりを得るために、歯車の歯筋を修正する技術を備えていない。
Conventionally, a disc-shaped cutter whose rotational plane is aligned with the pitch cone angle of the work gear is revolved by attaching the disc-shaped cutter to the tool shaft, attaching the work gear to the main shaft, and moving the tool shaft in three directions. Then, a spiral bevel gear manufacturing method is described in which a virtual crown gear appears (see Patent Document 1).
According to the above-described conventional method, the tooth surface of the bent bevel gear can be processed by a general-purpose machine tool without using a dedicated gear cutting machine for the bent gear. However, this method does not include a technique for correcting the tooth trace of the gear in order to obtain an appropriate tooth contact.

特開2002−273623号公報JP 2002-273623 A

本発明が解決しようとする課題は、高額な装置や高度な技術を必要とせずに、カッタの回転中心位置を制御するだけで簡単に歯筋修正を行なうことができ、歯面加工が容易でコストが低廉で済む曲がり歯傘歯車の歯面加工方法を提供することにある。   The problem to be solved by the present invention is that it is possible to easily correct tooth traces by simply controlling the rotation center position of the cutter without requiring expensive equipment and advanced technology, and tooth surface processing is easy. An object of the present invention is to provide a method of processing a tooth surface of a bent bevel gear that can be manufactured at low cost.

本発明の曲がり歯傘歯車の歯面加工方法は、切刃を有するカッタを、互いに直交するX,Y,Z軸方向に移動可能に、且つ、前記切刃の回転中心軸がZ軸と平行になるよう設け、被切削歯車を、その中心軸が座標原点を通るよう、且つ、該被切削歯車に形成する歯の歯底円錐面がX−Y平面と平行になるよう設置し、前記カッタを回転させながらZ軸方向に移動すると共に、前記切刃の回転中心軸を、座標原点を中心とする円弧に沿ってX,Y軸方向に移動させて前記被切削歯車の周面を切削し、曲がり歯傘歯車対の歯面を加工する方法であって、前記切刃の回転中心軸の軌道を、曲がり歯傘歯車対の歯面が全面歯当たりとなる大径側基準位置及び小径側基準位置を通る基準軌道から、前記歯面の大径側端部及び小径側端部における修正目標値並びに歯面の修正開始位置に基づいて換算した大径側修正値及び小径側修正値だけX,Y軸方向に移動した大径側修正位置及び小径側修正位置を通る修正軌道とすることにより、歯筋の両端部に無負荷時歯当たりの無い領域を形成する。   According to the method of processing a tooth surface of a bevel gear according to the present invention, a cutter having a cutting edge can be moved in X, Y, and Z axis directions orthogonal to each other, and the rotation center axis of the cutting edge is parallel to the Z axis. The cutting gear is installed so that the central axis thereof passes through the coordinate origin, and the root conical surface of the tooth formed on the cutting gear is parallel to the XY plane. Is moved in the Z-axis direction while rotating the cutter, and the rotation center axis of the cutting blade is moved in the X- and Y-axis directions along an arc centered on the coordinate origin to cut the peripheral surface of the gear to be cut. A method of processing a tooth surface of a bent bevel gear pair, wherein the trajectory of the central axis of rotation of the cutting blade is a large-diameter side reference position and a small-diameter side where the tooth surface of the bent bevel gear pair contacts the entire surface. From the reference trajectory passing through the reference position, the correction target at the large diameter side end and the small diameter side end of the tooth surface And a correction trajectory passing through the large-diameter correction position and the small-diameter correction position moved in the X and Y axis directions by the large-diameter correction value and the small-diameter correction value converted based on the correction start position of the tooth surface, A region where there is no tooth contact at the time of no load is formed at both ends of the tooth trace.

前記切刃が前記歯底円錐面と一致するよう、前記被切削歯車をその中心軸周りに回転させて、前記被切削歯車の周面を切削することがある。
一方の曲がり歯傘歯車となる前記被切削歯車の歯筋のみに、前記無負荷時歯当たりの無い領域を形成することができる。
前記切刃の回転中心軸の軌道を前記基準軌道として切削を行ない、前記被切削歯車に曲がり歯傘歯車対が全面歯当たりとなる歯面を形成した後、前記切刃の回転中心軸の軌道を修正軌道として切削を行ない、歯筋の両端部に無負荷時歯当たりの無い領域を形成しても良い。
The peripheral surface of the gear to be cut may be cut by rotating the gear to be cut around its central axis so that the cutting edge coincides with the conical surface of the tooth bottom.
A region without the tooth contact at the time of no load can be formed only in the tooth trace of the gear to be cut that is one bent bevel gear.
Cutting is performed with the trajectory of the rotation center axis of the cutting edge as the reference trajectory, and after forming a tooth surface on which the pair of bevel gears are in full contact with the gear to be cut, the trajectory of the rotation center axis of the cutting edge May be cut as a correction trajectory to form areas where there is no tooth contact under no load at both ends of the tooth trace.

あるいは、前記切刃の回転中心軸の軌道を修正軌道として切削を行ない、歯筋の両端部に無負荷時歯当たりの無い領域を有する歯面の創成を行なっても良い。
断面梯形の切刃を有するカッタを用い、前記切刃の先端が歯底円錐面に達するまで前記カッタをZ軸方向に移動させることにより、全歯丈に亘って無負荷時歯当たりの無い領域を形成することがある。
また、側面の先端部に切削部が形成された切刃を有するカッタを用い、該カッタのZ軸方向への移動を制御することにより、歯丈の一部に無負荷時歯当たりの無い領域を形成することもある。
Alternatively, cutting may be performed with the trajectory of the rotation center axis of the cutting blade as a correction trajectory, and a tooth surface having areas where there is no tooth contact at no load at both ends of the tooth trace may be created.
Using a cutter having a cutting edge with a trapezoidal cross section and moving the cutter in the Z-axis direction until the tip of the cutting edge reaches the root conical surface, the area where there is no tooth contact at all loads over the entire tooth height May form.
In addition, by using a cutter having a cutting edge with a cutting part formed at the tip of the side surface, and controlling the movement of the cutter in the Z-axis direction, a region where there is no tooth contact when no load is applied to a part of the tooth height May be formed.

請求項1に係る発明によれば、カッタの回転中心位置を制御するだけで、歯面加工のための高額な歯切り専用機や高度な技術を用いることなく、簡単に歯面創成及び歯筋修正を行なうことができるので、歯面加工が容易で、歯面加工に要するコストが低廉で済む。
請求項2に係る発明によれば、歯筋の大径側端部及び小径側端部においても、歯底が正確に歯底円錐面と接するよう歯面を形成することができる。
請求項3に係る発明によれば、他方の曲がり歯傘歯車となる被切削歯車には歯筋修正を施さず、切刃の回転中心軸を基準位置に設定して切削するだけで、望ましい歯当たりを確保することができる。
According to the first aspect of the present invention, tooth surface creation and tooth traces can be easily performed without controlling an expensive gear-cutting machine or advanced technology for tooth surface processing only by controlling the rotation center position of the cutter. Since correction can be performed, tooth surface processing is easy, and the cost required for tooth surface processing is low.
According to the invention which concerns on Claim 2, a tooth surface can be formed so that a tooth root may contact | abut with a conical surface of a tooth bottom correctly also in the large diameter side edge part and small diameter side edge part of a tooth trace.
According to the third aspect of the present invention, the tooth to be cut that is the other bevel gear bend gear is not subjected to tooth trace correction, and only by cutting with the rotation center axis of the cutting blade set as the reference position, the desired tooth is obtained. Wins can be secured.

本発明の実施例に係るカッタ及び被切削歯車を示す側面図である。It is a side view which shows the cutter and the to-be-cut gear according to the Example of this invention. 本発明の実施例に係る曲がり歯傘歯車対を示す側面図である。It is a side view which shows the bending bevel gear pair which concerns on the Example of this invention. 平均円錐距離位置の加工時における切刃位置及び被切削歯車を示す平面図である。It is a top view which shows the cutting blade position at the time of a process of an average cone distance position, and a to-be-cut gear. 大径側端部の加工時における切刃位置及び被切削歯車を示す平面図である。It is a top view which shows the cutting blade position at the time of a process of a large diameter side edge part, and a to-be-cut gear. 小径側端部の加工時における切刃位置及び被切削歯車を示す平面図である。It is a top view which shows the cutting blade position at the time of a process of a small diameter side edge part, and a to-be-cut gear. 歯面加工時におけるカッタ円弧中心の軌道を示す図である。It is a figure which shows the track | orbit of a cutter circular arc center at the time of tooth surface processing. 歯面における歯当たり狙い形状を示し、(イ)は四角形の歯当たり狙い形状を有する歯面、(ロ)は楕円形の歯当たり狙い形状を有する歯面、(ハ)は楕円形で傾斜した歯当たり狙い形状を有する歯面を示す図である。(A) is a tooth surface having a square tooth contact shape, (b) is a tooth surface having an oval tooth contact shape, and (c) is elliptical and inclined. It is a figure which shows the tooth surface which has a tooth aiming shape. 大径側端部において歯筋修正を行なった場合のカッタ円弧の中心移動およびオリジナル円と修正円弧との関係を示す図である。It is a figure which shows the relationship between the center movement of a cutter circular arc at the time of performing a tooth trace correction in a large diameter side edge part, and an original circle and a correction arc. 図8の要部拡大図である。It is a principal part enlarged view of FIG. カッタ円弧の中心移動量を求める第1の方法を説明するための参考図である。It is a reference diagram for explaining a first method for obtaining the center movement amount of the cutter arc. カッタ円弧の中心移動量を求める第2の方法を説明するための参考図である。It is a reference diagram for explaining a second method for obtaining the center movement amount of the cutter arc. 断面梯形の切刃を有するカッタの断面図である。It is sectional drawing of the cutter which has a cross-section trapezoidal cutting blade. 歯筋両端部に修正を加える場合のカッタ円弧中心の軌道を示す図である。It is a figure which shows the track | orbit of a cutter circular arc center in the case of adding correction to both ends of a tooth trace. 両端部に修正を加えた歯筋を示す図である。It is a figure which shows the tooth trace which added the correction to both ends. ポイントカッタの断面図である。It is sectional drawing of a point cutter.

以下、本発明の実施例を図面に基づいて詳細に説明する。
図1に示すように、円盤2の外周部に複数の切刃3を配設して成るカッタ1を用いて、図2に示すような曲がり歯傘歯車対(歯数の多いギアG1と歯数の少ないピニオンG2)の歯面加工を行なう。
カッタ1は、互いに直交するX,Y,Z軸方向に移動可能で、Z軸と平行な工具軸(図示せず)の先端に取り付けられる。
被切削歯車4は、座標原点(O1)を通ってX−Z平面に含まれ、X軸との角度が可変なA軸上に配置した回転軸5の先端に取り付けられる。被切削歯車4は、その中心軸がA軸と一致し、周面に形成しようとする各歯の歯底を含む歯底円錐面がX−Y平面と平行になるよう、即ち、A軸とX軸との交差角度が歯底円錐角と同じくなるようセットされる。
そして、工具軸を回転させながらZ軸方向に移動させ、切刃3の先端が歯底円錐面に達するまでカッタ1を追い込むことにより、ギアG1及びピニオンG2の歯面を得る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, using a cutter 1 having a plurality of cutting blades 3 disposed on the outer periphery of a disk 2, a bevel gear bevel gear pair (a gear G1 and a tooth having a large number of teeth) as shown in FIG. The tooth surface processing of a small number of pinions G2) is performed.
The cutter 1 is movable in the X, Y, and Z axis directions orthogonal to each other, and is attached to the tip of a tool axis (not shown) parallel to the Z axis.
The gear 4 to be cut is attached to the tip of the rotary shaft 5 that is included in the XZ plane through the coordinate origin (O1) and arranged on the A axis whose angle with the X axis is variable. The gear 4 to be cut has a central axis coinciding with the A axis, and a conical surface including the root of each tooth to be formed on the circumferential surface is parallel to the XY plane, that is, with the A axis. The intersection angle with the X axis is set to be the same as the root cone angle.
And the tooth surface of the gear G1 and the pinion G2 is obtained by moving in the Z-axis direction while rotating the tool shaft and driving the cutter 1 until the tip of the cutting edge 3 reaches the bottom cone surface.

実際に歯面加工を行う場合は、ギアG1及びピニオンG2の基本設計が図面として与えられる。
ギアG1の歯面を加工するためのカッタ1の切刃3の断面形状と円盤2の半径(切刃3の軌道の半径)を決定する。切刃3の軌道の半径は、被切削歯車4の大径円錐距離(座標原点から被切削歯車4の大径側端部までの距離)と同じか、少し小さい値とする。
このカッタ1による加工で得られるギアG1の歯面を3次元歯面上の点群として、それぞれの点の座標、法線ベクトル、及び曲率半径を求める。
次いで、ギアG1と噛み合うピニオンG2の「共役歯面」を数学的手法で求める。計算で求めた「共役歯面」は、ギアG1とピニオンG2とを噛み合わせると、当然100%歯面当たりとなる。
この曲がり歯傘歯車対を実用に供するには、一方の曲がり歯傘歯車(通常は、歯数の少ないピニオンG2)の歯面に適切な修正を加え、上記したJIS規格(又は米国のAGMA規格390.03)に適合する歯当たりを確保しなければならない。
When actually performing tooth surface processing, the basic design of the gear G1 and the pinion G2 is given as a drawing.
The cross-sectional shape of the cutting blade 3 of the cutter 1 and the radius of the disk 2 (the radius of the track of the cutting blade 3) for processing the tooth surface of the gear G1 are determined. The radius of the orbit of the cutting edge 3 is set to be the same as or slightly smaller than the large-diameter conical distance (distance from the coordinate origin to the large-diameter side end of the gear 4 to be cut) of the gear 4 to be cut.
Using the tooth surface of the gear G1 obtained by machining with the cutter 1 as a group of points on the three-dimensional tooth surface, the coordinates, normal vector, and radius of curvature of each point are obtained.
Next, a “conjugate tooth surface” of the pinion G2 meshing with the gear G1 is obtained by a mathematical method. The “conjugate tooth surface” obtained by calculation is naturally 100% per tooth surface when the gear G1 and the pinion G2 are engaged with each other.
In order to put this curved bevel gear pair into practical use, appropriate modification is made to the tooth surface of one bent bevel gear (usually pinion G2 having a small number of teeth), and the above-mentioned JIS standard (or US AGMA standard). The tooth contact conforming to 390.03) must be ensured.

被切削歯車4をカッタ1で加工するには、図1に示すように、被切削歯車4の円錐頂点が座標原点(O1)と一致すると共に、歯底円錐面がX−Y平面と平行になり、カッタ1の切刃3の回転面がX−Y平面と平行になるようセットする。
図3に示すように、X軸上において被切削歯車4の平均円錐距離(Mean Cone Distance)「md」にある位置を「D」、切刃3の中心の軌道であるカッタ円弧Sの半径を「rc」とする。
D点において、カッタ円弧SとX軸との交差角度が所定の捩れ角βになるようカッタ円弧Sの中心(切刃3の回転中心軸)O2D(X=H0,Y=V0)を決める。中心O2Dの極座標表示の腕の長さをL、腕とY軸との角度をΘとする。
In order to machine the gear 4 to be cut with the cutter 1, as shown in FIG. 1, the cone apex of the gear 4 to be cut coincides with the coordinate origin (O1), and the root cone surface is parallel to the XY plane. Thus, the rotation surface of the cutting blade 3 of the cutter 1 is set to be parallel to the XY plane.
As shown in FIG. 3, the position at the mean cone distance “md” of the gear 4 to be cut on the X axis is “D”, and the radius of the cutter arc S, which is the center trajectory of the cutting edge 3, is set. Let it be “rc”.
At the point D, the center of the cutter arc S (the rotation center axis of the cutting blade 3) O2D (X = H0, Y = V0) is determined so that the intersection angle between the cutter arc S and the X axis becomes a predetermined twist angle β. The length of the arm in the polar coordinate display of the center O2D is L, and the angle between the arm and the Y axis is Θ.

この状態でカッタ1を回転させ被切削歯車4を加工した時の歯底の形状を図3に示す。図3から明らかなように、D点では切刃3の中心先端の軌道が被切削歯車4の歯底円錐面と一致するが、歯底の小径側端部B及び大径側端部Cでは歯底円錐面から外れる。
大径側端部Cにおいて切刃3が被切削歯車4の歯底円錐面上にあるためには、図4に示すように、工具軸を制御してカッタ円弧Sの中心を「02C」[X=(H)FOR 02C,Y=(V)FOR 02C]に移動すると共に、大径側端部Cと座標原点とを結ぶ直線がX軸と平行になるまで、被切削歯車4をA軸周りに回転させる必要がある。
この時のカッタ円弧Sの中心「02C」を極座標で示すと、腕の長さLは変化せず、腕とY軸との角度Θ=(Θ)FOR 02Cとなる。
FIG. 3 shows the shape of the tooth bottom when the cutter 1 is rotated and the gear 4 to be cut is machined in this state. As is apparent from FIG. 3, at the point D, the track of the center tip of the cutting blade 3 coincides with the bottom cone surface of the gear 4 to be cut, but at the small diameter end B and large diameter end C of the tooth bottom. Detach from the root conical surface.
In order for the cutting edge 3 to be on the tooth bottom conical surface of the gear 4 to be cut at the large-diameter end C, as shown in FIG. 4, the tool axis is controlled so that the center of the cutter arc S is “02C” [ X = (H) FOR 02C, Y = (V) FOR 02C] and the gear 4 to be cut is moved to the A axis until the straight line connecting the large diameter side end C and the coordinate origin is parallel to the X axis. Need to rotate around.
When the center “02C” of the cutter arc S at this time is indicated by polar coordinates, the arm length L does not change and the angle Θ = (Θ) FOR 02C between the arm and the Y axis is obtained.

また、小径側端部Bにおいて切刃3が被切削歯車4の歯底円錐面上にあるためには、図5に示すように、カッタ円弧Sの中心を「02B」[X=(H)FOR 02B,Y=(V)FOR 02B]に移動すると共に、大径側端部Bと座標原点とを結ぶ直線がX軸と平行になるまで、被切削歯車4をA軸周りに逆回転させる必要がある。
この時のカッタ円弧Sの中心「02B」を極座標で示すと、腕の長さLは変化せず、腕とY軸との角度Θ=(Θ)FOR 02Bとなる。
なお、実際の加工時には、被切削歯車4の回転角は、図4及び図5に示す範囲よりも大きくする。
図6に示すように、カッタ円弧Sの中心は半径Lの一つの円弧上を移動し、被切削歯車4に形成される歯底中心線はB,D,Cを通る。
このように、被切削歯車4の回転角度、及び、「Θ」を連続的に制御することにより、被切削歯車4の歯底円錐面上に正しく歯底を加工することができると共に歯形の創成を行なう。
Further, in order for the cutting edge 3 to be on the tooth bottom conical surface of the gear 4 to be cut at the small-diameter side end B, the center of the cutter arc S is set to “02B” [X = (H) as shown in FIG. FOR 02B, Y = (V) FOR 02B], and the gear 4 to be cut is reversely rotated about the A axis until the straight line connecting the large diameter side end B and the coordinate origin is parallel to the X axis. There is a need.
When the center “02B” of the cutter arc S at this time is indicated by polar coordinates, the arm length L does not change and the angle Θ = (Θ) FOR 02B between the arm and the Y axis is obtained.
In actual machining, the rotation angle of the gear 4 to be cut is set larger than the range shown in FIGS.
As shown in FIG. 6, the center of the cutter arc S moves on one arc of radius L, and the root center line formed on the gear 4 to be cut passes through B, D, and C.
In this way, by continuously controlling the rotation angle of the gear 4 to be cut and “Θ”, the tooth bottom can be correctly machined on the conical surface of the tooth bottom of the gear 4 to be cut and the tooth profile is created. To do.

ところで、上記したように、一方の曲がり歯傘歯車には、歯筋修正を行なって適正な歯当たりとしなければならない。このためには、ピニオンG2の共役歯面から、無負荷時の歯当たり狙い形状を除いた部分を逃がすことで、噛み合い時にその領域の無負荷時歯当たりをなくす。
図7に、歯面a上における無負荷時の歯当たり狙い領域bを示す。図7の(イ)は、四角形の歯当たり狙い領域bを、図7の(ロ)は、楕円形の歯当たり狙い領域bを、図7の(ハ)は、楕円形で傾斜した歯当たり狙い領域bをそれぞれ示す。
By the way, as described above, one bent tooth bevel gear must be corrected to have a proper tooth contact. For this purpose, the portion of the conjugate tooth surface of the pinion G2 excluding the target contact shape at the time of no load is released to eliminate the tooth contact at the time of meshing at the time of engagement.
FIG. 7 shows a tooth contact aiming area b when no load is applied on the tooth surface a. 7A is a square tooth contact area b, FIG. 7B is an oval tooth contact area b, and FIG. 7C is an oval and inclined tooth contact area. Each target area b is shown.

歯面の大径側端部に歯筋修正を行なう場合、歯筋の修正開始点Eを定め、大径側端部Cでの修正目標値δを与えて、「E−C」間の歯筋を修正し、「B−D−E−C’」なる修正歯筋を得る。なお、修正目標値δ及び歯筋の修正開始点Eは、負荷時の歯面aの変形量、目標とする歯当たり狙い領域b等を考慮して決定する。
このように、E点から修正開始し、大径側端部Cで修正目標値δを得るためには、図8に示すように、カッタ円弧の中心を大径側基準位置「02C」から大径側修正位置「02C’」に移動させる。
大径側修正位置「02C’」をX,Y座標で示すと、
X(02C’)=X(02C)+ΔX
Y(02C’)=Y(02C)+ΔYとなる。
修正開始点Eの位置と大径側端部Cにおける修正目標値δから、カッタ円弧Sの中心の大径側修正値(ΔX,ΔY)を簡単に求めることができる。
When correcting the tooth trace at the large-diameter end of the tooth surface, a correction start point E of the tooth trace is determined, a correction target value δ at the large-diameter end C is given, and the teeth between “E-C” The muscle is corrected to obtain a corrected tooth muscle “B-D-E-C ′”. The correction target value δ and the correction start point E of the tooth trace are determined in consideration of the deformation amount of the tooth surface a at the time of loading, the target tooth contact aiming area b, and the like.
Thus, in order to start the correction from the point E and obtain the correction target value δ at the large-diameter end C, the center of the cutter arc is increased from the large-diameter reference position “02C” as shown in FIG. Move to the radial side correction position “02C ′”.
When the large diameter side correction position “02C ′” is indicated by X and Y coordinates,
X (02C ′) = X (02C) + ΔX
Y (02C ′) = Y (02C) + ΔY.
From the position of the correction start point E and the correction target value δ at the large-diameter end C, the large-diameter correction value (ΔX, ΔY) at the center of the cutter arc S can be easily obtained.

カッタ円弧Sの中心を大径側基準位置「02C」から大径側修正位置「02C’」に移動させて、図9に示すように、切刃3を、「B−D−C」を通るカッタ円弧(オリジナル円弧)Sに対してE点で交わり、「B−D−E−C’」を通る半径rcの修正円弧S’に沿って回転させることにより、凹歯面の大径側端部に目標の歯筋修正を行なうことができる。
この方法で大径側の歯筋修正を行なうと、修正円弧S’上では点BがB”へ移動すると共に、点DがD”へ移動するが、(B”−E)間には歯面が無いので切削されることはない。
また、カッタ円弧Sの中心を大径側基準位置「02C」から大径側修正位置「02C’」に移動させる経路によって、異なった修正曲線を得ることができ、E点付近の修正曲線をなだらかにするには、カッタ円弧Sの中心をなだらかに「02C」から「02C’」へ移動させる。
The center of the cutter arc S is moved from the large-diameter side reference position “02C” to the large-diameter side correction position “02C ′”, and as shown in FIG. 9, the cutting blade 3 passes through “B-D-C”. By intersecting the cutter arc (original arc) S at point E and rotating along a modified arc S ′ having a radius rc passing through “BD-C-C ′”, the large-diameter side end of the concave tooth surface The target tooth muscle correction can be performed on the part.
When the tooth trace on the large diameter side is corrected by this method, the point B moves to B ″ and the point D moves to D ″ on the correction arc S ′, but the tooth is between (B ″ −E). Since there is no surface, it is not cut.
Further, different correction curves can be obtained depending on the path for moving the center of the cutter arc S from the large-diameter side reference position “02C” to the large-diameter side correction position “02C ′”. In order to achieve this, the center of the cutter arc S is gently moved from “02C” to “02C ′”.

以下、修正目標値δ及び修正開始点Eの位置に基づいてカッタ円弧Sの中心の移動量を求める方法を具体的に説明する。
図10に示すように、点Eは、オリジナル円弧S及び修正円弧S’に共通する点であり、点C’は、大径側基準位置「02C」及び点Cを通る直線L1上において、点Cからδの位置にある。
また、点Eを中心とした半径rcの円S1、点C’ を中心とした半径rcの円S2を定義すると、大径側基準位置「02C」は円S1上にある。
Hereinafter, a method for obtaining the movement amount of the center of the cutter arc S based on the correction target value δ and the position of the correction start point E will be specifically described.
As shown in FIG. 10, the point E is a point common to the original arc S and the corrected arc S ′, and the point C ′ is a point on the straight line L1 passing through the large-diameter side reference position “02C” and the point C. C to δ.
When a circle S1 having a radius rc centered on the point E and a circle S2 having a radius rc centered on the point C ′ are defined, the large-diameter side reference position “02C” is on the circle S1.

円S1と円S2の交点を(02C’)とすると、この点が求めている修正円弧S’の中心である。即ち、点(02C)及び点(02C’)は、共に点Eから等距離rcの位置にあるので、点(02C’)が求めている修正円弧S’の中心である。
なお、円S1と円S2とは二つの交点を有するが、図示する点(02C’)ではない他の交点は、カッタ1の移動距離が大きくなって現実的ではないので、無視すればよい。
カッタ円弧Sの中心の移動量であるΔX,ΔYの値は、上記の方法を数式化し、又は、CAD上に求めることができる。
When the intersection of the circle S1 and the circle S2 is (02C ′), this point is the center of the corrected arc S ′ obtained. That is, since the point (02C) and the point (02C ′) are both at the equidistant position rc from the point E, the point (02C ′) is the center of the corrected arc S ′ obtained.
Although the circle S1 and the circle S2 have two intersections, other intersections that are not the point (02C ′) shown in the figure can be ignored because the movement distance of the cutter 1 becomes large and is not realistic.
The values of ΔX and ΔY, which are the movement amounts of the center of the cutter arc S, can be obtained by formulating the above method or obtained on CAD.

具体的な数値を挙げれば、被切削歯車4の大径円錐距離が53.93mmであるのに対してrc=50.8mmとし、X(02C)=20.9218mm、Y(02C)=38.6148mm、δ=0.071mm、(E−C)間の距離E値=5.4mmとすると、ΔX=0.552mm,ΔY=0.347mmとなる。
なお、修正目標値δを「−」にすれば、凸歯面に対しても同様の方法で歯筋修正を行なうことができる。
As specific numerical values, the large diameter cone distance of the gear 4 to be cut is 53.93 mm, whereas rc = 50.8 mm, X (02C) = 20.9218 mm, Y (02C) = 38. If 6148 mm, δ = 0.071 mm, and the distance E value between (E−C) = 5.4 mm, ΔX = 0.552 mm and ΔY = 0.347 mm.
If the correction target value δ is set to “−”, the tooth trace correction can be performed on the convex tooth surface by the same method.

また、以下の方法でも、カッタ円弧Sの中心の移動量を簡易的に求めることができる。
図11に示すように、点C’と点Eを直線L2で結び、直線L2の方程式を求める。点C’と点Eとの中点をGとし、点Gを通って直線L2に直交する直線L3の方程式を求める。
直線L3と円S1との交点を求めると、この点(02C’)は直線L3と円S2の交点とも一致するので、求めた点(02C’)は修正円弧S’の中心であるといえる。
即ち、切刃3の回転中心の移動量は、修正目標値δ及び修正開始点Eの位置に対して一義的に求めることができる。
Also, the amount of movement of the center of the cutter arc S can be easily obtained by the following method.
As shown in FIG. 11, the point C ′ and the point E are connected by a straight line L2, and an equation of the straight line L2 is obtained. The midpoint between the point C ′ and the point E is G, and an equation of a straight line L3 passing through the point G and orthogonal to the straight line L2 is obtained.
When the intersection point between the straight line L3 and the circle S1 is obtained, this point (02C ′) coincides with the intersection point between the straight line L3 and the circle S2, so that the obtained point (02C ′) is the center of the corrected arc S ′.
That is, the amount of movement of the rotation center of the cutting blade 3 can be uniquely determined with respect to the correction target value δ and the position of the correction start point E.

次に、歯面形成後に凹歯面の大径側端部C及び小径側端部Bにそれぞれ修正加工を行なう場合について説明する。
先に示した具体例と同じく、rc=50.8mm、X(02C)=20.9218mm、Y(02C)=38.6148mmとする。
カッタ1は、図12に示すような断面梯形状の切刃3を有し、切刃3を歯底まで追い込んだ状態で歯面形成及び修正加工を行なう。なお、切刃3のカッタ外周側の側面が凹歯面を加工し、カッタ中心側の側面が凸歯面を加工する。
まず、カッタ円弧Sの中心が基準軌道(02B,02D,02C)を通るようカッタ1を往復回転させて、凹凸歯面にそれぞれ仕上げ代を残して凹凸歯面を荒加工する。実際には、仕上げ代の分だけ薄い切刃を用いて切削することによって荒加工する。
Next, the case where correction processing is performed on the large-diameter side end portion C and the small-diameter side end portion B of the concave tooth surface after the tooth surface is formed will be described.
As in the specific example described above, rc = 50.8 mm, X (02C) = 20.9218 mm, and Y (02C) = 38.6148 mm.
The cutter 1 has a cutting blade 3 having a trapezoidal cross section as shown in FIG. 12, and performs tooth surface formation and correction processing in a state where the cutting blade 3 is driven to the tooth bottom. The side surface on the cutter outer periphery side of the cutting edge 3 processes the concave tooth surface, and the side surface on the cutter center side processes the convex tooth surface.
First, the cutter 1 is reciprocatingly rotated so that the center of the cutter arc S passes through the reference trajectory (02B, 02D, 02C), and the uneven tooth surface is roughly processed leaving a finishing allowance on the uneven tooth surface. In practice, roughing is performed by cutting with a cutting blade that is as thin as the finishing allowance.

その後に、歯筋無修正の凹歯面を加工してから、凹歯面の大径側端部Cに歯筋修正を行なう。
(E−C)間の距離を10.4mmとし、大径側端部Cでδ=100μの修正を行なうためには、図13に示すように、カッタ円弧Sの中心を大径側基準位置「02C」から大径側修正値(ΔXC=421μ,ΔYC=226μ)だけ修正した大径側修正位置「02C’」に移動する。
Then, after processing the concave tooth surface without correction of the tooth trace, the tooth trace correction is performed on the large-diameter side end portion C of the concave tooth face.
In order to make the distance between (E-C) 10.4 mm and to correct δ = 100 μ at the large-diameter end C, the center of the cutter arc S is set to the large-diameter reference position as shown in FIG. It moves from “02C” to the large diameter correction position “02C ′” corrected by the large diameter correction value (ΔXC = 421 μ, ΔYC = 226 μ).

また、凹歯面の小径側端部Bから修正開始点Fまで歯筋修正を行なう。(B−F)間の距離を10.4mmとすると、カッタ円弧Sの中心を小径側基準位置「02B」から小径側修正値(ΔXB=−386μ、ΔYB=−353μ)だけ修正した小径側修正位置「02B’」へ移動することにより、F点で修正量0、B点で100μの修正量を持つ歯筋を加工できる。
即ち、カッタ円弧Sの中心を基準軌道(02B→02D→02C)から修正軌道(02B’ →02D→02C’)へ微小移動させるだけで、図14に示すように、「B’−F−D−E−C’」の歯筋形状に仕上げることが可能となる。
Further, the tooth trace is corrected from the small diameter side end B of the concave tooth surface to the correction start point F. When the distance between (B-F) is 10.4 mm, the center of the cutter arc S is corrected from the small-diameter side reference position “02B” by the small-diameter correction value (ΔXB = −386 μ, ΔYB = −353 μ). By moving to the position “02B ′”, a tooth trace having a correction amount of 0 at point F and a correction amount of 100 μ at point B can be processed.
That is, only by slightly moving the center of the cutter arc S from the reference trajectory (02B → 02D → 02C) to the corrected trajectory (02B ′ → 02D → 02C ′), as shown in FIG. -E-C '"can be finished into a tooth trace shape.

この時、断面梯形状の切刃3を用い、切刃3の先端が歯底円錐面に達するまでカッタ1をZ軸方向に移動させて歯筋修正を行なうと、歯筋の両端部が全歯丈に亘って修正される。従って、歯当たりの形状は四角形となる。
なお、修正開始点E,FをD点に一致させると、フルクラウニング修正を施した歯筋が得られる。
また、荒加工した凸歯面についても、同じ方法で歯筋無修正の凸歯面を形成した後、歯筋修正を行なうことが可能である。
At this time, if the cutting edge 3 having a trapezoidal cross section is used and the cutter 1 is moved in the Z-axis direction until the tip of the cutting edge 3 reaches the bottom conical surface, the tooth trace is corrected. It is corrected over the tooth height. Accordingly, the tooth contact shape is a quadrangle.
When the correction start points E and F are made coincident with the point D, a tooth muscle subjected to full crowning correction is obtained.
In addition, it is possible to correct the tooth traces of the rough tooth surfaces after forming a convex tooth surface with no tooth trace correction by the same method.

歯面の創成と同時に歯筋修正を行なうこともできる。
例えば、凹歯面を形成する際に、初めからカッタ円弧Sの中心が修正軌道(02B’ →02D→02C’)を通るよう制御しながら、カッタ1をZ軸方向に移動させて往復回転させることにより、歯筋形状が「B’−F−D−E−C’」の凹歯面を創成することができる。
凹歯面を形成した時に自動的に凸歯面も形成されてしまうが、切刃3の厚みは歯溝の幅よりも薄いので、この凸歯面は正しい歯面ではない。即ち、この凸歯面には仕上げ代が残り、歯厚が目標値より厚い状態となっているので、カッタ1を凸歯面側へ移動して切削することにより、正規の凸歯面を形成する。この時、凸歯面の創成と同時に歯筋修正を行なうことができる。
It is also possible to correct tooth traces simultaneously with the creation of the tooth surface.
For example, when forming the concave tooth surface, the cutter 1 is moved in the Z-axis direction and reciprocally rotated while controlling the center of the cutter arc S to pass through the correction trajectory (02B ′ → 02D → 02C ′) from the beginning. Thus, a concave tooth surface having a tooth trace shape of “B′-FDEC ′” can be created.
When a concave tooth surface is formed, a convex tooth surface is automatically formed. However, since the thickness of the cutting blade 3 is thinner than the width of the tooth gap, this convex tooth surface is not a correct tooth surface. That is, since the finishing allowance remains on the convex tooth surface and the tooth thickness is thicker than the target value, the normal convex tooth surface is formed by moving the cutter 1 to the convex tooth surface side and cutting. To do. At this time, the tooth trace can be corrected simultaneously with the creation of the convex tooth surface.

図15に示すように、側面の先端部に切削部3aが形成された切刃3’を有するポイント式のカッタ1’を用いると、切削部3aと接触する部分のみが切削されるので、カッタ1のZ軸方向への移動を制御し、歯丈の一部に無負荷時歯当たりの無い領域を形成することができる。
従って、ポイント式のカッタ1’を用いれば、歯面を斜めに修正することも、楕円形の歯当たりを形成することも可能である。
断面梯形の荒加工用の切刃を有するカッタを用いて、歯面に仕上げ代を残した荒加工を行なってから、ポイント式のカッタ1’で修正して仕上げることもできる。
As shown in FIG. 15, when a point-type cutter 1 ′ having a cutting edge 3 ′ having a cutting portion 3 a formed at the side end portion is used, only a portion in contact with the cutting portion 3 a is cut. The movement of 1 in the Z-axis direction can be controlled, and a region where there is no tooth contact at the time of no load can be formed in a part of the tooth height.
Therefore, if the point-type cutter 1 ′ is used, it is possible to modify the tooth surface obliquely or to form an oval tooth contact.
Using a cutter having a cutting edge for roughing with a trapezoidal cross section, it is possible to perform roughing with a finishing allowance remaining on the tooth surface, and then finish with a point-type cutter 1 ′.

なお、ピニオンG2は共役歯面のままで、歯数の多いギアG1に歯筋修正を行なってもよい。
小径のピニオンG2に対する加工とは異なり、ギアG1は歯数が多くて径が大きいので、歯面加工を行なう際にA軸(中心軸)周りに回転させなくても良い。しかし、径が大きいとはいえ、ギアG1を回転させずに歯面を形成すると、歯筋の小径側端部B及び大径側端部Cでは、歯底が歯底円錐面から少し離れてしまう。従って、歯底を正確に歯底円錐面と一致させるために、ギアG1を中心軸周りに僅かに回転させながら歯面加工を行なう場合もある。
また、ギアG1の歯筋修正を行なう場合に、ピニオンG2の修正と比べて、修正する歯数は多いが、カッタ円弧Sの中心の移動量は少なくて済む。
なお、上記した説明では、大径側修正値及び小径側修正値をX,Y座標で示したが、極座標において、腕とY軸との角度Θを変えず、腕の長さLの修正値ΔLとして得ることもできる。
The pinion G2 may be a conjugate tooth surface and the tooth trace correction may be performed on the gear G1 having a large number of teeth.
Unlike the processing for the small-diameter pinion G2, the gear G1 has a large number of teeth and a large diameter. Therefore, it is not necessary to rotate around the A axis (center axis) when performing tooth surface processing. However, even though the diameter is large, if the tooth surface is formed without rotating the gear G1, the tooth bottom is slightly separated from the root conical surface at the small diameter side end B and the large diameter side end C of the tooth trace. End up. Accordingly, there is a case where the tooth surface processing is performed while the gear G1 is slightly rotated around the central axis in order to make the tooth bottom accurately coincide with the tooth bottom conical surface.
Further, when correcting the tooth trace of the gear G1, the number of teeth to be corrected is larger than the correction of the pinion G2, but the amount of movement of the center of the cutter arc S is small.
In the above description, the large-diameter side correction value and the small-diameter side correction value are indicated by the X and Y coordinates. However, in the polar coordinates, the angle Θ between the arm and the Y axis is not changed, and the correction value of the arm length L is changed. It can also be obtained as ΔL.

1,1’ カッタ
2 円盤
3,3’ 切刃
3a 切削部
4 被切削歯車
5 回転軸
a 歯面
b 歯当たり狙い領域
G1 ギア
G2 ピニオン
1, 1 'Cutter 2 Disc 3, 3' Cutting edge 3a Cutting part 4 Gear to be cut 5 Rotating shaft a Tooth surface b Tooth contact area G1 Gear G2 Pinion

Claims (7)

切刃を有するカッタを、互いに直交するX,Y,Z軸方向に移動可能に、且つ、前記切刃の回転中心軸がZ軸と平行になるよう設け、被切削歯車を、その中心軸が座標原点を通るよう、且つ、該被切削歯車に形成する歯の歯底円錐面がX−Y平面と平行になるよう設置し、前記カッタを回転させながらZ軸方向に移動すると共に、前記切刃の回転中心軸を座標原点を中心とする円弧に沿ってX,Y軸方向に移動させて前記被切削歯車の周面を切削し、曲がり歯傘歯車対の歯面を加工する方法であって、前記切刃の回転中心軸の軌道を、曲がり歯傘歯車対の歯面が全面歯当たりとなる大径側基準位置及び小径側基準位置を通る基準軌道から、前記歯面の大径側端部及び小径側端部における修正目標値並びに歯面の修正開始位置に基づいて換算した大径側修正値及び小径側修正値だけX,Y軸方向に移動した大径側修正位置及び小径側修正位置を通る修正軌道とすることにより、歯筋の両端部に無負荷時歯当たりの無い領域を形成することを特徴とする曲がり歯傘歯車の歯面加工方法。   A cutter having a cutting edge is provided so as to be movable in the X, Y, and Z axis directions orthogonal to each other, and the rotation center axis of the cutting edge is parallel to the Z axis. It is arranged so that it passes through the origin of coordinates and the root conical surface of the tooth formed on the gear to be cut is parallel to the XY plane, and moves in the Z-axis direction while rotating the cutter. In this method, the peripheral surface of the gear to be cut is cut by moving the rotation center axis of the blade in the X and Y axis directions along an arc centered on the coordinate origin to process the tooth surface of the bevel gear pair. From the reference trajectory passing through the large-diameter side reference position and the small-diameter side reference position where the tooth surfaces of the pair of bent bevel gears are in full contact with each other, Conversion based on the correction target value at the end and the small diameter end and the correction start position of the tooth surface By making the correction trajectory through the large diameter side correction position and the small diameter side correction position moved in the X and Y axis directions by the large diameter side correction value and the small diameter side correction value, the tooth contact at both ends of the tooth trace is applied at no load. A tooth surface processing method for a bent bevel gear, characterized by forming a non-existing region. 前記切刃が前記歯底円錐面と一致するよう、前記被切削歯車をその中心軸周りに回転させて、前記被切削歯車の周面を切削する請求項1に記載した曲がり歯傘歯車の歯面加工方法。   The tooth of the bent bevel gear according to claim 1, wherein the peripheral surface of the gear to be cut is cut by rotating the gear to be cut around its central axis so that the cutting edge coincides with the conical surface of the tooth bottom. Surface processing method. 一方の曲がり歯傘歯車となる前記被切削歯車の歯筋のみに、前記無負荷時歯当たりの無い領域を形成する請求項1又は2に記載した曲がり歯傘歯車の歯面加工方法。   The tooth surface processing method for a curved bevel gear according to claim 1 or 2, wherein a region without the tooth contact at the time of no load is formed only in a tooth trace of the gear to be cut which is one bent bevel gear. 前記切刃の回転中心軸の軌道を前記基準軌道として切削を行ない、前記被切削歯車に曲がり歯傘歯車対が全面歯当たりとなる歯面を形成した後、前記切刃の回転中心軸の軌道を修正軌道として切削を行ない、歯筋の両端部に無負荷時歯当たりの無い領域を形成する請求項1〜3のいずれかに記載した曲がり歯傘歯車の歯面加工方法。   Cutting is performed with the trajectory of the rotation center axis of the cutting edge as the reference trajectory, and after forming a tooth surface on which the pair of bevel gears are in full contact with the gear to be cut, the trajectory of the rotation center axis of the cutting edge The tooth surface processing method of the curved bevel gear according to any one of claims 1 to 3, wherein cutting is performed with the correction track as a correction trajectory, and regions where there is no tooth contact under no load are formed at both ends of the tooth trace. 前記切刃の回転中心軸の軌道を修正軌道として切削を行ない、歯筋の両端部に無負荷時歯当たりの無い領域を有する歯面の創成を行なう請求項1〜3のいずれかに記載した曲がり歯傘歯車の歯面加工方法。   The cutting surface is cut using the trajectory of the rotation center axis of the cutting edge as a correction trajectory, and a tooth surface having a non-loading region at both ends of the tooth trace is created. A tooth surface processing method for a curved bevel gear. 断面梯形の切刃を有するカッタを用い、前記切刃の先端が歯底円錐面に達するまで前記カッタをZ軸方向に移動させることにより、全歯丈に亘って無負荷時歯当たりの無い領域を形成する請求項1〜5のいずれかに記載した曲がり歯傘歯車の歯面加工方法。   Using a cutter having a cutting edge with a trapezoidal cross section and moving the cutter in the Z-axis direction until the tip of the cutting edge reaches the root conical surface, the area where there is no tooth contact at all loads over the entire tooth height The tooth surface processing method of the curved bevel gear according to any one of claims 1 to 5. 側面の先端部に切削部が形成された切刃を有するカッタを用い、該カッタのZ軸方向への移動を制御することにより、歯丈の一部に無負荷時歯当たりの無い領域を形成する請求項1〜5のいずれかに記載した曲がり歯傘歯車の歯面加工方法。   Using a cutter having a cutting edge with a cutting portion formed at the tip of the side, and controlling the movement of the cutter in the Z-axis direction, a region where there is no tooth contact at no load is formed in part of the tooth height The tooth surface processing method of the curved bevel gear according to any one of claims 1 to 5.
JP2010251587A 2010-11-10 2010-11-10 Tooth surface processing method for curved bevel gears Active JP5132753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251587A JP5132753B2 (en) 2010-11-10 2010-11-10 Tooth surface processing method for curved bevel gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251587A JP5132753B2 (en) 2010-11-10 2010-11-10 Tooth surface processing method for curved bevel gears

Publications (2)

Publication Number Publication Date
JP2012101313A true JP2012101313A (en) 2012-05-31
JP5132753B2 JP5132753B2 (en) 2013-01-30

Family

ID=46392354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251587A Active JP5132753B2 (en) 2010-11-10 2010-11-10 Tooth surface processing method for curved bevel gears

Country Status (1)

Country Link
JP (1) JP5132753B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206501A (en) * 2013-03-08 2013-07-17 武汉理工大学 Non-bevel gear swinging stepping device
JP2016520009A (en) * 2013-05-30 2016-07-11 ザ グリーソン ワークス Swing motion method for producing non-creating bevel gears with end relief
CN106493439A (en) * 2016-12-14 2017-03-15 长江大学 A kind of spiral bevel gear tooth top chamfering method that is analyzed based on material contact
JP2018153916A (en) * 2017-03-17 2018-10-04 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Method for processing tooth surface of bevel gear work-piece

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2342232A (en) * 1940-03-19 1944-02-22 Gleason Works Method and machine for producing gears
US2510528A (en) * 1947-12-10 1950-06-06 Mack Mfg Corp Method of making spiral bevel gears and hypoid gears
JPS4915357Y1 (en) * 1972-10-09 1974-04-17
JPS5437997A (en) * 1977-08-31 1979-03-20 Masaaki Takeda Device for cutting teeth of bent tooth bevel gear
JPS5993223A (en) * 1982-07-07 1984-05-29 ウエスタ−ン・ギア・コ−ポレ−シヨン Method of forming face mill of spiral bevel gear with integral central structure and spiral bevel gear formed through said method
JPH02502358A (en) * 1987-08-24 1990-08-02 ザ グリーソン ワークス Multi-axis bevel teeth and hypoid gear generating device
JPH07208582A (en) * 1994-01-26 1995-08-11 Nissan Motor Co Ltd Spiral bevel gear type pinion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2342232A (en) * 1940-03-19 1944-02-22 Gleason Works Method and machine for producing gears
US2510528A (en) * 1947-12-10 1950-06-06 Mack Mfg Corp Method of making spiral bevel gears and hypoid gears
JPS4915357Y1 (en) * 1972-10-09 1974-04-17
JPS5437997A (en) * 1977-08-31 1979-03-20 Masaaki Takeda Device for cutting teeth of bent tooth bevel gear
JPS5993223A (en) * 1982-07-07 1984-05-29 ウエスタ−ン・ギア・コ−ポレ−シヨン Method of forming face mill of spiral bevel gear with integral central structure and spiral bevel gear formed through said method
JPH02502358A (en) * 1987-08-24 1990-08-02 ザ グリーソン ワークス Multi-axis bevel teeth and hypoid gear generating device
JPH07208582A (en) * 1994-01-26 1995-08-11 Nissan Motor Co Ltd Spiral bevel gear type pinion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206501A (en) * 2013-03-08 2013-07-17 武汉理工大学 Non-bevel gear swinging stepping device
CN103206501B (en) * 2013-03-08 2016-01-06 武汉理工大学 Non-conical gearing step by step mechanism
JP2016520009A (en) * 2013-05-30 2016-07-11 ザ グリーソン ワークス Swing motion method for producing non-creating bevel gears with end relief
CN106493439A (en) * 2016-12-14 2017-03-15 长江大学 A kind of spiral bevel gear tooth top chamfering method that is analyzed based on material contact
JP2018153916A (en) * 2017-03-17 2018-10-04 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Method for processing tooth surface of bevel gear work-piece
JP6998800B2 (en) 2017-03-17 2022-01-18 クリンゲルンベルク・アクチェンゲゼルシャフト How to machine the tooth surface of a bevel gear workpiece

Also Published As

Publication number Publication date
JP5132753B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CN108243609B (en) Tool is scraped in rotation
US10239139B2 (en) Method for machining a set of teeth, tool arrangement, and tooth-cutting machine
US8113750B2 (en) Face hob hypoid gear tooth cutting by common blades
EP2288467B1 (en) Manufacturing bevel gears
KR20170123287A (en) Process for Machining a Workpiece
JP5132753B2 (en) Tooth surface processing method for curved bevel gears
JPH10507810A (en) Cylindrical pinion gear transmission with face gear, face gear used for the gear transmission, and method and tool for making face gear
WO1998002268A1 (en) Apparatus and method for improved precision grinding of face gears
AU2010356458A1 (en) Elbow formed by cutting and method for manufacturing same
US20120208436A1 (en) Method for Hard Fine Machining of the Tooth Flanks of a Gear Wheel
CN103180077B (en) A kind of method for generation of non-straight gear teeth
CN105246631A (en) Swing motion for manufacturing non-generated bevel gears with end relief
MX2013003714A (en) Method for producing conical or hypoid wheels using the plunging process.
CN109641296A (en) Strength in the case where tool geometries are constant scrapes tooth pressure angle correction
US9033625B2 (en) Bevel gear manufacture with face cutters without swing axis motion
CN109877396A (en) A kind of spiral bevel gear tooth top tip relief method
JP2018051752A (en) Method for machine processing of tooth surface of face coupling work-piece in half-finish single indexing method
CN109153088B (en) Tooth top chamfer of gear
JP2018051753A (en) Method for machine processing of inter-tooth of face coupling work-piece in half-finishing method
CN105370845B (en) With the bevel gear for improving geometry
JP6977494B2 (en) How to re-polish gear cutting tools, gear processing equipment, gear cutting tools and how to design gear cutting tools
CN109014440B (en) Forming method of involute variable-thickness gear slotting cutter
JP7304487B2 (en) GEAR MANUFACTURING DEVICE, GEAR MANUFACTURING METHOD AND THREADED TOOL USED THEREOF
Tsay et al. Novel profile modification methodology for moulded face-gear drives
CN110802282B (en) Spiral bevel gear tooth crest rounding processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5132753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250