JP2012098468A - Method for surface processing on electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor with processed surface - Google Patents

Method for surface processing on electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor with processed surface Download PDF

Info

Publication number
JP2012098468A
JP2012098468A JP2010245491A JP2010245491A JP2012098468A JP 2012098468 A JP2012098468 A JP 2012098468A JP 2010245491 A JP2010245491 A JP 2010245491A JP 2010245491 A JP2010245491 A JP 2010245491A JP 2012098468 A JP2012098468 A JP 2012098468A
Authority
JP
Japan
Prior art keywords
electrophotographic photosensitive
photosensitive member
surface processing
mold member
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245491A
Other languages
Japanese (ja)
Other versions
JP5606276B2 (en
JP2012098468A5 (en
Inventor
Koji Takahashi
孝治 高橋
Hironori Uematsu
弘規 植松
Yasuhiro Kawai
康裕 川井
Harunobu Ogaki
晴信 大垣
Atsushi Ochi
敦 大地
Kazunori Noguchi
和範 野口
Ushio Murai
潮 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010245491A priority Critical patent/JP5606276B2/en
Publication of JP2012098468A publication Critical patent/JP2012098468A/en
Publication of JP2012098468A5 publication Critical patent/JP2012098468A5/ja
Application granted granted Critical
Publication of JP5606276B2 publication Critical patent/JP5606276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for surface processing on an electrophotographic photoreceptor for obtaining an electrophotographic photoreceptor having high uniformity of a surface profile by using a sheet type mold member in a flexible state.SOLUTION: A surface of a sheet type mold member is pressed to a surface of a cylindrical electrophotographic photoreceptor while rotating the electrophotographic photoreceptor so as to transfer the surface profile of the mold member to the surface of the electrophotographic photoreceptor. In this process, the electrophotographic photoreceptor and the mold member are laid in such a manner that, in a cross section perpendicular to the rotation axis of the electrophotographic photoreceptor, an angle θ formed by a line segment (A) and a line segment (B) is 5° or more, where the line segment (A) connects the center of the rotation axis of the photoreceptor and a contact start point where the surface of the mold member starts to be in contact with the surface of the photoreceptor and the line segment (B) connects the center of the rotation axis of the photoreceptor and a release point where the surface of the mold member starts to detach from the surface of the photoreceptor; and the mold member is pulled in a rotating direction of the electrophotographic photoreceptor at the release point.

Description

本発明は、電子写真感光体の表面加工方法および表面加工された電子写真感光体の製造方法に関する。   The present invention relates to a surface processing method for an electrophotographic photosensitive member and a method for manufacturing a surface processed electrophotographic photosensitive member.

電子写真感光体の表面の摩擦力を効果的に低減するためには、電子写真感光体の表面形状を精密に制御することが好ましい。   In order to effectively reduce the frictional force on the surface of the electrophotographic photosensitive member, it is preferable to precisely control the surface shape of the electrophotographic photosensitive member.

電子写真感光体の表面加工方法として、特許文献1には、表面に凹凸形状を有する型部材を電子写真感光体の表面に接触させ、圧縮成形加工する技術が開示されている。   As a surface processing method for an electrophotographic photosensitive member, Patent Document 1 discloses a technique in which a mold member having an uneven shape on the surface is brought into contact with the surface of the electrophotographic photosensitive member to perform compression molding.

また、特許文献2には、温度制御と当接圧力の均一化の面で改良がなされた表面加工方法が開示されている。   Patent Document 2 discloses a surface processing method improved in terms of temperature control and uniform contact pressure.

特開2001−66814号公報JP 2001-66814 A 特開2007−233356号公報JP 2007-233356 A

しかしながら、特許文献1の表面加工方法では、電子写真感光体の表面形状の再現性が十分でない。また、剛性の高い型部材が用いられるため、型部材が劣化したときの交換の際の設置や表面加工条件出しなどの作業負荷が大きい。   However, in the surface processing method of Patent Document 1, the reproducibility of the surface shape of the electrophotographic photosensitive member is not sufficient. Further, since a highly rigid mold member is used, the work load such as installation at the time of replacement when the mold member is deteriorated and surface processing conditions are set large.

一方、特許文献2の表面加工方法では、型部材としてシート状のものが用いられるため、型部材の交換の際の作業負荷の軽減が見込まれる。   On the other hand, in the surface processing method of Patent Document 2, since a sheet-like material is used as the mold member, a reduction in work load upon replacement of the mold member is expected.

しかしながら、特許文献2の表面加工方法では、型部材を支持体に正確に固定しなければならないが、型部材の正確な固定は容易でない。型部材にシワが生じた状態で固定すると、電子写真感光体の表面形状の均一性や再現性が低下しやすい。   However, in the surface processing method of Patent Document 2, it is necessary to accurately fix the mold member to the support, but accurate fixing of the mold member is not easy. If the mold member is fixed with wrinkles, the uniformity and reproducibility of the surface shape of the electrophotographic photosensitive member tends to decrease.

また、エンボス加工技術やナノインプリント技術により、型部材の表面の形状を被加工物の表面に転写(形状転写)する場合、型部材と被加工物とを均一に加熱接触させた後、両者の温度が十分に低下してから両者を離す(離型する)プロセスが理想的である。そのため、形状転写の際には、型部材と被加工物との接触時間を十分に確保することが必要となる。しかしながら、特許文献2の表面加工方法では、シート状の型部材を平板状の支持体に固定して使用するため、型部材と被加工物との接触時間を十分に確保することが困難であった。そのため、特許文献2の表面加工方法では、型部材および被加工物の温度を精密に制御し、短い接触時間においても形状転写を行う工夫がなされているが、電子写真感光体の表面形状の均一性の点では、さらなる改良の余地がある。   In addition, when the shape of the surface of the mold member is transferred (shape transfer) to the surface of the workpiece by embossing technology or nanoimprint technology, the temperature of the mold member and the workpiece are both heated and contacted. Ideally, the process of releasing (releasing) the two after the temperature has sufficiently decreased. Therefore, it is necessary to ensure a sufficient contact time between the mold member and the workpiece during shape transfer. However, in the surface processing method of Patent Document 2, since a sheet-like mold member is fixed to a flat support and used, it is difficult to ensure sufficient contact time between the mold member and the workpiece. It was. Therefore, in the surface processing method of Patent Document 2, the temperature of the mold member and the workpiece is precisely controlled and shape transfer is performed even in a short contact time. However, the surface shape of the electrophotographic photosensitive member is uniform. There is room for further improvement in terms of sex.

本発明の目的は、シート状の型部材を屈曲可能な状態で用いて、表面形状の均一性が高い電子写真感光体を得るための電子写真感光体の表面加工方法を提供することにある。   An object of the present invention is to provide a surface processing method of an electrophotographic photosensitive member for obtaining an electrophotographic photosensitive member having a highly uniform surface shape by using a sheet-like mold member in a bendable state.

本発明は、円筒状の電子写真感光体の表面とシート状の型部材の表面を押し付けて、該電子写真感光体を回転させながら、該型部材の表面の形状を該電子写真感光体の表面に転写する電子写真感光体の表面加工方法であって、
該電子写真感光体の回転軸と直交する断面上において、
(1)該電子写真感光体の回転軸中心と該電子写真感光体の表面が該型部材の表面に接触し始める接触開始点とを結ぶ線分を線分Aとし、該電子写真感光体の回転軸中心と該電子写真感光体の表面から該型部材の表面が離れ始める離型点とを結ぶ線分を線分Bとしたとき、該線分Aと該線分Bとがなす角度θが5°以上となるように、該電子写真感光体および該型部材を配置し、かつ、
(2)該離型点における該電子写真感光体の回転方向に、該型部材を引っ張る
ことを特徴とする電子写真感光体の表面加工方法である。
The present invention relates to the surface of the electrophotographic photosensitive member, wherein the surface of the electrophotographic photosensitive member is rotated while pressing the surface of the cylindrical electrophotographic photosensitive member and the surface of the sheet-shaped die member to rotate the electrophotographic photosensitive member. A surface processing method of an electrophotographic photoreceptor to be transferred to
On the cross section orthogonal to the rotation axis of the electrophotographic photosensitive member,
(1) A line segment connecting a rotation axis center of the electrophotographic photosensitive member and a contact start point at which the surface of the electrophotographic photosensitive member starts to contact the surface of the mold member is defined as a line segment A. When a line segment connecting the rotation axis center and the release point at which the surface of the mold member begins to separate from the surface of the electrophotographic photosensitive member is defined as a line segment B, an angle θ formed by the line segment A and the line segment B Disposing the electrophotographic photosensitive member and the mold member such that is 5 ° or more, and
(2) A surface processing method for an electrophotographic photosensitive member, wherein the mold member is pulled in a rotation direction of the electrophotographic photosensitive member at the release point.

本発明によれば、シート状の型部材を屈曲可能な状態で用いて、表面形状の均一性が高い電子写真感光体を得るための電子写真感光体の表面加工方法を提供することができる。   According to the present invention, it is possible to provide a surface processing method of an electrophotographic photosensitive member for obtaining an electrophotographic photosensitive member having high surface shape uniformity by using a sheet-shaped mold member in a bendable state.

本発明の電子写真感光体の表面加工方法を実施するための表面加工装置の一例を示す図である。It is a figure which shows an example of the surface processing apparatus for enforcing the surface processing method of the electrophotographic photoreceptor of this invention. 本発明の電子写真感光体の表面加工方法を実施するための表面加工装置の一例を示す図である。It is a figure which shows an example of the surface processing apparatus for enforcing the surface processing method of the electrophotographic photoreceptor of this invention. 本発明の電子写真感光体の表面加工方法を実施するための表面加工装置の一例を示す図である。It is a figure which shows an example of the surface processing apparatus for enforcing the surface processing method of the electrophotographic photoreceptor of this invention. 本発明の電子写真感光体の表面加工方法に用いる型部材の表面(加工面)を拡大した図である。It is the figure which expanded the surface (processed surface) of the type | mold member used for the surface processing method of the electrophotographic photoreceptor of this invention. (A)は実施例55において使用した型部材の形状を型部材の上から見た図である。(B)は実施例55において使用した型部材の形状を型部材の横から見た図である。(A) is the figure which looked at the shape of the mold member used in Example 55 from the mold member. (B) is the figure which looked at the shape of the mold member used in Example 55 from the side of the mold member. (A)は実施例56および57において使用した型部材の形状を型部材の上から見た図である。(B)は実施例56および57において使用した型部材の形状を型部材の横から見た図である。(A) is the figure which looked at the shape of the mold member used in Example 56 and 57 from the mold member. (B) is the figure which looked at the shape of the mold member used in Example 56 and 57 from the side of the mold member. (A)は実施例64において使用した型部材の形状を型部材の上から見た図である。(B)は実施例64において使用した型部材の形状を型部材の横から見た図である。(A) is the figure which looked at the shape of the mold member used in Example 64 from the mold member. (B) is the figure which looked at the shape of the mold member used in Example 64 from the side of the mold member. (A)は実施例65において使用した型部材の形状を型部材の上から見た図である。(B)は実施例65において使用した型部材の形状を型部材の横から見た図である。(A) is the figure which looked at the shape of the mold member used in Example 65 from the mold member. (B) is the figure which looked at the shape of the mold member used in Example 65 from the side of the mold member. (A)は参考例1において使用した電子写真感光体の表面加工装置を示す図である。(B)は参考例2において使用した電子写真感光体の表面加工装置を示す図である。(A) is a view showing a surface processing apparatus for an electrophotographic photosensitive member used in Reference Example 1. FIG. (B) is a view showing a surface processing apparatus for an electrophotographic photosensitive member used in Reference Example 2. FIG.

以下、図面を参照し、例を挙げながら、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings and examples.

図1は、本発明の電子写真感光体の表面加工方法を実施するための表面加工装置の一例を示す図である。   FIG. 1 is a view showing an example of a surface processing apparatus for carrying out the surface processing method of an electrophotographic photosensitive member of the present invention.

図1中、1は、被加工物である円筒状の電子写真感光体である。2は、シート状の型部材である。図1において、型部材2は、平板状の加圧部材3上に設置され、型部材2の表面(加工面)は、電子写真感光体1の表面(被加工面)に加圧接触(当接)する。型部材2は、平板状の加圧部材3に固定される必要はない。加圧部材3の内部には、温度制御装置(不図示)が設置されている。電子写真感光体1の表面(被加工面)に加圧接触する型部材2の表面(加工面)には、電子写真感光体1の表面(被加工面)に形成するべき凹凸形状に対応する凸凹形状が形成されている。図1に示す表面加工装置を用い、電子写真感光体1を回転させながら、連続的にその表面を加工することにより、電子写真感光体1の表面に所望の機能(例えば、画像形成時の優れたクリーニング性や電気的特性など)を持つ凹凸形状を有させることが可能である。図1中、oは、電子写真感光体1の回転軸中心である。電子写真感光体1の回転は、従動回転であってもよいし、駆動回転であってもよい。電子写真感光体の表面に有させる凹凸形状としては、例えば、円柱、角柱または半球形状の凸部が連続している形状や、逆に、円柱、角柱または半球形状の凹部が連続している形状が挙げられる。また、一定またはランダムな間隔で、凸または凹の線形状が連続する形状も挙げられる。凸または凹の線形状の方向は、円筒状の電子写真感光体の周方向であってもよいし、回転軸方向であってもよい。   In FIG. 1, reference numeral 1 denotes a cylindrical electrophotographic photosensitive member which is a workpiece. 2 is a sheet-like mold member. In FIG. 1, the mold member 2 is placed on a flat plate-like pressure member 3, and the surface (processed surface) of the mold member 2 is in pressure contact with the surface (processed surface) of the electrophotographic photosensitive member 1. Contact). The mold member 2 does not need to be fixed to the flat pressure member 3. A temperature control device (not shown) is installed inside the pressure member 3. The surface (processed surface) of the mold member 2 that is in pressure contact with the surface (processed surface) of the electrophotographic photoreceptor 1 corresponds to the uneven shape to be formed on the surface (processed surface) of the electrophotographic photoreceptor 1. An uneven shape is formed. The surface processing apparatus shown in FIG. 1 is used to continuously process the surface of the electrophotographic photosensitive member 1 while rotating the electrophotographic photosensitive member 1, so that the surface of the electrophotographic photosensitive member 1 has a desired function (for example, excellent in image formation). It is possible to have a concavo-convex shape having cleaning properties and electrical characteristics. In FIG. 1, o is the rotational axis center of the electrophotographic photosensitive member 1. The rotation of the electrophotographic photosensitive member 1 may be driven rotation or drive rotation. As the uneven shape to be provided on the surface of the electrophotographic photosensitive member, for example, a shape in which a cylindrical, prismatic or hemispherical convex portion is continuous, or conversely, a shape in which a cylindrical, prismatic or hemispherical concave portion is continuous Is mentioned. In addition, a shape in which convex or concave line shapes are continuous at regular or random intervals is also exemplified. The direction of the convex or concave line shape may be the circumferential direction of the cylindrical electrophotographic photosensitive member or the rotational axis direction.

型部材は、電子写真感光体の表面加工の容易性の観点から、温度制御されることが好ましい。図1において、型部材2は、上述のとおり、加圧部材の内部に設置された温度制御装置(不図示)によって所定の温度に制御される。また、型部材2および電子写真感光体1は、接触開始点aで加圧接触される。加圧接触後、離型点bに達するまでの間、型部材2の表面と電子写真感光体1の表面は常に密着した状態を保ちながら移動する。   The mold member is preferably temperature-controlled from the viewpoint of ease of surface processing of the electrophotographic photosensitive member. In FIG. 1, the mold member 2 is controlled to a predetermined temperature by a temperature control device (not shown) installed inside the pressurizing member as described above. Further, the mold member 2 and the electrophotographic photosensitive member 1 are pressed and contacted at the contact start point a. The surface of the mold member 2 and the surface of the electrophotographic photosensitive member 1 always move while keeping in close contact until the release point b is reached after the pressure contact.

本発明においては、型部材2と電子写真感光体1が密着した状態を長く保つため、回転軸中心oと接触開始点aとを結ぶ線分を線分Aとし、回転軸中心oと離型点bとを結ぶ線分を線分Bとしたとき、線分Aと線分Bとがなす角度θが5°以上となるように、電子写真感光体および型部材が配置される。角度θは、20°以上であることがより好ましい。   In the present invention, in order to keep the state in which the mold member 2 and the electrophotographic photosensitive member 1 are in close contact with each other, a line segment connecting the rotation axis center o and the contact start point a is defined as a line segment A, and the rotation axis center o is released from the mold. When the line segment connecting the point b is a line segment B, the electrophotographic photosensitive member and the mold member are arranged so that the angle θ formed by the line segment A and the line segment B is 5 ° or more. The angle θ is more preferably 20 ° or more.

また、シート状の型部材2は、離型点bにおける電子写真感光体1の回転方向に引っ張られる。ここで、回転方向とは、電子写真感光体1の回転軸と直交する断面上において、電子写真感光体1の断面円の離型点bにおける接線方向である(図1でいえば左上向き)。型部材2を引っ張る際、型部材2を引っ張る力の量や均一性の調整および離型点bの位置の調整を精密に行うために、図2に示すように、型部材2を支持する円柱状の支持部材5を設けてもよい。支持部材5は、型部材2を引っ張る力を阻害しない範囲で、型部材2を介して電子写真感光体1の表面に接していてもよい。型部材2を引っ張る力については、型部材2が破損しない範囲および指定した電子写真感光体1の回転速度を阻害しない範囲で調整することができる。   Further, the sheet-like mold member 2 is pulled in the rotation direction of the electrophotographic photosensitive member 1 at the release point b. Here, the rotation direction is a tangential direction at the release point b of the cross-sectional circle of the electrophotographic photosensitive member 1 on the cross section orthogonal to the rotation axis of the electrophotographic photosensitive member 1 (upward to the left in FIG. 1). . In order to precisely adjust the amount and uniformity of the pulling force of the mold member 2 and the position of the release point b when the mold member 2 is pulled, as shown in FIG. A columnar support member 5 may be provided. The support member 5 may be in contact with the surface of the electrophotographic photosensitive member 1 through the mold member 2 as long as the force of pulling the mold member 2 is not hindered. The force for pulling the mold member 2 can be adjusted within a range in which the mold member 2 is not damaged and a range in which the rotation speed of the designated electrophotographic photosensitive member 1 is not hindered.

型部材2としては、例えば、表面に凹凸形状を有する金属のシートや、表面にレジストによりパターンニングされた凹凸形状を有する樹脂、金属、シリコンウエハーのシートや、粒子が分散された樹脂シートなどが挙げられる。また、表面に凹凸形状を有する樹脂シートに金属コーティングが施された型部材を用いることもできる。また、シリコンウエハー上にフォトリソグラフィーや電子線により微細形状を描写した後、必要なエッチング処理を行って得られる型部材を用いることもできる。また、ポリイミドなどの樹脂にレーザー加工などにより微細形状を描写したものを母型(マスター)としたニッケル電鋳法により得られる型部材を用いることもできる。   Examples of the mold member 2 include a metal sheet having a concavo-convex shape on the surface, a resin having a concavo-convex shape patterned on the surface by a resist, a metal, a silicon wafer sheet, and a resin sheet in which particles are dispersed. Can be mentioned. Moreover, the mold member by which the metal coating was given to the resin sheet which has an uneven | corrugated shape on the surface can also be used. In addition, a mold member obtained by performing a necessary etching process after drawing a fine shape on a silicon wafer by photolithography or electron beam can also be used. Moreover, the mold member obtained by the nickel electroforming method which used as a mother die (master) what described the fine shape by laser processing etc. to resin, such as a polyimide, can also be used.

図1に示す表面加工装置は、加圧部材3と電子写真感光体1との間に型部材2を設置したものである。電子写真感光体1は、回転しながら、連続的にその表面(被加工面)が型部材2の表面と加圧接触される。図1に示す表面加工装置においては、電子写真感光体1は、その支持体の内部に保持部材4が挿入されている。   In the surface processing apparatus shown in FIG. 1, a mold member 2 is installed between a pressure member 3 and an electrophotographic photosensitive member 1. As the electrophotographic photosensitive member 1 rotates, the surface (surface to be processed) is continuously brought into pressure contact with the surface of the mold member 2. In the surface processing apparatus shown in FIG. 1, the electrophotographic photosensitive member 1 has a holding member 4 inserted in the support.

保持部材4の材質としては、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、金属が好ましく、ステンレス鋼がより好ましく、SUS304がより好ましい。   Examples of the material of the holding member 4 include metal, metal oxide, plastic, and glass. Among these, metals are preferable, stainless steel is more preferable, and SUS304 is more preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability.

また、電子写真感光体1と型部材2を加圧接触させるための加圧部材3としては、上述したような平板状の加圧部材以外に、例えば、図3に示すような、円柱状の加圧部材を用いることもできる。また、電子写真感光体1の上方から、加圧部材で加圧して電子写真感光体1と型部材2を加圧接触させてもよい。また、各種加圧部材の組み合わせで電子写真感光体1と型部材2を加圧接触させてもよい。   Further, as the pressure member 3 for bringing the electrophotographic photosensitive member 1 and the mold member 2 into pressure contact, in addition to the flat plate-shaped pressure member as described above, for example, a cylindrical shape as shown in FIG. A pressure member can also be used. Alternatively, the electrophotographic photoreceptor 1 and the mold member 2 may be brought into pressure contact with each other by pressing with a pressure member from above the electrophotographic photoreceptor 1. Further, the electrophotographic photoreceptor 1 and the mold member 2 may be brought into pressure contact with a combination of various pressure members.

また、円筒状の電子写真感光体1の両端部と中央部付近での加圧力の不均衡が発生する場合には、これを解消するために、加圧部材に表面層として弾性層(ゴム層など)を設けることが好ましい。さらには、電子写真感光体1の回転方向の加圧力の不均衡が発生する場合には、これを解消するために、ロードセルによる圧力モニターを併用しながら、加圧力を随時調節する機構を設けることが好ましい。   In addition, when an imbalance of the applied pressure occurs between both end portions and the central portion of the cylindrical electrophotographic photosensitive member 1, an elastic layer (rubber layer) is used as a surface layer on the pressing member in order to eliminate this. Etc.) is preferably provided. Furthermore, in order to eliminate the imbalance of the pressing force in the rotation direction of the electrophotographic photosensitive member 1, a mechanism for adjusting the pressing force at any time while providing a pressure monitor with a load cell is provided. Is preferred.

加圧部材の材質としては、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、金属が好ましく、ステンレス鋼がより好ましく、SUS304がより好ましい。   Examples of the material of the pressure member include metals, metal oxides, plastics, and glass. Among these, metals are preferable, stainless steel is more preferable, and SUS304 is more preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability.

型部材2の温度制御は、型部材2の外部または内部に設置した温度制御装置により、直接的に行うことも可能であるが、上述のように、型部材を設置する加圧部材を温度制御することにより、間接的に型部材の温度を制御することが好ましい。加圧部材3を温度制御する方法としては、上述のように、加圧部材3の内部に温度制御装置を設置する方法が挙げられる。加圧部材3の外部に温度制御装置を設置してもよい。温度制御装置としては、加熱装置と冷却装置に大別される。加熱装置としては、例えば、セラミックヒーター、遠赤外線ヒーター、ハロゲンヒーター、カートリッジヒーター、電磁誘導加熱ヒーターなどが挙げられる。冷却装置としては、例えば、水冷装置、空冷装置などが挙げられる。これら加熱装置と冷却装置を併用してもよい。また、温度の均一性を確保するため、熱電対を利用した温調器のような温度制御装置を併用することが好ましい。また、圧力均一性や温度均一性を向上させる観点から、内部に温度制御装置が設置された加圧部材が円柱状である場合、加圧部材の径は、弊害が発生しない範囲で大きい方が好ましい。   Although the temperature control of the mold member 2 can be directly performed by a temperature control device installed outside or inside the mold member 2, as described above, the temperature control is performed on the pressure member on which the mold member is installed. By doing so, it is preferable to indirectly control the temperature of the mold member. Examples of the method for controlling the temperature of the pressure member 3 include a method of installing a temperature control device inside the pressure member 3 as described above. A temperature control device may be installed outside the pressure member 3. The temperature control device is roughly classified into a heating device and a cooling device. Examples of the heating device include a ceramic heater, a far infrared heater, a halogen heater, a cartridge heater, and an electromagnetic induction heater. Examples of the cooling device include a water cooling device and an air cooling device. These heating devices and cooling devices may be used in combination. In order to ensure temperature uniformity, it is preferable to use a temperature control device such as a temperature controller using a thermocouple. In addition, from the viewpoint of improving pressure uniformity and temperature uniformity, when the pressure member with the temperature control device installed therein is cylindrical, the diameter of the pressure member should be as large as possible without causing adverse effects. preferable.

電子写真感光体は、基本的には、支持体および該支持体上に形成された感光層を有する。また、感光層としては、支持体側から電荷発生層、電荷輸送層の順に積層してなる積層型の感光層がよく用いられ、また、電荷輸送層が電子写真感光体の表面層である場合が一般的である。   An electrophotographic photoreceptor basically has a support and a photosensitive layer formed on the support. Further, as the photosensitive layer, a laminated photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order from the support side is often used, and the charge transport layer may be a surface layer of an electrophotographic photoreceptor. It is common.

以下、結着樹脂として熱可塑性樹脂を用いた電荷輸送層(熱可塑性の電荷輸送層)が表面層である電子写真感光体、あるいは、熱可塑性の電荷輸送層上にさらに硬化層たる表面層が設けられている電子写真感光体を例にとって、好ましい温度範囲について説明する。   Hereinafter, an electrophotographic photoreceptor in which a charge transport layer (thermoplastic charge transport layer) using a thermoplastic resin as a binder resin is a surface layer, or a surface layer that is a cured layer on the thermoplastic charge transport layer. A preferable temperature range will be described by taking the electrophotographic photosensitive member provided as an example.

本発明において、温度範囲としては、接触開始点aにおける電荷輸送層の加熱温度をTa、電荷輸送層のガラス転移温度をTg、型部材と電子写真感光体の離型点bにおける電荷輸送層の最大温度をTb、電荷輸送層形成時の乾燥温度をT1、電荷輸送物質の融点をT2としたとき、Tg<TaかつTb<T2となるように各部材の温度を設定することが好ましい。より好ましくは、T1<TaかつTb<Tgである。このように温度を制御するためには、温度の制御性を高める観点から、電子写真感光体の支持体よりも熱容量の大きな部材(図1〜3中の保持部材4)を支持体の内部に挿入することが好ましい。また、保持部材に電子写真感光体の支持体の温度を制御する機構を設けることにより、電子写真感光体の支持体の温度制御を行ってもよい。また、外部に冷却機構を設けることも有効である。   In the present invention, as the temperature range, the heating temperature of the charge transport layer at the contact start point a is Ta, the glass transition temperature of the charge transport layer is Tg, the charge transport layer at the mold release point b between the mold member and the electrophotographic photosensitive member. It is preferable to set the temperature of each member so that Tg <Ta and Tb <T2, where Tb is the maximum temperature, T1 is the drying temperature when forming the charge transport layer, and T2 is the melting point of the charge transport material. More preferably, T1 <Ta and Tb <Tg. In order to control the temperature in this way, from the viewpoint of improving the controllability of the temperature, a member (holding member 4 in FIGS. 1 to 3) having a larger heat capacity than the support of the electrophotographic photosensitive member is placed inside the support. It is preferable to insert. Further, the temperature of the support of the electrophotographic photosensitive member may be controlled by providing a mechanism for controlling the temperature of the support of the electrophotographic photosensitive member in the holding member. It is also effective to provide a cooling mechanism outside.

このような構成を用い、型部材2を電子写真感光体1の表面に当接させることにより、電子写真感光体と型部材が接触する幅(接触開始点aから離型点bまでの距離)を広く(長く)することができる。また、型部材を引っ張ることにより、円筒状の電子写真感光体の長手方向における型部材の離型のタイミングの均一化や、離型時に生じる型部材の振動を抑制することができる。さらには、型部材の表面(加工面)を電子写真感光体の表面(被加工面)に対して均一な加圧力を伴って押し付けることが可能になる。これによって、表面形状の均一性が高い電子写真感光体を得ることができる。   Using such a configuration, by bringing the mold member 2 into contact with the surface of the electrophotographic photosensitive member 1, the width of contact between the electrophotographic photosensitive member and the mold member (distance from the contact start point a to the release point b). Can be made wider (longer). Further, by pulling the mold member, it is possible to make the mold member release timing uniform in the longitudinal direction of the cylindrical electrophotographic photosensitive member and to suppress the vibration of the mold member that occurs during the mold release. Furthermore, the surface (processed surface) of the mold member can be pressed against the surface (processed surface) of the electrophotographic photosensitive member with a uniform applied pressure. As a result, an electrophotographic photosensitive member having a highly uniform surface shape can be obtained.

また、型部材を型部材の幅1cmあたり0.5N以上の力で引っ張ることによって、離型時の型部材の振動の抑制と、電子写真感光体の表面(被加工面)への安定的な加圧が可能となり、電子写真感光体の表面形状の均一化にさらに効果的である。   Further, by pulling the mold member with a force of 0.5 N or more per 1 cm width of the mold member, the vibration of the mold member at the time of mold release is suppressed and the surface (processed surface) of the electrophotographic photoreceptor is stable. Pressurization is possible, which is more effective for making the surface shape of the electrophotographic photosensitive member uniform.

次に、被加工物である電子写真感光体の材料、層構成および物性について説明する。   Next, the material, layer structure, and physical properties of the electrophotographic photosensitive member that is the workpiece will be described.

電子写真感光体の感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層および電荷輸送物質を含有する電荷輸送層を有する積層型の感光層であってもよい。これらの中でも、電子写真特性の観点から、積層型の感光層が好ましい。また、積層型の感光層としては、支持体側から電荷発生層、電荷輸送層の順に積層したものであってもよく、支持体側から電荷輸送層、電荷発生層の順に積層したものであってもよいが、前者が一般的である。また、電荷発生層を積層構造としてもよく、電荷輸送層を積層構成としてもよい。また、電子写真感光体の耐久性向上などを目的として、感光層上に保護層を形成してもよい。   The photosensitive layer of the electrophotographic photosensitive member may be a single-layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, or a charge generation layer containing a charge generation material and a charge transport material. It may be a laminated photosensitive layer having a charge transporting layer. Among these, a laminate type photosensitive layer is preferable from the viewpoint of electrophotographic characteristics. The laminated photosensitive layer may be a layer in which a charge generation layer and a charge transport layer are laminated in this order from the support side, or a layer in which a charge transport layer and a charge generation layer are laminated in order from the support side. Good, but the former is common. In addition, the charge generation layer may have a stacked structure, and the charge transport layer may have a stacked structure. Further, a protective layer may be formed on the photosensitive layer for the purpose of improving the durability of the electrophotographic photosensitive member.

支持体としては、導電性を示すもの(導電性支持体)であればよく、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属製(合金製)の支持体が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着によって形成した被膜を有する金属製(合金製)またはプラスチック製の支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を結着樹脂とともにプラスチックや紙に含浸させてなる支持体や、導電性結着樹脂製の支持体を用いることもできる。また、支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、切削処理、粗面化処理、アルマイト処理などを施してもよい。   The support may be anything that exhibits conductivity (conductive support), for example, iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum. Examples of the support include a metal (alloy) support such as an alloy or stainless steel. Further, a metal (alloy) or plastic support having a film formed by vacuum deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can also be used. It is also possible to use a support made by impregnating plastic or paper with conductive resin such as carbon black, tin oxide particles, titanium oxide particles and silver particles together with a binder resin, or a support made of conductive binder resin. it can. In addition, the surface of the support may be subjected to cutting treatment, roughening treatment, anodizing treatment, or the like for the purpose of suppressing interference fringes due to scattering of laser light.

支持体と、後述の下引き層または感光層(電荷発生層、電荷輸送層)との間には、レーザーなどの散乱による干渉縞の抑制や、支持体の傷の被覆を目的とした導電層を設けてもよい。導電層は、カーボンブラック、導電性粒子を結着樹脂とともに溶剤に分散および/または溶解させて得られる導電層用塗布液を用いて形成することができる。また、導電層用塗布液には、加熱、紫外線照射または放射線照射により硬化重合する化合物を含有させてもよい。導電性粒子を分散させた導電層は、その表面が粗面化される傾向にある。   Between the support and an undercoat layer or photosensitive layer (charge generation layer, charge transport layer) described later, a conductive layer for the purpose of suppressing interference fringes due to scattering of laser or the like and covering scratches on the support May be provided. The conductive layer can be formed using a conductive layer coating liquid obtained by dispersing and / or dissolving carbon black and conductive particles in a solvent together with a binder resin. In addition, the conductive layer coating solution may contain a compound that is cured and polymerized by heating, ultraviolet irradiation or radiation irradiation. The surface of the conductive layer in which the conductive particles are dispersed tends to be roughened.

導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。   The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less.

導電層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体/共重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used in the conductive layer include polymers / copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, and polyvinyl Examples include alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

導電性粒子としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものや、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズがドープされている酸化インジウム、アンチモンやタンタルがドープされている酸化スズなどの金属酸化物の粒子が挙げられる。これらは、1種のみ用いてもよいし、2種以上用いてもよい。2種以上を組み合わせて用いる場合は、単に混合するだけでもよいし、固溶体や融着の形態にしてもよい。   Examples of conductive particles include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, those deposited on the surface of plastic particles, zinc oxide, titanium oxide, Examples thereof include particles of metal oxides such as tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, and tin oxide doped with antimony and tantalum. These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.

支持体または導電層と感光層(電荷発生層、電荷輸送層)との間には、バリア機能や接着機能を有する下引き層を設けてもよい。下引き層は、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護のために形成される。下引き層は、樹脂を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。   An undercoat layer having a barrier function or an adhesive function may be provided between the support or the conductive layer and the photosensitive layer (charge generation layer, charge transport layer). The undercoat layer is formed for improving the adhesion of the photosensitive layer, improving the coating property, improving the charge injection property from the support, and protecting the photosensitive layer from electrical breakdown. The undercoat layer can be formed by applying an undercoat layer coating solution obtained by dissolving a resin in a solvent, and drying the obtained coating film.

下引き層に用いられる樹脂としては、例えば、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ、ゼラチンなどが挙げられる。   Examples of the resin used for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, and copolymer nylon. , Glue, gelatin and the like.

下引き層の膜厚は、0.05μm以上7μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。   The thickness of the undercoat layer is preferably 0.05 μm or more and 7 μm or less, and more preferably 0.1 μm or more and 2 μm or less.

支持体、導電層または下引き層の上には感光層が設けられる。   A photosensitive layer is provided on the support, the conductive layer or the undercoat layer.

感光層に用いられる電荷発生物質としては、例えば、ピリリウム、チアピリリウム系染料や、各種の中心金属および各種の結晶系(α、β、γ、ε、X型など)を有するフタロシアニン顔料や、アントアントロン顔料や、ベンズピレンキノン顔料や、ピラントロン顔料や、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、インジゴ顔料や、キナクリドン顔料や、非対称キノシアニン顔料や、キノシアニン顔料などが挙げられる。これら電荷発生物質は、1種のみ用いてもよいし、2種以上用いてもよい。   Examples of the charge generating material used in the photosensitive layer include pyrylium and thiapyrylium dyes, phthalocyanine pigments having various central metals and various crystal systems (α, β, γ, ε, X type, etc.), anthanthrone, and the like. Examples thereof include pigments, benzpyrenequinone pigments, pyranthrone pigments, azo pigments such as monoazo, disazo, and trisazo, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, and quinocyanine pigments. These charge generation materials may be used alone or in combination of two or more.

感光層に用いられる電荷輸送物質としては、例えば、ピレン化合物、N−アルキルカルバゾール化合物、ヒドラゾン化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物などが挙げられる。   Examples of the charge transport material used in the photosensitive layer include pyrene compounds, N-alkylcarbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, styryl. Compounds and stilbene compounds.

積層型の感光層の場合、電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理して得られる電荷発生層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。分散処理には、ホモジナイザー、超音波分散機、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルなどの分散機を用いることができる。結着樹脂は、電荷発生物質に対して0.3〜4倍量(質量比)用いることが好ましい。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。   In the case of a multilayer photosensitive layer, the charge generation layer is formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent, and drying the resulting coating film. can do. For the dispersion treatment, a disperser such as a homogenizer, an ultrasonic disperser, a ball mill, a vibration ball mill, a sand mill, an attritor, or a roll mill can be used. The binder resin is preferably used in an amount of 0.3 to 4 times (mass ratio) with respect to the charge generation material. The charge generation layer may be a vapor generation film of a charge generation material.

また、電荷輸送層は、電荷輸送物質および結着樹脂を溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。また、単独で成膜性を有する電荷輸送物質を用いる場合は、結着樹脂を用いずにそれ単独で成膜し、電荷輸送層とすることもできる。   The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying the resulting coating film. In addition, when a charge transport material having film-forming properties is used alone, it is possible to form a charge transport layer by itself without using a binder resin.

電荷発生層および電荷輸送層に用いられる結着樹脂としては、熱可塑性樹脂や硬化性樹脂などが挙げられる。具体的には、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体/共重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリアリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。これらの中でも、電荷輸送層に用いられる結着樹脂としては、熱可塑性樹脂であるポリカーボネート、ポリアリレート、ポリエステルが好ましい。   Examples of the binder resin used for the charge generation layer and the charge transport layer include thermoplastic resins and curable resins. Specifically, for example, polymers / copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol, polyvinyl acetal, polycarbonate , Polyarylate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like. Among these, as the binder resin used for the charge transport layer, polycarbonate, polyarylate, and polyester which are thermoplastic resins are preferable.

電荷発生層の膜厚は、0.01μm以上5μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。   The thickness of the charge generation layer is preferably from 0.01 μm to 5 μm, and more preferably from 0.1 μm to 2 μm.

電荷輸送層の膜厚は、5μm以上50μm以下であることが好ましく、10μm以上35μm以下であることがより好ましい。   The film thickness of the charge transport layer is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 35 μm or less.

また、硬化性材料を用いて上述の電荷輸送層を形成することも可能である。また、上述の電荷輸送層上に第二の電荷輸送層または保護層として硬化層(硬化性材料を用いて形成した層)を形成することも可能である。また、保護層には、導電性粒子を含有させてもよい。   It is also possible to form the above-described charge transport layer using a curable material. Further, a cured layer (a layer formed using a curable material) can be formed on the above-described charge transport layer as the second charge transport layer or the protective layer. Further, the protective layer may contain conductive particles.

硬化性材料としては、重合性および/または架橋性の電荷輸送性モノマー/オリゴマーが好ましい。重合性および/または架橋性のモノマーやオリゴマーとしては、アクリロイルオキシ基やスチリル基などの連鎖重合性官能基を有する化合物や、水酸基やアルコキシシリル基やイソシアネート基などの逐次重合性官能基を有する化合物が挙げられる。これらの中でも、正孔輸送性基およびアクリロイルオキシ基を1分子内に有する化合物が好ましい。硬化性材料を硬化させる手段としては、熱や、光や、電子線などの放射線が挙げられる。   The curable material is preferably a polymerizable and / or crosslinkable charge transporting monomer / oligomer. Polymerizable and / or crosslinkable monomers and oligomers include compounds having a chain polymerizable functional group such as acryloyloxy group and styryl group, and compounds having a sequential polymerizable functional group such as hydroxyl group, alkoxysilyl group and isocyanate group Is mentioned. Among these, a compound having a hole transporting group and an acryloyloxy group in one molecule is preferable. Examples of means for curing the curable material include heat, light, and radiation such as an electron beam.

上述の電荷輸送層を硬化層とする場合の膜厚は、5μm以上50μm以下であることが好ましく、10μm以上35μm以下であることがより好ましい。上述の電荷輸送層上に第二の電荷輸送層または保護層として硬化層を形成する場合の膜厚は、0.1μm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。   The film thickness when the above-described charge transport layer is a cured layer is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 35 μm or less. When the cured layer is formed as the second charge transport layer or protective layer on the above-described charge transport layer, the film thickness is preferably 0.1 μm or more and 20 μm or less, more preferably 1 μm or more and 10 μm or less. .

上記各層には各種添加剤を添加することができる。添加剤としては、酸化防止剤や紫外線吸収剤などの劣化防止剤や、フッ素原子含有樹脂粒子やアクリル樹脂粒子などの有機樹脂粒子や、シリカ,酸化チタン,アルミナなどの無機粒子などが挙げられる。   Various additives can be added to each layer. Examples of the additive include deterioration inhibitors such as antioxidants and ultraviolet absorbers, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide, and alumina.

本発明の電子写真感光体の表面加工方法は、電子写真感光体の表面(被加工面)に型部材の表面(加工面)を加圧接触させることにより、型部材の表面の凸凹形状を電子写真感光体の表面に転写する方法である。そのため、電子写真感光体の表面(電荷輸送層や保護層などの表面層)の物性は特に重要である。より具体的には、電子写真感光体の表面の硬さ、弾性変形率や、電子写真感光体の表面の構成材料のガラス転移温度、融点は、非常に重要である。電子写真感光体の表面のユニバーサル硬さ値(HU)は、150〜350N/mmの範囲であることが好ましく、弾性変形率は40〜70%の範囲であることが好ましい。また、電子写真感光体の表面層を構成する結着樹脂(熱可塑性樹脂)および電荷輸送物質のガラス転移温度と融点は、40〜300℃の範囲であることが好ましい。これらの値については、特開2007−233356号公報に記載されている方法を用いて算出した値である。 In the surface processing method of the electrophotographic photosensitive member of the present invention, the surface of the mold member (processed surface) is brought into pressure contact with the surface (processed surface) of the electrophotographic photosensitive member, whereby the uneven shape of the surface of the mold member is converted to an electron. This is a method of transferring to the surface of a photographic photoreceptor. For this reason, the physical properties of the surface of the electrophotographic photoreceptor (surface layers such as a charge transport layer and a protective layer) are particularly important. More specifically, the hardness and elastic deformation rate of the surface of the electrophotographic photosensitive member, the glass transition temperature of the constituent material of the surface of the electrophotographic photosensitive member, and the melting point are very important. The universal hardness value (HU) of the surface of the electrophotographic photosensitive member is preferably in the range of 150 to 350 N / mm 2 , and the elastic deformation rate is preferably in the range of 40 to 70%. The glass transition temperature and melting point of the binder resin (thermoplastic resin) and the charge transport material constituting the surface layer of the electrophotographic photosensitive member are preferably in the range of 40 to 300 ° C. These values are values calculated using the method described in JP 2007-233356 A.

以下に、具体的な実施例を挙げて本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”.

(実施例1〜3)
直径30mm、長さ357.5mm、肉厚1mmのアルミニウムシリンダーを円筒状の支持体(導電性支持体)とした。
(Examples 1-3)
An aluminum cylinder having a diameter of 30 mm, a length of 357.5 mm, and a thickness of 1 mm was used as a cylindrical support (conductive support).

次に、酸化スズで被覆されている硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60部、酸化チタン粒子(商品名:TITANIXJR、テイカ(株)製)15部、レゾール型フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学工業(株)製、固形分70%)43部、シリコーンオイル(商品名:SH28PA、東レシリコーン(株)製)0.015部、シリコーン樹脂粒子(商品名:トスパール120、東芝シリコーン(株)製)3.6部、および、2−メトキシ−1−プロパノ−ル50部/メタノール50部の混合溶剤をボールミルに入れ、20時間分散処理することによって、導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、得られた塗膜を1時間オーブンで加熱し、硬化させることによって、膜厚が15μmの導電層を形成した。   Next, barium sulfate particles coated with tin oxide (trade name: Pastoran PC1, Mitsui Kinzoku Mining Co., Ltd.) 60 parts, titanium oxide particles (trade name: TITANIXJR, Teika Co., Ltd.) 15 parts, resol Type phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70%) 43 parts, silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.) 0.015 parts , 3.6 parts of silicone resin particles (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.) and 50 parts of 2-methoxy-1-propanol / 50 parts of methanol are placed in a ball mill for 20 hours. By conducting a dispersion treatment, a coating solution for a conductive layer was prepared. This conductive layer coating solution was dip-coated on a support, and the resulting coating film was heated in an oven for 1 hour to cure, thereby forming a conductive layer having a thickness of 15 μm.

次に、共重合ナイロン(商品名:アミランCM8000、東レ(株)製)10部およびメトキシメチル化6ナイロン(商品名:トレジンEF−30T、帝国化学(株)製)30部を、メタノール400部/n−ブタノール200部の混合溶剤に溶解させることによって下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚が0.45μmの下引き層を形成した。   Next, 10 parts of copolymer nylon (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts of methoxymethylated nylon 6 (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) are added to 400 parts of methanol. An undercoat layer coating solution was prepared by dissolving in 200 parts of / n-butanol mixed solvent. The undercoat layer coating solution was applied onto the conductive layer by dip coating, and the resulting coating film was dried at 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 0.45 μm.

次に、CuKα特性X線回折におけるブラック角2θ±0.2°の7.4°および28.1°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(1)で示されるカリックスアレーン化合物0.2部、   Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.1 ° with a black angle of 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, the following structural formula 0.2 part of a calixarene compound represented by (1),

Figure 2012098468
Figure 2012098468

ポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)10部、および、シクロヘキサノン600部を、直径1mmのガラスビーズを用いたサンドミルに入れ、4時間分散処理した後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃で乾燥させることによって、膜厚が0.17μmの電荷発生層を形成した。 10 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were placed in a sand mill using glass beads having a diameter of 1 mm and dispersed for 4 hours. A coating solution for a charge generation layer was prepared by adding parts. The charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.

次に、下記構造式(2)で示される化合物(電荷輸送物質(正孔輸送性化合物))70部、   Next, 70 parts of a compound represented by the following structural formula (2) (charge transporting material (hole transporting compound)),

Figure 2012098468
Figure 2012098468

および、ポリカーボネート(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部を、モノクロロベンゼン600部/ジメトキシメタン(メチラール)200部の混合溶剤に溶解させることによって電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚が15μmの電荷輸送層を形成した。 Further, 100 parts of polycarbonate (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) is dissolved in a mixed solvent of 600 parts of monochlorobenzene / 200 parts of dimethoxymethane (methylal) to prepare a coating solution for the charge transport layer. Prepared. The charge transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 15 μm.

次に、ポリテトラフルオロエチレン粒子の分散剤としてのフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)製)0.5部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)社製)30部/1−プロパノール30部の混合溶剤に溶解させた後、潤滑剤としてのポリテトラフルオロエチレン粒子(商品名:ルブロンL−2、ダイキン工業(株)製)10部を加え、高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)で600kgf/cmの圧力で4回の分散処理を施した。これをポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)を用いて濾過することによって、潤滑剤分散液を得た。その後、下記構造式(3)で示される化合物(正孔輸送性化合物)90部、 Next, 0.5 part of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant for the polytetrafluoroethylene particles is added to 1,1,2,2,3,3. 4-Heptafluorocyclopentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) 30 parts / 1-propanol 30 parts mixed solvent, polytetrafluoroethylene particles (trade name) : LUBRON L-2, manufactured by Daikin Industries Co., Ltd., Ltd.) 10 parts was added, a high-pressure dispersing machine (trade name: microfluidizer M-110EH, US Microfluidics Corp.) four dispersion treatment with a pressure of 600 kgf / cm 2 at Was given. This was filtered using a polyflon filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.) to obtain a lubricant dispersion. Thereafter, 90 parts of a compound (hole transporting compound) represented by the following structural formula (3),

Figure 2012098468
Figure 2012098468

1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン60部、および、1−プロパノール60部を潤滑剤分散液に加え、ポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)を用いて濾過することによって、保護層(第二電荷輸送層)用塗布液を調製した。この保護層用塗布液を電荷輸送層上に塗布し、得られた塗膜を大気中において10分間50℃で乾燥させた。その後、窒素中において加速電圧150kV、ビーム電流3.0mAの条件でシリンダーを200rpmで回転させながら1.6秒間電子線を塗膜に照射し、引き続き窒素中において25℃から125℃まで30秒かけて昇温させながら、塗膜の硬化反応を行った。このときの電子線の吸収線量を測定したところ15kGyであった。また、電子線照射および加熱硬化反応の雰囲気の酸素濃度は15ppmであった。その後、大気中において塗膜を25℃まで冷却させ、大気中において30分間100℃で乾燥させることによって、膜厚が5μmの保護層(第二電荷輸送層、硬化層)を形成した。 60 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 60 parts of 1-propanol were added to the lubricant dispersion, and a polyflon filter (trade name: PF-020, Advantech Toyo ( The coating liquid for protective layer (second charge transport layer) was prepared by filtering using a product manufactured by KK This protective layer coating solution was applied onto the charge transport layer, and the resulting coating film was dried at 50 ° C. for 10 minutes in the air. Thereafter, the coating film was irradiated with an electron beam for 1.6 seconds while rotating the cylinder at 200 rpm under the conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA in nitrogen, and then it took 30 seconds from 25 ° C. to 125 ° C. in nitrogen. The coating film was cured while the temperature was raised. The absorbed dose of the electron beam at this time was measured and found to be 15 kGy. The oxygen concentration in the atmosphere of electron beam irradiation and heat curing reaction was 15 ppm. Thereafter, the coating film was cooled to 25 ° C. in the air, and dried at 100 ° C. for 30 minutes in the air to form a protective layer (second charge transport layer, cured layer) having a thickness of 5 μm.

このようにして、支持体、導電層、下引き層、電荷発生層、電荷輸送層および保護層(第二電荷輸送層)を有する電子写真感光体を製造した。   Thus, an electrophotographic photoreceptor having a support, a conductive layer, an undercoat layer, a charge generation layer, a charge transport layer, and a protective layer (second charge transport layer) was produced.

得られた電子写真感光体を25℃の環境において、図1に示す構成の表面加工装置に設置した。加圧部材3としては、材質がSUS304製のものを用い、加圧部材3の内部には、加熱用のヒーターを設置した。表面加工に際しては、加圧部材3を図1の右方向から左方向に移動させ、電子写真感光体1を図1の時計回りに回転させるようにして電子写真感光体1の表面(被加工面)に型部材2の表面(加工面)を連続的に加圧接触させるようにした。型部材2としては、図4に示すような円柱状の凸部が連続している形状の表面(加工面)を有する厚さ50μmのニッケル材質のシート状の型部材を使用した。なお、型部材2の表面(加工面)の円柱の直径Y(長軸径)は5μm、円柱の高さZは2μm、円柱のピッチXは7.5μmとした。電子写真感光体1の支持体の内部には、支持体の内径と略同直径を有するSUS304製の円筒状の保持部材4を挿入した。このとき、保持部材4の温度制御は行わなかった。   The obtained electrophotographic photosensitive member was placed in a surface processing apparatus having the configuration shown in FIG. 1 in an environment of 25 ° C. As the pressurizing member 3, a material made of SUS304 was used, and a heater for heating was installed inside the pressurizing member 3. In the surface processing, the pressure member 3 is moved from the right direction to the left direction in FIG. 1, and the electrophotographic photosensitive member 1 is rotated in the clockwise direction in FIG. The surface (worked surface) of the mold member 2 is continuously brought into pressure contact with the mold member 2. As the mold member 2, a sheet-shaped mold member made of nickel having a thickness of 50 μm and having a surface (processed surface) having a shape in which cylindrical convex portions are continuous as shown in FIG. 4 was used. The diameter Y (major axis diameter) of the cylinder on the surface (processed surface) of the mold member 2 was 5 μm, the height Z of the cylinder was 2 μm, and the pitch X of the cylinder was 7.5 μm. A cylindrical holding member 4 made of SUS304 having the same diameter as that of the support was inserted into the support of the electrophotographic photoreceptor 1. At this time, temperature control of the holding member 4 was not performed.

以上のような構成の表面加工装置を用い、第1表に示す表面加工条件で電子写真感光体の表面加工を行った。また、第1表には、別途測定した電荷輸送層のガラス転移温度および電荷輸送物質の融点を示す。   Using the surface processing apparatus configured as described above, the electrophotographic photosensitive member was surface processed under the surface processing conditions shown in Table 1. Table 1 shows the glass transition temperature of the charge transport layer and the melting point of the charge transport material, which were measured separately.

また、各種温度測定は以下の方法により行った。   Various temperature measurements were performed by the following methods.

型部材の温度は、テープ接触型の熱電対(商品名:ST−14K−008−TS1.5−ANP、安立計器(株)製)を型部材の表面(加工面)に接触させることにより測定した。表面加工中における電荷輸送層の温度は、温度測定用の電子写真感光体を別途製造し、測定を行った。温度測定用の電子写真感光体は以下のように製造した。   The temperature of the mold member is measured by bringing a tape contact type thermocouple (trade name: ST-14K-008-TS1.5-ANP, manufactured by Anri Keiki Co., Ltd.) into contact with the surface (machined surface) of the mold member. did. The temperature of the charge transport layer during the surface processing was measured by separately manufacturing an electrophotographic photoreceptor for temperature measurement. An electrophotographic photoreceptor for temperature measurement was produced as follows.

まず、表面加工用の電子写真感光体と同様に膜厚が15μmの電荷輸送層を形成した後、先端径25μmの極細熱電対(商品名:KFT−25−100、(株)アンベエスエムティ製)を電荷輸送層の表面の4箇所(円筒状の電子写真感光体の長手方向に4等分)に銀ペーストで固定した。その熱電対上に別途形成した膜厚5μmの保護層の単独膜(1cm四方)を被せ、固定したものを温度測定用の電子写真感光体とした。   First, a charge transport layer having a film thickness of 15 μm is formed in the same manner as the electrophotographic photoreceptor for surface processing, and then an ultrafine thermocouple having a tip diameter of 25 μm (trade name: KFT-25-100, manufactured by Ambe SMT Co., Ltd.) ) Was fixed with silver paste at four locations on the surface of the charge transporting layer (four equal parts in the longitudinal direction of the cylindrical electrophotographic photosensitive member). A single film (1 cm square) of a protective layer having a thickness of 5 μm separately formed on the thermocouple was covered and fixed to obtain an electrophotographic photoreceptor for temperature measurement.

以上により得られた温度測定用の電子写真感光体を使用し、表面加工を行いながら、表面加工中の温度変化を連続的にモニターすることにより測定した。なお、電子写真感光体の表面(被加工面)と型部材の表面(加工面)との接触を接触開始点aの温度は、型部材の表面と電子写真感光体の表面が加圧部材により加圧接触させられる際に生じるニップ部分通過時における温度の最大値とした。また、離型点bにおける電子写真感光体の電荷輸送層の温度は、離型直後の温度における最大値とした。   Using the electrophotographic photosensitive member for temperature measurement obtained as described above, the temperature change during surface processing was continuously monitored while performing surface processing. Note that the temperature at the contact start point a for contact between the surface of the electrophotographic photosensitive member (processed surface) and the surface of the mold member (processed surface) is such that the surface of the mold member and the surface of the electrophotographic photosensitive member are pressed by a pressure member. The maximum value of the temperature at the time of passing through the nip portion that occurred when being brought into pressure contact was used. The temperature of the charge transport layer of the electrophotographic photosensitive member at the release point b was the maximum value immediately after the release.

型部材を引っ張る力は、表面加工装置にロードセル(商品名:TT−FR1kN、ティアック(株)製)を組み込み、表面加工を行いながら、表面加工中における引っ張る力を連続的にモニターすることにより測定した。   The pulling force of the mold member is measured by incorporating a load cell (trade name: TT-FR1kN, manufactured by TEAC Corporation) into the surface processing apparatus and continuously monitoring the pulling force during the surface processing while performing the surface processing. did.

表面加工された電子写真感光体は、レーザー顕微鏡(商品名:VK8500、キーエンス(株)製)により表面を観察し、凹部の深さの測定を行った。凹部の深さの測定は、測定位置として表面層(保護層)の塗膜の塗布上方端部から中央に向けて50mm位置を位置No.1とし、中央部を位置No.2とし、塗膜の塗布下方端部から中央部に向けて50mm位置を位置No.3とした。これら3つの位置において、100μm四方あたりの観察における平均値としてそれぞれを測定した。結果を第1表に示す。   The surface-processed electrophotographic photosensitive member was observed with a laser microscope (trade name: VK8500, manufactured by Keyence Corporation), and the depth of the recess was measured. The measurement of the depth of the recess was performed by setting the position No. 50 mm from the upper end of the coating of the surface layer (protective layer) to the center as the measurement position. 1 and the central portion is the position No. No. 2 and a position of No. 50 mm from the coating lower end of the coating toward the center. It was set to 3. At these three positions, each was measured as an average value in observation per 100 μm square. The results are shown in Table 1.

A:3点でのばらつきが0.02μm以内
B:3点でのばらつきが0.05μm以内
C:3点でのばらつきが0.10μm以内
D:3点でのばらつきが0.15μm以内
E:3点でのばらつきが0.16μm以上
型部材の交換の容易さを評価した。
A: Variation at 3 points is within 0.02 μm B: Variation at 3 points is within 0.05 μm C: Variation at 3 points is within 0.10 μm D: Variation at 3 points is within 0.15 μm E: The variation at three points was 0.16 μm or more The ease of replacement of the mold member was evaluated.

〇:型部材の交換/設置および表面加工条件出しが短時間で可能
△:型部材の交換/設置および表面加工条件出しに長時間かかる
×:型部材の交換/設置および表面加工条件出しが困難
結果を第1表に示す。
○: Replacement / installation of mold parts and surface processing conditions can be set in a short time △: Replacement / installation of mold parts and surface processing conditions take a long time ×: Difficulties in replacement / installation of mold parts and surface processing conditions The results are shown in Table 1.

(実施例4〜7)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 4 to 7)
A surface processing apparatus having the configuration shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

なお、実施例4では型部材を支持する円柱状の支持部材5を設けた。支持部材5は、外径50mm、内径20mmのSUS304製の円柱状の部材であり、その軸が電子写真感光体の回転中心軸に対して略平行になるように回転自在に配設した。電子写真感光体1の表面加工に際しては、内部にヒーターを備えた平板状の加圧部材3を図2の右方向から左方向に移動させ、電子写真感光体1を図2の時計回りに回転させるようにして電子写真感光体1の表面(被加工面)に型部材2の表面(加工面)を連続的に加圧接触させるようにした。   In Example 4, a columnar support member 5 that supports the mold member was provided. The support member 5 is a columnar member made of SUS304 having an outer diameter of 50 mm and an inner diameter of 20 mm, and is rotatably arranged so that its axis is substantially parallel to the rotation center axis of the electrophotographic photosensitive member. When processing the surface of the electrophotographic photosensitive member 1, the plate-like pressure member 3 provided with a heater is moved from the right direction to the left direction in FIG. 2, and the electrophotographic photosensitive member 1 is rotated clockwise in FIG. In this manner, the surface (processed surface) of the mold member 2 was continuously brought into pressure contact with the surface (processed surface) of the electrophotographic photoreceptor 1.

(実施例8〜12)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 8 to 12)
A surface processing apparatus having the structure shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例13〜14)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例4と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 13 to 14)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 4 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例15〜16)
表面加工装置として図3に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。なお、実施例15〜16では、実施例1で使用した図1に示すような内部にヒーターを備えた平板状の加圧部材3に替えて、図3に示すような内部にヒーターを備えた円筒状の加圧部材6を用いた。円筒状の加圧部材6としては、外径35mm、内径10mmのSUS304製の中空円筒を枠部材として内部に棒状発熱部材を挿入したものを使用した。図3に示す円筒状の加圧部材6の位置決めに際しては、円筒状の加圧部材6の軸が電子写真感光体の円筒軸に対して略平行になるように回転自在に配置した。電子写真感光体1の表面(被加工面)の加工に際しては、円筒状の加圧部材6を図示反時計方向に回転させ、電子写真感光体1を図示時計回りに回転させるようにして電子写真感光体1の表面(被加工面)に型部材2の表面(加工面)を連続的に加圧接触させるようにした。
(Examples 15 to 16)
A surface processing apparatus having the structure shown in FIG. 3 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1. In Examples 15 to 16, instead of the flat plate-like pressure member 3 provided with a heater inside as shown in FIG. 1 used in Example 1, a heater was provided inside as shown in FIG. A cylindrical pressure member 6 was used. As the cylindrical pressure member 6, a hollow cylinder made of SUS304 having an outer diameter of 35 mm and an inner diameter of 10 mm was used as a frame member, and a rod-shaped heating member was inserted therein. When positioning the cylindrical pressure member 6 shown in FIG. 3, the cylindrical pressure member 6 was rotatably arranged so that the axis of the cylindrical pressure member 6 was substantially parallel to the cylinder axis of the electrophotographic photosensitive member. When processing the surface (processed surface) of the electrophotographic photoreceptor 1, the cylindrical pressure member 6 is rotated counterclockwise in the figure, and the electrophotographic photoreceptor 1 is rotated in the clockwise direction in the figure. The surface (processed surface) of the mold member 2 is continuously brought into pressure contact with the surface (processed surface) of the photoreceptor 1.

(実施例17〜19)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例4と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 17 to 19)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 4 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例20)
表面加工装置として図1に示す構成の表面加工装置を使用し、電子写真感光体の支持体を外形12mm、長さ357.5mm、肉厚1mmのアルミニウムシリンダーに変更し、支持体の内径と略同直径を有する円筒状のSUS304製の保持部材4を挿入した。さらに表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Example 20)
The surface processing apparatus having the configuration shown in FIG. 1 is used as the surface processing apparatus, and the support of the electrophotographic photosensitive member is changed to an aluminum cylinder having an outer shape of 12 mm, a length of 357.5 mm, and a wall thickness of 1 mm. A cylindrical holding member 4 made of SUS304 having the same diameter was inserted. Further, the surface processing conditions are as shown in Table 1. Except for these, an electrophotographic photosensitive member whose surface was processed in the same manner as in Example 1 was produced and evaluated. The results are shown in Table 1.

(実施例21〜23)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 21 to 23)
A surface processing apparatus having the structure shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例24〜26)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例4と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 24-26)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 4 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例27〜28)
表面加工装置として図3に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例15と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 27 to 28)
A surface processing apparatus having the structure shown in FIG. 3 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 15 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例29)
実施例1と同様に電荷輸送層までを形成し、保護層を有しない電子写真感光体を製造した。その後、表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 29)
An electrophotographic photosensitive member having no protective layer was produced by forming the charge transport layer in the same manner as in Example 1. Thereafter, the surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus, and the surface processing conditions were as shown in Table 1. Other than these, an electrophotographic photosensitive member having a surface processed in the same manner as in Example 1 was produced and evaluated. The results are shown in Table 1.

(実施例30)
表面加工装置として図2に示す構成の表面加工装置を使用し、上記構造式(2)で示される化合物を下記構造式(4)で示される化合物(電荷輸送物質(正孔輸送性化合物))
(Example 30)
A surface processing apparatus having the structure shown in FIG. 2 is used as the surface processing apparatus, and the compound represented by the structural formula (2) is replaced with the compound represented by the following structural formula (4) (charge transporting material (hole transporting compound)).

Figure 2012098468
Figure 2012098468

に変更し、表面加工条件を第1表のようにした以外は、実施例20と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。 The electrophotographic photoconductor subjected to surface processing was manufactured in the same manner as in Example 20 except that the surface processing conditions were changed as shown in Table 1 and evaluated. The results are shown in Table 1.

(実施例31〜32)
表面加工装置として図2に示す構成の表面加工装置を使用し、上記構造式(2)で示される化合物を上記構造式(4)で示される化合物に変更し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 31-32)
2 is used as the surface processing apparatus, the compound represented by the structural formula (2) is changed to the compound represented by the structural formula (4), and the surface processing conditions are as shown in Table 1. Except as described above, a surface-processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例33)
表面加工装置として図3に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 33)
A surface processing apparatus having the structure shown in FIG. 3 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例34〜35)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 34 to 35)
A surface processing apparatus having the structure shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例36)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 36)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例37〜38)
表面加工装置として図3に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例33と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 37 to 38)
A surface processing apparatus having the structure shown in FIG. 3 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 33 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例39)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例34と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 39)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 34 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例40〜43)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 40 to 43)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例44〜45)
表面加工装置として図3に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例33と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 44 to 45)
A surface processing apparatus having the structure shown in FIG. 3 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 33 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例46〜48)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例34と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 46 to 48)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 34 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例49〜50)
表面加工装置として図2に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Examples 49 to 50)
A surface processing apparatus having the structure shown in FIG. 2 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例51)
表面加工装置として図2に示す構成の表面加工装置を使用し、型部材を図5(A)および図5(B)に示すような六角柱状の凸部が連続している形状の表面(加工面)を有する型部材(六角柱の長軸径Rpcは1.0μm、六角柱の間隔Dは0.5μm、六角柱の高さFは1.0μmである)にし、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Example 51)
As the surface processing apparatus, the surface processing apparatus having the configuration shown in FIG. 2 is used, and the mold member has a surface having a shape in which hexagonal columnar convex portions are continuous as shown in FIGS. 5 (A) and 5 (B). Surface) (the major axis diameter Rpc of the hexagonal column is 1.0 μm, the distance D between the hexagonal columns is 0.5 μm, and the height F of the hexagonal column is 1.0 μm). Except as described in the table, a surface-processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 31. The results are shown in Table 1.

(実施例52)
表面加工装置として図3に示す構成の表面加工装置を使用し、型部材を図6(A)および図6(B)に示すような円柱状の凸部が連続している形状の表面(加工面)を有する型部材(円柱の長軸径Rpcは2.0μm、円柱の間隔Dは0.5μm、円柱の高さFは5.0μmである)に変更し、表面加工条件を第1表のようにした以外は、実施例33と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Example 52)
As the surface processing apparatus, the surface processing apparatus having the configuration shown in FIG. 3 is used, and the mold member has a surface with a cylindrical convex portion as shown in FIGS. 6 (A) and 6 (B) (processing) Surface mold) (the major axis diameter Rpc of the cylinder is 2.0 μm, the distance D between the cylinders is 0.5 μm, and the height F of the cylinder is 5.0 μm). Except for the above, an electrophotographic photosensitive member having a surface processed in the same manner as in Example 33 was produced and evaluated. The results are shown in Table 1.

(実施例53)
実施例29においてポリカーボネートの代わりに、下記構造式(5)で示される繰り返し構造単位を有するポリアリレート
(Example 53)
A polyarylate having a repeating structural unit represented by the following structural formula (5) instead of polycarbonate in Example 29

Figure 2012098468
Figure 2012098468

(mおよびnは共重合比を示し、m:n=7:3)
を用い、上記構造式(2)で示される化合物を上記構造式(4)で示される化合物に変更した。さらに、表面加工装置として図1に示す構成の表面加工装置を使用し、第1表に示す表面加工条件にした。それら以外は、実施例29と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(M and n are copolymerization ratios, m: n = 7: 3)
The compound represented by the structural formula (2) was changed to the compound represented by the structural formula (4). Furthermore, the surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus, and the surface processing conditions shown in Table 1 were set. Except for these, an electrophotographic photoreceptor having a surface processed in the same manner as in Example 29 was produced and evaluated. The results are shown in Table 1.

(実施例54)
表面加工装置として図1に示す構成の表面加工装置を使用し、表面加工条件を第1表のようにした以外は、実施例34と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 54)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus, and a surface processed electrophotographic photosensitive member was manufactured and evaluated in the same manner as in Example 34 except that the surface processing conditions were as shown in Table 1. Went. The results are shown in Table 1.

(実施例55)
表面加工装置として図1に示す構成の表面加工装置を使用した。その際、電子写真感光体の支持体の内部のSUS304製の円筒状の保持部材を30℃に保つよう、温度制御を行い、表面加工条件を第1表のようにした。それら以外は、実施例37と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。
(Example 55)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus. At that time, the temperature was controlled so that the cylindrical holding member made of SUS304 inside the support of the electrophotographic photosensitive member was kept at 30 ° C., and the surface processing conditions were as shown in Table 1. Other than those, surface-processed electrophotographic photosensitive members were manufactured and evaluated in the same manner as in Example 37. The results are shown in Table 1.

(実施例56)
表面加工装置として図2に示す構成の表面加工装置を使用し、型部材を図7(A)および図7(B)に示すような凸の線形状(線形状の方向は円筒状の電子写真感光体の周方向と同じ)が連続する形状の表面(加工面)を有する型部材(凸の間隔Dは10μm、凸の幅D1は10μm、凸の高さFは2μmである)に変更し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Example 56)
As the surface processing apparatus, a surface processing apparatus having the configuration shown in FIG. 2 is used, and the mold member has a convex line shape as shown in FIGS. 7A and 7B (the direction of the line shape is a cylindrical electrophotography). The mold member has the surface (processed surface) with a continuous shape (same as the circumferential direction of the photoreceptor) (the convex spacing D is 10 μm, the convex width D1 is 10 μm, and the convex height F is 2 μm). An electrophotographic photosensitive member having a surface processed in the same manner as in Example 31 was manufactured and evaluated except that the surface processing conditions were as shown in Table 1. The results are shown in Table 1.

(実施例57)
表面加工装置として図2に示す構成の表面加工装置を使用し、型部材を図8(A)および図8(B)に示すような凸の線形状(線形状の方向は円筒状の電子写真感光体の周方向と同じ)が連続する形状の表面(加工面)を有する型部材(凸の間隔Dは3μm、凸の幅D1は1μm、凸の高さFは3μmである)に変更し、表面加工条件を第1表のようにした以外は、実施例31と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Example 57)
As the surface processing apparatus, a surface processing apparatus having the configuration shown in FIG. 2 is used, and the mold member has a convex line shape as shown in FIGS. 8A and 8B (the direction of the line shape is a cylindrical electrophotography). The mold member has the surface (processed surface) with a continuous shape (same as the circumferential direction of the photoreceptor) (the convex spacing D is 3 μm, the convex width D1 is 1 μm, and the convex height F is 3 μm). An electrophotographic photosensitive member having a surface processed in the same manner as in Example 31 was manufactured and evaluated except that the surface processing conditions were as shown in Table 1. The results are shown in Table 1.

(比較例1)
表面加工装置として図1に示す構成の表面加工装置を使用した。その際、型部材を引っ張ることはせず、支えるのみとし、表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Comparative Example 1)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus. At that time, the mold member was not pulled but only supported, and the surface processing conditions were as shown in Table 1. Except for these, an electrophotographic photosensitive member whose surface was processed in the same manner as in Example 1 was produced and evaluated. The results are shown in Table 1.

(比較例2)
表面加工装置として図1に示す構成の表面加工装置を使用した。その際、型部材を引っ張ることはせず、支えるのみとし、表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面を加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Comparative Example 2)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus. At that time, the mold member was not pulled but only supported, and the surface processing conditions were as shown in Table 1. Except for these, an electrophotographic photosensitive member whose surface was processed in the same manner as in Example 1 was manufactured and evaluated. The results are shown in Table 1.

(比較例3)
表面加工装置として図1に示す構成の表面加工装置を使用した。その際、型部材は平板状の加圧部材の上に置くのみとし(θ=0°)、引っ張ることもせず、表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Comparative Example 3)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus. At that time, the mold member was only placed on a flat plate-like pressure member (θ = 0 °), and it was not pulled, and the surface processing conditions were as shown in Table 1. Except for these, an electrophotographic photosensitive member whose surface was processed in the same manner as in Example 1 was produced and evaluated. The results are shown in Table 1.

(比較例4)
表面加工装置として図1に示す構成の表面加工装置を使用した。その際、型部材は角度をつけず(θ=0°)に平板状の加圧部材と平行方向に引っ張り、表面加工条件を第1表のようにした。それら以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価した。結果を第1表に示す。
(Comparative Example 4)
A surface processing apparatus having the configuration shown in FIG. 1 was used as the surface processing apparatus. At that time, the mold member was pulled in the direction parallel to the flat plate-like pressure member without making an angle (θ = 0 °), and the surface processing conditions were as shown in Table 1. Except for these, an electrophotographic photosensitive member whose surface was processed in the same manner as in Example 1 was produced and evaluated. The results are shown in Table 1.

(参考例1)
特開2007−233356号公報に記載の表面加工装置(図9(A))を使用し、表面加工条件を第1表のようにした以外は、実施例1と同様に表面加工された電子写真感光体を製造し、評価を行った。結果を第1表に示す。なお、電子写真感光体9−1の表面の加工に際しては、内部にヒーターを備えた平板状の加圧部材9−3上に型部材9−2を固定した。さらに、平板状の型部材9−2を図9の左方向から右方向に移動させ、電子写真感光体9−1を図2の反時計回りに回転させるようにして、電子写真感光体1の表面(被加工面)に型部材9−2の表面(加工面)を連続的に加圧接触させるようにした。図9(A)中、9−7は電子写真感光体の支持部材である。
(Reference Example 1)
Electrophotographic surface processed in the same manner as in Example 1 except that the surface processing apparatus described in Japanese Patent Application Laid-Open No. 2007-233356 (FIG. 9A) was used and the surface processing conditions were as shown in Table 1. Photoconductors were manufactured and evaluated. The results are shown in Table 1. When processing the surface of the electrophotographic photosensitive member 9-1, the mold member 9-2 was fixed on a flat plate-like pressure member 9-3 provided with a heater. Further, the plate-shaped mold member 9-2 is moved from the left to the right in FIG. 9, and the electrophotographic photosensitive member 9-1 is rotated counterclockwise in FIG. The surface (processed surface) of the mold member 9-2 was continuously brought into pressure contact with the surface (processed surface). In FIG. 9A, reference numeral 9-7 denotes a support member for the electrophotographic photosensitive member.

(参考例2)
特開2001−66814号公報に記載の実施例4の方法(図9(B))で表面加工された電子写真感光体を製造し、評価を行った。型部材としてはSUS製のものを用いた。図9(B)中、Aは型部材であり、Bは電子写真感光体である。
(Reference Example 2)
An electrophotographic photosensitive member having a surface processed by the method of Example 4 described in JP-A No. 2001-66814 (FIG. 9B) was produced and evaluated. A mold member made of SUS was used. In FIG. 9B, A is a mold member and B is an electrophotographic photosensitive member.

Figure 2012098468
Figure 2012098468

Figure 2012098468
Figure 2012098468

1 電子写真感光体
2 型部材
3 加圧部材
4 保持部材
5 支持部材
6 加圧部材
a 接触開始点
b 離型点
o 回転軸中心
9−1 電子写真感光体
9−2 型部材
9−3 加圧部材
9−7 電子写真感光体の支持部材
A 型部材
B 電子写真感光体
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Mold member 3 Pressure member 4 Holding member 5 Support member 6 Pressure member a Contact start point b Release point o Center of rotation axis 9-1 Electrophotographic photoreceptor 9-2 Mold member 9-3 Addition Pressure member 9-7 Support member for electrophotographic photosensitive member A type member B electrophotographic photosensitive member

Claims (4)

円筒状の電子写真感光体の表面とシート状の型部材の表面を押し付けて、該電子写真感光体を回転させながら、該型部材の表面の形状を該電子写真感光体の表面に転写する電子写真感光体の表面加工方法であって、
該電子写真感光体の回転軸と直交する断面上において、
(1)該電子写真感光体の回転軸中心と該電子写真感光体の表面が該型部材の表面に接触し始める接触開始点とを結ぶ線分を線分Aとし、該電子写真感光体の回転軸中心と該電子写真感光体の表面から該型部材の表面が離れ始める離型点とを結ぶ線分を線分Bとしたとき、該線分Aと該線分Bとがなす角度θが5°以上となるように、該電子写真感光体および該型部材を配置し、かつ、
(2)該離型点における該電子写真感光体の回転方向に、該型部材を引っ張る
ことを特徴とする電子写真感光体の表面加工方法。
An electron that transfers the shape of the surface of the mold member to the surface of the electrophotographic photosensitive member while rotating the electrophotographic photosensitive member by pressing the surface of the cylindrical electrophotographic photosensitive member and the surface of the sheet-shaped die member A surface processing method for a photographic photoreceptor,
On the cross section orthogonal to the rotation axis of the electrophotographic photosensitive member,
(1) A line segment connecting a rotation axis center of the electrophotographic photosensitive member and a contact start point at which the surface of the electrophotographic photosensitive member starts to contact the surface of the mold member is defined as a line segment A. When a line segment connecting the rotation axis center and the release point at which the surface of the mold member begins to separate from the surface of the electrophotographic photosensitive member is defined as a line segment B, an angle θ formed by the line segment A and the line segment B Disposing the electrophotographic photosensitive member and the mold member such that is 5 ° or more, and
(2) A surface processing method for an electrophotographic photosensitive member, wherein the mold member is pulled in a rotation direction of the electrophotographic photosensitive member at the release point.
前記(1)において、前記角度θが20°以上になるように、前記電子写真感光体および前記型部材を配置する請求項1に記載の電子写真感光体の表面加工方法。   2. The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein, in (1), the electrophotographic photosensitive member and the mold member are arranged so that the angle θ is 20 ° or more. 前記(2)において、前記型部材を前記型部材の幅1cmあたり0.5N以上の力で引っ張る請求項1または2に記載の電子写真感光体の表面加工方法。   3. The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein in (2), the mold member is pulled with a force of 0.5 N or more per 1 cm width of the mold member. 電子写真感光体の表面を請求項1〜3のいずれか1項に記載の表面加工方法により加工することによって表面加工された電子写真感光体を製造する方法。   A method for producing a surface-processed electrophotographic photosensitive member by processing the surface of the electrophotographic photosensitive member by the surface processing method according to claim 1.
JP2010245491A 2010-11-01 2010-11-01 Surface processing method for electrophotographic photosensitive member and method for manufacturing surface processed electrophotographic photosensitive member Active JP5606276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245491A JP5606276B2 (en) 2010-11-01 2010-11-01 Surface processing method for electrophotographic photosensitive member and method for manufacturing surface processed electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245491A JP5606276B2 (en) 2010-11-01 2010-11-01 Surface processing method for electrophotographic photosensitive member and method for manufacturing surface processed electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2012098468A true JP2012098468A (en) 2012-05-24
JP2012098468A5 JP2012098468A5 (en) 2013-12-19
JP5606276B2 JP5606276B2 (en) 2014-10-15

Family

ID=46390445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245491A Active JP5606276B2 (en) 2010-11-01 2010-11-01 Surface processing method for electrophotographic photosensitive member and method for manufacturing surface processed electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5606276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134280A (en) * 2016-01-28 2017-08-03 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515091A (en) * 2002-01-14 2005-05-26 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for controlling temperature of manufacturing equipment
JP2009031501A (en) * 2007-07-26 2009-02-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515091A (en) * 2002-01-14 2005-05-26 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for controlling temperature of manufacturing equipment
JP2009031501A (en) * 2007-07-26 2009-02-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134280A (en) * 2016-01-28 2017-08-03 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device

Also Published As

Publication number Publication date
JP5606276B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US7622238B2 (en) Process for producing electrophotographic photosensitive member
JP4101278B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
KR101027894B1 (en) Electrophotographic photosensitive material, process cartridge and electrophotographic device
JP5106078B2 (en) Method for producing electrophotographic photosensitive member
US10895840B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US9817324B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
WO2016021161A1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US10359729B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2016052755A1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
WO2011067853A1 (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP7406427B2 (en) Electrophotographic photoreceptors, process cartridges, and electrophotographic devices
RU2388034C1 (en) Electrophotographic photosensitive element, cartridge and electrophotographic device
JP2008292574A (en) Electrophotographic apparatus
JP5606276B2 (en) Surface processing method for electrophotographic photosensitive member and method for manufacturing surface processed electrophotographic photosensitive member
JP5089271B2 (en) Method for producing electrophotographic photosensitive member
JP5697527B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6282130B2 (en) Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface
JP2010066670A (en) Method of manufacturing electrophotographic photoreceptor
JP2009031419A (en) Manufacturing method of electrophotographic photoreceptor
JP2017142336A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and electrophotographic device
JP2016218318A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP7171395B2 (en) Method for forming irregularities on surface of cylindrical electrophotographic photoreceptor and method for manufacturing cylindrical electrophotographic photoreceptor
JP2017134347A (en) Manufacturing method of xerographic photoreceptor
JP2011045863A (en) Method of forming coated film and method of manufacturing electrophotographic photoreceptor
JP2010197664A (en) Method of manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R151 Written notification of patent or utility model registration

Ref document number: 5606276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151