JP2012098218A - Decompression device - Google Patents

Decompression device Download PDF

Info

Publication number
JP2012098218A
JP2012098218A JP2010247743A JP2010247743A JP2012098218A JP 2012098218 A JP2012098218 A JP 2012098218A JP 2010247743 A JP2010247743 A JP 2010247743A JP 2010247743 A JP2010247743 A JP 2010247743A JP 2012098218 A JP2012098218 A JP 2012098218A
Authority
JP
Japan
Prior art keywords
pressure
fluid conduit
secondary pressure
resistance
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247743A
Other languages
Japanese (ja)
Other versions
JP5744476B2 (en
Inventor
Tomoaki Takeuchi
智朗 竹内
Ryoichi Toriumi
良一 鳥海
Hiroo Shimada
廣夫 島田
Yuji Suzuki
雄二 鈴木
Takeshi Garan
武志 加覧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2010247743A priority Critical patent/JP5744476B2/en
Publication of JP2012098218A publication Critical patent/JP2012098218A/en
Application granted granted Critical
Publication of JP5744476B2 publication Critical patent/JP5744476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve measurement of a gas flow amount inside a fluid conduit installed with a decompression device, without generating losses of primary and secondary pressures in the fluid conduit.SOLUTION: A decompression device 10, which is installed in a fluid conduit 1 and acquires a secondary pressure in a downstream side fluid conduit 1d by reducing a primary pressure in an upstream side fluid conduit 1u, comprises: a secondary pressure detection portion 13 for detecting the secondary pressure; a variable resistance portion 11 for variably adjusting resistance of a gas flow based on the secondary pressure detected at the secondary pressure detection portion 13; and a fixed resistance portion 12 which is provided on the downstream side of the variable resistance portion 11 and has a constant resistance of the gas flow. The pressure is reduced from the primary pressure to the secondary pressure by a combined resistance of the gas flow of the variable resistance portion 11 and the fixed resistance portion 12. The gas flow amount of the fluid conduit 1 can be measured by detecting generated pressure difference at the fixed resistance portion 12.

Description

本発明は、流体導管に装備され、上流側流体導管の流体圧力を減圧して下流側流体導管に供給する減圧装置に関するものである。   The present invention relates to a pressure reducing device that is provided in a fluid conduit and reduces the fluid pressure of an upstream fluid conduit and supplies the fluid pressure to a downstream fluid conduit.

パイプラインによる都市ガス等の流体供給方式としては、上流側の高圧流体を段階的に減圧して下流側に供給する方式が採用されている。この際、減圧のための各段階には流体導管に減圧装置(ガバナ)が装備される。   As a fluid supply system for city gas or the like using a pipeline, a system is adopted in which the high-pressure fluid on the upstream side is decompressed in stages and supplied to the downstream side. At this time, each stage for decompression is equipped with a decompression device (governor) in the fluid conduit.

以下の説明では、減圧装置の上流側の流体導管内の圧力を一次圧といい、下流側の流体導管内の圧力を二次圧という。減圧装置は、一般に、上流側の流体導管と下流側の流体導管を連通するオリフィスの開度を調整自在な弁(主弁)を備え、二次圧を検知して前述した弁の開度を自動調整することで二次圧を設定圧に保つ自動圧力調整機構を具備している。   In the following description, the pressure in the fluid conduit upstream of the decompression device is referred to as primary pressure, and the pressure in the downstream fluid conduit is referred to as secondary pressure. The pressure reducing device generally includes a valve (main valve) that can adjust the opening degree of an orifice that communicates the upstream fluid conduit and the downstream fluid conduit, and detects the secondary pressure to reduce the opening degree of the valve described above. An automatic pressure adjustment mechanism that maintains the secondary pressure at the set pressure by automatic adjustment is provided.

減圧装置の下流側圧力である二次圧は、流体導管末端での流体の消費量によって変化する。減圧装置を介して流れる流体の流量は、流体導管末端での流体の消費量等を把握する上で重要である。この流量を計測するには、弁の開度を何らかの機構を用いて計測し、弁の上流側・下流側の圧力差と弁の開度から流量を推定する方式(ガバナ開度方式)と、減圧装置の機構とは無関係に減圧装置の上流側又は下流側に流量計を設置する方式(流量計挿入方式)がある。下記特許文献1には、減圧装置における弁の開度を計測するためのガバナ開度計が記載されている。   The secondary pressure, which is the downstream pressure of the pressure reducing device, varies depending on the amount of fluid consumed at the end of the fluid conduit. The flow rate of the fluid flowing through the pressure reducing device is important in grasping the amount of fluid consumed at the end of the fluid conduit. In order to measure this flow rate, the valve opening is measured using some mechanism, and the flow rate is estimated from the pressure difference between the upstream and downstream sides of the valve and the valve opening (governor opening method), There is a method (flow meter insertion method) in which a flow meter is installed upstream or downstream of the decompression device regardless of the mechanism of the decompression device. Patent Document 1 listed below describes a governor opening meter for measuring the opening of a valve in a decompression device.

特開2000−18986号公報JP 2000-18986 A

減圧装置を介して流れる流体の流量を計測するために、前述したガバナ開度方式を採用すると、弁の開度を計測するために複雑な機構を減圧装置の弁動作機構に組み込むことが必要になるので、メンテナンスの煩雑さや減圧装置のコストアップを招く問題が生じる。   If the governor opening method described above is used to measure the flow rate of the fluid flowing through the pressure reducing device, it is necessary to incorporate a complicated mechanism into the valve operating mechanism of the pressure reducing device in order to measure the valve opening. Therefore, there arises a problem that the maintenance is complicated and the cost of the decompression device is increased.

一方、減圧装置を介して流れる流体の流量を計測するために、前述した流量計挿入方式を採用すると、一次圧や二次圧の圧力損失が問題になる。流量計としては、一般に差圧式流量計やカルマン渦式流量計等が用いられるが、これらの流量計は流路中に抵抗要素を含むので大流量通過時には抵抗要素による圧力損失が大きくなる。このため、減圧装置の上流側に流量計を設置した場合には、流量計の圧力損失で一次圧が低下し、流体を下流側に送出する輸送能力が低下してしまう問題が生じる。また、減圧装置の下流側に流量計を設置した場合には、減圧装置によって設定した二次圧に流量計による圧力損失が加わるので、所望の二次圧で下流側へ流体供給を行うことができない問題が生じる。   On the other hand, when the above-described flow meter insertion method is employed to measure the flow rate of the fluid flowing through the pressure reducing device, the pressure loss of the primary pressure and the secondary pressure becomes a problem. Generally, a differential pressure type flow meter, a Karman vortex type flow meter, or the like is used as the flow meter. However, since these flow meters include a resistance element in the flow path, a pressure loss due to the resistance element increases when a large flow rate passes. For this reason, when a flow meter is installed on the upstream side of the decompression device, the primary pressure is lowered due to the pressure loss of the flow meter, and there arises a problem that the transport capacity for sending the fluid downstream is lowered. In addition, when a flow meter is installed on the downstream side of the decompression device, a pressure loss due to the flow meter is added to the secondary pressure set by the decompression device, so that fluid can be supplied downstream with a desired secondary pressure. A problem that cannot be done arises.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、減圧装置を装備した流体導管の流量計測を行うに際して、減圧装置に複雑な機構を組み込むことなく流量計測を行うことができ、一次圧や設定した二次圧に圧力損失を生じさせることなく流量計測を行うことができること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, when measuring the flow rate of a fluid conduit equipped with a pressure reducing device, the flow rate can be measured without incorporating a complicated mechanism in the pressure reducing device, and without causing a pressure loss in the primary pressure or the set secondary pressure. An object of the present invention is to be able to perform flow rate measurement.

このような目的を達成するために、本発明による減圧装置は、以下の構成を少なくとも具備するものである。
流体導管に装備され、上流側流体導管における一次圧を減圧して下流側流体導管における二次圧を得る減圧装置であって、前記二次圧を検出する二次圧検出部と、前記二次圧検出部で検出された二次圧に基づいて流量抵抗を可変調整する可変抵抗部と、前記可変抵抗部の下流側に設けられ、一定の流量抵抗を有する固定抵抗部とを備え、前記可変抵抗部と前記固定抵抗部との合成抵抗によって、前記一次圧を前記二次圧に減圧することを特徴とする減圧装置。
In order to achieve such an object, the decompression device according to the present invention has at least the following configuration.
A pressure reducing device that is provided in a fluid conduit and reduces a primary pressure in an upstream fluid conduit to obtain a secondary pressure in a downstream fluid conduit, the secondary pressure detecting unit detecting the secondary pressure, and the secondary pressure A variable resistance section that variably adjusts the flow resistance based on the secondary pressure detected by the pressure detection section; and a fixed resistance section that is provided on the downstream side of the variable resistance section and has a constant flow resistance. A pressure reducing device that reduces the primary pressure to the secondary pressure by a combined resistance of a resistance portion and the fixed resistance portion.

このような特徴を有する減圧装置では、固定抵抗部による発生差圧を検出することで、既知の固定抵抗部の流量抵抗と検出した発生差圧とによって流体導管の流量を求めることができる。これによると、減圧装置を装備した流体導管の流量計測を行うに際して、減圧装置に複雑な機構を組み込むことなく流量計測を行うことができ、一次圧や設定した二次圧に圧力損失を生じさせることなく流量計測を行うことができる。   In the decompression device having such a feature, the flow rate of the fluid conduit can be obtained from the flow resistance of the known fixed resistance portion and the detected generated differential pressure by detecting the generated differential pressure due to the fixed resistance portion. According to this, when measuring the flow rate of a fluid conduit equipped with a pressure reducing device, the flow rate can be measured without incorporating a complicated mechanism in the pressure reducing device, causing a pressure loss in the primary pressure or the set secondary pressure. The flow rate can be measured without any problems.

本発明の実施形態に係る減圧装置を説明する説明図である。It is explanatory drawing explaining the decompression device which concerns on embodiment of this invention. 本発明の他の実施形態に係る減圧装置を説明する説明図である。It is explanatory drawing explaining the decompression device concerning other embodiments of the present invention. 本発明の他の実施形態に係る減圧装置を説明する説明図である。It is explanatory drawing explaining the decompression device concerning other embodiments of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態に係る減圧装置の基本構成を示した説明図である。減圧装置10は、流体導管1に装備され、流体導管1の上流側流体導管1uにおける一次圧を減圧して下流側流体導管1dにおける二次圧を得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a basic configuration of a decompression device according to an embodiment of the present invention. The decompression device 10 is provided in the fluid conduit 1 and decompresses the primary pressure in the upstream fluid conduit 1u of the fluid conduit 1 to obtain the secondary pressure in the downstream fluid conduit 1d.

この減圧装置10は、可変抵抗部11、固定抵抗部12、二次圧検出部13を備えている。可変抵抗部11は、二次圧検出部13で検出された二次圧に基づいて流量抵抗を可変調整することができるものであり、開度を調整することで流量抵抗を可変調整する弁機構によって構成されている。一例としては、オリフィス開口部11aとオリフィス開口部11aの開度を調整する弁機構11bと弁機構11bを駆動する駆動部11cを備えている。図示の例では、二次圧検出部13で検出された二次圧が駆動部11cの駆動圧になっており、駆動部11cの動作によって流量抵抗が可変調整される。この可変抵抗部11は、二次圧が低下すると弁機構11bを動作させてオリフィス開口部11aの開度を開き、二次圧を設定圧に保つ自動調整機能を具備している。   The decompression device 10 includes a variable resistance unit 11, a fixed resistance unit 12, and a secondary pressure detection unit 13. The variable resistance unit 11 can variably adjust the flow resistance based on the secondary pressure detected by the secondary pressure detection unit 13, and a valve mechanism that variably adjusts the flow resistance by adjusting the opening degree. It is constituted by. As an example, an orifice opening 11a, a valve mechanism 11b for adjusting the opening of the orifice opening 11a, and a drive unit 11c for driving the valve mechanism 11b are provided. In the illustrated example, the secondary pressure detected by the secondary pressure detection unit 13 is the driving pressure of the driving unit 11c, and the flow resistance is variably adjusted by the operation of the driving unit 11c. The variable resistance portion 11 has an automatic adjustment function for operating the valve mechanism 11b to open the opening of the orifice opening portion 11a and maintaining the secondary pressure at a set pressure when the secondary pressure is lowered.

固定抵抗部12は、可変抵抗部11の下流側に設けられ、一定の流量抵抗を有するものである。この固定抵抗部12は、これによる発生差圧と流量との関係を予め計測したものであれば何でも良く、オリフィス(絞り)やベンチュリー等によって構成することができる。減圧装置10は、可変抵抗部11と固定抵抗部12の合成抵抗によって上流側流体導管1u内の一次圧を下流側流体導管1d内の二次圧に減圧している。   The fixed resistor 12 is provided on the downstream side of the variable resistor 11 and has a constant flow resistance. The fixed resistance portion 12 may be anything as long as the relationship between the generated differential pressure and the flow rate is measured in advance, and can be configured by an orifice (throttle) or a venturi. The decompression device 10 reduces the primary pressure in the upstream fluid conduit 1u to the secondary pressure in the downstream fluid conduit 1d by the combined resistance of the variable resistor portion 11 and the fixed resistor portion 12.

このような減圧装置10によると、固定抵抗部12による発生差圧を検出することで流体導管1の流量を推定することができる。より具体的には、固定抵抗部12による発生差圧を検出する差圧検出部12aを備え、検出された発生差圧ΔPによって流体導管1の流量Qを求める。固定抵抗部12は、流量Qと発生差圧ΔPとの関係(流量抵抗)が予め計測されているので、この関係を用いて検出された発生差圧ΔPから流量Qを求めることができる。   According to such a pressure reducing device 10, the flow rate of the fluid conduit 1 can be estimated by detecting the differential pressure generated by the fixed resistance portion 12. More specifically, a differential pressure detector 12a that detects a differential pressure generated by the fixed resistor 12 is provided, and the flow rate Q of the fluid conduit 1 is obtained from the detected differential pressure ΔP. Since the relationship (flow resistance) between the flow rate Q and the generated differential pressure ΔP is measured in advance, the fixed resistance unit 12 can determine the flow rate Q from the generated differential pressure ΔP detected using this relationship.

このような実施形態に係る減圧装置10によると、一次圧の流体が流れる上流側流体導管1uには流量計が設置されないので、一次圧が流量計の圧力損失によって低下することがない。また、二次圧の流体が流れる下流側流体導管1dにも流量計が設置されないので、二次圧が流量計の圧力損失によって低下することもない。更には、オリフィス開口部11aの開度を調整する弁機構11bの動作とは無関係に、二次圧の調整時にも不変の抵抗を有する固定抵抗部12の発生差圧で流体導管1の流量を求めることができるので、減圧装置10に弁動作を計測する複雑な機構を付加する必要がない。   According to the decompression device 10 according to such an embodiment, since the flow meter is not installed in the upstream fluid conduit 1u through which the primary pressure fluid flows, the primary pressure does not decrease due to the pressure loss of the flow meter. In addition, since the flow meter is not installed in the downstream fluid conduit 1d through which the fluid of the secondary pressure flows, the secondary pressure is not lowered due to the pressure loss of the flow meter. Furthermore, regardless of the operation of the valve mechanism 11b for adjusting the opening of the orifice opening 11a, the flow rate of the fluid conduit 1 is controlled by the generated differential pressure of the fixed resistance portion 12 having a constant resistance even when the secondary pressure is adjusted. Therefore, it is not necessary to add a complicated mechanism for measuring the valve operation to the decompression device 10.

図2及び図3は、本発明の他の実施形態を示した説明図である(前述した実施形態と共通する部位には同一符号を付して重複説明を一部省略する)。この実施形態に係る減圧装置10も、図1に示した実施形態と同様に、可変抵抗部11、固定抵抗部12、二次圧検出部13を備えている。   2 and 3 are explanatory views showing other embodiments of the present invention (the parts common to the above-described embodiments are denoted by the same reference numerals and the duplicate description is partially omitted). Similarly to the embodiment shown in FIG. 1, the decompression device 10 according to this embodiment also includes a variable resistance unit 11, a fixed resistance unit 12, and a secondary pressure detection unit 13.

そして、可変抵抗部11は、上流側流体導管1uと下流側流体導管1dとを連通するパイロット流路20の流量を二次圧に基づいて可変調整し、パイロット流路20の流量に応じて変化する駆動圧によって動作する駆動部11cの動作によって流量抵抗を可変調整する。すなわち、上流側流体導管1uと下流側流体導管1dとを連通するパイロット流路20には、パイロット弁14が設けられる。   The variable resistance unit 11 variably adjusts the flow rate of the pilot flow path 20 that connects the upstream fluid conduit 1 u and the downstream fluid conduit 1 d based on the secondary pressure, and changes according to the flow rate of the pilot flow path 20. The flow resistance is variably adjusted by the operation of the driving unit 11c that operates according to the driving pressure. That is, the pilot valve 14 is provided in the pilot flow path 20 that communicates the upstream fluid conduit 1u and the downstream fluid conduit 1d.

このパイロット弁14は、二次圧検出部13によって検出された二次圧を駆動圧として弁の開度を調整し、パイロット弁14の開度によってパイロット流路20を流れる流体の流量が変化する。パイロット流路20を流れる流体の流量が変化するパイロット弁14及び抵抗部15での損失圧力が変わるので、パイロット流路20から分岐した駆動圧流路21の駆動圧が変化する。この駆動圧の変化によって可変抵抗部11の駆動部11cが動作する。   The pilot valve 14 adjusts the opening degree of the valve by using the secondary pressure detected by the secondary pressure detecting unit 13 as a driving pressure, and the flow rate of the fluid flowing through the pilot flow path 20 varies depending on the opening degree of the pilot valve 14. . Since the pressure loss at the pilot valve 14 and the resistance portion 15 where the flow rate of the fluid flowing through the pilot flow path 20 changes, the drive pressure of the drive pressure flow path 21 branched from the pilot flow path 20 changes. The drive part 11c of the variable resistance part 11 operates by the change of the drive pressure.

したがって、図2に示した実施形態では、二次圧が低下すると、パイロット弁14が開き、パイロット流路20の流量が上昇し、パイロット流路20の流量上昇によって駆動圧流路21の駆動圧が低下し、駆動部11cが弁機構11bを開方向に動作させる。これによって二次圧を設定圧に自動調整する。この減圧装置10も、図1に示した実施形態と同様に、可変抵抗部11と固定抵抗部12の合成抵抗によって一次圧を二次圧に減圧している。   Therefore, in the embodiment shown in FIG. 2, when the secondary pressure decreases, the pilot valve 14 opens, the flow rate of the pilot flow channel 20 increases, and the drive pressure of the drive pressure flow channel 21 is increased by the flow rate increase of the pilot flow channel 20. The drive unit 11c operates the valve mechanism 11b in the opening direction. As a result, the secondary pressure is automatically adjusted to the set pressure. This pressure reducing device 10 also reduces the primary pressure to the secondary pressure by the combined resistance of the variable resistance portion 11 and the fixed resistance portion 12 as in the embodiment shown in FIG.

一方、図3に示した実施形態では、二次圧が低下すると、パイロット弁14が開き、これにより、パイロット弁14での圧力損失が低下し、駆動圧流路21の駆動圧が増加し、駆動部11cが弁機構11bを開方向に動作させることで二次圧を設定圧に自動調整する。この減圧装置10も、図1に示した実施形態と同様に、可変抵抗部11と固定抵抗部12の合成抵抗によって一次圧を二次圧に減圧している。   On the other hand, in the embodiment shown in FIG. 3, when the secondary pressure decreases, the pilot valve 14 opens, thereby reducing the pressure loss in the pilot valve 14 and increasing the driving pressure in the driving pressure channel 21. The unit 11c automatically adjusts the secondary pressure to the set pressure by operating the valve mechanism 11b in the opening direction. This pressure reducing device 10 also reduces the primary pressure to the secondary pressure by the combined resistance of the variable resistance portion 11 and the fixed resistance portion 12 as in the embodiment shown in FIG.

図2及び図3に示した実施形態においても、固定抵抗部12は、可変抵抗部11の下流側に設けられ、固定抵抗部12による発生差圧を検出することで流体導管1の流量を推定することができる。より具体的には、固定抵抗部による発生差圧を検出する差圧検出部12aを備え、検出された発生差圧ΔPによって流体導管1の流量Qを求める。固定抵抗部12は、流量Qと発生差圧ΔPとの関係(流量抵抗)が予め計測されているので、この関係を用いて検出された発生差圧ΔPから流量Qを求めることができる。   Also in the embodiment shown in FIGS. 2 and 3, the fixed resistance portion 12 is provided on the downstream side of the variable resistance portion 11, and the flow rate of the fluid conduit 1 is estimated by detecting the differential pressure generated by the fixed resistance portion 12. can do. More specifically, a differential pressure detection unit 12a that detects a generated differential pressure due to the fixed resistance unit is provided, and the flow rate Q of the fluid conduit 1 is obtained from the detected generated differential pressure ΔP. Since the relationship (flow resistance) between the flow rate Q and the generated differential pressure ΔP is measured in advance, the fixed resistance unit 12 can determine the flow rate Q from the generated differential pressure ΔP detected using this relationship.

このような実施形態に係る減圧装置10においては、流量計測による圧力損失が一次圧にも二次圧にも影響しない。したがって、流量計測とは無関係にパイロット流路20の流量変化によって可変抵抗部11を動作させることができる。また、前述した実施形態と同様に、一次圧の流体が流れる上流側流体導管1uには流量計が設置されないので、一次圧が流量計の圧力損失によって低下することがなく、二次圧の流体が流れる下流側流体導管1dにも流量計が設置されないので、二次圧が流量計の圧力損失によって低下することもない。   In the decompression device 10 according to such an embodiment, the pressure loss due to flow measurement does not affect the primary pressure or the secondary pressure. Therefore, the variable resistance portion 11 can be operated by changing the flow rate of the pilot flow path 20 regardless of the flow rate measurement. Similarly to the above-described embodiment, since the flow meter is not installed in the upstream fluid conduit 1u through which the primary pressure fluid flows, the primary pressure does not decrease due to the pressure loss of the flow meter, and the secondary pressure fluid Since the flow meter is not installed also in the downstream fluid conduit 1d through which the secondary gas flows, the secondary pressure is not lowered by the pressure loss of the flow meter.

以上説明したように、本発明の実施形態に係る減圧装置10によると、固定抵抗部12による発生差圧を検出することで、既知の固定抵抗部12の流量抵抗と検出した発生差圧とによって流体導管の流量を求めることができる。これによると、減圧装置10を装備した流体導管1の流量計測を行うに際して、減圧装置10に複雑な機構を組み込むことなく流量計測を行うことができるだけでなく、一次圧や設定した二次圧に圧力損失を生じさせることなく流量計測を行うことができる。   As described above, according to the decompression device 10 according to the embodiment of the present invention, by detecting the generated differential pressure due to the fixed resistance unit 12, the flow resistance of the known fixed resistance unit 12 and the detected generated differential pressure are used. The flow rate of the fluid conduit can be determined. According to this, when the flow rate of the fluid conduit 1 equipped with the pressure reducing device 10 is measured, not only can the flow rate be measured without incorporating a complicated mechanism in the pressure reducing device 10, but also the primary pressure or the set secondary pressure can be adjusted. The flow rate can be measured without causing pressure loss.

1:流体導管,1u:下流側流体導管,1d:上流側流体導管,
10:減圧装置,
11:可変抵抗部,
11a:オリフィス開口部,11b:弁機構,11c:駆動部,
12:固定抵抗部, 12a:差圧検出部,
13:二次圧検出部,14:パイロット弁,
20:パイロット流路,21:駆動圧流路
1: fluid conduit, 1u: downstream fluid conduit, 1d: upstream fluid conduit,
10: decompression device,
11: Variable resistance part,
11a: orifice opening, 11b: valve mechanism, 11c: drive unit,
12: Fixed resistance part, 12a: Differential pressure detection part,
13: Secondary pressure detector, 14: Pilot valve,
20: Pilot flow path, 21: Drive pressure flow path

Claims (5)

流体導管に装備され、上流側流体導管における一次圧を減圧して下流側流体導管における二次圧を得る減圧装置であって、
前記二次圧を検出する二次圧検出部と、
前記二次圧検出部で検出された二次圧に基づいて流量抵抗を可変調整する可変抵抗部と、
前記可変抵抗部の下流側に設けられ、一定の流量抵抗を有する固定抵抗部とを備え、
前記可変抵抗部と前記固定抵抗部との合成抵抗によって、前記一次圧を前記二次圧に減圧することを特徴とする減圧装置。
A pressure reducing device mounted on a fluid conduit to reduce a primary pressure in an upstream fluid conduit to obtain a secondary pressure in a downstream fluid conduit;
A secondary pressure detector for detecting the secondary pressure;
A variable resistance unit that variably adjusts the flow resistance based on the secondary pressure detected by the secondary pressure detection unit;
A fixed resistance portion provided downstream of the variable resistance portion and having a constant flow resistance;
A pressure reducing device that reduces the primary pressure to the secondary pressure by a combined resistance of the variable resistance portion and the fixed resistance portion.
前記固定抵抗部による発生差圧を検出する差圧検出部を備え、
前記発生差圧によって前記流体導管の流量を求めることを特徴とする請求項1記載の減圧装置。
A differential pressure detection unit that detects a differential pressure generated by the fixed resistance unit;
The pressure reducing device according to claim 1, wherein the flow rate of the fluid conduit is obtained from the generated differential pressure.
前記可変抵抗部は、開度を調整することで流量抵抗を可変調整する弁機構によって構成されることを特徴とする請求項1又は2記載の減圧装置。   The decompression device according to claim 1, wherein the variable resistance unit is configured by a valve mechanism that variably adjusts a flow resistance by adjusting an opening degree. 前記可変抵抗部は、前記二次圧検出部で検出された二次圧を駆動圧とする駆動部の動作によって流量抵抗を可変調整することを特徴とする請求項1〜3のいずれかに記載の減圧装置。   4. The variable resistance unit variably adjusts a flow resistance by an operation of a drive unit that uses a secondary pressure detected by the secondary pressure detection unit as a drive pressure. Pressure reducing device. 前記可変抵抗部は、前記上流側流体導管と前記下流側流体導管とを連通するパイロット流路の流量を前記二次圧に基づいて可変調整し、前記パイロット流路の流量に応じて変化する駆動圧によって動作する駆動部の動作によって、流量抵抗を可変調整することを特徴とする請求項1〜3のいずれかに記載の減圧装置。   The variable resistance unit variably adjusts the flow rate of the pilot flow path that connects the upstream fluid conduit and the downstream fluid conduit based on the secondary pressure, and changes in accordance with the flow rate of the pilot flow path The pressure reducing device according to any one of claims 1 to 3, wherein the flow resistance is variably adjusted by an operation of a driving unit that operates by pressure.
JP2010247743A 2010-11-04 2010-11-04 Decompressor Active JP5744476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247743A JP5744476B2 (en) 2010-11-04 2010-11-04 Decompressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247743A JP5744476B2 (en) 2010-11-04 2010-11-04 Decompressor

Publications (2)

Publication Number Publication Date
JP2012098218A true JP2012098218A (en) 2012-05-24
JP5744476B2 JP5744476B2 (en) 2015-07-08

Family

ID=46390285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247743A Active JP5744476B2 (en) 2010-11-04 2010-11-04 Decompressor

Country Status (1)

Country Link
JP (1) JP5744476B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128820U (en) * 1990-04-06 1991-12-25
JPH0467713U (en) * 1990-10-19 1992-06-16
JPH0493306U (en) * 1990-12-26 1992-08-13
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH07243878A (en) * 1994-03-04 1995-09-19 Yazaki Corp Gas leakage detector
JPH09287995A (en) * 1996-04-22 1997-11-04 Yazaki Corp Flow rate measuring structure
JP2000249300A (en) * 1999-03-02 2000-09-12 Tokyo Gas Co Ltd Pressure governor
JP2001027555A (en) * 1999-07-15 2001-01-30 Fukuda:Kk Flowrate-measuring device and leak tester
JP2002132355A (en) * 2000-10-25 2002-05-10 Maezawa Ind Inc Pressure reducing valve, pressure reducing device equipped with the pressure reducing valve, and water distributing facility equipped with the pressure reducing device
JP2002149242A (en) * 2000-11-16 2002-05-24 Tokimec Inc Flow rate control system
JP2006065575A (en) * 2004-08-26 2006-03-09 Surpass Kogyo Kk Regulator for liquid
JP2008117301A (en) * 2006-11-07 2008-05-22 Aichi Tokei Denki Co Ltd Gas shut-off system
JP2008151193A (en) * 2006-12-15 2008-07-03 Nohmi Bosai Ltd Control valve
JP2009209976A (en) * 2008-02-29 2009-09-17 Osaka Gas Co Ltd Silencer and pressure control device having the same
JP2010140190A (en) * 2008-12-10 2010-06-24 Osaka Gas Co Ltd Valve structure for pressure adjusting valve and pressure regulation facility

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128820U (en) * 1990-04-06 1991-12-25
JPH0467713U (en) * 1990-10-19 1992-06-16
JPH0493306U (en) * 1990-12-26 1992-08-13
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH07243878A (en) * 1994-03-04 1995-09-19 Yazaki Corp Gas leakage detector
JPH09287995A (en) * 1996-04-22 1997-11-04 Yazaki Corp Flow rate measuring structure
JP2000249300A (en) * 1999-03-02 2000-09-12 Tokyo Gas Co Ltd Pressure governor
JP2001027555A (en) * 1999-07-15 2001-01-30 Fukuda:Kk Flowrate-measuring device and leak tester
JP2002132355A (en) * 2000-10-25 2002-05-10 Maezawa Ind Inc Pressure reducing valve, pressure reducing device equipped with the pressure reducing valve, and water distributing facility equipped with the pressure reducing device
JP2002149242A (en) * 2000-11-16 2002-05-24 Tokimec Inc Flow rate control system
JP2006065575A (en) * 2004-08-26 2006-03-09 Surpass Kogyo Kk Regulator for liquid
JP2008117301A (en) * 2006-11-07 2008-05-22 Aichi Tokei Denki Co Ltd Gas shut-off system
JP2008151193A (en) * 2006-12-15 2008-07-03 Nohmi Bosai Ltd Control valve
JP2009209976A (en) * 2008-02-29 2009-09-17 Osaka Gas Co Ltd Silencer and pressure control device having the same
JP2010140190A (en) * 2008-12-10 2010-06-24 Osaka Gas Co Ltd Valve structure for pressure adjusting valve and pressure regulation facility

Also Published As

Publication number Publication date
JP5744476B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
KR101930304B1 (en) Flow meter
KR102028372B1 (en) Pressure Flow Control System and More Detection Methods
JP2009115271A (en) Flow rate measurement valve
KR101607863B1 (en) Method for Producing Mixed Gas and Mixing Device
US10001785B2 (en) Fluid regulator having a biased pressure sense tube
CN103900646A (en) Flow operation device and flow control device
JPH09155180A (en) Liquid mixing device
JP5744476B2 (en) Decompressor
JP5752521B2 (en) DIAGNOSIS DEVICE AND FLOW CONTROL DEVICE HAVING THE DIAGNOSIS DEVICE
JP2007079996A (en) Pressure control device
JP2007038179A (en) Gas mixer
JP5547609B2 (en) Pressure regulator
JP5243843B2 (en) Combustion equipment and abnormality diagnosis method for combustion equipment
JP5547608B2 (en) Pressure regulator
KR101544192B1 (en) control system for pneumatic control vavle of temperature control
JP2010160672A (en) Method and device for calorific value adjustment
JP2006285660A (en) Pressure governing device and characteristic adjustment method therefor
JP7483265B2 (en) Pressure Generator
JP2000292227A (en) Flow measuring method and device
JP7046253B2 (en) Pressure regulator
US11959788B2 (en) Wide range flow measuring device having two Coriolis meters arranged in series and a bypass line to bypass the second Coriolis meter
JP6436882B2 (en) regulator
JP2005141560A (en) Operation test method and apparatus and standby pressure setting method for governor
JP4838024B2 (en) Integrated flow meter backflow prevention device
JP6405519B2 (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250