JP2012098154A - Magnetostriction force sensor, manufacturing method of plate like member for the magnetostriction force sensor, ring like member for magnetostriction force sensor, and manufacturing method of ring like member for magnetostriction force sensor - Google Patents

Magnetostriction force sensor, manufacturing method of plate like member for the magnetostriction force sensor, ring like member for magnetostriction force sensor, and manufacturing method of ring like member for magnetostriction force sensor Download PDF

Info

Publication number
JP2012098154A
JP2012098154A JP2010246051A JP2010246051A JP2012098154A JP 2012098154 A JP2012098154 A JP 2012098154A JP 2010246051 A JP2010246051 A JP 2010246051A JP 2010246051 A JP2010246051 A JP 2010246051A JP 2012098154 A JP2012098154 A JP 2012098154A
Authority
JP
Japan
Prior art keywords
ring
force sensor
shaped member
magnetostrictive
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010246051A
Other languages
Japanese (ja)
Other versions
JP5648958B2 (en
Inventor
Munekatsu Shimada
宗勝 島田
Mitsuaki Fujita
光昭 藤田
Toshimitsu Matsuoka
敏光 松岡
Masaki Hirota
正樹 廣田
Yasubumi Furuya
泰文 古屋
Sadako Okazaki
禎子 岡崎
Takeo Chinen
タケオ 知念
Kazuyuki Kumabayashi
和之 熊林
Shusuke Hori
秀輔 堀
Minoru Matsumoto
實 松本
Masanori Yokoyama
雅紀 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nissan Motor Co Ltd
Hirosaki University NUC
Original Assignee
Tohoku University NUC
Nissan Motor Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nissan Motor Co Ltd, Hirosaki University NUC filed Critical Tohoku University NUC
Priority to JP2010246051A priority Critical patent/JP5648958B2/en
Publication of JP2012098154A publication Critical patent/JP2012098154A/en
Application granted granted Critical
Publication of JP5648958B2 publication Critical patent/JP5648958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetostriction force sensor having a sufficient sensitivity, a manufacturing method of a plate like member for the magnetostriction force sensor, a ring like member for the magnetostriction force sensor, and a manufacturing method of the ring like member for the magnetostriction force sensor.SOLUTION: The magnetostriction force sensor includes a magnetostrictive material in which a magnitude of magnetostriction in a specific direction is larger than a magnitude of magnetostriction in a direction perpendicular to the specific direction. In the manufacturing method of the plate like member for the magnetostriction force sensor, when manufacturing the plate like member composed of the magnetostrictive material in which a magnitude of magnetostriction in its length direction is larger than a magnitude of magnetostriction in a direction perpendicular to the length direction, the plate like member is cut out in a columnar crystal direction from a coagulated member or a cast member in which a columnar crystal structure is formed in a direction.

Description

本発明は、磁歪力センサ、磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法に関する。
更に詳細には、本発明は、所定の磁歪材を備えた磁歪力センサ、これに用いる磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法に関する。
The present invention relates to a magnetostrictive force sensor, a method for manufacturing a magnetostrictive force sensor plate member, a magnetostrictive force sensor ring member, and a magnetostrictive force sensor ring member.
More specifically, the present invention relates to a magnetostrictive force sensor provided with a predetermined magnetostrictive material, a method of manufacturing a plate member for a magnetostrictive force sensor used therefor, a ring member for a magnetostrictive force sensor, and a ring member for a magnetostrictive force sensor. It relates to a manufacturing method.

車両の制御分野においては、廉価で小型な力センサの開発が望まれており、力センサの研究開発がされている。例えばブレーキ力が検知できると、車両の総合制御が可能になり、省燃費な車両を実現することができる。
また、トルクセンサについても開発が望まれている。例えば電動パワーステアリングにはトルクセンサが必須であり、変位方式のトルクセンサが採用されているが、低価格化の要望があり、磁歪方式のトルクセンサの研究開発がなされている。更に、次世代のステアリングであるステア・バイ・ワイヤにおいても廉価なトルクセンサの要望がある。
これに対して、センサ感度に優れた磁歪力センサや応力を精度良く検出し得る磁歪力センサが提案されている(特許文献1及び特許文献2参照。)。
In the field of vehicle control, development of an inexpensive and small force sensor is desired, and research and development of a force sensor is being conducted. For example, if the braking force can be detected, comprehensive control of the vehicle is possible, and a fuel-saving vehicle can be realized.
Development of a torque sensor is also desired. For example, a torque sensor is indispensable for electric power steering, and a displacement type torque sensor is adopted. However, there is a demand for a reduction in price, and research and development of a magnetostrictive type torque sensor has been made. Furthermore, there is a demand for an inexpensive torque sensor in the steer-by-wire, which is the next generation of steering.
On the other hand, a magnetostrictive force sensor excellent in sensor sensitivity and a magnetostrictive force sensor capable of accurately detecting stress have been proposed (see Patent Document 1 and Patent Document 2).

特開2008−26210号公報JP 2008-26210 A 特開2008−268175号公報JP 2008-268175 A

しかしながら、上記特許文献1及び特許文献2に記載された磁歪力センサについても、実用的なセンサとしては、感度について改善の余地があった。   However, the magnetostrictive force sensors described in Patent Document 1 and Patent Document 2 also have room for improvement in sensitivity as a practical sensor.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、十分な感度を有する磁歪力センサ、これに用いる磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a magnetostrictive force sensor having sufficient sensitivity and a method for manufacturing a plate member for a magnetostrictive force sensor used therefor. Another object is to provide a ring-shaped member for a magnetostrictive force sensor and a method for manufacturing the ring-shaped member for a magnetostrictive force sensor.

本発明者らは、上記目的を達成するため鋭意検討を重ねた。そして、その結果、所定の磁歪材を備えたものとすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, it has been found that the above object can be achieved by providing a predetermined magnetostrictive material, and the present invention has been completed.

本発明の磁歪力センサは、特定の方向における磁歪の大きさがその方向に直交する方向における磁歪の大きさより大きい磁歪材を備えたことを特徴とする。   The magnetostrictive force sensor of the present invention includes a magnetostrictive material in which the magnitude of magnetostriction in a specific direction is larger than the magnitude of magnetostriction in a direction orthogonal to the direction.

本発明の磁歪力センサ用板状部材の製造方法は、長手方向における磁歪の大きさがその方向に直交する方向における磁歪の大きさより大きい磁歪材からなる磁歪力センサ用板状部材を製造するに際して、一方向に柱状晶組織を形成した凝固部材又は鋳造部材から柱状晶の方向に板状部材を切り出すことを特徴とする。   The method for manufacturing a magnetostrictive force sensor plate member according to the present invention provides a magnetostrictive force sensor plate member made of a magnetostrictive material having a magnetostriction in the longitudinal direction larger than the magnetostriction in a direction perpendicular to the direction. The plate-shaped member is cut out in the direction of the columnar crystal from the solidified member or cast member in which the columnar crystal structure is formed in one direction.

本発明の磁歪力センサ用リング状部材は、周方向における磁歪の大きさがその方向に直交する軸方向における磁歪の大きさより大きい磁歪材からなるリング状部材であって、柱状晶組織がリング状部材の径方向に向いていることを特徴とする。   The ring-shaped member for a magnetostrictive force sensor of the present invention is a ring-shaped member made of a magnetostrictive material in which the magnitude of magnetostriction in the circumferential direction is larger than the magnitude of magnetostriction in the axial direction perpendicular to the direction, and the columnar crystal structure is a ring shape. It is characterized by being directed in the radial direction of the member.

本発明の磁歪力センサ用リング状部材の製造方法は、周方向における磁歪の大きさがその方向に直交する軸方向における磁歪の大きさより大きい磁歪材からなるリング状部材であって、柱状晶組織がリング状部材の径方向に向いている磁歪力センサ用リング状部材を製造するに際して、径方向に柱状晶を形成した鋳造部材からリング状部材を切り出すことを特徴とする。   The method for producing a ring-shaped member for a magnetostrictive force sensor according to the present invention is a ring-shaped member made of a magnetostrictive material having a magnetostriction in the circumferential direction larger than the magnetostriction in the axial direction orthogonal to the direction, and having a columnar crystal structure When manufacturing a ring-shaped member for a magnetostrictive force sensor whose diameter is directed in the radial direction of the ring-shaped member, the ring-shaped member is cut out from a cast member in which columnar crystals are formed in the radial direction.

本発明によれば、特定の方向における磁歪の大きさがその方向に直交する方向における磁歪の大きさより大きい磁歪材を備えたものとすることにより、十分な感度を有する磁歪力センサ、これに用いる磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法を提供することができる。   According to the present invention, a magnetostrictive force sensor having sufficient sensitivity is provided by using a magnetostrictive material in which the magnitude of magnetostriction in a specific direction is larger than the magnitude of magnetostriction in a direction perpendicular to the direction, and the magnetostrictive force sensor is used for this. The manufacturing method of the magnetostrictive force sensor plate-shaped member, the magnetostrictive force sensor ring-shaped member, and the magnetostrictive force sensor ring-shaped member can be provided.

従来の磁歪力センサの模式的な説明図である。It is typical explanatory drawing of the conventional magnetostrictive force sensor. 従来の他の磁歪力センサの模式的な説明図である。It is typical explanatory drawing of the other conventional magnetostrictive force sensor. 本発明の一実施形態に係る磁歪力センサに用いる板状部材の説明図である。It is explanatory drawing of the plate-shaped member used for the magnetostrictive force sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁歪力センサ用板状部材の製造方法における応力下熱処理の説明図である。It is explanatory drawing of the heat processing under stress in the manufacturing method of the plate-shaped member for magnetostrictive force sensors which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁歪力センサの説明図である。It is explanatory drawing of the magnetostrictive force sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁歪力センサ用リング状部材の製造方法における鋳造部材の模式的な断面説明図である。It is typical sectional explanatory drawing of the cast member in the manufacturing method of the ring-shaped member for magnetostrictive force sensors which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る磁歪力センサ用リング状部材の模式的な説明図である。It is typical explanatory drawing of the ring-shaped member for magnetostrictive force sensors which concerns on other embodiment of this invention. 本発明の他の実施形態に係る磁歪力センサ用リング状部材の製造方法における応力下熱処理の説明図である。It is explanatory drawing of the heat treatment under stress in the manufacturing method of the ring-shaped member for magnetostrictive force sensors which concerns on other embodiment of this invention. 本発明の他の実施形態に係る磁歪力センサ用リング状部材の製造方法における拡径変形の説明図である。It is explanatory drawing of the diameter expansion deformation | transformation in the manufacturing method of the ring-shaped member for magnetostrictive force sensors which concerns on other embodiment of this invention. 本発明の他の実施形態に係る磁歪力センサ用リング状部材の模式的な説明図である。It is typical explanatory drawing of the ring-shaped member for magnetostrictive force sensors which concerns on other embodiment of this invention. 実施例6における磁歪力センサ用リング状部材における磁歪測定結果を示すグラフである。It is a graph which shows the magnetostriction measurement result in the ring-shaped member for magnetostrictive force sensors in Example 6.

以下、本発明の磁歪力センサ、磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法について詳細に説明する。   Hereinafter, the magnetostrictive force sensor, the method for producing a magnetostrictive force sensor plate-like member, the magnetostrictive force sensor ring-like member, and the magnetostrictive force sensor ring-like member of the present invention will be described in detail.

まず、磁歪力センサの構成について従来例を用いて説明する。
図1は、従来の磁歪力センサの説明図である。特許文献2の図18及び図19に相当する図である。同図に示すように、磁歪板の片側に永久磁石が配置されており、反対側にホールICが配置されている(図1(a)参照。)。永久磁石の漏れ磁束はホールICによって検知される。磁歪板に矢印で示す圧縮力が働くと漏れ磁束が増すので応力が検知できる(図1(b)参照。)。
図2は、従来の他の磁歪力センサの説明図である。特許文献1の図14及び図2に相当する図である。同図に示すように、軸に磁歪リングが勘合して配置されており、周方向に着磁されている。トルクをかけるとリングから漏れ磁束が発生するので、図示したように配置されたホールICによって検知できる(図2(a)参照。)。そして、印加トルクの方向に対応した信号が得られる(図2(b)参照。)。軸に勘合している磁歪リングには周方向に引張応力が働いているので、周方向には着磁成分がより多く残っている。すなわち、応力誘起の磁気異方性を活用しているわけである。
First, the configuration of the magnetostrictive force sensor will be described using a conventional example.
FIG. 1 is an explanatory diagram of a conventional magnetostrictive force sensor. FIG. 20 is a diagram corresponding to FIGS. 18 and 19 of Patent Document 2. As shown in the figure, a permanent magnet is disposed on one side of the magnetostrictive plate, and a Hall IC is disposed on the opposite side (see FIG. 1A). The leakage flux of the permanent magnet is detected by the Hall IC. When a compressive force indicated by an arrow acts on the magnetostrictive plate, the leakage magnetic flux increases, so that the stress can be detected (see FIG. 1B).
FIG. 2 is an explanatory diagram of another conventional magnetostrictive force sensor. It is a figure equivalent to Drawing 14 and Drawing 2 of patent documents 1. As shown in the drawing, a magnetostrictive ring is fitted to the shaft and magnetized in the circumferential direction. When torque is applied, leakage magnetic flux is generated from the ring, and can be detected by the Hall IC arranged as shown (see FIG. 2A). Then, a signal corresponding to the direction of the applied torque is obtained (see FIG. 2B). Since the magnetostrictive ring fitted to the shaft is subjected to tensile stress in the circumferential direction, more magnetized components remain in the circumferential direction. That is, the stress-induced magnetic anisotropy is utilized.

次に、本発明の磁歪力センサについて、磁歪材が板状部材である場合を例に挙げて説明する。立方晶金属の場合、凝固の際に熱流の方向に柱状晶が伸びるため、好適に用いることができる。特に、Fe49Co49やFe80Ga15Al、(Fe80Ga15Al99Zr0.50.5の場合は、<100>方位の方向の柱状晶が熱流の方向に伸びるため好適である。これらの磁歪合金は結晶構造が体心立方晶(BCC)の合金であって、磁化容易方向も<100>である。
ここでは、凝固部材から板状部材を切り出す(図3参照。)。もちろん鋳造部材から切り出してもよい。例えば、合金組成が(Fe80Ga15Al99Zr0.50.5であり、結晶粒サイズが約50μmであり、柱状晶の方向が図3中の矢印で示す方向であり、幅8mm、長さ12mm、厚さ1mmである板状部材を切り出した後(機械加工後)、550℃で2.5時間熱処理して、板長手方向の磁歪を測定すると、100ppmである。一方、凝固部材の等軸晶部分から同サイズの板状部材を切り出した後、550℃で2.5時間熱処理して、板長手方向の磁歪を測定すると、50ppmとなる。
感度が高くなるとセンサにおける信号処理コストを低下させることができるという観点で有利であり、特に温度特性の確保が容易になる。
さて、ここで、磁歪の測定方法について定義する。板長手方向の磁歪とは、歪ゲージを板長手方向に貼り、磁場を板長手方向に印加して測った磁歪のことである。ここで対象としている材料は磁歪が正なので伸びる(後述するように、この状態にて歪ゲージに対して磁場を印加する方向を直交させて測定するとマイナス(負、縮む)の磁歪となる。)。
Next, the magnetostrictive force sensor of the present invention will be described taking as an example the case where the magnetostrictive material is a plate-like member. In the case of a cubic metal, columnar crystals extend in the direction of heat flow during solidification, and therefore can be suitably used. In particular, in the case of Fe 49 Co 49 V 2 , Fe 80 Ga 15 Al 5 , (Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 , the columnar crystals in the <100> direction are directions of heat flow. It is suitable because it stretches. These magnetostrictive alloys are alloys having a body-centered cubic (BCC) crystal structure, and the direction of easy magnetization is <100>.
Here, a plate-like member is cut out from the solidified member (see FIG. 3). Of course, you may cut out from a cast member. For example, the alloy composition is (Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 , the crystal grain size is about 50 μm, and the direction of the columnar crystals is the direction indicated by the arrows in FIG. After cutting out a plate-like member having a width of 8 mm, a length of 12 mm, and a thickness of 1 mm (after machining), heat treatment is performed at 550 ° C. for 2.5 hours, and the magnetostriction in the plate longitudinal direction is measured to be 100 ppm. On the other hand, when a plate-like member of the same size is cut out from the equiaxed crystal part of the solidified member and heat-treated at 550 ° C. for 2.5 hours and the magnetostriction in the plate longitudinal direction is measured, it becomes 50 ppm.
Higher sensitivity is advantageous from the viewpoint that the signal processing cost of the sensor can be reduced, and in particular, it is easy to ensure temperature characteristics.
Now, a method for measuring magnetostriction will be defined. The magnetostriction in the plate longitudinal direction is a magnetostriction measured by applying a strain gauge in the plate longitudinal direction and applying a magnetic field in the plate longitudinal direction. The material used here is stretched because the magnetostriction is positive (as will be described later, if the direction in which the magnetic field is applied to the strain gauge is orthogonal to the strain gauge in this state, the magnetostriction will be negative (negative, shrink)). .

次に、板状部材に引張応力を付与した状態で熱処理する場合について一例を挙げて説明する。
図4は、磁歪力センサ用板状部材の製造方法における応力下熱処理の断面説明図である。額縁状試料は、両サイドが薄い板状(幅8mm、厚さ1mm)となっている。図中の矢印の方向が柱状晶組織の方向になるように額縁状試料を例えば凝固部材から切り出す。また、額縁状試料に冷やし嵌め状態で入るブロック状部材を、同じ材料から切り出す。なお、ブロック状部材の組織状態は特に問わない。額縁状部材の両サイドの板状部分における引張応力の大きさを約200MPaになるように、ブロック状部材の長さは決定する(額縁状試料の内側長さに対して、約20μm程、ブロック状部材を長くすることにより実現することができる。)。室温にて冷やし嵌めし、真空中、2時間、640℃にて熱処理を行う。
熱処理の温度は、規則相出現温度以上であることが好適である。このFeGa系組成の合金では、FeAlタイプの規則相(BCC)が500℃程度以下では出現することが知られている。
熱処理後、額縁状試料の薄い板状部分より長さ12mmの板状試料をワイヤカットにて切り出し、長手方向の磁歪を測定すると、磁歪の大きさは30ppmとなっており、上記した柱状晶組織のものよりも大幅に減少することになる。一方、幅8mmの方向に磁場を印加して測定した磁歪は−110ppmとなる。比較のために、再度上記応力下熱処理を行っていない柱状晶組織の板状部材に同様な磁場印加モードでの磁歪を測定すると磁歪は−90ppmとなる。したがって、応力下熱処理で、柱状晶方向に対する磁歪の大きさは約22%増加することになる。すなわち、柱状晶方向を向いている磁区の割合が大幅に増していると解釈することができる。
Next, an example is given and demonstrated about the case where it heat-processes in the state which gave the tensile stress to the plate-shaped member.
FIG. 4 is a cross-sectional explanatory view of heat treatment under stress in the method of manufacturing a plate member for a magnetostrictive force sensor. The frame-shaped sample has a thin plate shape (width 8 mm, thickness 1 mm) on both sides. A frame-shaped sample is cut out from, for example, a solidified member so that the direction of the arrow in the figure is the direction of the columnar crystal structure. Moreover, the block-shaped member which enters into a frame-shaped sample in a cold fitting state is cut out from the same material. In addition, the structure state of a block-shaped member in particular is not ask | required. The length of the block-like member is determined so that the magnitude of the tensile stress in the plate-like portions on both sides of the frame-like member is about 200 MPa (about 20 μm about the inner length of the frame-like sample is blocked. This can be realized by lengthening the shaped member.) It is cold-fitted at room temperature and heat-treated at 640 ° C. for 2 hours in a vacuum.
The heat treatment temperature is preferably equal to or higher than the order phase appearance temperature. In this FeGa-based composition alloy, it is known that the Fe 3 Al type ordered phase (BCC) appears at about 500 ° C. or less.
After the heat treatment, a plate-like sample having a length of 12 mm was cut out from the thin plate-like portion of the frame-like sample by wire cutting, and the magnetostriction in the longitudinal direction was measured. As a result, the magnetostriction was 30 ppm. Will be significantly less than the ones. On the other hand, the magnetostriction measured by applying a magnetic field in the direction of width 8 mm is −110 ppm. For comparison, when the magnetostriction in the same magnetic field application mode is measured on a plate-like member having a columnar crystal structure that has not been subjected to the heat treatment under stress again, the magnetostriction is -90 ppm. Therefore, the magnitude of magnetostriction in the columnar crystal direction increases by about 22% by heat treatment under stress. That is, it can be interpreted that the ratio of the magnetic domains facing the columnar crystal direction is greatly increased.

図5は、本発明の一実施形態に係る磁歪力センサの説明図であって、応力センサとしての使用状態を示す図である。測定部材(応力を検知したい部材)には、SUS303又はSUS304製のベース部材が例えばロウ付けされている。ベース部材には磁歪材からなる板状部材(磁歪板)が収まっている。磁歪板の両側には永久磁石とホールICが配置されている。測定部材に図示するような力が働くと、磁歪板に圧縮力がかかるため、漏れ磁束が増加し、力が検知できる。なお、応力センサの感度は板長手方向に磁歪が異方化しているものほど高くなる。   FIG. 5 is an explanatory diagram of a magnetostrictive force sensor according to an embodiment of the present invention, and is a diagram illustrating a usage state as a stress sensor. For example, a base member made of SUS303 or SUS304 is brazed to the measurement member (member whose stress is to be detected). A plate member (magnetostrictive plate) made of a magnetostrictive material is accommodated in the base member. Permanent magnets and Hall ICs are arranged on both sides of the magnetostrictive plate. When a force as shown in the figure is applied to the measurement member, a compressive force is applied to the magnetostrictive plate, so that the leakage flux increases and the force can be detected. The sensitivity of the stress sensor increases as the magnetostriction becomes anisotropic in the longitudinal direction of the plate.

次に、本発明の磁歪力センサについて、磁歪材がリング状部材である場合を例に挙げて説明する。例えば、(Fe80Ga15Al99Zr0.50.5合金を銅鋳型に鋳込み、円柱状の鋳造部材を得る。円柱状鋳造部材の軸方向の中央付近における垂直断面を図6に示す。銅鋳型に熱が吸収されるため、径方向に柱状晶ができることになる。図6中の2点鎖線に沿ってリングを切り出すと、柱状晶が径方向に突き抜けたリング状部材(図7(a)参照。)を得ることができる。リング状部材の表面には柱状晶の垂直断面が現れて、粒径はほぼ円形である(図7(b)参照。)。粒サイズは約50μmである。550℃で2.5時間熱処理を行い、軸方向に磁場を印加して磁歪を測定すると、磁歪の大きさは60ppmである。一方、同様に作成したリング状部材(熱処理なし)を、同組成の合金製の軸部材に冷やし嵌めし(図8参照。)、リング状部材における周方向の引張応力を200MPaとした状態(約20μmの冷やし嵌めで達成することができる。)において、真空中、2時間、640℃にて熱処理を行うと、熱処理後の軸方向における磁歪は70ppmに増加(約17%増加)する。
なお、歪ゲージの方向は軸方向である。また、リングの場合には軸方向にしか磁場印加できないという事情がある。
Next, the magnetostrictive force sensor of the present invention will be described taking as an example the case where the magnetostrictive material is a ring-shaped member. For example, a (Fe 80 Ga 15 Al 5) 99 Zr 0.5 C 0.5 alloy cast into copper mold, obtaining cylindrical cast member. FIG. 6 shows a vertical cross section near the center in the axial direction of the cylindrical cast member. Since heat is absorbed by the copper mold, columnar crystals are formed in the radial direction. When a ring is cut out along a two-dot chain line in FIG. 6, a ring-shaped member (see FIG. 7A) in which columnar crystals penetrate in the radial direction can be obtained. A vertical section of columnar crystals appears on the surface of the ring-shaped member, and the particle size is substantially circular (see FIG. 7B). The grain size is about 50 μm. When the magnetostriction is measured by performing a heat treatment at 550 ° C. for 2.5 hours and applying a magnetic field in the axial direction, the magnitude of magnetostriction is 60 ppm. On the other hand, a ring-shaped member prepared in the same manner (without heat treatment) was cooled and fitted to a shaft member made of an alloy of the same composition (see FIG. 8), and the circumferential tensile stress in the ring-shaped member was set to 200 MPa (about approximately When the heat treatment is performed at 640 ° C. for 2 hours in a vacuum, the magnetostriction in the axial direction after the heat treatment increases to 70 ppm (increase of about 17%).
The direction of the strain gauge is the axial direction. Further, in the case of a ring, there is a circumstance that a magnetic field can be applied only in the axial direction.

このようなリング状部材を磁歪力センサとしたときのねじり感度について説明する。リングを10μmの冷やし嵌めでSUS製の軸に勘合する。そして、軸に約8500A通電することにより、周方向に着磁する。+/−5Nmにて測定すると、ねじり感度はそれぞれ0.5G/Nm、0.6G/Nmとなり、その増加の程度は、ほぼ磁歪量の増加の割合と一致する。   The torsional sensitivity when such a ring-shaped member is a magnetostrictive force sensor will be described. The ring is fitted to a SUS shaft with a 10 μm cold fit. The shaft is magnetized in the circumferential direction by energizing about 8500 A. When measured at +/− 5 Nm, the torsional sensitivities are 0.5 G / Nm and 0.6 G / Nm, respectively, and the degree of increase almost coincides with the rate of increase in magnetostriction.

次に、(Fe80Ga15Al99Zr0.50.5合金の場合を例に挙げて、周方向に異方化することについて説明する。図9は、リング状部材を拡径する治具等の説明図である。まず、図7に示すようなリング状部材を作製する。そして、図9に示すようにセットする。例えばホットプレス装置を利用する場合、装置内にセットすると好都合である。700℃に所定の時間(例えば30分間)保持した後に、パンチを押してリング状部材を塑性変形する。なお、700℃はFeGa系組成の合金において規則相が出現する温度よりも高温の状態である。パンチ及び台座は日立金属製マルエージング鋼YAG300を機械加工することにより作製し、時効処理等を施さずに、そのまま用いることができる。なお、パンチの外径をリングの内径より20%大きくすると、20%拡径変形させることができる。このような塑性変形により、リング状部材の表面における結晶粒の形は、図10に示すように周方向に伸びた形となる。なお、この場合における扁平率(楕円の長径と短径の差の短径に対する比率)は約20%となる。
また、リング状部材の形状を整えるために追加の機械加工を施す場合には、熱処理を追加して行うことが好ましい。550℃で2.5時間の熱処理が好適である。また、引き続き、上記説明した引張応力を付与した状態で熱処理を行ってもよい。
なお、拡径変形後、そのままリング状部材として採用できる場合には、パンチを押し込んだまま、更に1時間保持することで熱処理の代わりとすることができる。その場合には、引張応力を付与した状態で熱処理を行った場合と同様の効果を得ることができる。
例えば、円柱状の鋳造部材よりリング状部材を切り出し、700℃にて20%拡径変形した後、直ちに炉冷する。次いで、取り出したリング状部材(リング状部材のみの状態)を550℃で2.5時間熱処理を行うと、リング状部材の軸方向の磁歪の大きさは80ppmとなり、拡径変形しない場合に比べて大幅に増加する。
この状態のリング状部材に対して、更に引張応力下での熱処理(引張応力:200MPa、雰囲気:真空中、時間:2時間、温度:640℃)を行うと、リング状部材の軸方向の磁歪の大きさは95ppmとなり、更に増加する。
一方、700℃における拡径変形後、パンチを押し込んだ状態のまま、更に1時間保持した後に、炉冷して、取り出したリング状部材における軸方向の磁歪の大きさは約95ppmとなり、引張応力下熱処理の場合と同レベルとなる。
Next, taking the case of (Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 alloy as an example, the anisotropic operation in the circumferential direction will be described. FIG. 9 is an explanatory diagram of a jig or the like for expanding the diameter of the ring-shaped member. First, a ring-shaped member as shown in FIG. 7 is produced. And it sets as shown in FIG. For example, when using a hot press apparatus, it is convenient to set in the apparatus. After holding at 700 ° C. for a predetermined time (for example, 30 minutes), the punch is pressed to plastically deform the ring-shaped member. In addition, 700 degreeC is a state higher temperature than the temperature which an ordered phase appears in the alloy of a FeGa type composition. The punch and pedestal are produced by machining Hitachi Metals maraging steel YAG300, and can be used as they are without being subjected to an aging treatment or the like. If the outer diameter of the punch is made 20% larger than the inner diameter of the ring, the diameter can be expanded by 20%. By such plastic deformation, the shape of the crystal grains on the surface of the ring-shaped member becomes a shape extending in the circumferential direction as shown in FIG. In this case, the flatness (ratio of the difference between the major axis and the minor axis of the ellipse to the minor axis) is about 20%.
In addition, when additional machining is performed to adjust the shape of the ring-shaped member, it is preferable to perform additional heat treatment. A heat treatment at 550 ° C. for 2.5 hours is preferred. Further, the heat treatment may be performed in a state where the tensile stress described above is applied.
In addition, when it can employ | adopt as a ring-shaped member as it is after diameter expansion deformation | transformation, it can replace with heat processing by hold | maintaining for 1 hour with pushing a punch. In that case, it is possible to obtain the same effect as when the heat treatment is performed in a state where a tensile stress is applied.
For example, a ring-shaped member is cut out from a cylindrical cast member, and after 20% diameter expansion deformation at 700 ° C., the furnace is immediately cooled. Next, when the taken-out ring-shaped member (only the ring-shaped member) is subjected to heat treatment at 550 ° C. for 2.5 hours, the magnitude of the magnetostriction in the axial direction of the ring-shaped member is 80 ppm, compared with the case where no diameter expansion deformation occurs. Greatly increased.
When the ring-shaped member in this state is further subjected to heat treatment under tensile stress (tensile stress: 200 MPa, atmosphere: vacuum, time: 2 hours, temperature: 640 ° C.), the magnetostriction in the axial direction of the ring-shaped member The magnitude of becomes 95 ppm and further increases.
On the other hand, after the diameter expansion deformation at 700 ° C., the punch was pushed in and held for an additional hour, and then cooled in the furnace. The magnitude of magnetostriction in the axial direction of the extracted ring-shaped member was about 95 ppm, and the tensile stress The same level as in the case of the lower heat treatment.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

(実施例1)
(Fe80Ga15Al99Zr0.50.5合金の凝固部材から図3に示すような柱状晶組織を有する板状部材(幅:8mm、長さ:12mm、厚さ:1mm、結晶粒サイズ:約50μm)を切り出した。なお、比較のために、凝固部材の等軸晶部分からも同サイズの板状部材を切り出した。これらの板状部材を550℃で2.5時間熱処理して、本例で用いる磁歪力センサ用板状部材(磁歪板)を得た。板状部材の長手方向の磁歪を測定したところ、等軸晶組織の板状部材では磁歪の大きさが50ppmであったが、柱状晶組織の板状部材では磁歪の大きさが100ppmであった。
また、永久磁石としてφ6mm、厚さ1.6mmのSmCo磁石を用意した。なお、磁石単体での端面の磁束密度は約2.1kGであった。また、磁気ピックアップとしてホールICを用意した。
これらを用いて、図5に示す本例の磁歪力センサを作製した。なお、永久磁石は板状部材との間に0.1mmのギャップを設けて取り付けた。また、ホールICは板状部材から約0.5mm位置での磁束を検知している。
柱状晶組織の板状部材の場合に、この磁歪力センサの感度を測定したところ、磁歪板での応力値で換算して、感度は約1G/MPa(図1(b)における傾きに相当。)となっていて、圧縮応力50MPaの範囲で直線的な特性となっていた。また、等軸晶組織の板状部材では感度は約半分であった。
Example 1
A plate-like member having a columnar crystal structure as shown in FIG. 3 from a solidified member of (Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 alloy (width: 8 mm, length: 12 mm, thickness: 1 mm) , Crystal grain size: about 50 μm). For comparison, a plate member of the same size was cut out from the equiaxed crystal portion of the solidified member. These plate members were heat-treated at 550 ° C. for 2.5 hours to obtain a magnetostrictive force sensor plate member (magnetostrictive plate) used in this example. When the magnetostriction in the longitudinal direction of the plate-like member was measured, the plate-like member having an equiaxed crystal structure had a magnetostriction magnitude of 50 ppm, whereas the plate-like member having a columnar crystal structure had a magnetostriction magnitude of 100 ppm. .
In addition, an SmCo magnet having a diameter of 6 mm and a thickness of 1.6 mm was prepared as a permanent magnet. The magnetic flux density at the end face of the magnet alone was about 2.1 kG. In addition, a Hall IC was prepared as a magnetic pickup.
Using these, the magnetostrictive force sensor of this example shown in FIG. 5 was produced. The permanent magnet was attached with a 0.1 mm gap between it and the plate member. The Hall IC detects a magnetic flux at a position of about 0.5 mm from the plate-like member.
In the case of a plate-like member having a columnar crystal structure, the sensitivity of this magnetostrictive force sensor was measured, and converted to the stress value at the magnetostrictive plate, the sensitivity was approximately 1 G / MPa (corresponding to the slope in FIG. 1B). It was a linear characteristic in the range of 50MPa of compressive stress. Further, the sensitivity of the plate member having the equiaxed crystal structure was about half.

(実施例2)
図4に示すような(Fe80Ga15Al99Zr0.50.5合金の額縁状の試料(両サイドが薄い板状になっている。)に同じ材料ブロック状部材を冷やし嵌めした。このとき、両サイドの板状部分における引張応力の大きさが約200MPaになるように、ブロック状部材の長さを決定した(試料の内側長さに対して、ブロック状部材の長さを約20μm程長くした。)。この試料を真空中、2時間、640℃にて熱処理を行った。両サイドの板状部分から図4に示すような柱状晶組織を有する板状部材(幅:8mm、長さ:12mm、厚さ:1mm)を切り出して、本例で用いる磁歪力センサ用板状部材(磁歪板)を得た。本例で得られた磁歪力センサ用板状部材を用いたこと以外は、実施例1と同様の操作を繰り返して、本例の磁歪力センサを作製した。
この磁歪力センサの感度を測定したところ、磁歪板での応力値で換算して、感度は約1.2G/MPaとなっていた。
(Example 2)
The same material block member is cooled to a frame-shaped sample (both sides are thin plate-like) of (Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 alloy as shown in FIG. Fitted. At this time, the length of the block-like member was determined so that the magnitude of the tensile stress in the plate-like portions on both sides was about 200 MPa (the length of the block-like member was reduced to the inner length of the sample. It was about 20 μm longer.) This sample was heat-treated in vacuum at 640 ° C. for 2 hours. A plate-like member having a columnar crystal structure as shown in FIG. 4 (width: 8 mm, length: 12 mm, thickness: 1 mm) is cut out from the plate-like portions on both sides, and a plate for a magnetostrictive force sensor used in this example. A member (magnetostrictive plate) was obtained. A magnetostrictive force sensor of this example was produced by repeating the same operation as in Example 1 except that the plate member for the magnetostrictive force sensor obtained in this example was used.
When the sensitivity of the magnetostrictive force sensor was measured, the sensitivity was about 1.2 G / MPa when converted to the stress value at the magnetostrictive plate.

(実施例3)
Fe80Ga15Al合金の凝固部材から図3に示すような柱状晶組織を有する板状部材(幅:8mm、長さ:12mm、厚さ:1mm、結晶粒サイズ:400μm程度)を切り出した。結晶粒サイズは、上記実施例で用いたものに比して大きいことが分かる。この板状部材を、550℃で2.5時間熱処理して、本例で用いる磁歪力センサ用板状部材(磁歪板)を得た。本例で得られた磁歪力センサ用板状部材を用いたこと以外は、実施例1と同様の操作を繰り返して、本例の磁歪力センサを作製した。
この磁歪力センサの感度を測定したところ、磁歪板での応力値で換算して、感度は約1.5G/MPaであった。この合金の場合、直線的な特性の圧縮応力範囲が30MPaと狭かった。この合金の機械的な強度が小さいことを反映していると考えられる。
(Example 3)
A plate-like member (width: 8 mm, length: 12 mm, thickness: 1 mm, crystal grain size: about 400 μm) having a columnar crystal structure as shown in FIG. 3 was cut out from a solidified member of Fe 80 Ga 15 Al 5 alloy. . It can be seen that the crystal grain size is larger than that used in the above examples. The plate member was heat treated at 550 ° C. for 2.5 hours to obtain a plate member (magnetostrictive plate) for a magnetostrictive force sensor used in this example. A magnetostrictive force sensor of this example was produced by repeating the same operation as in Example 1 except that the plate member for the magnetostrictive force sensor obtained in this example was used.
When the sensitivity of the magnetostrictive force sensor was measured, the sensitivity was about 1.5 G / MPa in terms of the stress value at the magnetostrictive plate. In the case of this alloy, the compressive stress range of linear characteristics was as narrow as 30 MPa. This is considered to reflect the low mechanical strength of this alloy.

(実施例4)
(Fe80Ga15Al99Zr0.50.5合金を銅鋳型に鋳込み、円柱状の鋳造部材を得た。円柱状の鋳造部材の軸方向の中央付近における垂直断面を図6に示す。銅鋳型に熱が吸収されるため、径方向に柱状晶ができていた。次いで、図6の2点鎖線に沿ってリング状部材(内径:12.6mm、外径:14.2mm、長さ:13mm)を切り出した。また、柱状晶は径方向に突き抜けていた(図7(a)参照。)。また、リング状部材の表面には柱状晶の垂直断面が現れており、粒径はほぼ円形であった(図(b)参照。)。また、結晶粒サイズは約50μmであった。このリング状部材を550℃で2.5時間熱処理して、本例で用いる磁歪力センサ用リング状部材を得た。軸方向に磁場を印加して磁歪を測定したところ、磁歪の大きさは60ppmであった。
一方、同様に作製したリング状部材(熱処理無し)を、同組成の合金製軸に冷やし嵌めした(図8参照。)。リング状部材における周方向の引張応力は、200MPaであった(約20μmの冷やし嵌めで達成することができる。)。この状態で、真空中、2時間、640℃にて熱処理を行って、本例で用いる磁歪力センサ用リング状部材を得た。熱処理後の軸方向における磁歪は70ppmに増加していた(約17%増加)。
これらを用いて図2に示すような本例の磁歪力センサを作製した。磁歪力センサ用リング状部材は10μmの冷やし嵌めでSUS303製の軸(軸径:12.6mm)に勘合し、軸に約8500A通電することにより、周方向に着磁した。
これらの磁歪力センサのねじり感度を+/−5Nmにて測定したところ、それぞれ0.5G/Nm、0.6G/Nmであって、その増加の程度は、ほぼ磁歪量の増加割合と一致していた。
Example 4
(Fe 80 Ga 15 Al 5 ) 99 Zr 0.5 C 0.5 alloy was cast into a copper mold to obtain a cylindrical cast member. FIG. 6 shows a vertical cross section near the center in the axial direction of the cylindrical cast member. Since heat was absorbed by the copper mold, columnar crystals were formed in the radial direction. Next, a ring-shaped member (inner diameter: 12.6 mm, outer diameter: 14.2 mm, length: 13 mm) was cut out along the two-dot chain line in FIG. In addition, the columnar crystals penetrated in the radial direction (see FIG. 7A). In addition, a vertical section of columnar crystals appeared on the surface of the ring-shaped member, and the particle size was almost circular (see FIG. (B)). The crystal grain size was about 50 μm. This ring-shaped member was heat-treated at 550 ° C. for 2.5 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. When magnetostriction was measured by applying a magnetic field in the axial direction, the magnitude of magnetostriction was 60 ppm.
On the other hand, a ring-shaped member produced in the same manner (no heat treatment) was cooled and fitted to an alloy shaft having the same composition (see FIG. 8). The circumferential tensile stress in the ring-shaped member was 200 MPa (can be achieved with a cold fit of about 20 μm). In this state, heat treatment was performed in vacuum at 640 ° C. for 2 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. The magnetostriction in the axial direction after the heat treatment increased to 70 ppm (an increase of about 17%).
Using these, a magnetostrictive force sensor of this example as shown in FIG. 2 was produced. The ring-shaped member for the magnetostrictive force sensor was magnetized in the circumferential direction by fitting with a shaft made of SUS303 (shaft diameter: 12.6 mm) with a cold fit of 10 μm and applying about 8500 A to the shaft.
When the torsional sensitivity of these magnetostrictive force sensors was measured at +/− 5 Nm, they were 0.5 G / Nm and 0.6 G / Nm, respectively, and the degree of increase almost coincided with the rate of increase in magnetostriction. It was.

(実施例5)
実施例4と同様にして、同合金にてリング状部材(内径:10mm、外径:13mm、長さ:15mm)を作製した。次いで、日立金属製マルエージング鋼によって作製したパンチ及び台座を用いて20%の拡径変形を行った。その後、機械加工して、内径12.6mm、外径14.2mm、長さ13mmのリング状部材とした。このリング状部材を550℃で2.5時間熱処理して、本例で用いる磁歪力センサ用リング状部材を得た。なお、リング状部材の表面における結晶粒サイズは約50μmであって、周方向に約20%伸びた形状となっていた(すなわち、扁平な楕円形状)。
一方、別に用意した機械加工後のリング状部材を同組成の軸部材に冷やし嵌めし、リング部材における周方向の引張応力を200MPaとした状態(約20μmの冷やし嵌めで達成することができる。)において、真空中、2時間、640℃にて熱処理を行って、本例で用いる磁歪力センサ用リング状部材を得た。
これを用いて図2に示すような本例の磁歪力センサを作製した。磁歪力センサ用リング状部材は10μmの冷やし嵌めでSUS303製の軸(軸径:12.6mm)勘合し、軸に約8500A通電することにより、周方向に着磁した。
これらの磁歪力センサのねじり感度を+/−5Nmにて測定したところ、それぞれ0.7G/Nm、0.8G/Nmであって、拡径した場合にはねじり感度も向上していた(実施例4参照。)。
(Example 5)
In the same manner as in Example 4, a ring-shaped member (inner diameter: 10 mm, outer diameter: 13 mm, length: 15 mm) was produced from the same alloy. Next, 20% diameter expansion deformation was performed using a punch and pedestal made of maraging steel made by Hitachi Metals. Thereafter, it was machined to obtain a ring-shaped member having an inner diameter of 12.6 mm, an outer diameter of 14.2 mm, and a length of 13 mm. This ring-shaped member was heat-treated at 550 ° C. for 2.5 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. The crystal grain size on the surface of the ring-shaped member was about 50 μm, and had a shape extending about 20% in the circumferential direction (that is, a flat oval shape).
On the other hand, a separately prepared ring-shaped member after machining is cold-fitted to a shaft member of the same composition, and the circumferential tensile stress in the ring member is 200 MPa (can be achieved with a cold-fitting of about 20 μm). Then, heat treatment was performed at 640 ° C. in vacuum for 2 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example.
Using this, a magnetostrictive force sensor of this example as shown in FIG. 2 was produced. The ring-shaped member for the magnetostrictive force sensor was magnetized in the circumferential direction by fitting a shaft made of SUS303 (shaft diameter: 12.6 mm) with a cold fit of 10 μm and applying about 8500 A to the shaft.
When the torsional sensitivity of these magnetostrictive force sensors was measured at +/− 5 Nm, they were 0.7 G / Nm and 0.8 G / Nm, respectively. See Example 4.)

(実施例6)
Fe49Co49合金を銅鋳型に鋳込み、円柱状の鋳造部材を得た。円柱状の鋳造部材の軸方向の中央付近における垂直断面を図6に示す。銅鋳型に熱が吸収されるため、径方向に柱状晶ができていた。次いで、図6の2点鎖線に沿ってリング状部材(内径:12.6mm、外径:14.2mm、長さ:13mm)を切り出した。また、柱状晶は径方向に突き抜けていた(図7(a)参照。)。また、リング状部材の表面には柱状晶の垂直断面が現れており、粒径はほぼ円形であった(図7(b)参照。)。また、結晶粒サイズは約40μmであった。このリング状部材を850℃で3時間熱処理して、本例で用いる磁歪力センサ用リング状部材を得た。熱処理後の軸方向の磁歪の大きさは70ppmであった。
一方、同様に作製したリング状部材(熱処理無し)を、同組成の合金製軸に冷やし嵌めした(図8参照。)。リング状部材における周方向の引張応力は100MPaであった(約10μmの冷やし嵌めで達成することができる。)。この状態で、3時間、850℃にて熱処理を行って、本例で用いる磁歪力センサ用リング状部材を得た。なお、Fe49Co49合金の場合、規則相FeCoは730℃で出現することが知られている。したがって、熱処理温度は規則相出現温度以上となっている。軸方向磁歪のデータを図11に示す。横軸は磁場印加のために電磁石に流した電流でプロットしてあるが、磁場とみなせる量である。磁場は+/−8kOe印加している。磁場(H)印加の方向はリング軸方向であった。軸方向に貼った歪ゲージの値が軸方向磁歪である(系列1のデータ)。磁場に対して垂直に貼った歪ゲージでの磁歪は−である(系列2のデータ)。図11に示すように、軸方向の磁歪は約90ppmとなっていて、応力下熱処理しない場合に対して約28%増加していることが分かる。
これらを用いて図2に示すような本例の磁歪力センサを作製した。磁歪力センサ用リング状部材は10μmの冷やし嵌めでSUS303製の軸(軸径:12.6mm)に勘合し、軸に約8500A通電することにより、周方向に着磁した。
これらの磁歪力センサのねじり感度を+/−5Nmにて測定したところ、ねじり感度は、それぞれ1.0G/Nm、1.3G/Nmであった。応力下熱処理した場合には約3割ねじり感度も向上していた。
(Example 6)
An Fe 49 Co 49 V 2 alloy was cast into a copper mold to obtain a cylindrical cast member. FIG. 6 shows a vertical cross section near the center in the axial direction of the cylindrical cast member. Since heat was absorbed by the copper mold, columnar crystals were formed in the radial direction. Next, a ring-shaped member (inner diameter: 12.6 mm, outer diameter: 14.2 mm, length: 13 mm) was cut out along the two-dot chain line in FIG. In addition, the columnar crystals penetrated in the radial direction (see FIG. 7A). In addition, a vertical section of columnar crystals appeared on the surface of the ring-shaped member, and the particle size was almost circular (see FIG. 7B). The crystal grain size was about 40 μm. This ring-shaped member was heat-treated at 850 ° C. for 3 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. The magnitude of axial magnetostriction after the heat treatment was 70 ppm.
On the other hand, a ring-shaped member produced in the same manner (no heat treatment) was cooled and fitted to an alloy shaft having the same composition (see FIG. 8). The circumferential tensile stress in the ring-shaped member was 100 MPa (can be achieved with a cold fit of about 10 μm). In this state, heat treatment was performed at 850 ° C. for 3 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. In the case of the Fe 49 Co 49 V 2 alloy, it is known that the ordered phase FeCo appears at 730 ° C. Therefore, the heat treatment temperature is higher than the order phase appearance temperature. The axial magnetostriction data is shown in FIG. The horizontal axis is plotted by the current passed through the electromagnet for applying the magnetic field, but it can be regarded as a magnetic field. A magnetic field of +/− 8 kOe is applied. The direction of application of the magnetic field (H) was the ring axis direction. The value of the strain gauge attached in the axial direction is the axial magnetostriction (series 1 data). The magnetostriction of the strain gauge attached perpendicular to the magnetic field is-(series 2 data). As shown in FIG. 11, the magnetostriction in the axial direction is about 90 ppm, and it can be seen that it increases by about 28% compared to the case where the heat treatment is not performed under stress.
Using these, a magnetostrictive force sensor of this example as shown in FIG. 2 was produced. The ring-shaped member for the magnetostrictive force sensor was magnetized in the circumferential direction by fitting with a shaft made of SUS303 (shaft diameter: 12.6 mm) with a cold fit of 10 μm and applying about 8500 A to the shaft.
When the torsional sensitivity of these magnetostrictive force sensors was measured at +/− 5 Nm, the torsional sensitivity was 1.0 G / Nm and 1.3 G / Nm, respectively. When heat-treated under stress, the torsional sensitivity was improved by about 30%.

(実施例7)
Fe49Co49合金を銅鋳型に鋳込み、円柱状の鋳造部材を得た。円柱状の鋳造部材の軸方向の中央付近における垂直断面を図6に示す。銅鋳型に熱が吸収されるため、径方向に柱状晶ができていた。次いで、図6の2点鎖線に沿ってリング状部材(内径:10mm、外径:13mm、長さ:15mm)を切り出した。次いで、日立金属製マルエージング鋼によって作製したパンチ及び台座を用いて、800℃にて20%の拡径変形を行った。その後、Fe49Co49合金の場合、730℃で規則相が出現するが、この温度より高い温度なので割れることもなく変形させることができた。その後、機械加工して、内径12.6mm、外径14.2mm、長さ13mmのリング状部材とした。このリング状部材を800℃で3時間熱処理して、本例で用いる磁歪力センサ用リング状部材を得た。リング表面における結晶粒を観察したところ、周方向に約20%伸びた粒径サイズとなっていた(扁平率約20%)。
一方、同様に作製したリング状部材(熱処理無し)を、同組成の合金製軸に冷やし嵌めした(図8参照。)。リング状部材における周方向の引張応力は、100MPaであった(約10μmの冷やし嵌めで達成することができる。)。この状態で、3時間、800℃にて熱処理を行って、本例で用いる磁歪力センサ用リング状部材を得た。
リング状部材の軸方向磁歪は応力下熱処理なしの場合が約95ppmであり、応力下熱処理ありの場合は約110ppmとなっていた(約16%増加)。
これらを用いて図2に示すような本例の磁歪力センサを作製した。磁歪力センサ用リング状部材は10μmの冷やし嵌めでSUS303製の軸(軸径:12.6mm)に勘合し、軸に約8500A通電することにより、周方向に着磁した。
これらの磁歪力センサのねじり感度を+/−5Nmにて測定したところ、ねじり感度は、それぞれ1.4G/Nm、1.7G/Nmであった。応力下熱処理した場合には約2割ねじり感度も向上していた。
(Example 7)
An Fe 49 Co 49 V 2 alloy was cast into a copper mold to obtain a cylindrical cast member. FIG. 6 shows a vertical cross section near the center in the axial direction of the cylindrical cast member. Since heat was absorbed by the copper mold, columnar crystals were formed in the radial direction. Next, a ring-shaped member (inner diameter: 10 mm, outer diameter: 13 mm, length: 15 mm) was cut out along the two-dot chain line in FIG. Subsequently, 20% diameter expansion deformation was performed at 800 ° C. using a punch and a base made of maraging steel made by Hitachi Metals. Thereafter, in the case of the Fe 49 Co 49 V 2 alloy, an ordered phase appeared at 730 ° C., but since it was higher than this temperature, it could be deformed without cracking. Thereafter, it was machined to obtain a ring-shaped member having an inner diameter of 12.6 mm, an outer diameter of 14.2 mm, and a length of 13 mm. This ring-shaped member was heat-treated at 800 ° C. for 3 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example. When the crystal grains on the ring surface were observed, the grain size expanded about 20% in the circumferential direction (flattening rate about 20%).
On the other hand, a ring-shaped member produced in the same manner (no heat treatment) was cooled and fitted to an alloy shaft having the same composition (see FIG. 8). The circumferential tensile stress in the ring-shaped member was 100 MPa (can be achieved with a cold fit of about 10 μm). In this state, heat treatment was performed at 800 ° C. for 3 hours to obtain a ring-shaped member for a magnetostrictive force sensor used in this example.
The axial magnetostriction of the ring-shaped member was about 95 ppm without heat treatment under stress and about 110 ppm with heat treatment under stress (an increase of about 16%).
Using these, a magnetostrictive force sensor of this example as shown in FIG. 2 was produced. The ring-shaped member for the magnetostrictive force sensor was magnetized in the circumferential direction by fitting with a shaft made of SUS303 (shaft diameter: 12.6 mm) with a cold fit of 10 μm and applying about 8500 A to the shaft.
When the torsional sensitivity of these magnetostrictive force sensors was measured at +/− 5 Nm, the torsional sensitivity was 1.4 G / Nm and 1.7 G / Nm, respectively. When heat-treated under stress, the torsional sensitivity was improved by about 20%.

以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。   As mentioned above, although this invention was demonstrated with some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.

例えば、磁気検知部のセンサとしてはホールICのみを例に挙げて説明したが、本発明においては、省電力且つ小型であるGMRやMIセンサを適用することもできる。
For example, only the Hall IC has been described as an example of the sensor of the magnetic detection unit, but in the present invention, a GMR or MI sensor that is power-saving and small can be applied.

Claims (20)

特定の方向における磁歪の大きさがその方向に直交する方向における磁歪の大きさより大きい磁歪材を備えたことを特徴とする磁歪力センサ。   A magnetostrictive force sensor comprising a magnetostrictive material having a magnitude of magnetostriction in a specific direction larger than that in a direction orthogonal to the direction. 上記磁歪材は、結晶構造が立方晶の合金であることを特徴とする請求項1に記載の磁歪力センサ。   The magnetostrictive force sensor according to claim 1, wherein the magnetostrictive material is an alloy having a cubic crystal structure. 上記磁歪材は、結晶構造が体心立方晶の合金であることを特徴とする請求項1又は2に記載の磁歪力センサ。   3. The magnetostrictive force sensor according to claim 1, wherein the magnetostrictive material is an alloy having a body-centered cubic crystal structure. 上記磁歪材が、FeGaAl合金又はFeCoV合金であることを特徴とする請求項1〜3のいずれか1つの項に記載の磁歪力センサ。   The magnetostrictive force sensor according to any one of claims 1 to 3, wherein the magnetostrictive material is an FeGaAl alloy or an FeCoV alloy. 上記磁歪材が板状部材であって、該板状部材の長手方向が上記特定の方向であることを特徴とする請求項1に記載の磁歪力センサ。   The magnetostrictive force sensor according to claim 1, wherein the magnetostrictive material is a plate-like member, and a longitudinal direction of the plate-like member is the specific direction. 上記磁歪材からなる板状部材の一方の面に永久磁石が配置され、他方の面に磁気検知部が配置され、
上記板状部材の長手方向に圧縮力が作用したときの漏れ磁束の増加を検知することにより該板状部材に働く応力を検知することを特徴とする請求項5に記載の磁歪力センサ。
A permanent magnet is disposed on one surface of the plate member made of the magnetostrictive material, and a magnetic detection unit is disposed on the other surface,
6. The magnetostrictive force sensor according to claim 5, wherein a stress acting on the plate member is detected by detecting an increase in leakage magnetic flux when a compressive force is applied in the longitudinal direction of the plate member.
長手方向における磁歪の大きさがその方向に直交する方向における磁歪の大きさより大きい磁歪材からなる磁歪力センサ用板状部材を製造するに際して、一方向に柱状晶組織を形成した凝固部材又は鋳造部材から柱状晶の方向に板状部材を切り出すことを特徴とする磁歪力センサ用板状部材の製造方法。   When manufacturing a plate member for a magnetostrictive force sensor made of a magnetostrictive material having a magnetostriction in the longitudinal direction larger than the magnetostriction in a direction perpendicular to the direction, a solidified member or cast member in which a columnar crystal structure is formed in one direction A plate-shaped member for a magnetostrictive force sensor, wherein the plate-shaped member is cut out in the direction of a columnar crystal. 上記板状部材を製造するに際して、柱状晶の方向に引張応力を付与した状態で熱処理を行うことを特徴とする請求項7に記載の磁歪力センサ用板状部材の製造方法。   The method for manufacturing a plate member for a magnetostrictive force sensor according to claim 7, wherein when the plate member is manufactured, heat treatment is performed in a state in which a tensile stress is applied in a columnar crystal direction. 上記熱処理の温度が規則相出現温度以上であることを特徴とする請求項8に記載の磁歪力センサ用板状部材の製造方法。   The method for producing a plate member for a magnetostrictive force sensor according to claim 8, wherein the temperature of the heat treatment is equal to or higher than a regular phase appearance temperature. 上記磁歪材がリング状部材であって、該リング状部材の周方向が上記特定の方向であることを特徴とする請求項1に記載の磁歪力センサ。   The magnetostrictive force sensor according to claim 1, wherein the magnetostrictive material is a ring-shaped member, and a circumferential direction of the ring-shaped member is the specific direction. 軸と、上記磁歪材からなるリング状部材と、磁気検知部とを備え、
上記リング状部材が上記軸に勘合して配置され、上記磁気検知部が上記リング状部材に近接配置され、
上記リング状部材が周方向に着磁されており、
上記軸にトルクがかかったときに、上記リング状部材からの磁束漏れの大きさを上記磁気検知部にて検知する非接触方式の磁歪式トルクセンサであることを特徴とする請求項10に記載の磁歪力センサ。
A shaft, a ring-shaped member made of the magnetostrictive material, and a magnetic detector;
The ring-shaped member is disposed so as to be fitted to the shaft, the magnetic detection unit is disposed in proximity to the ring-shaped member,
The ring-shaped member is magnetized in the circumferential direction,
The non-contact type magnetostrictive torque sensor for detecting the magnitude of magnetic flux leakage from the ring-shaped member by the magnetic detection unit when torque is applied to the shaft. Magnetostrictive force sensor.
上記リング状部材の軸方向に磁界を印加して測定した該軸方向の磁歪の大きさが異方性を付与していない場合に比して大きいことを特徴とする請求項11に記載の磁歪力センサ。   The magnetostriction according to claim 11, wherein the magnitude of magnetostriction in the axial direction measured by applying a magnetic field in the axial direction of the ring-shaped member is larger than that when no anisotropy is imparted. Force sensor. 上記軸方向の磁歪の大きさが10%以上大きくなっていることを特徴とする請求項12に記載の磁歪力センサ。   13. The magnetostrictive force sensor according to claim 12, wherein the magnitude of the axial magnetostriction is 10% or more. 周方向における磁歪の大きさがその方向に直交する軸方向における磁歪の大きさより大きい磁歪材からなるリング状部材であって、柱状晶組織がリング状部材の径方向に向いていることを特徴とする磁歪力センサ用リング状部材。   A ring-shaped member made of a magnetostrictive material whose magnetostriction in the circumferential direction is larger than the magnetostriction in the axial direction perpendicular to the direction, wherein the columnar crystal structure is oriented in the radial direction of the ring-shaped member. A ring-shaped member for a magnetostrictive force sensor. 上記柱状晶の垂直断面における結晶粒の形がリング状部材の周方向に伸びた形であることを特徴とする請求項14に記載の磁歪力センサ用リング状部材。   The ring-shaped member for a magnetostrictive force sensor according to claim 14, wherein the shape of crystal grains in a vertical section of the columnar crystal is a shape extending in a circumferential direction of the ring-shaped member. 上記柱状晶の扁平度が10%以上であることを特徴とする請求項15に記載の磁歪力センサ用リング状部材。   The ring-shaped member for a magnetostrictive force sensor according to claim 15, wherein the flatness of the columnar crystals is 10% or more. 周方向における磁歪の大きさがその方向に直交する軸方向における磁歪の大きさより大きい磁歪材からなるリング状部材であって、柱状晶組織がリング状部材の径方向に向いている磁歪力センサ用リング状部材を製造するに際して、径方向に柱状晶を形成した鋳造部材からリング状部材を切り出すことを特徴とする磁歪力センサ用リング状部材の製造方法。   For a magnetostrictive force sensor in which the magnetostriction in the circumferential direction is made of a magnetostrictive material larger than the magnetostriction in the axial direction perpendicular to the direction, and the columnar crystal structure is oriented in the radial direction of the ring-like member A method for manufacturing a ring-shaped member for a magnetostrictive force sensor, comprising: cutting a ring-shaped member from a cast member in which columnar crystals are formed in a radial direction when the ring-shaped member is manufactured. 周方向における磁歪の大きさがその方向に直交する軸方向における磁歪の大きさより大きい磁歪材からなるリング状部材であって、柱状晶組織がリング状部材の径方向に向いており、該柱状晶の垂直断面における結晶粒の形がリング状部材の周方向に伸びた形である磁歪力センサ用リング状部材を製造するに際して、径方向に柱状晶を形成した鋳造部材からリング状部材を切り出し、規則相出現温度以上の温度域にて塑性変形を行うことを特徴とする磁歪力センサ用リング状部材の製造方法。   A ring-shaped member made of a magnetostrictive material whose magnetostriction in the circumferential direction is larger than the magnetostriction in the axial direction perpendicular to the direction, the columnar crystal structure being oriented in the radial direction of the ring-shaped member, and the columnar crystal When producing a ring-shaped member for a magnetostrictive force sensor in which the shape of crystal grains in the vertical cross section of the ring-shaped member extends in the circumferential direction, the ring-shaped member is cut out from a cast member in which columnar crystals are formed in the radial direction. A method for producing a ring-shaped member for a magnetostrictive force sensor, wherein plastic deformation is performed in a temperature range equal to or higher than a regular phase appearance temperature. 上記リング状部材を製造するに際して、周方向に引張応力を付与した状態で熱処理を行うことを特徴とする請求項17又は18に記載の磁歪力センサ用リング状部材の製造方法。   The method for manufacturing a ring-shaped member for a magnetostrictive force sensor according to claim 17 or 18, wherein when the ring-shaped member is manufactured, heat treatment is performed in a state where tensile stress is applied in a circumferential direction. 上記熱処理の温度が規則相出現温度以上であることを特徴とする請求項19に記載の磁歪力センサ用リング状部材の製造方法。
The method for producing a ring-shaped member for a magnetostrictive force sensor according to claim 19, wherein the temperature of the heat treatment is equal to or higher than a regular phase appearance temperature.
JP2010246051A 2010-11-02 2010-11-02 Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor Expired - Fee Related JP5648958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246051A JP5648958B2 (en) 2010-11-02 2010-11-02 Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246051A JP5648958B2 (en) 2010-11-02 2010-11-02 Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor

Publications (2)

Publication Number Publication Date
JP2012098154A true JP2012098154A (en) 2012-05-24
JP5648958B2 JP5648958B2 (en) 2015-01-07

Family

ID=46390230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246051A Expired - Fee Related JP5648958B2 (en) 2010-11-02 2010-11-02 Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor

Country Status (1)

Country Link
JP (1) JP5648958B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024A (en) * 1849-01-09 Cast-iron gar-wheel
JPH09228007A (en) * 1996-02-22 1997-09-02 Toshiba Corp High strength magnetostriction alloy, sensor core and load sensor using the same
JP2000512391A (en) * 1997-10-21 2000-09-19 マグナ−ラスティック デバイシーズ,インコーポレーテッド Circular circumferential magnetized torque transducer and torque measuring method using the same
JP2001358377A (en) * 2000-02-10 2001-12-26 Toshiba Corp Ultra-magnetostriction material, its manufacturing method, and magnetostriction actuator and magnetostriction sensor using the same
JP2008026210A (en) * 2006-07-24 2008-02-07 Nissan Motor Co Ltd Magnetostrictive ring-type torque sensor
JP2008069434A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
JP2008268175A (en) * 2007-03-28 2008-11-06 Nissan Motor Co Ltd Magnetostrictive stress sensor
JP4907272B2 (en) * 2006-08-31 2012-03-28 並木精密宝石株式会社 Magnetic torque sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024A (en) * 1849-01-09 Cast-iron gar-wheel
JPH09228007A (en) * 1996-02-22 1997-09-02 Toshiba Corp High strength magnetostriction alloy, sensor core and load sensor using the same
JP2000512391A (en) * 1997-10-21 2000-09-19 マグナ−ラスティック デバイシーズ,インコーポレーテッド Circular circumferential magnetized torque transducer and torque measuring method using the same
JP3139714B2 (en) * 1997-10-21 2001-03-05 マグナ−ラスティック デバイシーズ,インコーポレーテッド Circular circumferential magnetized torque transducer and torque measuring method using the same
JP2001358377A (en) * 2000-02-10 2001-12-26 Toshiba Corp Ultra-magnetostriction material, its manufacturing method, and magnetostriction actuator and magnetostriction sensor using the same
JP2008026210A (en) * 2006-07-24 2008-02-07 Nissan Motor Co Ltd Magnetostrictive ring-type torque sensor
JP4910535B2 (en) * 2006-07-24 2012-04-04 日産自動車株式会社 Magnetostrictive ring type torque sensor
JP4907272B2 (en) * 2006-08-31 2012-03-28 並木精密宝石株式会社 Magnetic torque sensor
JP2008069434A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
JP4895108B2 (en) * 2006-09-15 2012-03-14 日産自動車株式会社 FeGaAl alloy and magnetostrictive torque sensor
JP2008268175A (en) * 2007-03-28 2008-11-06 Nissan Motor Co Ltd Magnetostrictive stress sensor
JP5119880B2 (en) * 2007-03-28 2013-01-16 日産自動車株式会社 Magnetostrictive stress sensor

Also Published As

Publication number Publication date
JP5648958B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP3139714B2 (en) Circular circumferential magnetized torque transducer and torque measuring method using the same
JP5684442B2 (en) Magnetic sensor device
JP4895108B2 (en) FeGaAl alloy and magnetostrictive torque sensor
Perevertov Influence of the residual stress on the magnetization process in mild steel
JP6884299B2 (en) Composite reinforced magnetostrictive composite material and its manufacturing method
Nakajima et al. Performance boost of co-rich fe-co based alloy magnetostrictive sensors via nitrogen treatment
Yamazaki et al. Microstructure‐Enhanced Inverse Magnetostrictive Effect in Fe–Co Alloy Wires
Wun-Fogle et al. Magnetostriction and magnetization of common high strength steels
JP5648958B2 (en) Method of manufacturing plate member for magnetostrictive force sensor, ring member for magnetostrictive force sensor, and method of manufacturing ring member for magnetostrictive force sensor
JP5233141B2 (en) Magnetostrictive stress sensor and manufacturing method thereof
Niu et al. Non-contact torque sensor based on magnetostrictive Fe30Co70 alloy
JP2006300902A (en) Stress detection method and device
CN110678944B (en) Proportional solenoid, method for manufacturing the same, and method for controlling characteristics of proportional solenoid
JP2006046987A (en) Torque sensor and its manufacturing method
JP5119880B2 (en) Magnetostrictive stress sensor
Pinkerton et al. Magnetostriction and torque response of Tb0. 5Dy0. 5Fe2/Fe composites
JPH09184776A (en) Torque sensor
Park et al. Field-anneal-induced magnetic anisotropy in highly textured Fe-Al magnetostrictive strips
Liu et al. Comparison in Magnetic properties of ferritic stainless steels measured using bar and ring samples
JP2006184040A (en) Torque detector
Zhao et al. Influences of compressive stress on the narrow hysteresis and piezomagnetic coefficient for the< 110> oriented Tb_ {0.27} Dy_ {0.73} Fe_ {1.95} alloys at high drive levels
JPH0654817B2 (en) Displacement generating element
JP4919013B2 (en) Magnetostrictive ring and magnetostrictive ring type torque sensor
Boley et al. The effects of heat treatment on the magnetic behavior of ring-type magnetoelastic torque sensors
JPH11183278A (en) High-sensitivity magnetostrictive material for torque sensor as well as sensor shaft and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5648958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees