JP2012097964A - Filtration system - Google Patents

Filtration system Download PDF

Info

Publication number
JP2012097964A
JP2012097964A JP2010246082A JP2010246082A JP2012097964A JP 2012097964 A JP2012097964 A JP 2012097964A JP 2010246082 A JP2010246082 A JP 2010246082A JP 2010246082 A JP2010246082 A JP 2010246082A JP 2012097964 A JP2012097964 A JP 2012097964A
Authority
JP
Japan
Prior art keywords
water tank
lower water
cooling water
return pipe
circulating cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010246082A
Other languages
Japanese (ja)
Other versions
JP5603740B2 (en
Inventor
Yuka Ishizuka
有香 石塚
Shinji Harada
晋司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2010246082A priority Critical patent/JP5603740B2/en
Publication of JP2012097964A publication Critical patent/JP2012097964A/en
Application granted granted Critical
Publication of JP5603740B2 publication Critical patent/JP5603740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a filtration system for preventing deposition of sludge in a lower water tank in a cooling tower.SOLUTION: The filtration system which filtrates circulating cooling water stored in the lower water tank of an open circulating type cooling water system cooling tower for cooling the circulating cooling water by making the circulating cooling water make contact with external air, includes a filter for filtrating the circulating cooling water, a supply pipe for supplying the circulating cooling water in the lower water tank to the filter, and a return pipe for returning treated water treated by the filter to the lower water tank. The return pipe is extended into the lower water tank, and installed to circulate along an inner wall of the lower water tank. In the return pipe installed to circulate, a plurality of discharge ports for discharging the treated water toward the inner circumferential side is provided at predetermined intervals.

Description

本発明は、開放循環式冷却水系冷却塔の下部水槽に貯留される循環冷却水をろ過するろ過システムの技術に関する。   The present invention relates to a technique of a filtration system for filtering circulating cooling water stored in a lower water tank of an open circulation cooling water system cooling tower.

ビルや石油化学工場等において、冷凍機の冷媒やプロセス流体の冷却目的等で幅広く用いられている冷却水は、一般に、(1)開放循環式冷却水系、(2)密閉循環式冷却水系、(3)一過式冷却水系の3つに分類される。このうち、開放循環式冷却水系は、熱交換器において水温が上昇した冷却水の一部を冷却塔で蒸発させ、その蒸発潜熱により冷却水を冷却することにより、冷却水を循環使用する、という構造になっている。   In buildings and petrochemical plants, etc., cooling water widely used for the purpose of cooling refrigerator refrigerants and process fluids is generally (1) open circulation cooling water system, (2) closed circulation cooling water system, ( 3) It is classified into three types of transient cooling water systems. Among these, the open circulation type cooling water system is said to recycle and use the cooling water by evaporating a part of the cooling water whose temperature has risen in the heat exchanger in the cooling tower and cooling the cooling water by the latent heat of evaporation. It has a structure.

開放循環式冷却水系においては、冷却水の循環使用により、冷却水中のカルシウムやマグネシウム等の硬度成分やシリカ等が濃縮されるため、これら成分が冷却水中で析出し、スラッジとして冷却塔内に設けられた下部水槽に堆積する。また、外部から冷却塔に土砂等が取り込まれたりすると、これらがスラッジとして冷却塔内の下部水槽に堆積する。   In an open circulation type cooling water system, hardness components such as calcium and magnesium and silica etc. in the cooling water are concentrated by circulating the cooling water, so these components precipitate in the cooling water and are provided in the cooling tower as sludge. Deposited in the lower tank. Moreover, when earth and sand etc. are taken in into a cooling tower from the outside, these will accumulate in the lower water tank in a cooling tower as sludge.

冷却塔内の下部水槽に堆積したスラッジが、冷却水と共に循環し熱交換器に付着・堆積すると熱交換器の伝熱効率を低下させたり、熱交換器や配管等の金属材料の腐食を生じさせたり等の障害を引き起こすことが知られている。   If the sludge accumulated in the lower water tank in the cooling tower circulates with the cooling water and adheres to and accumulates on the heat exchanger, it reduces the heat transfer efficiency of the heat exchanger or causes corrosion of metal materials such as the heat exchanger and piping. It is known to cause problems such as damage.

冷却塔内の下部水槽にスラッジが堆積することを防止するために、例えば、特許文献1には、冷却水の一部を冷却塔内の下部水槽から引き出し、冷却塔外部に設けたろ過器により、冷却水からスラッジを捕捉・分離した後、ろ過処理水を冷却塔内の下部水槽に返送するろ過システムが提案されている。   In order to prevent sludge from accumulating in the lower water tank in the cooling tower, for example, in Patent Document 1, a part of the cooling water is drawn from the lower water tank in the cooling tower and is filtered by a filter provided outside the cooling tower. A filtration system that captures and separates sludge from cooling water and then returns the treated water to the lower water tank in the cooling tower has been proposed.

特開2001−246203号公報JP 2001-246203 A

本発明は、冷却塔内の下部水槽にスラッジが堆積することを防止するろ過システムを提供することを目的とする。   An object of this invention is to provide the filtration system which prevents that sludge accumulates in the lower water tank in a cooling tower.

本発明は、循環冷却水と外気とを接触させて前記循環冷却水を冷却する開放循環式冷却水系冷却塔の下部水槽に貯留される前記循環冷却水をろ過するろ過システムであって、前記循環冷却水をろ過するろ過器と、前記下部水槽の循環冷却水を前記ろ過器へ供給する供給配管と、前記ろ過器により処理された処理水を前記下部水槽に返送する返送配管と、を備え、前記返送配管は、前記下部水槽内へ延設され、前記下部水槽の内壁に沿って周回するように設置され、前記周回するように設置された返送配管には、内周側に向かって前記処理水を放出する放出口が所定の間隔で複数設けられている。   The present invention is a filtration system for filtering the circulating cooling water stored in a lower water tank of an open circulating cooling water system cooling tower that cools the circulating cooling water by bringing the circulating cooling water into contact with outside air. A filter for filtering cooling water, a supply pipe for supplying circulating cooling water of the lower water tank to the filter, and a return pipe for returning treated water treated by the filter to the lower water tank, The return pipe is installed in the lower water tank so as to circulate along the inner wall of the lower water tank, and the return pipe installed so as to circulate is subjected to the treatment toward the inner peripheral side. A plurality of discharge ports for discharging water are provided at predetermined intervals.

また、前記ろ過システムにおいて、前記供給配管の一端は前記下部水槽に設けられた接続口に接続され、前記接続口は前記下部水槽の中央部に配置されていることが好ましい。   Moreover, the said filtration system WHEREIN: It is preferable that the end of the said supply piping is connected to the connection port provided in the said lower water tank, and the said connection port is arrange | positioned in the center part of the said lower water tank.

また、前記ろ過システムにおいて、前記放出口の向きは、水平方向から水平方向に対して45°下方向までの範囲とすることが好ましい。   Moreover, in the said filtration system, it is preferable that the direction of the said discharge port shall be the range from a horizontal direction to 45 degrees downward with respect to a horizontal direction.

本発明によれば、冷却塔内の下部水槽にスラッジが堆積することを防止することができる。   According to the present invention, it is possible to prevent sludge from accumulating in the lower water tank in the cooling tower.

本実施形態に係るろ過システムを設置した冷却塔の構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of the structure of the cooling tower which installed the filtration system which concerns on this embodiment. 下部水槽の模式平面図である。It is a schematic plan view of a lower water tank. (a)は、延設部の返送配管の一部模式平面図であり、(b)は、(a)のA−A線における返送配管の模式断面図である。(A) is a partial schematic plan view of the return pipe of the extended portion, and (b) is a schematic cross-sectional view of the return pipe along the AA line of (a). (a)〜(c)は、延設部の返送配管の他の形態を示す一部模式平面図である。(A)-(c) is a partial schematic plan view which shows the other form of the return piping of an extending part. 延設部の返送配管の他の形態を示す下部水槽の模式平面図である。It is a schematic plan view of the lower water tank which shows the other form of the return piping of an extension part. (a),(b)は、延設部の返送管の他の形態を示す下部水槽の模式斜視図である。(A), (b) is a schematic perspective view of the lower water tank which shows the other form of the return pipe of an extension part.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係るろ過システムを設置した冷却塔の構成の一例を示す模式断面図である。本実施形態の冷却塔1は、循環冷却水と外気とを接触させて循環冷却水を冷却する開放循環式冷却水系の冷却塔1である。図1に示す冷却塔1の下部は、循環冷却水が貯留される下部水槽10となっており、下部水槽10の上方であって冷却塔1の側壁の一部は、外気を取り込むためのルーバー12が設置され、ルーバー12付近の冷却塔1の内部には充填材14が設置され、冷却塔1の上部にはファン16が設置されている。また、図1に示す冷却塔1の下部水槽10の中央部には、冷却水吸込口18が設けられている。また、図1に示す冷却塔1には、本実施形態のろ過システム及び循環システムが設置されている。   FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a cooling tower in which a filtration system according to the present embodiment is installed. The cooling tower 1 of the present embodiment is an open circulation type cooling water system cooling tower 1 that cools the circulating cooling water by bringing the circulating cooling water into contact with outside air. The lower part of the cooling tower 1 shown in FIG. 1 is a lower water tank 10 in which circulating cooling water is stored, and a part of the side wall of the cooling tower 1 above the lower water tank 10 is a louver for taking in outside air. 12, a filler 14 is installed inside the cooling tower 1 near the louver 12, and a fan 16 is installed above the cooling tower 1. A cooling water inlet 18 is provided at the center of the lower water tank 10 of the cooling tower 1 shown in FIG. Further, the cooling tower 1 shown in FIG. 1 is provided with the filtration system and the circulation system of the present embodiment.

循環システムは、下部水槽10内の循環冷却水を冷却塔1の充填材14に散水するものであれば、その構造は特に制限されるものではないが、本実施形態の循環システムは循環配管20、ポンプ22を備えている。循環配管20の一端は、下部水槽10の冷却水吸込口18に設けられた循環用接続口(不図示)に接続され、他端は、冷却塔1の側壁から冷却塔1内部に延設され、充填材14に向かって大気に開放されている。また、循環配管20には、ポンプ22、熱交換器24が設置されている。   The structure of the circulation system is not particularly limited as long as it circulates the circulating cooling water in the lower water tank 10 to the filler 14 of the cooling tower 1, but the circulation system of the present embodiment is a circulation pipe 20. A pump 22 is provided. One end of the circulation pipe 20 is connected to a circulation connection port (not shown) provided in the cooling water suction port 18 of the lower water tank 10, and the other end is extended from the side wall of the cooling tower 1 to the inside of the cooling tower 1. , Open to the atmosphere toward the filler 14. The circulation pipe 20 is provided with a pump 22 and a heat exchanger 24.

本実施形態のろ過システムは、供給配管26、ポンプ28、ろ過器30、返送配管32、ブロー配管34a,34bを備えている。供給配管26の一端は、下部水槽10の冷却水吸込口18に設けられたろ過用接続口(不図示)に接続され、他端はろ過器30に接続されている。供給配管26にはポンプ28が設置されている。返送配管32の一端は、ろ過器30に接続され、他端は、冷却塔1の側壁から冷却塔1の下部水槽10内に延設されている。ブロー配管34aの一端は供給配管26に接続され、他端は冷却塔1の底部から冷却塔1内に延設され、下部水槽10内に貯留された循環冷却水の液面より上方で大気に開放されている。また、ブロー配管34bの一端はブロー配管34aの一端より下流側の供給配管26に接続され、他端は大気に開放されている。   The filtration system of this embodiment includes a supply pipe 26, a pump 28, a filter 30, a return pipe 32, and blow pipes 34a and 34b. One end of the supply pipe 26 is connected to a filtration connection port (not shown) provided in the cooling water suction port 18 of the lower water tank 10, and the other end is connected to a filter 30. A pump 28 is installed in the supply pipe 26. One end of the return pipe 32 is connected to the filter 30, and the other end is extended from the side wall of the cooling tower 1 into the lower water tank 10 of the cooling tower 1. One end of the blow pipe 34 a is connected to the supply pipe 26, and the other end extends from the bottom of the cooling tower 1 into the cooling tower 1, and reaches the atmosphere above the liquid level of the circulating cooling water stored in the lower water tank 10. It is open. One end of the blow pipe 34b is connected to the supply pipe 26 on the downstream side of one end of the blow pipe 34a, and the other end is open to the atmosphere.

図2は、下部水槽の模式平面図である。図2に示すように、本実施形態では、返送配管32のうち、下部水槽10内へ延設された部分(以下延設部と呼ぶ場合がある)の返送配管32aは、下部水槽10の内壁に沿って、周回しており、矩形状となっている。図3(a)は、延設部の返送配管の一部模式平面図であり、図3(b)は、図3(a)のA−A線における返送配管の模式断面図である。図3(a)に示すように、延設部の返送配管32aには、放出口36が所定の間隔で複数設けられている。ここで、所定の間隔とは、均等、略均等の間隔に限定されることはなく、異なる間隔であってもよい。延設部の返送配管32aに設けられた複数の放出口36は、周回する延設部の返送配管32aの内周側に配置(すなわち、内周側に向かって開口)されている。後述するが、図2に示すように、ろ過器30により処理された処理水は、返送配管32aの内周側に向かって放出口36から放出される。   FIG. 2 is a schematic plan view of the lower water tank. As shown in FIG. 2, in the present embodiment, the return pipe 32 a of the return pipe 32 that extends into the lower water tank 10 (hereinafter may be referred to as an extended part) is the inner wall of the lower water tank 10. It goes around and has a rectangular shape. Fig.3 (a) is a partial schematic plan view of the return piping of an extension part, and FIG.3 (b) is a schematic cross section of the return piping in the AA line of Fig.3 (a). As shown in FIG. 3 (a), a plurality of discharge ports 36 are provided at predetermined intervals in the return pipe 32a of the extending portion. Here, the predetermined intervals are not limited to equal and substantially equal intervals, and may be different intervals. The plurality of discharge ports 36 provided in the return pipe 32a of the extended portion are arranged on the inner peripheral side of the return pipe 32a of the extended portion (that is, opened toward the inner peripheral side). As will be described later, as shown in FIG. 2, the treated water treated by the filter 30 is discharged from the discharge port 36 toward the inner peripheral side of the return pipe 32a.

以下に、図1に示す冷却塔1の動作について説明する。   Below, operation | movement of the cooling tower 1 shown in FIG. 1 is demonstrated.

ポンプ22を稼働させ、下部水槽10内の循環冷却水を循環配管20から熱交換器24に供給する。循環冷却水は熱交換器24により熱交換され、水温が上昇した冷却水となり、循環配管20を通って冷却塔1の上部から充填材14に散水される。充填材14に散水された冷却水は、ファン16によりルーバー12から吸い込まれた空気と接触し、一部が蒸発し、蒸発潜熱を放出することにより水温が低下した冷却水となって、下部水槽10に落下し、貯留される。   The pump 22 is operated, and the circulating cooling water in the lower water tank 10 is supplied from the circulation pipe 20 to the heat exchanger 24. The circulating cooling water is heat-exchanged by the heat exchanger 24, becomes cooling water whose water temperature has risen, and is sprinkled from the upper part of the cooling tower 1 to the filler 14 through the circulation pipe 20. The cooling water sprayed on the filler 14 comes into contact with the air sucked from the louver 12 by the fan 16, partly evaporates and becomes a cooling water whose water temperature is lowered by releasing the latent heat of evaporation, and the lower water tank 10 falls and is stored.

このように循環冷却水が循環することにより、循環冷却水中のカルシウムやマグネシウム等の硬度成分やシリカ等が濃縮される。そして、これらの成分が過飽和となり循環冷却水中で析出することによって、あるいは、外部から冷却塔1に土砂等が取り込まれること、さらに微生物代謝物が混ざり込むこと等によって、スラッジが発生する。そこで、本実施形態のろ過システムを定期的に又は連続的に作動させ、スラッジを除去する。   By circulating the circulating cooling water in this way, hardness components such as calcium and magnesium, silica, and the like in the circulating cooling water are concentrated. Sludge is generated when these components become supersaturated and precipitate in the circulating cooling water, or when earth and sand are taken into the cooling tower 1 from the outside, and microbial metabolites are mixed. Therefore, the filtration system of this embodiment is operated periodically or continuously to remove sludge.

本実施形態のろ過システムでは、まず、ポンプ28を稼働させ、下部水槽10内のスラッジを含む循環冷却水を供給配管26からろ過器30に供給する。そして、ろ過器30において循環冷却水中のスラッジが除去される。ろ過器30を通過した処理水は、返送配管32を通り、下部水槽10内へ返送される。   In the filtration system of the present embodiment, first, the pump 28 is operated, and the circulating cooling water including the sludge in the lower water tank 10 is supplied from the supply pipe 26 to the filter 30. And the sludge in circulating cooling water is removed in the filter 30. The treated water that has passed through the filter 30 passes through the return pipe 32 and is returned into the lower water tank 10.

図2に示すように、下部水槽10内では、延設部の返送配管32aに設けられた放出口から返送配管32aの内周側に向かって、処理水が放出される。このように、返送配管32aの内周側に向かって、複数の放出口から処理水が放出されることにより、下部水槽10の中央に向かって処理水が対流する。そのため、下部水槽10内のスラッジは、比較的水中で浮遊、分散した状態で存在し、下部水槽10の隅等で堆積することが抑制される。   As shown in FIG. 2, in the lower water tank 10, treated water is discharged from the discharge port provided in the return pipe 32a of the extending portion toward the inner peripheral side of the return pipe 32a. In this manner, the treated water is convected toward the center of the lower water tank 10 by discharging the treated water from the plurality of discharge ports toward the inner peripheral side of the return pipe 32a. Therefore, the sludge in the lower water tank 10 is present in a relatively floating and dispersed state in water, and accumulation at corners of the lower water tank 10 is suppressed.

一般的に、スラッジが堆積すると、循環冷却水と共にスラッジが塊となって循環配管を通り、熱交換器に付着・堆積するため、熱交換器の伝熱効率を低下させたり、熱交換器や配管等の金属材料の腐食を生じさせたりする等の障害を引き起こす虞がある。そのため、定期的に冷却塔内を清掃する等のメンテナンスが必要となる。しかし、本実施形態では、上記のようにスラッジは比較的水中で浮遊、分散した状態で存在し、スラッジの堆積が抑制されるため、ろ過器30によるろ過効率の向上やスラッジの塊が循環配管20を通ることによる弊害等を抑制することができる。その結果、定期的に行う清掃等のメンテナンス回数を抑えることが可能となる。   In general, when sludge accumulates, sludge becomes agglomerated with circulating cooling water, passes through the circulation piping, and adheres to and accumulates on the heat exchanger, reducing the heat transfer efficiency of the heat exchanger, and heat exchangers and piping. There is a risk of causing problems such as corrosion of metal materials such as. Therefore, maintenance such as periodically cleaning the inside of the cooling tower is required. However, in the present embodiment, as described above, sludge is relatively floated and dispersed in water, and sludge accumulation is suppressed, so that the filtration efficiency by the filter 30 is improved and the sludge lump is circulated. The harmful effects of passing through 20 can be suppressed. As a result, it is possible to reduce the number of maintenances such as periodic cleaning.

以下に、各部の詳細な構成等について説明する。   The detailed configuration of each part will be described below.

延設部の返送配管32aに設けられる放出口36の間隔は300〜500mmの範囲であることが好ましい。また、放出口36の大きさはφ3〜5mmの範囲であることが好ましい。また、図3(b)に示すように、放出口36の向き(方向)は、水平方向から水平方向に対して45°下方向までの範囲とすることが好ましい。放出口36の間隔、大きさ、向きが上記範囲外であると、処理水が返送配管32aの内周側に向かって対流し難く(実質的には、処理水が下部水槽10の中央に向かって対流し難く)、下部水槽10の隅等にスラッジが堆積する場合がある。   It is preferable that the space | interval of the discharge port 36 provided in the return piping 32a of an extension part is the range of 300-500 mm. Moreover, it is preferable that the magnitude | size of the discharge port 36 is the range of (phi) 3-5 mm. Further, as shown in FIG. 3B, the direction (direction) of the discharge port 36 is preferably in a range from the horizontal direction to the 45 ° downward direction with respect to the horizontal direction. If the interval, size, and direction of the discharge ports 36 are outside the above range, the treated water is difficult to convect toward the inner peripheral side of the return pipe 32a (substantially, the treated water is directed toward the center of the lower water tank 10). In some cases, sludge accumulates in the corners of the lower water tank 10 or the like.

図4(a)〜(c)は、延設部の返送配管の他の形態を示す一部模式平面図である。図4(a)に示すように、水平方向に向いた放出口36や水平方向に対して下方向(例えば45°)に向いた放出口36をランダムに所定の間隔で複数配置してもよい。これにより、返送配管32aの内周側に向かって放出される処理水は乱流となるため、下部水槽10内のスラッジの分散性が向上し、スラッジの堆積をより抑制することができる。また、図4(b)に示すように、返送配管32aに段差を設けることによっても、返送配管32aの内周側に向かって放出される処理水は乱流となるため、下部水槽10内のスラッジの分散性が向上し、スラッジの堆積をより抑制することができる。図4(c)は、返送配管を上方から見た図である。図4(c)に示すように、放出口36から放出される処理水の流れを変える遮蔽板38を返送配管32aに設置してもよい。これにより、返送配管32aの内周側に向かって放出される処理水は旋回流となるため、下部水槽10内のスラッジの分散性が向上し、スラッジの堆積をより抑制することができる。   FIGS. 4A to 4C are partial schematic plan views showing other forms of the return piping of the extending portion. As shown in FIG. 4 (a), a plurality of discharge ports 36 facing in the horizontal direction and a plurality of discharge ports 36 facing downward (for example, 45 °) with respect to the horizontal direction may be randomly arranged at predetermined intervals. . Thereby, since the treated water discharged toward the inner peripheral side of the return pipe 32a becomes a turbulent flow, the dispersibility of the sludge in the lower water tank 10 is improved, and sludge accumulation can be further suppressed. Moreover, as shown in FIG.4 (b), since the process water discharge | released toward the inner peripheral side of the return piping 32a also becomes a turbulent flow by providing a level | step difference in the return piping 32a, in the lower tank 10 Dispersibility of sludge is improved, and sludge accumulation can be further suppressed. FIG.4 (c) is the figure which looked at return piping from upper direction. As shown in FIG.4 (c), you may install the shielding board 38 which changes the flow of the treated water discharge | released from the discharge port 36 in the return piping 32a. Thereby, since the treated water discharged toward the inner peripheral side of the return pipe 32a becomes a swirling flow, the dispersibility of the sludge in the lower water tank 10 is improved, and sludge accumulation can be further suppressed.

図5は、延設部の返送配管の他の形態を示す下部水槽の模式平面図である。下部水槽10内へ延設された部分の返送配管32aは、下部水槽10の内壁に沿って周回するものであるが、図5に示すように、一部返送配管32aが設置されていない箇所を設けてもよい。すなわち、延設部の返送配管32aは、返送配管32aの内周側に向かって対流する処理水により、下部水槽10内のスラッジを分散させることができれば、下部水槽10の内壁に沿って、完全に周回させる必要はない。例えば、返送配管32は、少なくとも下部水槽10の内壁に沿って、内周の3/4以上周回していればよい。   FIG. 5 is a schematic plan view of a lower water tank showing another form of the return pipe of the extending portion. The part of the return pipe 32a extending into the lower water tank 10 circulates along the inner wall of the lower water tank 10, but as shown in FIG. 5, the part where the return pipe 32a is not installed partially. It may be provided. That is, if the sludge in the lower water tank 10 can be dispersed by the treated water that convects toward the inner peripheral side of the return pipe 32a, the return pipe 32a of the extended portion is completely along the inner wall of the lower water tank 10. There is no need to go around. For example, the return pipe 32 may circulate at least 3/4 of the inner circumference along at least the inner wall of the lower water tank 10.

図6(a),(b)は、延設部の返送管の他の形態を示す下部水槽の模式斜視図である。図6(a)に示すように、直方体の下部水槽10にろ過用接続口(不図示)を配置した冷却水吸込口18が設けられ、それぞれのろ過用接続口に供給配管(不図示)が接続されているような下部水槽10の場合には、返送配管32aは下部水槽10の内壁に沿って周回する周回配管40と、冷却水吸込口18間(接続口間)に設けられ、周回配管40の長手方向の配管同士を連結するする連結管42とを備えることが好ましい。図示での説明は省略するが、周回配管40及び連結管42の内周側に、放出口が所定の間隔で複数設置される。図6(b)に示すように、直方体の下部水槽10は、セパレータにより複数の室(10a,10b,10c)に分割され、それぞれの室(10a,10b,10c)に設けられた冷却水吸込口18のろ過用接続口(不図示)に供給配管(不図示)が接続されているような下部水槽10の場合には、返送配管32aは分割された室(10a,10b,10c)のそれぞれの内壁に沿って周回するように配置されることが好ましい。   6A and 6B are schematic perspective views of a lower water tank showing another form of the return pipe of the extending portion. As shown in FIG. 6 (a), a cooling water suction port 18 having a filtration connection port (not shown) arranged in a rectangular parallelepiped lower water tank 10 is provided, and a supply pipe (not shown) is provided in each filtration connection port. In the case of the lower water tank 10 that is connected, the return pipe 32a is provided between the circulation pipe 40 that circulates along the inner wall of the lower water tank 10 and the cooling water suction port 18 (between the connection ports). It is preferable to include a connecting pipe 42 that connects the 40 longitudinal pipes. Although not shown in the figure, a plurality of discharge ports are provided at predetermined intervals on the inner peripheral side of the circulation pipe 40 and the connection pipe 42. As shown in FIG. 6B, the rectangular parallelepiped lower water tank 10 is divided into a plurality of chambers (10a, 10b, 10c) by a separator, and a cooling water suction provided in each chamber (10a, 10b, 10c). In the case of the lower water tank 10 in which a supply pipe (not shown) is connected to a filtration connection port (not shown) of the port 18, the return pipe 32a is provided for each of the divided chambers (10a, 10b, 10c). It is preferable to arrange | position so that it may wrap around along the inner wall.

供給配管26の一端が接続されるろ過用接続口は、下部水槽10のいずれの位置に設けられてもよいが、下部水槽10の中央部に設けられることが好ましい。本実施形態のように、下部水槽10内へ延設された返送配管32aは、下部水槽10の内壁に沿って周回するように配置され、そして、その返送配管32aには、処理水を内周側に向かって放出する放出口36が設置されているため、下部水槽10内の流体は下部水槽10の中央に向かって流れ易く、また、スラッジも中央に流れ易い。したがって、ろ過用接続口を下部水槽10の中央部に設ければ、スラッジは、そのろ過用接続口から取り込まれ易くなるため、ろ過器30によるスラッジの除去率を向上させることができる。中央部とは、例えば、下部水槽10の水平断面における中心から内壁までの距離に対し、中心から1/3以内の領域である。   The connection port for filtration to which one end of the supply pipe 26 is connected may be provided at any position of the lower water tank 10, but is preferably provided at the center of the lower water tank 10. Like this embodiment, the return piping 32a extended in the lower water tank 10 is arrange | positioned so that it may circulate along the inner wall of the lower water tank 10, and treated water is sent to the return piping 32a to the inner periphery. Since the discharge port 36 that discharges toward the side is provided, the fluid in the lower water tank 10 easily flows toward the center of the lower water tank 10, and sludge also easily flows in the center. Therefore, if the connection port for filtration is provided in the central portion of the lower water tank 10, the sludge can be easily taken from the connection port for filtration, so that the sludge removal rate by the filter 30 can be improved. The central portion is, for example, a region within 1/3 from the center with respect to the distance from the center to the inner wall in the horizontal section of the lower water tank 10.

本実施形態に係るろ過器30は、循環処理水中のスラッジを除去することができるものであれば特に制限されるものではなく、例えば、膜ろ過装置、ろ材充填ろ過器等を挙げることができる。膜ろ過装置に用いるろ過膜に特に制限はないが、MF膜、UF膜等を好適に用いることができる。ろ材充填ろ過器に用いるろ材に特に制限はないが、砂、アンスラサイト等を好適に用いることができる。   The filter 30 which concerns on this embodiment will not be restrict | limited especially if the sludge in circulating process water can be removed, For example, a membrane filtration apparatus, a filter medium filling filter, etc. can be mentioned. Although there is no restriction | limiting in particular in the filtration membrane used for a membrane filtration apparatus, MF membrane, UF membrane, etc. can be used suitably. Although there is no restriction | limiting in particular in the filter medium used for a filter medium filling filter, Sand, anthracite, etc. can be used suitably.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
図1に示す冷却塔を以下のような条件で運転し、循環配管を流れる循環冷却水の濁度を測定した。実施例1における冷却塔の下部水槽及び下部水槽内に延設する返送配管は、図6(b)に示す下部水槽及び返送配管を用いた。
Example 1
The cooling tower shown in FIG. 1 was operated under the following conditions, and the turbidity of the circulating cooling water flowing through the circulation piping was measured. The lower water tank and the return pipe extending in the lower water tank of the cooling tower in Example 1 used the lower water tank and the return pipe shown in FIG.

実施例1の運転条件は、試験開始から5ヶ月間ろ過システムを作動させずに運転を実施した後、17日間ろ過システムを作動させた。循環冷却水の濁度のサンプリングは、試験開始直後、5ヶ月経過後、ろ過システム作動から1日後、ろ過システム作動から10日後に実施した。その結果を表1にまとめた。   The operation condition of Example 1 was that the filtration system was operated for 17 days after the operation was performed without operating the filtration system for 5 months from the start of the test. Sampling of the turbidity of the circulating cooling water was performed immediately after the start of the test, 5 months later, 1 day after the filtration system was activated, and 10 days after the filtration system was activated. The results are summarized in Table 1.

<実施例1の冷却塔>
冷却塔:開放式冷却塔400RT
ろ過器:砂ろ過装置1台
最大流量:8m/h
ろ材種類:砂
ろ材重量:100kg
ろ過面積:0.2288m
ろ過タンク寸法:高さ870mm×φ530mm
放出口口径:φ4mm
放出口の間隔:300mm
放出口の向き:水平方向に対して45°下方
<Cooling tower of Example 1>
Cooling tower: Open cooling tower 400RT
Filter: One sand filtration device
Maximum flow rate: 8m 3 / h
Filter media type: sand
Filter media weight: 100kg
Filtration area: 0.2288 m 3
Filtration tank dimensions: Height 870mm x φ530mm
Discharge port diameter: φ4mm
Distance between discharge ports: 300mm
Direction of discharge port: 45 degrees below the horizontal direction

(実施例2)
冷却塔の能力が1000RTであること、砂ろ過装置を2台設置したこと以外は、実施例1と同様の条件で試験を行った。循環冷却水の濁度のサンプリングは、実施例1と同様に、試験開始直後、5ヶ月経過後、ろ過システム作動から1日後、ろ過システム作動から10日後に実施した。その結果を表2にまとめた。
(Example 2)
The test was performed under the same conditions as in Example 1 except that the cooling tower capacity was 1000 RT and two sand filtration devices were installed. Sampling of the turbidity of the circulating cooling water was carried out in the same manner as in Example 1, immediately after the start of the test, 5 months later, 1 day after the filtration system operation, and 10 days after the filtration system operation. The results are summarized in Table 2.

Figure 2012097964
Figure 2012097964
Figure 2012097964
Figure 2012097964

表1及び表2から判るように、実施例1及び2共に、試験開始からろ過システム作動までの間は、循環冷却水の濁度は増加したが、ろ過システムを作動させることにより濁度及びSS濃度は低下し、ろ過システム作動後10日後には、濁度は1以下になっていた。実施例1及び2のように、下部水槽内へ延設された返送管を下部水槽の内壁に沿って周回するように配置し、下部水槽内へ延設された返送配管に、処理水を内周側に向かって放出する放出口を設置することにより、下部水槽内の循環冷却水の対流性が向上し、下部水槽の隅等でスラッジが堆積することが抑制されたため、また、ろ過器によるスラッジの除去率を向上させることができたため、循環冷却水の濁度及びSS濃度が低下したと考えられる。これにより、実施例1及び2のろ過システムが設置されていないものに比べて、下部水槽内の清掃等のメンテナンス回数を減らすことができる。   As can be seen from Tables 1 and 2, in both Examples 1 and 2, the turbidity of the circulating cooling water increased from the start of the test to the operation of the filtration system, but the turbidity and SS were increased by operating the filtration system. The concentration decreased, and the turbidity was 1 or less 10 days after the filtration system was activated. As in Examples 1 and 2, the return pipe extending into the lower water tank is arranged so as to circulate along the inner wall of the lower water tank, and the treated water is put into the return pipe extended into the lower water tank. By installing a discharge port that discharges toward the circumferential side, the convection of the circulating cooling water in the lower aquarium has been improved, and sludge accumulation at the corner of the lower aquarium has been suppressed. It was considered that the turbidity and SS concentration of the circulating cooling water were reduced because the sludge removal rate could be improved. Thereby, compared with what the filtration system of Example 1 and 2 is not installed, the frequency | count of maintenance, such as cleaning in a lower water tank, can be reduced.

1 冷却塔、10 下部水槽、10a〜10c 室、12 ルーバー、14 充填材、16 ファン、18 冷却水吸込口、20 循環配管、22,28 ポンプ、24 熱交換器、26 供給配管、30 ろ過器、32,32a 返送配管、32a 返送配管、34a,34b ブロー配管、36 放出口、38 遮蔽板、40 周回配管、42 連結管。   DESCRIPTION OF SYMBOLS 1 Cooling tower, 10 Lower water tank, 10a-10c chamber, 12 louvers, 14 Filler, 16 Fan, 18 Cooling water suction inlet, 20 Circulation piping, 22, 28 Pump, 24 Heat exchanger, 26 Supply piping, 30 Filter 32, 32a return pipe, 32a return pipe, 34a, 34b blow pipe, 36 discharge port, 38 shielding plate, 40 loop pipe, 42 connecting pipe.

Claims (3)

循環冷却水と外気とを接触させて前記循環冷却水を冷却する開放循環式冷却水系冷却塔の下部水槽に貯留される前記循環冷却水をろ過するろ過システムであって、
前記循環冷却水をろ過するろ過器と、
前記下部水槽の循環冷却水を前記ろ過器へ供給する供給配管と、
前記ろ過器により処理された処理水を前記下部水槽に返送する返送配管と、を備え、
前記返送配管は、前記下部水槽内へ延設され、前記下部水槽の内壁に沿って周回するように設置され、
前記周回するように設置された返送配管には、内周側に向かって前記処理水を放出する放出口が所定の間隔で複数設けられていることを特徴とするろ過システム。
A filtration system for filtering the circulating cooling water stored in a lower water tank of an open circulating cooling water system cooling tower that cools the circulating cooling water by bringing the circulating cooling water into contact with outside air,
A filter for filtering the circulating cooling water;
A supply pipe for supplying the cooling water in the lower tank to the filter;
A return pipe for returning the treated water treated by the filter to the lower aquarium,
The return pipe is extended into the lower water tank and installed so as to circulate along the inner wall of the lower water tank,
The return pipe installed so as to circulate is provided with a plurality of outlets for discharging the treated water toward the inner circumference side at a predetermined interval.
前記供給配管の一端は前記下部水槽に設けられた接続口に接続され、前記接続口は前記下部水槽の中央部に配置されていることを特徴とする請求項1記載のろ過システム。   2. The filtration system according to claim 1, wherein one end of the supply pipe is connected to a connection port provided in the lower water tank, and the connection port is disposed in a central portion of the lower water tank. 前記放出口の向きは、水平方向から水平方向に対して45°下方向までの範囲とすることを特徴とする請求項1又は2記載のろ過システム。   The filtration system according to claim 1 or 2, wherein the direction of the discharge port is in a range from a horizontal direction to a downward direction of 45 ° with respect to the horizontal direction.
JP2010246082A 2010-11-02 2010-11-02 Filtration system Active JP5603740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246082A JP5603740B2 (en) 2010-11-02 2010-11-02 Filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246082A JP5603740B2 (en) 2010-11-02 2010-11-02 Filtration system

Publications (2)

Publication Number Publication Date
JP2012097964A true JP2012097964A (en) 2012-05-24
JP5603740B2 JP5603740B2 (en) 2014-10-08

Family

ID=46390075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246082A Active JP5603740B2 (en) 2010-11-02 2010-11-02 Filtration system

Country Status (1)

Country Link
JP (1) JP5603740B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374139A (en) * 2014-11-03 2015-02-25 吴焕雄 Energy-saving efficient water cooling system
JP2016190224A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment method and equipment
CN107213695A (en) * 2017-06-01 2017-09-29 昆山市华创塑胶有限公司 A kind of workshop water-circulation filtering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475646A (en) * 1977-11-29 1979-06-16 Mizu Kemikaruzu Kk Water conservation management device of waterrcooling type cooling tower
JPS6224295U (en) * 1985-07-29 1987-02-14
JP2001246203A (en) * 2000-03-06 2001-09-11 Kurita Water Ind Ltd Cooling water treatment apparatus
JP2008006415A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Wastewater treatment tank
JP2010069397A (en) * 2008-09-17 2010-04-02 Sumitomo Heavy Industries Environment Co Ltd Wastewater treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475646A (en) * 1977-11-29 1979-06-16 Mizu Kemikaruzu Kk Water conservation management device of waterrcooling type cooling tower
JPS6224295U (en) * 1985-07-29 1987-02-14
JP2001246203A (en) * 2000-03-06 2001-09-11 Kurita Water Ind Ltd Cooling water treatment apparatus
JP2008006415A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Wastewater treatment tank
JP2010069397A (en) * 2008-09-17 2010-04-02 Sumitomo Heavy Industries Environment Co Ltd Wastewater treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374139A (en) * 2014-11-03 2015-02-25 吴焕雄 Energy-saving efficient water cooling system
JP2016190224A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment method and equipment
CN107213695A (en) * 2017-06-01 2017-09-29 昆山市华创塑胶有限公司 A kind of workshop water-circulation filtering device

Also Published As

Publication number Publication date
JP5603740B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5603740B2 (en) Filtration system
JP2017534832A (en) Apparatus for generating and treating a gas stream through a volume of liquid and equipment and method for implementing said apparatus
CN104748610A (en) Cooling system of cooling tower
CN104613564A (en) Air cleaner
CN208042869U (en) A kind of central air-conditioning automatic pollution removing device
CN102230654B (en) Closed indirect evaporation water chiller
US20120318009A1 (en) Cooling tower
CN102728092A (en) Condensation-type defogging device
CN102242958A (en) Closed type evaporating refrigeration cold water unit
CN105698359B (en) Segmented heat exchanger and refrigerating plant
CN105277044A (en) Mixed-flow three-stage comprehensive efficient energy-saving condenser
CN207797788U (en) A kind of cooling tower
CN201713404U (en) Recirculated cooling water treatment device
KR100870449B1 (en) Wastewater treatment apparatus in a manner of evaporation
KR20150087537A (en) Waste water and air mixed heat pump system
CN214299403U (en) Iron and oil removing system
CN206410379U (en) A kind of condensing unit
JP5453363B2 (en) Solid-liquid separator
CN108049667A (en) Wind-force sunk type dedusting environment friendly self-temperature-regulating workshop
CN108793292B (en) Heat exchange device utilizing waste heat
CN209663252U (en) A kind of high-efficiency condensation device of water-reducing agent
JP2013257051A (en) Horizontal heat exchanger, and condensation apparatus
CN207050499U (en) A kind of cooling tower with filtering function
CN220779385U (en) Factory centralized and circulating water equipment
GB2572488A (en) Fluid treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5603740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250