JP2012097491A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2012097491A
JP2012097491A JP2010247087A JP2010247087A JP2012097491A JP 2012097491 A JP2012097491 A JP 2012097491A JP 2010247087 A JP2010247087 A JP 2010247087A JP 2010247087 A JP2010247087 A JP 2010247087A JP 2012097491 A JP2012097491 A JP 2012097491A
Authority
JP
Japan
Prior art keywords
construction
ground
self
construction machine
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247087A
Other languages
Japanese (ja)
Other versions
JP5478460B2 (en
Inventor
Yasuaki Negishi
保明 根岸
Bungo Taniguchi
文庫 谷口
Sueo Suzuki
末男 鈴木
Hiroshi Murata
浩 村田
Masanori Okado
雅則 岡戸
Koichi Kawamura
幸一 川村
Shinya Nakano
真也 中野
Tomoaki Seki
友亮 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2010247087A priority Critical patent/JP5478460B2/en
Publication of JP2012097491A publication Critical patent/JP2012097491A/en
Application granted granted Critical
Publication of JP5478460B2 publication Critical patent/JP5478460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress displacement due to the total weight of a construction machine especially, by a simple configuration.SOLUTION: In a ground improvement method, the construction machine having an agitation shaft 6 and a supply mechanism for transferring a solidification material along the agitation shaft and discharging it into natural ground is used, and many improvement piles 15 to be produced by self-hardening fluid 15a for which the supply mechanism discharges the solidification material in the penetration process of the agitation shaft 6 or the like and mixes it with the soil of the natural ground are produced in order in crisscross directions while moving the construction machine in a target ground improvement area. In the method, when producing the improvement piles 15, a scaffold layer 16 integrated with the improvement piles to be produced is formed by using a part of the self-hardening fluid elevated to the surface and discharged as self-hardening sludge 15b in the process of forming the self-hardening fluid 15a in a depth direction, the construction machine is moved forward along the scaffold layer 16, and the total weight of the construction machine is dispersed and supported by the scaffold layer 16 and the produced improvement piles 15.

Description

本発明は、対象の地盤改良領域において施工機を移動しながら縦横方向に多数の改良杭を造成する地盤改良工法に関する。   The present invention relates to a ground improvement method for creating a large number of improved piles in the vertical and horizontal directions while moving a construction machine in a target ground improvement region.

地盤改良工法には、攪拌軸及び攪拌軸に沿ってセメントスラリーなどの固化材を移送して原地盤中に吐出する供給機構を有した施工機を用い、対象の地盤改良領域で施工機を移動しながら、供給機構が攪拌軸の貫入過程、又は、貫入及び引き抜き過程で固化材を吐出して原地盤の土と混合した自硬性流動物により造成される改良杭を、縦横方向に多数を順に造成することがある。この工法は深層混合処理工法とも称されており、通常は攪拌軸の下側に攪拌翼を有し、供給機構から吐出された固化材を原地盤の土と機械的に混合攪拌される。   The ground improvement method uses a construction machine with a stirring mechanism and a supply mechanism that transports solidified material such as cement slurry along the stirring axis and discharges it into the original ground, and moves the construction machine in the target ground improvement area. However, the improvement mechanism piled up by the self-hardening fluid mixed with the soil of the original ground by discharging the solidified material in the intrusion process of the stirring shaft or the intrusion and withdrawal process in the feed mechanism, in the vertical and horizontal directions May be created. This method is also called a deep mixing method, and usually has a stirring blade below the stirring shaft, and the solidified material discharged from the supply mechanism is mechanically mixed and stirred with the soil of the original ground.

以上の工法では、杭打設順序として、施工機総重量(数十トン〜数百トン)の影響を受けないようにするため、造成された改良杭ないしは杭列に施工機が載らないように移動する打ち下がり施工が好適とされる。特に、既設構造物(河川を含む。以下、同じ)に接近した領域の施工では、変位影響を最小限に抑える方法として、低変位型の供給機構や比較的軽い施工機を選定して、既設構造物から離れる方向へ移動する打ち下がり施工が多用されている。   In the above construction method, in order to avoid the influence of the construction machine's total weight (several tens to hundreds of tons) as the pile placing order, the construction machine should not be placed on the constructed improved piles or pile rows. A moving down construction is preferred. In particular, in construction in areas close to existing structures (including rivers; the same applies hereinafter), a low-displacement type supply mechanism or a relatively light construction machine is selected as a method to minimize displacement effects. Falling construction that moves away from the structure is often used.

すなわち、地盤改良領域の付近に既設構造物がある場合は、まず、改良杭を既設構造物に最も近い側に沿って造成し、そこから既設構造物に対し離れる側に向けて、他の改良杭を順に造成する。これは、造成された改良杭や杭列が保護壁として機能し、その後に造成される改良杭による地盤の変形を食い止め既設構造物への影響を防ごうとするものである。他の対策には、既設構造物と地盤改良領域との間に膨張を吸収する変位吸収孔を設けることもある。更に、特許文献1の対策は、図6に示されるごとく固化材に硬化遅延剤を混入することにより、N列目の改良杭列を施工する際には少なくともその直前に施工したN−1列目の改良杭列が未硬化状態を維持するようにして、その未硬化の改良杭列を変位吸収孔として機能させる構成である。   In other words, when there is an existing structure near the ground improvement area, first, an improved pile is constructed along the side closest to the existing structure, and then another improvement is made toward the side away from the existing structure. Build piles in order. This is because the improved piles and pile rows that have been created function as protective walls, and the deformation of the ground caused by the improved piles that are created thereafter is prevented from affecting the existing structure. Another measure is to provide a displacement absorbing hole for absorbing expansion between the existing structure and the ground improvement region. Furthermore, the countermeasure of patent document 1 is N-1 row constructed | assembled at least just before it when constructing the improved pile row | line | column of N row by mixing a hardening retarder in a solidification material as FIG. 6 shows. It is the structure which makes the improvement pile row | line | column of an eye maintain an unhardened state, and makes the unhardened improvement pile row | line | column function as a displacement absorption hole.

特開平10−60880号公報Japanese Patent Laid-Open No. 10-60880

しかしながら、上記した防護壁、変位吸収孔、特許文献1の対策は、片側が河川であるような地形条件や既設構造物に極めて近い領域では適用できない場合が多く、しかも原地盤中への固化材の吐出により地盤の体積膨張に起因した変位に有効であっても、施工機の総重量に起因した変位については機能しなかった。この点は、上記した打ち下がり施工でも同様であり、改良杭又は杭列の造成前に施工機の総重量により周囲地盤あるいは周囲構造物に変位を生じ、軽量な施工機に交換しなければならなかった例も報告されている。   However, the protection walls, displacement absorption holes, and countermeasures of Patent Document 1 described above are often not applicable to terrain conditions where one side is a river or an area very close to an existing structure, and solidified material in the original ground. Even if it was effective for the displacement due to the volume expansion of the ground due to the discharge, the displacement due to the total weight of the construction machine did not work. The same applies to the above-mentioned downfall construction. Before the improved pile or pile row is constructed, the surrounding ground or surrounding structure is displaced due to the total weight of the construction machine, and must be replaced with a light construction machine. There have also been cases that have not been reported.

本発明者らは、以上のような背景から、地盤改良領域が非常に軟弱であったり施工機の総重量が制約されるような実際の施工をとおして、改良杭造成時の地盤の体積変化に起因した変位とともに、改良杭造成前に施工機の総重量に起因した地盤の変位を最小限に抑える方法を検討してきた結果、本発明を完成するに至った。すなわち、本発明の目的は、簡易構成により、特に、施工機の総重量に起因した変位を抑えることができる地盤改良工法を提供することにある。   From the background as described above, the present inventors made changes in the volume of the ground during the construction of improved piles through actual construction where the ground improvement area was very soft or the total weight of the construction machine was restricted. As a result of studying a method for minimizing ground displacement due to the total weight of the construction machine before the improved pile construction, the present invention has been completed. That is, the objective of this invention is providing the ground improvement construction method which can suppress the displacement resulting from the total weight of a construction machine especially by simple structure.

上記目的を達成するため本発明は、攪拌軸及び前記攪拌軸に沿って固化材を移送して原地盤中に吐出する供給機構を有した施工機を用いて、対象の地盤改良領域で前記施工機を移動しながら、前記供給機構が前記攪拌軸の貫入過程などで前記固化材を吐出して原地盤の土と混合した自硬性流動物により造成される改良杭を、縦横方向に多数を順に造成する地盤改良工法において、前記改良杭を造成する際は前記自硬性流動物を深さ方向に形成する過程で、前記自硬性流動物のうち地表に上昇し排出されるものを自硬性排泥として用いて造成される改良杭と一体となった足場層を形成し、前記施工機を前記足場層に沿って前進移動して、その足場層及び前記造成された改良杭により施工機の総重量を分散支持することを特徴としている。   In order to achieve the above object, the present invention uses a construction machine having a stirring shaft and a supply mechanism that transports the solidified material along the stirring shaft and discharges the solidified material into the original ground. While moving the machine, the supply mechanism discharges the solidified material in the intrusion process of the stirring shaft, etc. In the ground improvement method to be created, when the improved pile is created, in the process of forming the self-hardening fluid in the depth direction, the self-hardening fluid that rises to the ground surface and is discharged is self-hardening sludge. Forming a scaffold layer integrated with the improved pile constructed as the above, moving the construction machine forward along the scaffold layer, and the total weight of the construction machine by the scaffold layer and the constructed improved pile It is characterized by supporting dispersion.

以上の本発明において、『固化材』としては、セメントスラリーやそれに類似のものである。『供給機構』としては、施工時に攪拌軸の貫入や固化材の吐出による原地盤の体積膨張ないしは変位を低減するため、原地盤に吐出された固化材を原地盤の土と混合して自硬性流動物とし、その一部を地表に排出可能なものである。これには、請求項4に特定した混合エジエクター吐出方式以外にも、例えば、特公平4−57805号公報、特許第3075449号公報、特許第3125244号公報に開示されている機構、それらに類似する機構を含む。   In the present invention described above, the “solidifying material” is cement slurry or the like. As a “supply mechanism”, in order to reduce the volume expansion or displacement of the original ground due to the penetration of the stirring shaft and the discharge of the solidified material during construction, the solidified material discharged to the original ground is mixed with the soil of the original ground and is self-hardening. It is a fluid that can be partially discharged to the surface. For example, the mechanism disclosed in Japanese Patent Publication No. 4-57805, Japanese Patent No. 3075449, and Japanese Patent No. 3125244 other than the mixed ejector discharge method specified in claim 4 is similar to them. Including mechanism.

以上の本発明は請求項2から4のように具体化されることがより好ましい。すなわち、
(1)前記地表に排出される自硬性排泥は前記自硬性流動物とほぼ同じ組成からなる構成である(請求項2)。
(2)前記足場層はその下に造成される改良杭を略中心とする広がりで設けられている構成である(請求項3)。
The present invention as described above is more preferably embodied as in claims 2 to 4. That is,
(1) The self-hardening waste mud discharged to the ground surface has a composition that is substantially the same as that of the self-hardening fluid (Claim 2).
(2) The said scaffold layer is the structure provided in the breadth centering on the improvement pile built under it (Claim 3).

(3)前記供給機構は、前記攪拌軸の下部又は攪拌軸に取り付けられた攪拌翼に設けられて、固化材供給手段より導入される固化材を圧縮エアー供給手段より導入される圧縮エアーに同伴して、圧縮エアーと固化材とを霧状に吐出する混合エジェクターを有している構成である(請求項4)。この混合エジェクターは、例えば特許第3622903号公報に開示されているごとく、圧縮エアーと固化材とを霧状に吐出することにより、原地盤の土粒子間の結合力を低減し、固化材と原地盤の土との混合攪拌を促進して均一な自硬性流動物を得られるようにし、かつ、その自硬性流動物の一部を圧縮エアーのリフトアップ効果により地上に排出され易くする。 (3) The supply mechanism is provided in a lower part of the stirring shaft or a stirring blade attached to the stirring shaft, and the solidified material introduced from the solidified material supplying means is accompanied by compressed air introduced from the compressed air supplying means. And it is the structure which has the mixing ejector which discharges compressed air and a solidification material in mist form (Claim 4). For example, as disclosed in Japanese Patent No. 3622903, this mixed ejector discharges compressed air and a solidified material in the form of a mist, thereby reducing the bonding force between soil particles of the original ground, and the solidified material and the original material. Mixing and stirring with the soil of the ground is promoted so that a uniform self-hardening fluid can be obtained, and part of the self-hardening fluid is easily discharged to the ground due to the lift-up effect of compressed air.

請求項1の発明は、改良杭の造成過程において、供給機構より吐出される固化材と原地盤の土とを混合した自硬性流動物を深さ方向に形成するが、その際、自硬性流動物のうち地表に排出されるものを自硬性排泥として使用して足場層を形成する。施工手順としては、従来の打ち下がり施工とは逆の前進施工、つまり施工機を造成される改良杭と一体化している足場層に沿って前進移動する。このため、本発明は、改良杭の造成過程で地表に上昇排出される自硬性流動物を足場の材料として活用し、かつ、造成される改良杭と一体となった足場層によって施工機の総重量を分散支持して施工機荷重に起因した変位を簡易に低減できる。すなわち、本発明の前進施工は、施工機の総重量に起因した変位を防ぐ変位低減対策として有効にしたことに意義がある。勿論、改良杭が足場層に一体化されているため大きな荷重を受けても変位し難くなる点でも優れている。   The invention of claim 1 forms a self-hardening fluid in the depth direction in which the solidified material discharged from the supply mechanism and the soil of the original ground are mixed in the depth direction in the process of creating the improved pile. The animal that is discharged to the surface of the animal is used as self-hardening mud to form a scaffold layer. As a construction procedure, the forward construction is reverse to the conventional downhill construction, that is, the construction machine is moved forward along the scaffold layer integrated with the improved pile to be constructed. For this reason, the present invention utilizes the self-hardening fluid that rises and discharges to the surface of the ground during the construction process of the improved pile as a material for the scaffold, and uses the scaffold layer integrated with the improved pile to be constructed, Displacement due to construction machine load can be easily reduced by supporting weight in a distributed manner. That is, the forward construction of the present invention is significant in that it is effective as a displacement reduction measure for preventing displacement due to the total weight of the construction machine. Of course, since the improved pile is integrated with the scaffold layer, it is also excellent in that it is difficult to be displaced even when a large load is applied.

請求項2の発明は、地表に排出される自硬性排泥は原地盤中に形成される自硬性流動物の一部であり、良質な自硬性排泥として足場層の材料に用いられる点を確認的に特定したものである。   The invention of claim 2 is that the self-hardening sludge discharged to the ground surface is a part of the self-hardening fluid formed in the raw ground, and is used as a material for the scaffold layer as a high-quality self-hardening sludge. It has been identified for confirmation.

請求項3の発明は、足場層はその下に造成される改良杭を略中心とした広がりで設けられているため、造成される改良杭により効率的に補強された状態となり、施工機に対する安定した支持力を付与できる。   In the invention of claim 3, since the scaffold layer is provided with a spread centered on the improved pile formed thereunder, the scaffold is efficiently reinforced by the improved pile formed, and is stable to the construction machine. Support force can be imparted.

請求項4の発明は、供給機構が上記した混合エジエクター有し、該エジェクター吐出方式により、原地盤の土粒子間の結合力を低減し、固化材と原地盤の土とを均一に混ぜた自硬性流動物を得られるようにし、その自硬性流動物の一部を圧縮エアーのリフトアップ効果により地上に排出され易くして、原地盤中に吐出される固化材に起因した地盤の体積変化を低減できるようにする。   According to the invention of claim 4, the supply mechanism has the above-mentioned mixed ejector, and the ejector discharge method reduces the bonding force between the soil particles of the original ground, and the self-mixing material is uniformly mixed with the solidified material and the soil of the original ground. It is possible to obtain a hard fluid, and a part of the self-hardening fluid is easily discharged to the ground by the lift-up effect of compressed air, so that the volume change of the ground due to the solidified material discharged into the original ground can be reduced. Be able to reduce.

(a),(b)は本発明工法の前進施工を説明するための模式図である。(A), (b) is a schematic diagram for demonstrating the advance construction of this invention construction method. 本発明工法に用いられた供給機構を構成している混合エジェクターなどを示す構成図である。It is a block diagram which shows the mixing ejector etc. which comprise the supply mechanism used for this invention construction method. 本発明工法を適用して地盤改良された第1施工例を示す模式図である。It is a schematic diagram which shows the 1st construction example by which this invention construction method was applied and the ground was improved. 上記第1施工例における変位計測結果を示すグラフであるIt is a graph which shows the displacement measurement result in the said 1st construction example. 本発明工法を適用して地盤改良された第2施工例を示す模式図である。It is a schematic diagram which shows the 2nd example of construction improved by applying this invention construction method. 上記第2施工例における変位計測結果を示すグラフであるIt is a graph which shows the displacement measurement result in the said 2nd construction example. 特許文献1に開示されている打ち下がり施工を示す説明図である。It is explanatory drawing which shows the falling construction currently disclosed by patent document 1. FIG.

本発明の形態例を図面を参照しながら説明する。この形態例では、実際の地盤改良として、図3に示される地盤改良領域で適用した実施例1、図5に示される地盤改良領域での適用した実施例2を挙げる。図1及び図2は各実施例の地盤改良工法に適用した要部を示す模式図である。以下の説明では、各実施例で採用した地盤改良工法において、使用された施工機特徴及び工法特徴を明らかにした後、図3の実施例1、図5の実施例2について詳述する。   Embodiments of the present invention will be described with reference to the drawings. In this embodiment, as actual ground improvement, Example 1 applied in the ground improvement region shown in FIG. 3 and Example 2 applied in the ground improvement region shown in FIG. FIG.1 and FIG.2 is a schematic diagram which shows the principal part applied to the ground improvement construction method of each Example. In the following description, after clarifying the construction machine features and construction method features used in the ground improvement method employed in each example, Example 1 in FIG. 3 and Example 2 in FIG. 5 will be described in detail.

(施工機特徴)図1及び2は各実施例で適用した地盤改良工法の要部を模式的に示している。まず、地盤改良工法に使用される施工機は、走行式ベースマシン1と、ベースマシン1で移動可能に起立された支持リーダー2と、支持リーダー2の一側に沿って上下動される昇降機構3と、昇降機構3に保持されている回転駆動機構4及びスイベル5と、昇降機構3により昇降されるとともに回転駆動機構4により回転される攪拌軸6と、攪拌軸6の下側に設けられた複数段の攪拌翼7と、攪拌軸6に沿って移送された圧縮エアーと固化材とを霧状に原地盤中に吐出する供給機構とを備えている。 (Characteristics of construction machine) FIGS. 1 and 2 schematically show the main part of the ground improvement method applied in each embodiment. First, the construction machine used in the ground improvement method is a traveling base machine 1, a support leader 2 standing upright so as to be movable by the base machine 1, and a lifting mechanism that is moved up and down along one side of the support leader 2. 3, a rotation driving mechanism 4 and a swivel 5 held by the lifting mechanism 3, a stirring shaft 6 that is lifted and lowered by the lifting mechanism 3 and rotated by the rotation driving mechanism 4, and a lower side of the stirring shaft 6. And a supply mechanism for discharging the compressed air and the solidified material transferred along the stirring shaft 6 in the form of a mist into the original ground.

施工時には、攪拌軸6が支持用リーダー2及び昇降機構3を介して上下動可能に支持され、地盤下へ貫入されたり引き抜かれる。回転駆動機構4は、攪拌軸6をモーター及び減速ギア機構等を介し正転・逆転するもので、攪拌軸6と共に支持リーダー2に沿って昇降される。符号9は上昇排出される噴射エアーによる汚れを防ぐ防護カバーである。   At the time of construction, the stirring shaft 6 is supported so as to be movable up and down via the support leader 2 and the lifting mechanism 3, and penetrates or is pulled out under the ground. The rotation drive mechanism 4 rotates the stirring shaft 6 forward and backward via a motor, a reduction gear mechanism, and the like, and is moved up and down along the support leader 2 together with the stirring shaft 6. Reference numeral 9 is a protective cover for preventing dirt caused by the upwardly discharged jet air.

攪拌軸6は、実施例1では図1の拡大図のごとく単軸構成、実施例2では図2に模式化したごとく2軸構成で、各軸の攪拌翼7はそれぞれ2枚で3段構成となっている。また、2軸構成では、各軸の撹拌翼7同士が互いの回転軌跡とラップしない状態に配置されるとともに、両攪拌軸6の間に介在された共廻り防止板17を有している。共廻り防止板17は、攪拌軸6同士の間隔を維持し、各撹拌翼7の回転に伴う土の移動を阻止し易くする。攪拌軸6には施工条件に応じて不図示の掘削刃が下端に装着される。   The stirring shaft 6 has a single-shaft configuration as in the enlarged view of FIG. 1 in the first embodiment, and a two-shaft configuration as schematically illustrated in FIG. 2 in the second embodiment. It has become. Further, in the two-shaft configuration, the stirring blades 7 of each axis are disposed so as not to overlap with the rotation trajectory of each axis, and have a co-rotation prevention plate 17 interposed between the two stirring shafts 6. The co-rotation prevention plate 17 maintains the space between the stirring shafts 6 and makes it easy to prevent the movement of the soil accompanying the rotation of each stirring blade 7. A drilling blade (not shown) is attached to the lower end of the stirring shaft 6 according to the construction conditions.

また、上記供給機構は、攪拌軸6の内部上下方向に沿って配置されている配管経路13,14と、地表側に設けられた不図示の固化材供給手段及び圧縮エアー供給手段と、攪拌軸6の下側又は攪拌翼7に装着された混合エジェクター8とを備えている。このうち、配管経路13,14の各上端は、固化材供給手段及び圧縮エアー供給手段の対応配管経路に対しスイベル5などを介し接続されている。各下端は、直に又は接続パイプを介し軸外へ貫通されて、混合エジクター8の対応入口側に接続されている。   The supply mechanism includes piping paths 13 and 14 disposed along the vertical direction inside the stirring shaft 6, solid material supply means and compressed air supply means (not shown) provided on the ground surface side, and a stirring shaft. 6 and a mixing ejector 8 attached to the stirring blade 7. Among these, each upper end of the piping paths 13 and 14 is connected to the corresponding piping paths of the solidification material supply means and the compressed air supply means via the swivel 5 or the like. Each lower end is connected to the corresponding inlet side of the mixing ejector 8 either directly or through the connecting pipe and off the shaft.

混合エジェクター8は、図2に原理を示すごとく エアー供給部8a、セメントスラリー(固化材)供給部8b、混合室8c、吐出口8dなどを有している。そして、この構造では、供給部8b内に導入されたセメントスラリーは、供給部8aから導入される圧縮エアーに乗せられて混合室8cに入った後、吐出口8dから所定噴射圧で吐出される。なお、以上の固化材供給手段、圧縮エアー供給手段、混合エジェクター9については、特許第3416744号公報や特許第3622903号公報などを参照されたい。   As shown in FIG. 2, the mixing ejector 8 includes an air supply unit 8a, a cement slurry (solidifying material) supply unit 8b, a mixing chamber 8c, a discharge port 8d, and the like. In this structure, the cement slurry introduced into the supply unit 8b is put on the compressed air introduced from the supply unit 8a, enters the mixing chamber 8c, and is then discharged from the discharge port 8d at a predetermined injection pressure. . For the solidified material supply means, compressed air supply means, and mixed ejector 9, refer to Japanese Patent No. 3416744 and Japanese Patent No. 3622903.

(工法特徴)地盤改良工法では、図1に示されるごとく対象の改良地盤領域10に多数の改良杭15を縦横に順に造成する。この場合、改良杭15は図1の下側に示したごとく杭列L1、L2、L3、L4・・・の順に造成される。この杭造成では、固化材であるセメントスラリーを原地盤の土と攪拌混合した自硬性流動物15aが深さ方向に形成される。この過程では、自硬性流動物15aのうち地表に上昇し排出されるものを自硬性排泥15bとして用い、造成される改良杭15と一体となった足場層16が形成される。杭打設順序としては、施工機を足場層16に沿って前進移動つまり前進施工により行う。 (Characteristics of construction method) In the ground improvement construction method, as shown in FIG. 1, a large number of improved piles 15 are created in order in the vertical and horizontal directions in the target improved ground region 10. In this case, the improved pile 15 is constructed in the order of pile rows L1, L2, L3, L4... As shown on the lower side of FIG. In this pile construction, a self-hardening fluid 15a obtained by stirring and mixing cement slurry, which is a solidifying material, with the soil of the original ground is formed in the depth direction. In this process, among the self-hardening fluid 15a, the one that rises to the ground surface and is discharged is used as the self-hardening sludge 15b, and the scaffold layer 16 integrated with the improved pile 15 to be formed is formed. As the pile placing order, the construction machine is moved forward along the scaffold layer 16, that is, forward construction.

詳述すると、施工に際しては、施工機が改良地盤領域10の施工箇所に移動されて、最初の杭造成予定部に位置決めされる。杭造成予定部には、足場層16に応じた凹部12が杭造成に先立って形成される。凹部12は杭造成予定部の地表側の地盤を所定深さに掘削したもの、枠体等で自硬排泥15bを貯めるようにしてもよい。凹部12や前記枠体の設計は、施工箇所の地盤性状や打設する固化材性状などの施工条件、改良杭の造成過程において原地盤に吐出した固化材が地中から地表へ排出される排出量などを考慮し、深さと面的広さが設定される。通常は、例えば30cm〜150cm程度の深さで、かつ、隣接する改良杭同士の上部を足場層16により一体物に連結する大きさである。また、凹部12又は凹部12内に形成される足場層16は、その下に造成される改良杭15の杭径に応じた杭用縦孔11を略中心とする広がりで設けられることが好ましい。   More specifically, during construction, the construction machine is moved to the construction site of the improved ground region 10 and positioned at the first pile creation planned portion. A recess 12 corresponding to the scaffold layer 16 is formed in the pile formation planned part prior to pile formation. The concave portion 12 may store the self-hardening mud 15b by excavating the ground on the ground surface side of the planned pile construction portion to a predetermined depth, a frame body or the like. The design of the recess 12 and the frame body is based on the construction conditions such as the ground properties of the construction site and the properties of the solidified material to be placed, and the discharge of the solidified material discharged from the ground to the ground surface in the process of creating the improved pile. The depth and area are set in consideration of the amount. Usually, the depth is, for example, about 30 cm to 150 cm, and the size is such that the upper portions of adjacent improved piles are connected to a single object by the scaffold layer 16. Moreover, it is preferable that the scaffolding layer 16 formed in the recessed part 12 or the recessed part 12 is provided in the breadth centering around the vertical hole 11 for piles according to the pile diameter of the improved pile 15 formed under it.

施工では、攪拌軸6が回転駆動機構4により回転されて所定の深さまで貫入される。この貫入過程、又は、貫入と引き抜きの各過程にて攪拌混合が行われる。この操作では、例えば、固化材であるセメントスラリーが配管経路13を通って混合エジェクター8の供給部8bに圧送されるとともに、圧縮エアーが配管経路14を通って混合エジェクター8の供給部8aまで圧送される。そして、混合エジェクター8は、供給部8aが所定圧になると不図示の弁機構が開状態に切り換えられ、圧縮エアーが供給部8aから混合室8cへ導入され、供給部8bのセメントスラリーがその圧縮エアーに乗せられて混合室8cに入った後、吐出口8dから圧縮エアーとセメントスラリーとを霧状に原地盤の土へ向けて噴出する。この噴出態様は、セメントスラリーが圧縮エアーに同伴されて霧状に噴出され、例えば撹拌翼7の回転軌跡内で撹拌翼7の回転方向である前方へ噴射している。   In the construction, the stirring shaft 6 is rotated by the rotation drive mechanism 4 and penetrates to a predetermined depth. Agitation and mixing are performed in this penetration process, or in each process of penetration and extraction. In this operation, for example, the cement slurry that is a solidifying material is pumped to the supply unit 8b of the mixing ejector 8 through the pipe path 13, and the compressed air is pumped to the supply unit 8a of the mixing ejector 8 through the pipe path 14. Is done. In the mixing ejector 8, when the supply unit 8a reaches a predetermined pressure, a valve mechanism (not shown) is switched to an open state, compressed air is introduced from the supply unit 8a to the mixing chamber 8c, and the cement slurry in the supply unit 8b is compressed. After being put in the air and entering the mixing chamber 8c, the compressed air and the cement slurry are sprayed from the discharge port 8d in a mist toward the soil of the original ground. In this jetting mode, cement slurry is jetted in the form of mist accompanied by compressed air, and is sprayed forward, for example, in the rotational direction of the stirring blade 7 in the rotational direction of the stirring blade 7.

以上のエアー同伴吐出態様では、圧縮エアーの噴射圧及びセメントスラリーの供給量を制御することにより、例えば、翼前方に存在する土の塊等を粉砕したり細分化した土や土粒子の流動性を効率的に高める。その結果、この施工では、改良杭用の均一な自硬性流動物15aが得られ、かつ、その自硬性流動物15aの一部を圧縮エアーのリフトアップ効果により攪拌軸6に沿って上昇し、自硬性排泥15bとして地表側の凹部12に排出し易くなる。この排出量は他の吐出工法に比べてかなり多い。通常は、投入されたセメントスラリー量と同程度となり、地盤内での体積変化が低減され、かつ、凹部12に効率よく貯められる。   In the above-mentioned air-entrained discharge mode, by controlling the jet pressure of compressed air and the supply amount of cement slurry, for example, the fluidity of soil and soil particles that have been crushed or subdivided into a lump of soil existing in front of the blade Efficiently enhance. As a result, in this construction, a uniform self-hardening fluid 15a for improved piles is obtained, and a part of the self-hardening fluid 15a rises along the stirring shaft 6 due to the lift-up effect of compressed air, It becomes easy to discharge to the concave portion 12 on the ground surface side as the self-hardening mud 15b. This discharge is considerably larger than other discharge methods. Usually, the amount is the same as the amount of cement slurry charged, the volume change in the ground is reduced, and the cement slurry is efficiently stored in the recess 12.

また、以上の地盤改良工法において、前進施工では、図1の下側に例示したごとく改良杭15として、杭列L1の各改良杭15が終了したときに施工機をその杭列L1上に乗るよう移動し、次の杭列L2の各改良杭15を造成する。続いて、施工機をその杭列L2上に乗るよう移動し、次の杭列L3の各改良杭15を造成する。続いて、施工機をその杭列L3上に乗るよう移動し、次の杭列L4の各改良杭15を造成する。続いて、施工機をその杭列L4上に乗るよう移動し、これを最終の杭列まで繰り返すことになる。この前進施工では、施工機の総重量が足場層16及び造成された改良杭15により分散支持されるため、軟弱地盤であっても施工機荷重に起因した変位を大幅に低減できる。   In the above ground improvement method, in the forward construction, as shown in the lower side of FIG. 1, as each improved pile 15 of the pile row L1 is finished as an improved pile 15, the construction machine is put on the pile row L1. It moves so that each improved pile 15 of the next pile row L2 is created. Subsequently, the construction machine is moved to ride on the pile row L2, and each improved pile 15 of the next pile row L3 is created. Subsequently, the construction machine is moved to ride on the pile row L3, and each improved pile 15 of the next pile row L4 is created. Subsequently, the construction machine is moved to ride on the pile row L4, and this is repeated until the final pile row. In this forward construction, since the total weight of the construction machine is distributed and supported by the scaffold layer 16 and the improved pile 15 that has been created, the displacement caused by the construction machine load can be greatly reduced even in soft ground.

(実施例1)図3は実際の地盤改良で採用された前進施工の事例1を示している。この事例1の本工事は、河川改修に先立ち、改修護岸の基礎地盤を深層混合処理工法にて改良し、護岸の沈下低減及び滑り破壊の防止を図る。工事概要を以下に示す。
(1)改良工法は、CI−CMC工法(図2に示した混合エジェクターの吐出方式であり、1600mm×2軸)
(2)回良率は、ap=46.8%
(3)改良強度は、quck=200KN/m
(4)施工機は、標準施工機(日立住反重機械建機クレーン(株)製のSP110) (5)機械総重量は、122.8t
(6)機械接地圧は、162KN/m
(Embodiment 1) FIG. 3 shows a case 1 of forward construction employed in actual ground improvement. In this case 1 construction, prior to river improvement, the foundation ground of the revetment will be improved with a deep mixing treatment method to reduce settlement of the revetment and prevent slippage. The construction outline is shown below.
(1) The improved construction method is the CI-CMC construction method (the ejection method of the mixed ejector shown in FIG. 2 and 1600 mm × 2 axes)
(2) Recovery rate is ap = 46.8%
(3) Improved strength: quick = 200 KN / m 2
(4) The construction machine is a standard construction machine (SP110 manufactured by Hitachi Sumitomo Heavy Industries Construction Crane Co., Ltd.) (5) The total weight of the machine is 122.8 t.
(6) The mechanical ground pressure is 162 KN / m 2

この地盤改良領域の地盤は、厚さ10〜20m程度の軟弱な沖積層(粘性土、有機質土)で構成されており、また、変位を起こしやすい河川沿いの改良であるため、河川護岸(許容変位±10cm)の変位に留意した施工が必要であった。   The ground in this ground improvement area is composed of soft alluvium (cohesive soil, organic soil) with a thickness of about 10-20m, and because it is an improvement along the river that tends to cause displacement, Construction requiring attention to displacement of ± 10 cm (displacement) was necessary.

地盤改良施工中は、図3に示す16箇所(河川の片側に黒丸で示した箇所)に変位杭を設置し、動態観測を実施した。河川護岸の許容変位が100mmであることから、変位の管理基準を以下の様に設定して施工を実施した。なお、本工事では、上記した足場層は改良杭上に厚さが約50cmとなるよう敷設した。
・一次管理値は50mm(許容値×0.5)である。施工では変位量が一次管理値を超えた場合、監督員に報告し、施工方法(打設順序、施工速度など)の変更等を協議する。
・二次管理値は80mm(許容値×0.8)である。施工では変位量が二次管理値を超えた場合、施工を一時中断し、対策について協議する。
During the ground improvement work, displacement piles were installed at 16 locations shown in Fig. 3 (locations indicated by black circles on one side of the river), and dynamic observations were carried out. Since the permissible displacement of the river revetment is 100 mm, the displacement management standards were set as follows. In this construction, the above-mentioned scaffold layer was laid on the improved pile so as to have a thickness of about 50 cm.
The primary management value is 50 mm (allowable value × 0.5). In construction, if the displacement exceeds the primary control value, report to the supervisor and discuss changes in construction methods (placement order, construction speed, etc.).
The secondary management value is 80 mm (allowable value × 0.8). In construction, if the displacement exceeds the secondary control value, the construction is temporarily suspended and measures are discussed.

図4の変位計測結果は、以上の設定で行ったときの水平変位量の計測結果の一例を示している。横軸は施工日、縦軸は変位量(mm)である。実施工において、深層混合処理は、当初、低変位工法であるCI−CMC工法を用いて打ち下がり施工を実施する計画であったため、河川側り最前列から施工を開始した。その結果、施工開始4日間で40mm度の変位が発生し、同様の方法で施工を継続した場合、許容量を超えることが予想された。そこで、変位の要因を究明するため、施工時に発生する排泥量を計測したところ、投入スラリー量と同程度であった。そこで、変位の要因が施工機荷重にあると考え、打設順序を打ち下がり施工から前進施工に変更した。その結果、増加傾向にあった変位が止まり、前進施工による変位低減効果が確認された。本工事は、水平変位量50mm以下で施工を完了した。   The displacement measurement result in FIG. 4 shows an example of the measurement result of the horizontal displacement when the above setting is performed. The horizontal axis is the construction date, and the vertical axis is the displacement (mm). In the construction work, the deep layer mixing process was originally planned to be carried out by using the CI-CMC construction method, which is a low displacement construction method, so construction was started from the front row on the river side. As a result, a displacement of 40 mm occurred in 4 days from the start of construction, and when construction was continued in the same manner, it was predicted that the allowable amount would be exceeded. Therefore, in order to investigate the cause of the displacement, the amount of mud generated during construction was measured and found to be about the same as the amount of slurry added. Therefore, considering that the cause of the displacement was the load on the construction machine, the placement order was changed from falling construction to forward construction. As a result, the displacement, which was on an increasing trend, stopped, and the displacement reduction effect by the forward construction was confirmed. This work was completed with a horizontal displacement of 50 mm or less.

(実施例2)図5は実際の地盤改良で採用された前進施工の事例2を示している。この事例2の本工事は、河川改修に先立ち、改修護岸基礎を深層混合処理工法にて改良することにより、護岸基礎地盤の沈下抑止及び支持力の確保を図るものである。工事概要を以下に示す。
(1)改良工法は、CI−CMC工法(混合エジェクターの吐出方式であり、1300mm×単軸)
(2)回良率は、ap=78.5%
(3)改良強度は、quck=150KN/m
(4)施工機は、小型施工機(日本車輌製造(株)製のDHJ12)
(5)機械総重量は、16.1t
(6)機械接地圧は、79KN/m
(Embodiment 2) FIG. 5 shows a case 2 of forward construction employed in actual ground improvement. This construction in Case 2 is intended to prevent subsidence of the revetment foundation ground and secure its supporting capacity by improving the revetment revetment foundation with the deep mixed treatment method prior to river rehabilitation. The construction outline is shown below.
(1) The improved construction method is CI-CMC construction method (mixed ejector ejection system, 1300mm x single shaft)
(2) Recovery rate is ap = 78.5%
(3) Improved strength: quick = 150 KN / m 2
(4) The construction machine is a small construction machine (DHJ12 manufactured by Nippon Vehicle Manufacturing Co., Ltd.)
(5) Machine gross weight is 16.1t
(6) The mechanical ground pressure is 79 KN / m 2

この地盤改良領域の地盤は、非常に軟弱な高含水比腐植土(wn=300%〜1000%)で構成されており、小型のバックホウ(0.4m)でも走行が困難なほど足場が不安定な状態であった。さらに、施工箇所が廃棄物処分場の遮水壁(薄型鋼矢板:シートウオール)に近接(最小離隔1.0m)していたため、施工機の安定及び変位減対策として、小型施工機による前進施工が採用された。 The ground in this ground improvement area is composed of very soft high moisture specific humus (wn = 300% -1000%), and there is not enough scaffolding to make it difficult to run even with a small backhoe (0.4 m 3 ). It was in a stable state. Furthermore, because the construction site was close to the water-impervious wall (thin steel sheet pile: sheet wall) at the waste disposal site (minimum separation 1.0 m), as a countermeasure for stability and displacement reduction of the construction machine, forward construction with a small construction machine Was adopted.

本工事では、遮水壁天端に設置した8箇所の観測点(図5中、黒丸で示した測点1〜測点8)及び2箇所の傾斜計(四角で示した2箇所の地中傾斜計)によって動態観測を実施した。また、近接する遮水壁の許容変位が50mmであったため、一次管理値を15mm(許容値×0.3)、二次管理値を30mm(許容値×0.6)として施工を行った。なお、本工事でも、上記した足場層は改良杭上に厚さが約50cmとなるよう敷設した。   In this construction, eight observation points (measurement points 1 to 8 indicated by black circles in FIG. 5) and two inclinometers (two underground points indicated by squares) installed at the top of the impermeable wall. Dynamic observation was carried out using an inclinometer. Moreover, since the allowable displacement of the adjacent impermeable walls was 50 mm, the construction was performed with the primary management value set to 15 mm (allowable value × 0.3) and the secondary management value set to 30 mm (allowable value × 0.6). In this construction as well, the above-mentioned scaffold layer was laid on the improved pile so that the thickness was about 50 cm.

図6(a),(b)は、以上の設定で行ったときの変位計測結果のうち、処分場に最も接近した位置における遮水壁天端の変位計測結果、つまり測点5〜8での結果を示す。横軸は施工日、縦軸はX方向又はY方向の変位量(mm)である。この事例2でも、CI−CMC工法と前進施工との採用により、最大変位9mm程度の超低変位施工を実現できたことが分かる。以上のように実施例1と2では、いずれの事例も変位が発生しやすい地盤条件下において超低変位の施工を実現しており、前進施工が変位低減対策として有効であったと判断できる。   6 (a) and 6 (b) show the displacement measurement results of the top of the impermeable wall at the position closest to the disposal site, that is, the measurement points 5 to 8 among the displacement measurement results when performed with the above settings. The results are shown. The horizontal axis is the construction date, and the vertical axis is the amount of displacement (mm) in the X or Y direction. Also in this case 2, it can be seen that by adopting the CI-CMC method and the forward construction, ultra-low displacement construction with a maximum displacement of about 9 mm could be realized. As described above, in each of Examples 1 and 2, ultra-low displacement construction was realized under ground conditions where displacement is likely to occur, and it can be determined that forward construction was effective as a displacement reduction measure.

なお、本発明工法は、請求項で特定される構成を備えておればよく、細部は以上の形態を参考にして変更したり展開可能なものである。その例として、供給機構としては、混合エジェクターの吐出方式に限られず、杭施工時に固化材(セメントスラリー)の地中投入量相当を地表へ排出可能な他の方式であっても差し支えない。   The construction method of the present invention only needs to have the configuration specified in the claims, and the details can be changed or developed with reference to the above embodiment. As an example, the supply mechanism is not limited to the discharge method of the mixed ejector, but may be another method that can discharge the equivalent of the solidified material (cement slurry) into the ground surface during pile construction.

1・・・ベースマシン
2・・・支持リーダー
3・・・昇降機構
4・・・回転駆動機構
5・・・スイベル
6・・・攪拌軸
7・・・攪拌翼
8・・・混合エジェクター
10・・・地盤改良領域(11は杭用縦孔、12は凹部)
13,14・・・配管経路
15・・・改良杭(15aは自硬性流動物、15bは自硬性排泥)
16・・・足場層
L1〜L5・・・杭列
DESCRIPTION OF SYMBOLS 1 ... Base machine 2 ... Support leader 3 ... Elevating mechanism 4 ... Rotation drive mechanism 5 ... Swivel 6 ... Agitation shaft 7 ... Agitation blade 8 ... Mixing ejector 10. ..Ground improvement area (11 is vertical hole for pile, 12 is concave)
13, 14 ... piping route 15 ... improved pile (15a is self-hardening fluid, 15b is self-hardening mud)
16 ... scaffolding layer L1-L5 ... pile row

Claims (4)

攪拌軸及び前記攪拌軸に沿って固化材を移送して原地盤中に吐出する供給機構を有した施工機を用いて、対象の地盤改良領域で前記施工機を移動しながら、前記供給機構が前記攪拌軸の貫入過程などで前記固化材を吐出して原地盤の土と混合した自硬性流動物により造成される改良杭を、縦横方向に多数を順に造成する地盤改良工法において、
前記改良杭を造成する際は前記自硬性流動物を深さ方向に形成する過程で、前記自硬性流動物のうち地表に上昇し排出されるものを自硬性排泥として用いて造成される改良杭と一体となった足場層を形成し、
前記施工機を前記足場層に沿って前進移動して、その足場層及び前記造成された改良杭により施工機の総重量を分散支持することを特徴とする地盤改良工法。
Using the construction machine having a stirring mechanism and a supply mechanism that transports the solidified material along the stirring shaft and discharges it into the original ground, the supply mechanism is moved while moving the construction machine in the target ground improvement region. In the ground improvement construction method in which a large number of improved piles are formed in order in the vertical and horizontal directions by discharging the solidified material in the process of penetration of the stirring shaft and mixing with the self-hardening fluid mixed with the soil of the original ground,
In the process of forming the self-hardening fluid in the depth direction when forming the improved pile, the self-hardening fluid is improved using the one that rises to the surface and is discharged as self-hardening sludge. Form a scaffold layer integrated with the pile,
A ground improvement construction method characterized in that the construction machine is moved forward along the scaffold layer, and the total weight of the construction machine is distributed and supported by the scaffold layer and the constructed improved pile.
前記地表に排出される自硬性排泥は前記自硬性流動物とほぼ同じ組成からなることを特徴とする請求項1に記載の地盤改良工法。   The ground improvement construction method according to claim 1, wherein the self-hardening waste mud discharged to the ground surface has substantially the same composition as the self-hardening fluid. 前記足場層はその下に造成される改良杭を略中心とする広がりで設けられていることを特徴とする請求項1又は2に記載の地盤改良工法。   The ground improvement construction method according to claim 1 or 2, wherein the scaffold layer is provided so as to have an extension centered on an improved pile formed thereunder. 前記供給機構は、前記攪拌軸の下部又は攪拌軸に取り付けられた攪拌翼に設けられて、固化材供給手段より導入される固化材を圧縮エアー供給手段より導入される圧縮エアーに同伴して、圧縮エアーと固化材とを霧状に吐出する混合エジェクターを有していることを特徴とする請求項1から3の何れかに記載の地盤改良工法。   The supply mechanism is provided in a lower part of the stirring shaft or a stirring blade attached to the stirring shaft, and is accompanied by the solidified material introduced from the solidified material supply means by the compressed air introduced from the compressed air supply means, The ground improvement method according to any one of claims 1 to 3, further comprising a mixed ejector for discharging the compressed air and the solidified material in a mist form.
JP2010247087A 2010-11-04 2010-11-04 Ground improvement method Active JP5478460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247087A JP5478460B2 (en) 2010-11-04 2010-11-04 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247087A JP5478460B2 (en) 2010-11-04 2010-11-04 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2012097491A true JP2012097491A (en) 2012-05-24
JP5478460B2 JP5478460B2 (en) 2014-04-23

Family

ID=46389710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247087A Active JP5478460B2 (en) 2010-11-04 2010-11-04 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5478460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108442728A (en) * 2018-03-19 2018-08-24 中国五冶集团有限公司 Construction elevator basement roof local stiffening structures and methods
JP2019090262A (en) * 2017-11-15 2019-06-13 清水建設株式会社 Improved soil blending test method related to auxiliary water construction in penetration, and earth removing deep mixing treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145405A (en) * 1974-10-16 1976-04-17 Unyusho Kowan Gijutsu Kenkyush JIBAN KAIRYOKOHO
JPH11256564A (en) * 1998-03-13 1999-09-21 Tenox Corp Continuous two-plane soil improvement body and construction method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145405A (en) * 1974-10-16 1976-04-17 Unyusho Kowan Gijutsu Kenkyush JIBAN KAIRYOKOHO
JPH11256564A (en) * 1998-03-13 1999-09-21 Tenox Corp Continuous two-plane soil improvement body and construction method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090262A (en) * 2017-11-15 2019-06-13 清水建設株式会社 Improved soil blending test method related to auxiliary water construction in penetration, and earth removing deep mixing treatment method
CN108442728A (en) * 2018-03-19 2018-08-24 中国五冶集团有限公司 Construction elevator basement roof local stiffening structures and methods

Also Published As

Publication number Publication date
JP5478460B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
AU2020103672A4 (en) Construction method of rotary drilling hole-forming and jet mixing cement-soil occlusion curtain piles
CN202337976U (en) In-hole impact high-pressure jet grouting equipment
CN102071693B (en) Construction method of variable section cement-soil gravity type retaining wall
CN102803616B (en) For the method and apparatus manufacturing the underwater foundation of building
CN100572686C (en) The construction technology of hole support system in the hole
CN106368210B (en) A kind of large-diameter hollow steel Screw Pile and its construction method
CN102094425A (en) Foundation pit construction method adopting shallow buried depth Larsen steel plate pile as protective cofferdam
CN102444130B (en) Support replacing construction method in deep foundation pit project
CN102653945A (en) Foundation reinforcing and replacing structure and construction method thereof
CN106192650A (en) The operation highway bridgehead vehicle jump coordinating to control based on malformation disposes structure and method
JP2012046882A (en) Ground improvement method and device therefor
CN112195924A (en) Method for reinforcing foundation pit base of silt silty clay layer
CN101289852A (en) Construction process of water foundation ditch rotary churning pile water stopping curtain
CN110747847A (en) Double-pipe high-pressure jet grouting construction method for building impervious wall in soft foundation
CN113235601A (en) Deep foundation pit construction risk control structure and method for collapsible loess adjacent building
CN108930224A (en) Punching stick method bent cap supports regulating system construction method
CN112900468A (en) Bridge foundation construction method suitable for complex geological conditions
CN110130909B (en) Construction method for shield to penetrate existing station in silt stratum
JP5478460B2 (en) Ground improvement method
CN112176947A (en) Bank protection construction method for concave bank line of sludge layer foundation
CN116876486A (en) Free angle soft soil foundation reinforcement construction equipment, construction method and reinforcement pile
CN113026848B (en) Construction method of continuous high-spraying impervious wall by planing and milling method
CN110439475B (en) Rotary spraying drilling machine for road and bridge construction and repair
JP3669288B2 (en) Liquefaction prevention method
CN106013168A (en) Slag trough structure and construction method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250