JP2012097317A - High frequency quenching method and manufacturing method of product made from steel - Google Patents

High frequency quenching method and manufacturing method of product made from steel Download PDF

Info

Publication number
JP2012097317A
JP2012097317A JP2010245474A JP2010245474A JP2012097317A JP 2012097317 A JP2012097317 A JP 2012097317A JP 2010245474 A JP2010245474 A JP 2010245474A JP 2010245474 A JP2010245474 A JP 2010245474A JP 2012097317 A JP2012097317 A JP 2012097317A
Authority
JP
Japan
Prior art keywords
frequency
high frequency
steel
frequency heating
heating step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245474A
Other languages
Japanese (ja)
Other versions
JP5855338B2 (en
Inventor
Yasufumi Nakai
靖文 中井
Akihiro Hanaki
昭宏 花木
Junji Minoue
潤二 己之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46389560&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012097317(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Electronics Industry Co Ltd filed Critical Fuji Electronics Industry Co Ltd
Priority to JP2010245474A priority Critical patent/JP5855338B2/en
Publication of JP2012097317A publication Critical patent/JP2012097317A/en
Application granted granted Critical
Publication of JP5855338B2 publication Critical patent/JP5855338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency quenching method in which the hardness of a surface is high and the toughness of the inside is excellent using a material easily shaped.SOLUTION: In the gearwheel 1, a steel made part material is subjected to spherodizing processing considering cutting performance. First, the gearwheel 1 is subjected to the first high frequency quenching step. In the first high frequency quenching step, the oscillating frequency of the high frequency oscillator 10 is set high. Next the induction heating coil 7 is energized with high frequency alternate current with frequency lower than the previous time and the gearwheel 1 is subjected to the second high frequency heating step. As a result, the surface area heated in the first high frequency heating step previously becomes an austenite structure where remaining spherical carbide disappears and the spherical carbide is substantially perfectly disappears. On the other hand, the area deeper than that becomes the austenite structure including the spherical carbide. The reheated the area in the surface is converted to a martensite structure where the spherical provide does not remain when the gearwheel 1 is quenched. The area first heated in the second high frequency heating step is converted to the martensite structure including the spherical carbide.

Description

本発明は、高周波焼き入れの方法に関するものであり、高周波焼き入れによって表面の硬度が高く、且つ内部の靱性も向上させることができる方法に関するものである。また本発明は、鉄鋼を素材とする製品の製造方法に関するものであり、高周波焼き入れを工程の一つとして含むものである。   The present invention relates to a method of induction quenching, and relates to a method capable of improving surface toughness and internal toughness by induction quenching. Moreover, this invention relates to the manufacturing method of the product which uses steel as a raw material, and includes induction hardening as one of the processes.

鉄鋼製部品の表面硬化法の一つとして高周波焼き入れがある。ここで高周波焼き入れは、鉄鋼製部品材料で成形されたワークに誘導コイルを近接させ、当該誘導コイルに高周波電流を通電してワークを加熱することを特徴とする焼き入れ方法である。
即ち高周波焼き入れは、誘導コイルに高周波電流を通電することにより、誘導コイルに交番磁界を発生させ、この交番磁界中にワークを置くことによってワーク自身に二次電流を発生させ、当該二次電流によってワーク自身を昇温させて焼き入れする方法である。
One of the surface hardening methods for steel parts is induction hardening. Here, induction hardening is a hardening method characterized in that an induction coil is brought close to a workpiece formed of a steel part material, and the workpiece is heated by supplying a high-frequency current to the induction coil.
That is, in the induction hardening, a high frequency current is applied to the induction coil to generate an alternating magnetic field in the induction coil, and a workpiece is placed in the alternating magnetic field to generate a secondary current in the workpiece itself. In this method, the workpiece itself is heated and quenched.

特開2003−213327号公報JP 2003-213327 A

高周波焼き入れは、例えば浸炭焼き入れと比較して加熱に要する時間が短いという利点がある。
一方、高周波焼き入れによる焼き入れを施したワークは、浸炭焼き入れによって焼き入れを施したワークと比較して靱性が劣ると言われている。
Induction hardening has the advantage that the time required for heating is shorter than, for example, carburizing and hardening.
On the other hand, it is said that a work subjected to induction hardening is inferior in toughness as compared with a work subjected to hardening by carburizing.

即ち高周波の交番磁界によってワーク中に生じる二次電流は、ワークの表面に重点的に流れる。そのためワークは表面部だけが局部的に昇温する。例えば歯車を高周波焼き入れする場合を想定すると、焼き入れ後のワークは、図7の様な断面焼き入れパターンとなる。即ち機械構造用炭素鋼鋼材(SC材)を素材として歯車を成形し、この歯部を高周波焼き入れし、この断面をエッチング処理して観察すると、図7の様な焼き入れパターンとなる。なおこの傾向は、モジュールが小さい(モジュール8以下)歯車の場合に顕著である。
従って歯車の歯部が内部まで全面的に加熱される様な小さい歯の歯車を高周波加熱し、その状態から急冷すると、図7の様に、歯の部分Aの全体が略完全にマルテンサイト化し、ハブ部Bは、全くマルテンサイト化されない状態となる。
そのため歯の表面は硬く、耐磨耗性に優れるが、歯元部分の靱性が低く、歯の全体の耐衝撃性が低い。その結果、衝撃的な荷重を受けた際に歯が歯元から折れてしまう場合があった。
That is, the secondary current generated in the workpiece by the high frequency alternating magnetic field flows mainly on the surface of the workpiece. Therefore, only the surface part of the workpiece is locally heated. For example, assuming that the gears are induction hardened, the workpiece after quenching has a cross-sectional quenching pattern as shown in FIG. That is, when a gear is formed using a carbon steel material for machine structure (SC material) as a raw material, this tooth portion is induction-hardened, and this cross section is etched and observed, a quenching pattern as shown in FIG. 7 is obtained. This tendency is remarkable when the module is a small gear (module 8 or less).
Therefore, when a gear having a small tooth whose whole tooth portion is heated to the inside is heated at high frequency and rapidly cooled from that state, the entire tooth portion A is substantially completely martensified as shown in FIG. The hub part B is not martensitic at all.
Therefore, the tooth surface is hard and excellent in wear resistance, but the toughness of the root portion is low, and the overall impact resistance of the tooth is low. As a result, when receiving a shocking load, the tooth may break from the root.

一方、歯車の表面側だけを適正な周波数によって短時間だけ高周波加熱し、薄く焼き入れし、さらに焼戻しすると、図8の様な焼き入れパターンとなる。
この場合は、歯の部分Aの表面は、ビッカース硬さでHV720程度の高硬度が得られても、歯の内部は、焼き入れ前の素材の硬さそのものであり、ビッカース硬さでHV230程度しかなく、剛性が低い。そのためこの場合も、歯元強度が弱い歯車となる。さらに歯の中心部(内部)と表面部の間に、硬度が低い領域が生じてしまう。
また調質材を使用して歯車の表面側だけを適正な周波数によって短時間だけ高周波加熱し、薄く焼き入れしても、遷移層の硬度の落ち込みにより、歯車全体として低強度となる。
On the other hand, when only the surface side of the gear is heated at a high frequency for a short time with an appropriate frequency, thinly quenched, and further tempered, a quenching pattern as shown in FIG. 8 is obtained.
In this case, even if the surface of the tooth portion A has a Vickers hardness of about HV720, the inside of the tooth is the hardness of the material before quenching, and the Vickers hardness is about HV230. However, the rigidity is low. Therefore, also in this case, the gear has a weak tooth root strength. Further, a region having a low hardness is generated between the center portion (inside) of the tooth and the surface portion.
Even if only the surface of the gear is heated for a short time with an appropriate frequency using a tempered material and thinly quenched, the hardness of the entire gear becomes low due to the decrease in hardness of the transition layer.

また図7の様に歯の全体を高周波焼き入れした場合であっても、図8の様に歯の表面だけを高周波焼き入れした場合であっても、焼き入れされた部位(表面)とその他の部位(内部)との硬度差が甚だしく、両者の境界部分の強度遷移が急峻で、衝撃を受けた場合に両者の境界部分が破壊される場合があった。   Further, even if the whole tooth is induction-hardened as shown in FIG. 7 or only the tooth surface is induction-hardened as shown in FIG. The difference in hardness from this part (inside) was so great that the strength transition at the boundary between the two was steep and sometimes the boundary between the two was destroyed when subjected to an impact.

即ち前記した様に、焼き入れされた部位は、ビッカース硬さでHV720程度であるのに対し、これに隣接する部分は、焼き入れ前の素材の硬さそのものであり、ビッカース硬さでHV230程度しかなく、両者の硬度差が甚だしい。そのため衝撃を受けた場合に両者の境界部分が破壊され、歯の表面が欠けてしまう場合があった。   That is, as described above, the hardened part is about HV720 in terms of Vickers hardness, while the part adjacent to this is the hardness of the material before quenching, and is about HV230 in terms of Vickers hardness. However, the difference in hardness between the two is significant. For this reason, when subjected to an impact, the boundary between the two is destroyed, and the tooth surface may be chipped.

また高周波焼き入れを活用して鉄鋼製品を製造する場合は、浸炭焼き入れを施す場合と比較して、素材の炭素含有量が多く、切削性や可鍛性が悪いという問題もあった。   In addition, when steel products are manufactured using induction hardening, there is a problem that the carbon content of the material is large and machinability and malleability are poor as compared with carburizing and quenching.

即ち鉄鋼製部品材料を素材として鉄鋼製品を製造する場合は、途中で機械加工を経る場合が大半である。例えば鉄鋼製部品材料に対して旋盤加工やフライス加工、及びホブ加工等の切削加工が施され、その後に焼き入れ処理がなされて製品が完成する。あるいは、鉄鋼製部品材料を塑性変形(鍛造加工)させて所定の形状に成形し、その後に焼き入れ処理がなされて製品が完成する。   That is, in the case of manufacturing steel products using steel part materials as raw materials, most of them are machined in the middle. For example, a steel part material is subjected to a cutting process such as a lathe process, a milling process, and a hobbing process, and then a quenching process is performed to complete a product. Alternatively, a steel part material is plastically deformed (forged) and formed into a predetermined shape, and then a quenching process is performed to complete the product.

一方、焼き入れの方策として高周波焼き入れを採用する場合には、使用する鉄鋼製部品材料が限定され、機械構造用炭素鋼鋼材(SC材)または機械構造用合金鋼を使用するが、炭素を中程度以上含む鉄鋼製部品材料を素材とする必要がある。より具体的には、高周波焼き入れを採用する場合には、中炭素鋼又は高炭素鋼を使用して成形を行う必要がある。
これに対して、浸炭焼き入れは、炭素含有量の低い鉄鋼製部品材料(低炭素鋼)を使用することができる。
そして一般に、機械構造用炭素鋼鋼材(SC材)の様な炭素を多く含む鉄鋼製部品は、炭素含有量の低い鉄鋼製部品材料に比べて硬い。即ち高周波焼き入れ適応材の方が、浸炭適応材よりも硬い。そのため切削や塑性変形が困難であり、成形し難いという不満があった。
On the other hand, when induction hardening is adopted as a quenching measure, the steel parts material to be used is limited and carbon steel material for machine structure (SC material) or alloy steel for machine structure is used. It is necessary to use steel parts material containing medium or higher. More specifically, when adopting induction hardening, it is necessary to perform molding using medium carbon steel or high carbon steel.
On the other hand, carburizing and quenching can use steel part materials (low carbon steel) having a low carbon content.
In general, steel parts containing a large amount of carbon, such as carbon steel materials for machine structures (SC materials), are harder than steel part materials having a low carbon content. That is, the induction hardening material is harder than the carburizing material. Therefore, there was a complaint that cutting and plastic deformation are difficult and molding is difficult.

また鉄鋼材料を球状化処理(球状化焼なまし処理)すると、組織中に球状化した炭化物が現れ、切削性が向上する。即ち球状化処理された素材は、焼きならし材や調質材と比べて軟らかい。しかしその反面、球状化処理された素材は、短時間の加熱では炭化物の拡散が進まない。そのため短時間加熱を特徴とする高周波焼き入れでは、炭化物の拡散が困難であり、通常の高周波焼き入れでは十分な硬度を発現することができない。   Further, when the steel material is spheroidized (spheroidizing annealing), spheroidized carbides appear in the structure and the machinability is improved. That is, the spheroidized material is softer than the normalizing material and the tempered material. However, on the other hand, the material that has been spheroidized does not diffuse carbides when heated for a short time. Therefore, in the induction hardening characterized by short-time heating, it is difficult to diffuse the carbides, and the normal induction hardening cannot exhibit sufficient hardness.

そこで本発明は、従来技術の上記した問題点に注目し、表面の硬度が高く、かつ内部の靱性に優れた高周波焼き入れ方法の開発を課題とするものである。同時に本発明は、切削成形や鍛造成形が容易であり、且つ表面の硬度が高く、さらに内部にも靱性の優れた焼き入れを施すことができる焼き入れされた製品の製造方法の開発を課題とするものである。   Accordingly, the present invention focuses on the above-described problems of the prior art, and an object of the present invention is to develop a high-frequency quenching method having high surface hardness and excellent internal toughness. At the same time, it is an object of the present invention to develop a method for manufacturing a quenched product that is easy to cut and forge, has high surface hardness, and can be hardened with excellent toughness inside. To do.

本発明者は、上記した課題を解決するために、鋭意研究し、球状炭化物を含む組織を備えた鉄鋼製部品を二回に渡って高周波焼き入れし、最初の第一高周波加熱工程においては、高周波発振機の発振周波数を高く設定し、二回目の第二高周波加熱工程においては、高周波発振機の発振周波数を低く設定すると、鉄鋼製部品材料の内部が理想的な状態で焼き入れされることを発見した。   In order to solve the above-mentioned problems, the present inventor earnestly researched and induction-hardened steel parts having a structure containing spherical carbide twice, and in the first first induction heating process, If the oscillation frequency of the high-frequency oscillator is set high and the oscillation frequency of the high-frequency oscillator is set low in the second second high-frequency heating process, the inside of the steel part material will be quenched in an ideal state. I found

この知見に基づいて完成された請求項1に記載の発明は、球状化した炭化物を含む組織を備えた鉄鋼製部品を高周波加熱する第一高周波加熱工程と、第一高周波加熱工程を経た前記鉄鋼製部品を前記第一高周波加熱工程の際の周波数よりも低い周波数で高周波誘導加熱する第二高周波加熱工程と、前記鉄鋼製部品を急冷する急冷工程を順次行うことを特徴とする高周波焼き入れ方法である。   The invention according to claim 1 completed on the basis of this finding includes a first high-frequency heating step of high-frequency heating a steel part having a structure containing a spheroidized carbide, and the steel subjected to the first high-frequency heating step. A high-frequency quenching method characterized by sequentially performing a second high-frequency heating step of high-frequency induction heating a manufactured part at a frequency lower than the frequency in the first high-frequency heating step, and a rapid cooling step of rapidly cooling the steel part. It is.

請求項2に記載の発明は、第一高周波加熱工程によって、鉄鋼製部品の表面をAc3点よりもはるかに高い温度に昇温した後に徐冷または放冷し、その後に第二高周波加熱工程によって鉄鋼製部品の表面を先の第一高周波加熱工程における加熱深さよりも深く且つAc3点近傍の低い温度に先の第一高周波加熱工程よりも長い時間をかけて昇温し、その後に急冷工程を行うことを特徴とする請求項1に記載の高周波焼き入れ方法である。   According to the second aspect of the present invention, the surface of the steel part is heated to a temperature much higher than the Ac3 point by the first high-frequency heating step, and then slowly cooled or allowed to cool, and then the second high-frequency heating step. The surface of the steel part is heated to a temperature deeper than the heating depth in the previous first high-frequency heating step and near the Ac3 point over a longer time than the previous first high-frequency heating step, and then the rapid cooling step is performed. The induction hardening method according to claim 1, wherein the induction hardening method is performed.

請求項3に記載の発明は、第一高周波加熱工程における周波数は50kHz以上であり、第二高周波加熱工程における周波数は30kHz以下であることを特徴とする請求項1又は2に記載の高周波焼き入れ方法である。   The invention according to claim 3 is the induction hardening according to claim 1 or 2, wherein the frequency in the first high-frequency heating step is 50 kHz or more, and the frequency in the second high-frequency heating step is 30 kHz or less. Is the method.

また第一高周波加熱工程における周波数は80kHz以上であることが望ましい。   Further, the frequency in the first high-frequency heating step is desirably 80 kHz or more.

請求項4に記載の発明は、鉄鋼材料に球状化焼なまし処理を施す球状化工程と、その鉄鋼材料を所定のワーク形状に切削及び/又は鍛造成形する成形工程を備え、その後に請求項1乃至3のいずれかの高周波焼き入れ方法によって焼き入れすることを特徴とする鉄鋼を素材とする製品の製造方法である。   The invention according to claim 4 includes a spheronization step of subjecting the steel material to spheroidizing annealing, and a forming step of cutting and / or forging the steel material into a predetermined workpiece shape. It is a manufacturing method of a product made of steel, which is hardened by the induction hardening method of any one of 1 to 3.

本発明によると、鉄鋼製部品は、表面の硬度が高く、かつ内部には中程度の硬さであって深い強靱性域を持つ優れたものとなる。また焼き入れ前の素材は、炭化物が球状化された組織であるから、焼き入れ前における硬度が低く、焼き入れ前に行われる成形が容易である。   According to the present invention, the steel part is excellent in that the hardness of the surface is high and the inside has a medium hardness and a deep toughness region. In addition, since the material before quenching has a structure in which carbides are spheroidized, the hardness before quenching is low, and molding performed before quenching is easy.

本発明の実施形態の鉄鋼を素材とする製品の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the product which uses the steel of embodiment of this invention as a raw material. 本発明の実施形態で使用する高周波焼き入れ装置の概念図である。It is a conceptual diagram of the induction hardening apparatus used by embodiment of this invention. 高周波焼き入れを施す前の鉄鋼製部品(歯車)の一部断面図である。It is a partial cross section figure of the steel parts (gear) before performing induction hardening. 第一高周波加熱工程の際における鉄鋼製部品(歯車)の一部断面図である。It is a partial cross section figure of the steel parts (gear) in the case of the 1st high frequency heating process. 第二高周波加熱工程の際における鉄鋼製部品(歯車)の一部断面図である。It is a partial cross section figure of the steel parts (gear) in the case of the 2nd high frequency heating process. 本発明の実施形態の高周波焼き入れを施した鉄鋼製部品(歯車)の一部断面図である。1 is a partial cross-sectional view of a steel part (gear) subjected to induction hardening according to an embodiment of the present invention. 従来技術の高周波焼き入れ法によって歯の全体を焼き入れした鉄鋼製部品(歯車)の一部断面図である。It is a partial cross section figure of the steel parts (gear) which hardened the whole tooth | gear by the induction hardening method of the prior art. 従来技術の高周波焼き入れ法によって歯の表面部分だけを焼き入れした鉄鋼製部品(歯車)の一部断面図である。It is a partial cross section figure of the steel parts (gear) which hardened only the surface part of the tooth | gear by the induction hardening method of the prior art.

以下さらに本発明の実施形態について説明する。本実施形態では、歯車を焼き入れする場合を例に説明する。
本実施形態で採用するワークは、歯車(鉄鋼製部品)1である。歯車1は、S45C、S50C等の炭素鋼や、クロムモリブデン鋼(SCM)等の合金鋼を素材とするものである。本実施形態では、AISI4150又はSCM440を使用した。
Embodiments of the present invention will be further described below. In the present embodiment, a case where the gear is quenched will be described as an example.
The workpiece employed in this embodiment is a gear (steel part) 1. The gear 1 is made of carbon steel such as S45C and S50C, or alloy steel such as chrome molybdenum steel (SCM). In this embodiment, AISI 4150 or SCM440 is used.

ワークたる歯車(鉄鋼製部品)1は、歯切り加工に公知のホブを使用し、素材を切削加工して成形されるが、本実施形態では、切削による成形に先立って、素材たる鉄鋼製部品を球状化処理(球状化焼なまし)する。即ち組織中に炭化物を球状に析出させる。球状化処理の方法は、公知の通りであり、代表的な方法としては次の4種類がある。
即ち第1の方法は、鉄鋼製部品をA1温度とA3温度またはAcm温度との間の温度に加熱し、徐冷する。
第2の方法は、鉄鋼製部品をA1温度とA3温度またはAcm温度との間の温度に加熱し、その後にA1温度以下の温度に保持してから冷却する。
第3の方法は、鉄鋼製部品をA1温度とA3温度またはAcm温度との間の温度に加熱し、その後にA1温度以下の温度に保持し、さらに再度昇温し、これを繰り返した後に冷却する。
第4の方法は、鉄鋼製部品をA1温度に昇温し、A1温度で保持する。
球状化処理された素材は、球状化した炭化物を含む。球状化処理された素材は、焼きならし材や調質材と比べて軟らかい。しかし前記した様に、球状化処理された素材は、短時間の加熱では炭化物の拡散が進まないので、短時間加熱を特徴とする高周波焼き入れでは、炭化物の拡散が困難であり、通常の高周波焼き入れでは十分な硬度を発現することができない。
A gear (steel part) 1 as a workpiece is formed by cutting a material using a known hob for gear cutting, but in this embodiment, a steel part as a material prior to forming by cutting. Is spheroidized (spheroidizing annealing). That is, carbides are precipitated in a spherical shape in the structure. The method of the spheroidizing treatment is known, and there are the following four types as typical methods.
That is, in the first method, a steel part is heated to a temperature between A1 temperature and A3 temperature or Acm temperature and gradually cooled.
In the second method, the steel part is heated to a temperature between the A1 temperature and the A3 temperature or the Acm temperature, and then kept at a temperature equal to or lower than the A1 temperature and then cooled.
In the third method, the steel part is heated to a temperature between A1 temperature and A3 temperature or Acm temperature, and then maintained at a temperature equal to or lower than the A1 temperature. To do.
In the fourth method, the steel part is heated to the A1 temperature and held at the A1 temperature.
The spheroidized material includes spheroidized carbides. The spheroidized material is softer than normalizing materials and tempered materials. However, as described above, the material subjected to the spheroidization treatment does not progress in the diffusion of carbides when heated for a short period of time. Therefore, the diffusion of carbides is difficult in the induction hardening characterized by short time heating. Quenching cannot exhibit sufficient hardness.

そして本実施形態では、球状化処理を施した鉄鋼製部品材料を使用して歯車1を成形する。
この様な球状化した炭化物を有する組織を持つ鉄鋼材料は、切削性が高く、公知のホブを使用して容易に歯形を成形することができる。
成形された歯車1は、図3に示すように、いずれの部位も、炭化物が球状化した組織である。
And in this embodiment, the gearwheel 1 is shape | molded using the steel parts material which performed the spheroidization process.
A steel material having a structure having such a spheroidized carbide has high machinability, and a tooth profile can be easily formed using a known hob.
As shown in FIG. 3, the formed gear 1 has a structure in which carbides are spheroidized at any part.

続いて成形された歯車1を高周波焼き入れする。
図2は、高周波焼き入れ装置2の概念図である。高周波焼き入れ装置2は、高周波電源5と、カレントトランス6及び誘導加熱コイル7によって構成されている。
高周波電源5は、高周波発振機10を備え、所望の周波数の高周波交流を出力することができる。
誘導加熱コイル7は、例えば公知のサークル型コイルであり、歯車1の円周を覆う大きさを持っている。なお誘導加熱コイル7の形状や構造は任意であり、単なる円形のものや、歯形に応じた凹凸形状を有するものであってもよい。また半開放型のコイルであってもよい。さらに歯を一個ずつ昇温させる構造のコイルであってもよい。
Subsequently, the formed gear 1 is induction-quenched.
FIG. 2 is a conceptual diagram of the induction hardening apparatus 2. The induction hardening device 2 includes a high frequency power source 5, a current transformer 6 and an induction heating coil 7.
The high frequency power source 5 includes a high frequency oscillator 10 and can output a high frequency alternating current having a desired frequency.
The induction heating coil 7 is, for example, a known circle type coil, and has a size that covers the circumference of the gear 1. The shape and structure of the induction heating coil 7 are arbitrary, and may be a simple circular shape or a concavo-convex shape corresponding to the tooth profile. A semi-open type coil may also be used. Furthermore, the coil of the structure which raises a tooth | gear one by one may be used.

本実施形態では、最初に歯車1を第一高周波加熱工程にかける。即ち高周波発振機10の発振周波数を高く設定し、誘導加熱コイル7に高い周波数の高周波交流を通電する。
その結果、歯車1に二次電流が流れるが、誘導加熱コイル7に通電される電流が高い周波数であるから、二次電流は、歯車1の表面だけに流れる。そのため図4に示すように、歯車1の表面だけが発熱し、内部は発熱しない。ただし発熱領域から熱伝導を受けるので、内部についても温度は上がるが、内部の温度上昇は小さいので組織中の炭化物が溶け込み拡散することはない。
In the present embodiment, the gear 1 is first subjected to the first high-frequency heating process. That is, the oscillation frequency of the high frequency oscillator 10 is set high, and a high frequency high frequency alternating current is applied to the induction heating coil 7.
As a result, a secondary current flows through the gear 1, but since the current supplied to the induction heating coil 7 has a high frequency, the secondary current flows only on the surface of the gear 1. Therefore, as shown in FIG. 4, only the surface of the gear 1 generates heat, and the inside does not generate heat. However, since heat conduction is received from the heat generating region, the temperature rises inside, but the internal temperature rise is small, so that the carbide in the structure does not melt and diffuse.

第一高周波加熱工程においては、歯車1の表面温度をAc3点をはるかに上回る温度とし、難拡散組織たる炭化物をある程度予備拡散させる。
歯車1の表面温度は、Ac3点を摂氏200度以上上回る温度とし、加熱時間が極短い場合、具体的には摂氏1000度以上とすることが望ましい。
またAISI4150の様な合金鋼を使用する場合には、炭素鋼以上に炭化物の拡散が悪いから、より高温にすることが望ましい。瞬間的には摂氏1200度程度に昇温することが推奨される。
また発熱拡散領域の厚さは、1mmから2mm程度であることが推奨される。
発熱領域が高温を維持している時間は、ごく僅かで足り、具体的には、0.1秒から0.5秒程度である。発熱領域が高温を維持している時間は、過加熱による炭化物の内部拡散を抑制できる範囲の時間である。
In the first high-frequency heating step, the surface temperature of the gear 1 is set to a temperature that is much higher than the Ac3 point, and carbide that is a difficult-to-diffuse structure is preliminarily diffused to some extent.
The surface temperature of the gear 1 is set to a temperature that exceeds the Ac3 point by 200 degrees Celsius or more. When the heating time is extremely short, specifically, the surface temperature is desirably 1000 degrees Celsius or more.
When alloy steel such as AISI 4150 is used, it is desirable that the temperature be higher because carbide diffusion is worse than carbon steel. It is recommended to raise the temperature to about 1200 degrees Celsius instantaneously.
Further, it is recommended that the thickness of the heat generation diffusion region is about 1 mm to 2 mm.
The time during which the heat generation region is maintained at a high temperature is very short, specifically, about 0.1 to 0.5 seconds. The time during which the heat generating region is maintained at a high temperature is a time within a range in which internal diffusion of carbide due to overheating can be suppressed.

その結果、表面近傍は、オーステナイト組織となり、さらに組織中の球状化していた炭化物が溶け込み、拡散する。これに対して内部の非加熱領域は、実質的に組織が変わらず、球状炭化物が析出した状態を維持している。
第一高周波加熱工程の後に、歯車1を放冷することにより、続く第二高周波加熱工程時に球状炭化物が完全拡散可能な組織状態となる。
本実施形態では、一定時間だけ誘導加熱コイル7に通電し、その後に通電を停止して放置する。その結果、歯車1の温度が内部への奪熱質量効果により低下してゆく。また歯車1の温度が低下することによって表面部は、焼ならし組織か、自冷により微細なパーライト組織となり、その中に未溶解の球状炭化物が一部残留する組織となる。一方、それよりも深部は、多くの球状炭化物を含有する組織を維持している。
As a result, the vicinity of the surface has an austenite structure, and the spheroidized carbide in the structure dissolves and diffuses. On the other hand, the internal non-heated region is substantially unchanged in structure and maintains a state in which spherical carbides are precipitated.
By allowing the gear 1 to cool after the first high-frequency heating step, a structure state is obtained in which spherical carbides can be completely diffused during the subsequent second high-frequency heating step.
In the present embodiment, the induction heating coil 7 is energized for a certain time, and then the energization is stopped and left. As a result, the temperature of the gear 1 is lowered due to the effect of heat sinking on the inside. Further, when the temperature of the gear 1 is lowered, the surface portion becomes an ordinary structure or a fine pearlite structure by self-cooling, and a structure in which a part of undissolved spherical carbide remains therein. On the other hand, the deeper part maintains a structure containing many spherical carbides.

次に歯車1を第二高周波加熱工程にかける。即ち高周波発振機10の発振周波数を下げるか、別のステーションに歯車1を移し、別の誘導加熱コイル7に前回よりも低い周波数の高周波交流を通電し、当該別のコイルに歯車1を近接させる。
その結果、歯車1に二次電流が流れるが、誘導加熱コイル7に通電される電流が、低い周波数であるから、二次電流は、歯車1の表面だけでなく、深部にも流れる。そのため図5に示すように、歯車1の歯元からさらに深い領域までが発熱する。
また第二高周波加熱工程においては、前記した第一高周波加熱工程よりも低い温度に加熱する。より具体的には加熱領域の温度を表面温度が、Ac3点直上程度となる様に加熱する。より望ましくは、摂氏800度前後に加熱する。
Next, the gear 1 is subjected to a second high-frequency heating process. That is, the oscillation frequency of the high-frequency oscillator 10 is lowered, or the gear 1 is moved to another station, a high-frequency alternating current having a lower frequency than that of the previous induction is supplied to another induction heating coil 7, and the gear 1 is brought close to the other coil. .
As a result, a secondary current flows through the gear 1, but since the current supplied to the induction heating coil 7 has a low frequency, the secondary current flows not only on the surface of the gear 1 but also in the deep portion. Therefore, as shown in FIG. 5, heat is generated from the tooth root of the gear 1 to a deeper region.
Moreover, in a 2nd high frequency heating process, it heats to temperature lower than an above described 1st high frequency heating process. More specifically, the heating region is heated so that the surface temperature is about the Ac3 point. More desirably, heating is performed at around 800 degrees Celsius.

第二高周波加熱工程の際に、発熱領域が高温を維持している時間は、前記した第一高周波加熱工程の際よりもはるかに長い。目安の加熱時間としては、歯車1のモジュールの2倍から3倍程度とする。   During the second high-frequency heating step, the time during which the heat generation region is maintained at a high temperature is much longer than that during the first high-frequency heating step. The reference heating time is about 2 to 3 times that of the gear 1 module.

また発熱領域の厚さ(深さ)は、歯元から数mm以上であることが推奨される。   In addition, it is recommended that the thickness (depth) of the heat generating region be several mm or more from the tooth base.

その結果、先に第一高周波加熱工程によって高温に昇温され、予備拡散された表面領域は、第二高周波加熱工程の際に再加熱され、残っていた球状炭化物が拡散消失し、固有の炭素量に応じた均一なオーステナイト組織となる。即ち図5の再加熱領域は、球状化した炭化物が略完全に消失した組織となる。
一方、それよりも深い領域は、第二高周波加熱工程ではじめて加熱された領域であり、未溶解の球状炭化物を含むオーステナイト組織となる。
As a result, the surface region previously heated to a high temperature by the first high-frequency heating process and pre-diffused is reheated during the second high-frequency heating process, and the remaining spherical carbide diffuses and disappears, and the inherent carbon It becomes a uniform austenite structure according to the amount. That is, the reheat region in FIG. 5 has a structure in which the spheroidized carbides have almost completely disappeared.
On the other hand, the region deeper than that is a region heated for the first time in the second high-frequency heating step, and becomes an austenite structure containing undissolved spherical carbides.

そして歯車1を急冷すると、表面の再加熱領域は、マルテンサイト組織のみに変態する。また第二高周波加熱工程によって初めて加熱された領域は、未溶解の球状炭化物と、低炭素マルテンサイトとの混合組織に変態する。
急冷した後は、必要に応じて再加熱し、焼き戻しを行う。
When the gear 1 is rapidly cooled, the surface reheat region is transformed into only a martensite structure. In addition, the region heated for the first time by the second high-frequency heating step is transformed into a mixed structure of undissolved spherical carbide and low carbon martensite.
After quenching, reheat and temper as necessary.

各部の硬度分布は、図6の様であり、表面層は、ビッカース硬さでHV740程度の極めて硬い組織となり、中間層は、ビッカース硬さでHV450程度のやや硬い組織となり、最深層は、ビッカース硬さでHV200以下程度の柔らかい組織となる。   The hardness distribution of each part is as shown in FIG. 6. The surface layer has a very hard structure with a Vickers hardness of about HV740, the intermediate layer has a slightly hard structure with a Vickers hardness of about HV450, and the deepest layer has a Vickers hardness. It becomes a soft structure with a hardness of about HV200 or less.

そのため、歯の表面は、耐磨耗性に優れ、歯の内部や歯元部分は、高い強度と靱性を示す。
さらに各層の界面における硬度差が小さいので、層間の剥離も起こらない。そのため高周波焼き入れ後の歯車1は、理想的な硬度分布を持ち、丈夫である。
Therefore, the tooth surface is excellent in wear resistance, and the inside and root portion of the tooth show high strength and toughness.
Furthermore, since the difference in hardness at the interface of each layer is small, no delamination occurs. Therefore, the gear 1 after induction hardening has an ideal hardness distribution and is strong.

以上説明した実施形態では、歯車を例にあげて本発明を説明したが、鉄鋼製部品は歯車に成形されたものに限定されるものではない。本発明を採用する製品は、限定されるものではないが、衝撃と摩擦の双方を常時受ける製品に本発明を採用することが推奨される。 また本発明を歯車に応用する場合、モジュールが10以下の歯車に適用するとより顕著な効果が発揮される。   In the embodiment described above, the present invention has been described by taking a gear as an example, but steel parts are not limited to those formed in a gear. The product adopting the present invention is not limited, but it is recommended to adopt the present invention for a product that always receives both impact and friction. Further, when the present invention is applied to a gear, when the module is applied to a gear of 10 or less, a more remarkable effect is exhibited.

本発明は、表面が高硬度で耐磨耗性に優れ、内部に素材以上の強靱性を備え、中間遷移層も緩やかな強度(硬度)勾配にすることができ、高強度部材に最適な高周波焼き入れ法を提供するものである。   The present invention has high hardness on the surface, excellent wear resistance, internal toughness higher than that of the material, the intermediate transition layer can also have a gentle strength (hardness) gradient, and is suitable for high-strength members A quenching method is provided.

1 歯車(鉄鋼製部品)
2 高周波焼き入れ装
5 高周波電源
10 高周波発振機
1 Gears (steel parts)
2 Induction hardening 5 High frequency power supply 10 High frequency oscillator

Claims (4)

球状化した炭化物を含む組織を備えた鉄鋼製部品を高周波加熱する第一高周波加熱工程と、第一高周波加熱工程を経た前記鉄鋼製部品を前記第一高周波加熱工程の際の周波数よりも低い周波数で高周波誘導加熱する第二高周波加熱工程と、前記鉄鋼製部品を急冷する急冷工程を順次行うことを特徴とする高周波焼き入れ方法。   A first high-frequency heating step for high-frequency heating a steel part having a structure containing spheroidized carbides, and a frequency lower than the frequency during the first high-frequency heating step for the steel part that has undergone the first high-frequency heating step A high-frequency quenching method comprising sequentially performing a second high-frequency heating step of high-frequency induction heating in step 1 and a rapid cooling step of rapidly cooling the steel part. 第一高周波加熱工程によって、鉄鋼製部品の表面をAc3点よりもはるかに高い温度に昇温した後に徐冷または放冷し、その後に第二高周波加熱工程によって鉄鋼製部品の表面を先の第一高周波加熱工程における加熱深さよりも深く且つAc3点近傍の温度に先の第一高周波加熱工程よりも長い時間をかけて昇温し、その後に急冷工程を行うことを特徴とする請求項1に記載の高周波焼き入れ方法。   In the first high-frequency heating process, the surface of the steel part is heated to a temperature much higher than the Ac3 point, and then slowly cooled or allowed to cool. 2. The method according to claim 1, wherein the temperature is raised to a temperature deeper than a heating depth in one high-frequency heating step and in the vicinity of the Ac3 point over a longer time than the first high-frequency heating step, and then a rapid cooling step is performed. The induction hardening method as described. 第一高周波加熱工程における周波数は50kHz以上であり、第二高周波加熱工程における周波数は30kHz以下であることを特徴とする請求項1又は2に記載の高周波焼き入れ方法。   The induction hardening method according to claim 1 or 2, wherein the frequency in the first high-frequency heating step is 50 kHz or more, and the frequency in the second high-frequency heating step is 30 kHz or less. 鉄鋼材料に球状化焼なまし処理を施す球状化工程と、その鉄鋼材料を所定のワーク形状に切削及び/又は鍛造成形する成形工程を備え、その後に請求項1乃至3のいずれかの高周波焼き入れ方法によって焼き入れすることを特徴とする鉄鋼を素材とする製品の製造方法。   A spheroidizing step of subjecting the steel material to spheroidizing annealing, and a forming step of cutting and / or forging the steel material into a predetermined workpiece shape, and thereafter induction heating according to any one of claims 1 to 3. A method for producing a product made of steel, which is quenched by a method of placing.
JP2010245474A 2010-11-01 2010-11-01 Induction hardening method and manufacturing method of products made of steel Active JP5855338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245474A JP5855338B2 (en) 2010-11-01 2010-11-01 Induction hardening method and manufacturing method of products made of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245474A JP5855338B2 (en) 2010-11-01 2010-11-01 Induction hardening method and manufacturing method of products made of steel

Publications (2)

Publication Number Publication Date
JP2012097317A true JP2012097317A (en) 2012-05-24
JP5855338B2 JP5855338B2 (en) 2016-02-09

Family

ID=46389560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245474A Active JP5855338B2 (en) 2010-11-01 2010-11-01 Induction hardening method and manufacturing method of products made of steel

Country Status (1)

Country Link
JP (1) JP5855338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
KR20200043560A (en) * 2018-10-17 2020-04-28 강전권 heat treatment and Surface propagation method of Metalwork

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241120A (en) * 1990-12-28 1992-08-28 Kanai Hiroyuki Method for heat-treating metallic wire for spinning frame
JPH05507117A (en) * 1990-04-10 1993-10-14 エルバ・インダクション・エー・エス Surface hardening device for rotationally symmetrical parts by induction heating with at least two frequencies
JP2005265088A (en) * 2004-03-19 2005-09-29 Nsk Ltd Toroidal type continuously variable transmission and method for manufacturing trunnion
JP2006009145A (en) * 2004-05-24 2006-01-12 Komatsu Ltd Rolling member and production method thereof
JP2010024530A (en) * 2008-07-24 2010-02-04 Nsk Ltd Rolling bearing and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507117A (en) * 1990-04-10 1993-10-14 エルバ・インダクション・エー・エス Surface hardening device for rotationally symmetrical parts by induction heating with at least two frequencies
JPH04241120A (en) * 1990-12-28 1992-08-28 Kanai Hiroyuki Method for heat-treating metallic wire for spinning frame
JP2005265088A (en) * 2004-03-19 2005-09-29 Nsk Ltd Toroidal type continuously variable transmission and method for manufacturing trunnion
JP2006009145A (en) * 2004-05-24 2006-01-12 Komatsu Ltd Rolling member and production method thereof
JP2010024530A (en) * 2008-07-24 2010-02-04 Nsk Ltd Rolling bearing and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
KR20200043560A (en) * 2018-10-17 2020-04-28 강전권 heat treatment and Surface propagation method of Metalwork
KR102192892B1 (en) * 2018-10-17 2020-12-21 강전권 heat treatment and Surface propagation method of Metalwork

Also Published As

Publication number Publication date
JP5855338B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
CN102803522B (en) Method for producing harmonic drive gear base material
US4785147A (en) System for hardening gears by induction heating
US8858733B2 (en) Laser hardened surface for wear and corrosion resistance
JP2004308011A (en) Screw having partially hardened functional tip part, and method for manufacturing the same
JP2011514929A (en) Heat treatment process for steel
KR20070046103A (en) Method of manufacturing a hardened forged steel component
JP5855338B2 (en) Induction hardening method and manufacturing method of products made of steel
JP3699773B2 (en) Induction hardening method
CN102181613B (en) Heat treatment method for large-scale Cr12Mov workpiece
CN101974676B (en) Breaking-preventing knuckle spindle and thermal treatment method thereof
US4749834A (en) Method and apparatus of hardening gears by induction heating
EP2888378B1 (en) Method for heat treating a steel component
JP6113141B2 (en) Method for processing components such as gears
CA3021235C (en) Method for producing a formed body
US2730472A (en) Method of manufacturing hollow tubular articles
JP6519282B2 (en) Ring gear manufacturing method and ring gear
Grum Overview of residual stresses after induction surface hardening
JP2000054027A (en) Production of linear guide rail
JPH10121125A (en) Treatment of surface of steel member and surface treated steel member
JP2007100121A (en) Method and apparatus for tempering-processing and member for heat treatment
JP2001020016A (en) Heat treatment method of metallic member
CN105803161A (en) Heat treatment method for steel material
JP2020076148A (en) Surface hardening treatment method for workpiece
JPH0214408B2 (en)
KR20190116746A (en) A surface heat treatment method of mother metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5855338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150