JPH0214408B2 - - Google Patents

Info

Publication number
JPH0214408B2
JPH0214408B2 JP9006381A JP9006381A JPH0214408B2 JP H0214408 B2 JPH0214408 B2 JP H0214408B2 JP 9006381 A JP9006381 A JP 9006381A JP 9006381 A JP9006381 A JP 9006381A JP H0214408 B2 JPH0214408 B2 JP H0214408B2
Authority
JP
Japan
Prior art keywords
hardening
hardened
gear
gears
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9006381A
Other languages
Japanese (ja)
Other versions
JPS57207119A (en
Inventor
Masazumi Oonishi
Hiroo Nakamura
Mineo Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9006381A priority Critical patent/JPS57207119A/en
Publication of JPS57207119A publication Critical patent/JPS57207119A/en
Publication of JPH0214408B2 publication Critical patent/JPH0214408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は、小型歯車(モジユール3以下)を表
面硬化する過程で調質を行ないつつ高周波焼入
し、歯のプロフイルに沿つた焼入パターンを得る
ことのできる表面硬化法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a surface hardening method that enables induction hardening while performing thermal refining during the surface hardening process of small gears (module 3 or less) to obtain a hardening pattern that follows the tooth profile. Regarding the law.

小型歯車の高周波焼入方法としては、全歯一発
焼入あるいは予熱全歯一発焼入等がある。
Examples of induction hardening methods for small gears include single-shot hardening of all teeth and single-shot hardening of all teeth with preheating.

小型歯車を全歯一発焼入で表面硬化すると、第
1図イに示すように歯部が小さいため歯部11の
表面だけでなく全体が加熱焼入されて、ズブ焼入
となる(図中、12は硬化された範囲を示す)。
When a small gear is surface hardened by single-shot hardening of all teeth, as shown in Figure 1A, since the teeth are small, not only the surface of the toothed part 11 but the entire surface is heated and hardened, resulting in deep hardening (Fig. 12 indicates the cured area).

また、予熱全歯一発焼入は、予め500〜600℃ま
で加熱した後高出力で短時間のうちに加熱焼入す
る方法であり、この方法によれば小型歯車であつ
ても第1図ロに示したように、歯部11のプロフ
イル11aに沿つた表面硬化ができる。すなわ
ち、輪郭焼入である。
In addition, preheating and one-shot hardening of all teeth is a method in which the teeth are preheated to 500 to 600°C and then heated and hardened in a short period of time at high output. According to this method, even small gears can be As shown in FIG. 2, the surface of the tooth portion 11 can be hardened along the profile 11a. That is, it is contour hardening.

小型歯車の高周波焼入パターンと歯元疲労強度
の関係では、輪郭焼入歯車はズブ焼入歯車に比べ
て120〜150%の疲労強度となる。また、高周波輪
郭焼入歯車は、浸炭による輪郭焼入歯車に比べて
100〜120%の疲労強度である。
Regarding the relationship between the induction hardening pattern of small gears and the tooth base fatigue strength, contour hardened gears have a fatigue strength of 120 to 150% compared to sub hardened gears. In addition, high-frequency contour hardened gears are more durable than carburized contour hardened gears.
It has a fatigue strength of 100-120%.

従つて、高周波焼入歯車で高疲労強度(以下、
高強度という)を得るには歯のプロフイルに沿つ
た輪郭焼入を行なう必要がある。
Therefore, induction hardened gears have high fatigue strength (hereinafter referred to as
To obtain high strength (high strength), it is necessary to perform contour hardening along the tooth profile.

上記いずれの焼入方法においても、高周波焼入
性を確保するために小型歯車に焼入工程前の粗材
の状態で焼入・焼もどしあるいは焼ならし等の調
質熱処理を施しておくことが一般に行なわれてい
る。通常、高周波焼入に使用される中〜高炭素鋼
では、この調質後の硬さが高いため表面処理直前
に行なう旋削あるいは歯切作業(以下、歯切作業
等という)での工具損耗が激しく、工具寿命がは
だ焼鋼(SCM420、SCr420等の低炭素合金鋼)
に比べて非常に短かいという欠点があつた。
In any of the above quenching methods, in order to ensure induction hardenability, the small gear must be subjected to tempering heat treatment such as quenching, tempering, or normalizing in the raw material state before the quenching process. is commonly practiced. Normally, medium to high carbon steel used for induction hardening has a high hardness after heat treatment, which causes tool wear during turning or gear cutting work (hereinafter referred to as gear cutting work, etc.) performed immediately before surface treatment. Case hardened steel (low carbon alloy steel such as SCM420, SCr420, etc.) has a long tool life.
It had the disadvantage of being very short compared to .

歯車粗材の歯切作業等を容易にするために、前
処理として軟化焼鈍も行われているが、この場合
従来の予熱高周波焼入の熱サイクルで歯車を焼入
すると、得られる小型歯車の歯底部分の焼入組織
が不完全となり、これを防止するために高周波焼
入時の加熱温度を上げると、上述のズブ焼入とな
り好ましくなかつた。
Softening annealing is also performed as a pretreatment to facilitate gear cutting work on gear rough material, but in this case, if the gear is hardened using the conventional preheating induction hardening heat cycle, the resulting small gear The hardened structure at the bottom of the tooth became incomplete, and when the heating temperature during induction hardening was increased to prevent this, the above-mentioned sub-hardening occurred, which was undesirable.

本発明は、従来方法の欠点を解消するためのも
ので、高周波焼入工程前の調質熱処理として軟化
焼鈍を行ない、歯切等の切削工程における作業性
向上及び工具の損耗を防ぎ、かつ歯面に沿つた輪
郭焼入を有する高強度の小型歯車を得ることがで
きる表面硬化方法を提供するものである。
The present invention is aimed at solving the drawbacks of conventional methods. It performs softening annealing as a refining heat treatment before the induction hardening process, improves workability in cutting processes such as gear cutting, prevents wear and tear on tools, and The present invention provides a surface hardening method capable of obtaining a high-strength small gear having contour hardening along the surface.

すなわち、本発明小型歯車の表面硬化法は、小
型歯車を粗材の状態で調質熱処理した後、切削加
工し、高周波焼入を行なう小型歯車の表面硬化法
において、 調質熱処理として軟化焼鈍を行なつた小型歯車
に、高周波を用いて歯車の歯部をA3またはAcm
点以上の温度まで予加熱した後、前記A3または
Acm点以下の温度まで冷却し、その後高出力で短
時間の再加熱焼入を行なうことを特徴とするもの
である。
That is, the surface hardening method for small gears of the present invention is a surface hardening method for small gears in which a small gear is subjected to tempering heat treatment in a rough material state, then cutting and induction hardening, and softening annealing is performed as the tempering heat treatment. The teeth of the gear are A3 or Acm using high frequency.
It is characterized by preheating to a temperature above the Acm point, cooling to a temperature below the A3 or Acm point, and then reheating and quenching at high output for a short time.

以下、本発明方法を従来法と比較して説明す
る。
The method of the present invention will be explained below in comparison with a conventional method.

本発明方法を適用する小型歯車は、モジユール
3以下、特に1.0〜3.0、外径10〜250mm、歯巾5
〜30mmの形状のものが適しており、中〜高炭素鋼
例えばS45C、S50C、S58C等で形成されたもので
ある。
The small gear to which the method of the present invention is applied has a module of 3 or less, especially 1.0 to 3.0, an outer diameter of 10 to 250 mm, and a tooth width of 5.
~30 mm shapes are suitable and made of medium to high carbon steel such as S45C, S50C, S58C, etc.

調質熱処理としては、その後の歯切作業等が容
易になるように、軟化焼鈍を行ない、これは例え
ば800〜850℃で30分〜1時間保持した後徐冷のよ
うにして行なわれる。
As the refining heat treatment, softening annealing is performed to facilitate subsequent gear cutting work, and this is carried out, for example, by holding at 800 to 850°C for 30 minutes to 1 hour and then slow cooling.

小型歯車の歯切加工は、常法によりホブ工具を
用いて行なう。
Gear cutting of small gears is carried out using a hob tool in a conventional manner.

上記工程で得られた小型歯車の焼入を行なうに
は、従来は例えば第2図で示す熱サイクルによる
高周波焼入を行なつていた。すなわち、約100K
Hzの高周波を用いて、a)0.3〜100℃/secの予加
熱速度で500〜600℃の温度まで加熱し、b)この
温度で5〜30秒間保持し、c)高出力短時間でオ
ーステナイト化温度以上(800〜1000℃)まで加
熱し、d)急激に冷却することからなる。
In order to harden the small gear obtained in the above-mentioned process, induction hardening has conventionally been carried out using, for example, a thermal cycle shown in FIG. i.e. about 100K
Using a high frequency of Hz, a) heat to a temperature of 500-600°C at a preheating rate of 0.3-100°C/sec, b) hold at this temperature for 5-30 seconds, and c) austenite at high power and short time. (800-1000°C) and d) rapid cooling.

しかしながら、上記方法で得られた小型歯車の
焼入パターンは歯部表面だけが硬化した輪郭焼入
となつているが、この方法では調質熱処理として
焼入・焼もどしを行なつているため、歯切加工時
に歯車の硬度が高過ぎて工具の損耗が激しかつ
た。
However, although the hardening pattern of the small gear obtained by the above method is a contour hardening in which only the tooth surface is hardened, this method uses hardening and tempering as refining heat treatment. During gear cutting, the hardness of the gear was too high, resulting in severe wear and tear on the tool.

上述の工具損耗を防ぐために調質熱処理として
軟化焼鈍を行なつた場合、第2図で示す熱サイク
ルで高周波焼入を行なうと、得られた歯車の歯底
部の焼入組織は不完全となる。これを避けるため
に軟化焼鈍後の高周波焼入を第2図で示す焼入方
法の熱サイクルに従い、ただし(c)の再加熱温度を
より高温にしたが、これでは歯部全体が硬化した
ズブ焼入になつてしまう。
When softening annealing is performed as tempering heat treatment to prevent the tool wear mentioned above, if induction hardening is performed using the heat cycle shown in Figure 2, the hardened structure of the tooth bottom of the resulting gear will be incomplete. . In order to avoid this, the induction hardening after softening annealing was carried out according to the thermal cycle of the hardening method shown in Figure 2, but the reheating temperature in (c) was set to a higher temperature, but this did not result in the tooth being hardened in its entirety. It becomes hardened.

本発明の高周波焼入方法は、第3図で示すよう
に行なうもので、軟化焼鈍し、歯切加工を行なつ
て得られた歯車を、(1)0.5〜140℃/secの加熱速度
で予加熱し、(2)A3またはAcm点以上の所定の温
度すなわち800〜1000℃とし、(3)1.0〜150℃/sec
の速度で空冷して500〜650℃にまで冷却した後、
(4)短時間で850〜950℃に再加熱し、(5)冷却剤によ
り急激に冷却して焼入を行なう。
The induction hardening method of the present invention is carried out as shown in Fig. 3, in which the gear obtained by softening annealing and gear cutting is heated at a heating rate of (1) 0.5 to 140°C/sec. Preheat (2) to a specified temperature of A3 or Acm point or above, i.e. 800 to 1000℃, and (3) 1.0 to 150℃/sec.
After cooling to 500-650℃ by air cooling at a speed of
(4) Reheat to 850-950°C in a short time, and (5) rapidly cool with a coolant to perform quenching.

上記方法においては、高周波誘導加熱装置、周
波数30〜200KHzのようなものを使用し、(1)の予
加熱を高周波電力密度0.1〜1.5kW/cm2、(4)の焼入
加熱を高周波電力密度2.0〜15.0kW/cm2時間0.3〜
1.0秒で行なう。
In the above method, a high-frequency induction heating device with a frequency of 30 to 200 KHz is used, (1) preheating is performed using high-frequency power density 0.1-1.5kW/ cm2 , and (4) quenching heating is performed using high-frequency power. Density 2.0~15.0kW/cm 2 hours 0.3~
Do it in 1.0 seconds.

A3またはAcm点は、小型歯車構成材料により
異なるが、例えばS50C、S58C等のような中〜高
炭素鋼を用いた場合、約800〜1000℃である。
The A3 or Acm point varies depending on the material of the small gear, but is approximately 800 to 1000°C when medium to high carbon steel such as S50C, S58C, etc. is used.

冷却方法は特に限定されないが、(3)の場合空冷
により、(5)の場合水溶性焼入液、真水のような冷
却剤を噴射することにより急激に行なう。
The cooling method is not particularly limited, but in the case of (3), air cooling is carried out, and in the case of (5), rapid cooling is carried out by spraying a coolant such as water-soluble quenching fluid or fresh water.

なお、上記第2図及び第3図のグラフ中、一点
鎖線はA3またはAcm点を表わす。
In the graphs of FIGS. 2 and 3 above, the dashed-dotted line represents the A3 or Acm point.

以下、本発明方法を実施例及び比較例を用いて
さらに詳しく説明する。
Hereinafter, the method of the present invention will be explained in more detail using Examples and Comparative Examples.

比較例 1 焼入850℃、焼もどし600℃の条件で焼入・焼も
どしの前処理を行ない、歯切加工装置を用いて歯
切加工をした小型歯車(モジユール2.55、外径
85.4mm、歯巾16mm、材質S58C)を、第2図のグ
ラフに示す熱サイクルに従つて高周波焼入を行な
う。
Comparative Example 1 A small gear (module 2.55, outer diameter
85.4mm, tooth width 16mm, material S58C) was induction hardened according to the thermal cycle shown in the graph of Figure 2.

すなわち、(a)容量150kW、周波数100KHzの高
周波発振機(日本電子社製、JEH−150D型)を
用いて、高周波電力密度0.40kW/cm2にて580℃ま
で昇温し、(b)その温度で30秒間保持した後、(c)高
周波電力密度3.9kW/cm2で0.6秒間再加熱した後、
(d)焼入液を噴射冷却し、焼入を行なつた。
That is, (a) using a high-frequency oscillator with a capacity of 150 kW and a frequency of 100 KHz (manufactured by JEOL Ltd., model JEH-150D), the temperature was raised to 580°C at a high-frequency power density of 0.40 kW/ cm2 , and (b) the temperature was raised to 580°C. After holding at temperature for 30 seconds, (c) after reheating for 0.6 seconds at high frequency power density 3.9kW/ cm2 ;
(d) The quenching fluid was sprayed and cooled to perform quenching.

その結果得られた歯車の焼入パターンは、第4
図に示すように輪郭焼入であり、また歯底の焼入
組織は第5図に示すように完全な焼入組織となつ
ている。図中、11は歯部、12は硬化部分を示
す。
The resulting hardening pattern of the gear is
As shown in the figure, it is contour hardened, and the hardened structure of the bottom of the tooth is a completely hardened structure as shown in FIG. In the figure, 11 indicates a tooth portion, and 12 indicates a hardened portion.

しかしながら、高周波焼入の前工程の歯切加工
で使用する工具寿命は160ケとなり、はだ焼鋼の
加工工具寿命が400ケであるのに比べ、非常に短
かい。
However, the tool life used in gear cutting, a pre-induction hardening process, is 160 pieces, which is much shorter than the 400 pieces used for case hardening steel.

比較例 2 850℃で1時間保持後徐冷の条件で軟化焼鈍し、
歯切加工を行ない、得られた小型歯車(比較例1
で示すと同じ寸法形状のもの)を、比較例1と同
様の熱サイクルで焼入した。得られた小型歯車の
焼入パターンを第6図に示す。焼入パターンは比
較例1と同様に輪郭焼入になつているが、歯底の
焼入組織は第7図に示すように、フエライト+ト
ルースタイト+マルテンサイトの不完全な焼入組
織になつている。また、このときの加工工具の寿
命は350ケであつた。
Comparative Example 2 After holding at 850℃ for 1 hour, softening annealing was carried out under slow cooling conditions,
A small gear obtained by gear cutting (Comparative Example 1)
(having the same dimensions and shape as shown in ) were quenched in the same thermal cycle as in Comparative Example 1. The hardening pattern of the obtained small gear is shown in FIG. The quenching pattern is contour quenching as in Comparative Example 1, but the quenched structure at the tooth bottom is an incompletely quenched structure of ferrite + troostite + martensite, as shown in Figure 7. ing. Also, the life of the machining tool at this time was 350 pieces.

比較例 3 比較例2における不完全な焼入組織を完全な焼
入組織にするために、温度を上げて高周波焼入を
行なう。すなわち、比較例2と同じ条件で軟化焼
鈍を行ない、歯切加工した小型歯車を、600℃ま
で予熱し、30秒間保持後、580℃まで冷却し、さ
らに950℃まで短時間で再加熱して焼入液(真水)
を噴射して急激に冷却させる。
Comparative Example 3 In order to change the incompletely quenched structure in Comparative Example 2 to a completely quenched structure, induction hardening is performed at elevated temperature. That is, a small gear that was soft-annealed and gear-cut under the same conditions as Comparative Example 2 was preheated to 600°C, held for 30 seconds, cooled to 580°C, and then reheated to 950°C in a short time. Quenching liquid (fresh water)
is injected for rapid cooling.

得られた小型歯車の焼入組織は、第9図に示す
ように完全な焼入組織になるが、焼入パターンは
第8図に示すようにほぼズブ焼入となる。加工具
の寿命は比較例2と同同じである。
The hardened structure of the obtained small gear becomes a completely hardened structure as shown in FIG. 9, but the hardened pattern becomes almost partially hardened as shown in FIG. The life of the processing tool is the same as in Comparative Example 2.

実施例 1 比較例2と同じ条件で軟化焼鈍を行ない、歯切
加工して寸法形状が比較例1と同じ小型歯車
(S50C)を得る。この小型歯車に第3図に示す熱
サイクルで高周波焼入を行なう。
Example 1 Softening annealing is performed under the same conditions as in Comparative Example 2, and gear cutting is performed to obtain a small gear (S50C) having the same dimensions and shape as Comparative Example 1. This small gear is subjected to induction hardening using a heat cycle shown in FIG.

すなわち、周波数100KHzの高周波を用い、高
周波電力密度0.40kW/cm2、予加熱速度21.6℃/sec
で950℃まで予熱し、その温度に達した後直ちに
冷却速度6.7℃/secで冷却し、所定の温度(550
℃)になり次第、高周波電力密度2.8kW/cm2を用
い、1.0秒以内で900℃まで再加熱し、この温度に
到達後焼入液(真水)を噴射して急激に冷却して
焼入を行なつた。
That is, using a high frequency of 100KHz, high frequency power density of 0.40kW/cm 2 and preheating rate of 21.6℃/sec.
Preheat to 950℃, and after reaching that temperature, immediately cool it at a cooling rate of 6.7℃/sec to the specified temperature (550℃).
℃), it is reheated to 900℃ within 1.0 seconds using a high-frequency power density of 2.8kW/ cm2 , and after reaching this temperature, quenching fluid (fresh water) is injected to rapidly cool it and quench it. I did this.

得られた歯車の焼入パターンは、第10図に示
すように歯面に沿つた輪郭焼入であり、歯底の焼
入組織は第11図に示すように完全な焼入組織の
ものが得られた。
The hardening pattern of the obtained gear was contour hardening along the tooth surface, as shown in Fig. 10, and the hardening structure of the tooth bottom was completely hardened, as shown in Fig. 11. Obtained.

歯切工具寿命は350ケであり、浸炭材の場合と
ほぼ同程度になつた。
The life of the gear cutting tool was 350 teeth, which is almost the same as that of carburized material.

上記記載から明らかなように、本発明小型歯車
の表面硬化法は、軟化焼鈍により前処理をするの
で、歯切加工時の小型歯車の硬度を低く抑えるこ
とができ、加工具の損耗が非常に少なく工具の使
用寿命が延びる。しかも加工が容易なので作業性
が向上する。また、軟化焼鈍後歯切加工した小型
歯車を高周波焼入する際、予加熱温度を従来のも
のに比べ高温にて焼なました後、再度加熱して焼
入するので、歯車の歯部の焼入パターンは歯部の
プロフイルに沿つて得られ、しかも歯底部の焼入
組織も良好であり、高強度の小型歯車を得ること
ができる。
As is clear from the above description, the surface hardening method for small gears of the present invention performs pretreatment by softening annealing, so the hardness of small gears during gear cutting can be kept low, and wear and tear on processing tools is significantly reduced. This increases the tool life. Moreover, since it is easy to process, work efficiency is improved. In addition, when induction hardening small gears that have been subjected to gear cutting after softening annealing, the preheating temperature is higher than that of conventional gears, and then the gears are heated and hardened again. The hardened pattern is obtained along the profile of the tooth portion, and the hardened structure at the bottom of the tooth is also good, making it possible to obtain a small gear with high strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イはズブ焼入された歯車の歯部を示す断
面図、同ロは輪郭焼入された歯部の状態を示す断
面図、第2図は従来法の高周波焼入の熱サイクル
を示すグラフ、第3図は本発明方法における高周
波焼入の熱サイクルを示すグラフ、第4,6,8
図はそれぞれ比較例1、2、3で得られる小型歯
車の歯部の焼入状態を示す断面模式図、第5,
7,9図はそれぞれ比較例1、2、3で得られる
小型歯車の歯底部の焼入組織を示す顕微鏡写真
図、第10図は実施例1で得られる小型歯車の歯
部の焼入状態を示す断面模式図、第11図は実施
例1で得られる小型歯車の歯底部の焼入組織を示
す顕微鏡写真図である。 図中、11……歯部、11a……歯面、12…
…硬化部分。
Figure 1A is a cross-sectional view showing the teeth of a gear that has been sub-hardened, Figure 1B is a cross-sectional view showing the tooth that has been contour-hardened, and Figure 2 shows the thermal cycle of conventional induction hardening. The graph shown in Figure 3 is a graph showing the thermal cycle of induction hardening in the method of the present invention, Nos. 4, 6, and 8.
The figures are schematic cross-sectional views showing the hardened state of the teeth of small gears obtained in Comparative Examples 1, 2, and 3, respectively.
Figures 7 and 9 are micrographs showing the hardened structure of the tooth bottoms of the small gears obtained in Comparative Examples 1, 2, and 3, respectively, and Figure 10 is the hardened state of the teeth of the small gears obtained in Example 1. FIG. 11 is a micrograph showing the hardened structure of the tooth bottom of the small gear obtained in Example 1. In the figure, 11... tooth portion, 11a... tooth surface, 12...
...hardened part.

Claims (1)

【特許請求の範囲】 1 小型歯車を粗材の状態で調質熱処理した後、
切削加工し、高周波焼入を行なう小型歯車の表面
硬化法において、 調質熱処理として軟化焼鈍を行なつた小型歯車
に、高周波を用いて歯車の歯部をA3またはAcm
点以上の温度まで予加熱した後、前記A3または
Acm点以下の温度まで冷却し、その後高出力で短
時間の再加熱焼入を行なうことを特徴とする小型
歯車の表面硬化方法。
[Claims] 1. After subjecting the small gear to heat treatment in the state of rough material,
In the surface hardening method for small gears, which involves cutting and induction hardening, high frequency is used to harden the teeth of the gears to A3 or Acm.
A method for surface hardening small gears, which comprises preheating to a temperature above the Acm point, cooling to a temperature below the A3 or Acm point, and then reheating and quenching at high output for a short time.
JP9006381A 1981-06-11 1981-06-11 Surface-hardening method for pinion Granted JPS57207119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9006381A JPS57207119A (en) 1981-06-11 1981-06-11 Surface-hardening method for pinion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9006381A JPS57207119A (en) 1981-06-11 1981-06-11 Surface-hardening method for pinion

Publications (2)

Publication Number Publication Date
JPS57207119A JPS57207119A (en) 1982-12-18
JPH0214408B2 true JPH0214408B2 (en) 1990-04-09

Family

ID=13988092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9006381A Granted JPS57207119A (en) 1981-06-11 1981-06-11 Surface-hardening method for pinion

Country Status (1)

Country Link
JP (1) JPS57207119A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651888B2 (en) * 1984-08-24 1994-07-06 トヨタ自動車株式会社 High-strength gear manufacturing method
JPH0791583B2 (en) * 1986-02-25 1995-10-04 大同特殊鋼株式会社 Induction hardened parts manufacturing method
US4894501A (en) * 1986-06-25 1990-01-16 Tocco, Inc. Method and apparatus for induction heating of gear teeth
US4885831A (en) * 1988-09-26 1989-12-12 Dana Corporation Method for forming a contour hardened gear
JP3076580B2 (en) * 1989-05-19 2000-08-14 コンツアー・ハードニング・インコーポレーテッド Apparatus and method for induction hardening mechanical elements
JPH06100945A (en) * 1992-09-18 1994-04-12 Fuji Denshi Kogyo Kk Induction contour quenching method of gear

Also Published As

Publication number Publication date
JPS57207119A (en) 1982-12-18

Similar Documents

Publication Publication Date Title
US4785147A (en) System for hardening gears by induction heating
MX2007002009A (en) Method of manufacturing a hardened forged steel component.
JP2000239744A (en) Heat treatment method for hollow cylindrical work
JP3699773B2 (en) Induction hardening method
US2598694A (en) Process for heat-and-quench hardening irregular objects such as gears
JPH0214408B2 (en)
US4749834A (en) Method and apparatus of hardening gears by induction heating
JP2001098326A (en) Bushing for crawler belt and its producing method
US5009395A (en) Method and apparatus for selectively heating a workpiece subjected to low temperature thermomechanical processing
CN1068906C (en) Heat treatment process of cutter for stone work
JP5855338B2 (en) Induction hardening method and manufacturing method of products made of steel
JPS6156242A (en) Method for manufacturing high strength gear
JP2001020016A (en) Heat treatment method of metallic member
JPH09310123A (en) Manufacture of low-cost gear
Smoljan et al. An analysis of induction hardening of ferritic ductile iron
JPS6156243A (en) Manufacture of high strength gear
CN108531853B (en) QPQ salt bath treatment method suitable for mold surface treatment
JPS60145324A (en) Heat treatment of flywheel
SU1209723A1 (en) Apparatus for applying electrode coating
SU1636461A1 (en) Method of heat treatment of railway wheels
SU1087556A1 (en) Method for heat treating spur gears
RU2109081C1 (en) Method for manufacturing steel part
Lou et al. The Cutting Edge Dies Made of Steel 45
JPH0759724B2 (en) Method of processing and quenching steel
SU1659182A2 (en) Method of upset butt resistance welding of bimetallic metal cutting tools