JP2012096588A - Seat structure for aircraft - Google Patents

Seat structure for aircraft Download PDF

Info

Publication number
JP2012096588A
JP2012096588A JP2010243923A JP2010243923A JP2012096588A JP 2012096588 A JP2012096588 A JP 2012096588A JP 2010243923 A JP2010243923 A JP 2010243923A JP 2010243923 A JP2010243923 A JP 2010243923A JP 2012096588 A JP2012096588 A JP 2012096588A
Authority
JP
Japan
Prior art keywords
fuselage
aircraft
impact
layer
protection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010243923A
Other languages
Japanese (ja)
Inventor
Kenji Uegaki
賢治 上柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010243923A priority Critical patent/JP2012096588A/en
Publication of JP2012096588A publication Critical patent/JP2012096588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seat structure for an aircraft that can achieve proper impact absorption even if the aircraft has a narrow interior cabin.SOLUTION: Regarding a small fixed-wing tractor-aircraft, impact absorbers 30-32 lining up in two lines at both sides of a fuselage around areas from a front side of a fire wall 40 to a backward side of a rear seat 22 are arranged. The impact absorbers 30-32 are connected to a main frame 50 of the fuselage via load transmission members 60-62 connected to an outer fuselage 70. A fairing 55 is provided over the impact absorbers 30-32 on a lower surface of the fuselage, where a surface layer structured to be worn out or fallen away at the time of impact is serially formed.

Description

本発明は、航空機の座席部構造に関し、特に衝撃時に乗員を保護する座席部構造に関する。   The present invention relates to an aircraft seat structure, and more particularly to a seat structure that protects an occupant in the event of an impact.

航空機の座席部構造については、FAR(連邦航空規定FederalAviation Regulations)23.562に座席の強度に関する規定があるものの、座席を含む機体構造については定めがない。航空機は、高速度で運航され、その衝撃速度は自動車や鉄道車両の倍以上であって、必要な衝撃吸収エネルギー量は4倍以上になる。そのため、座席だけでの衝撃吸収量には限度があり、機体側で衝撃を吸収して乗員を収容する空間の変形を抑制する必要性は高い。一方で、航空機においては、自動車や鉄道車両に比較して機体軽量化、コンパクト化の要請が強く、衝撃時の吸収ストローク量を確保することが困難である。
そのため、少ないストローク量で衝撃を効果的に吸収させて、搭乗者を保護する座席部構造が提案されている。特許文献1に記載された技術は、こうした技術の一例であって、回転翼航空機において、床板と座席下方部分が分離されるように構成し、所定の着地衝撃荷重が付加された場合に、両者を分離させ座席下方部分を降下させて座席下方部分に配置した衝撃吸収手段により搭乗者への衝撃を緩和するものであると記載されている。
As for the seat structure of the aircraft, although there are provisions regarding the strength of the seat in FAR (Federal Aviation Regulations) 23.562, there is no provision for the structure of the aircraft including the seat. Aircraft are operated at high speed, and the impact speed is more than double that of automobiles and railway vehicles, and the required amount of impact absorption energy is more than four times. Therefore, there is a limit to the amount of shock absorption by the seat alone, and there is a high need to suppress the deformation of the space that accommodates the occupant by absorbing the impact on the airframe side. On the other hand, in aircraft, there is a strong demand for weight reduction and compactness compared to automobiles and railway vehicles, and it is difficult to secure an absorption stroke amount at the time of impact.
Therefore, a seat portion structure that effectively absorbs an impact with a small stroke amount and protects a passenger has been proposed. The technique described in Patent Document 1 is an example of such a technique. In a rotary wing aircraft, the floor plate and the lower part of the seat are configured to be separated, and when a predetermined landing impact load is applied, both It is described that the impact on the passenger is mitigated by the impact absorbing means arranged in the seat lower portion by separating the seat and lowering the seat lower portion.

特開2006−232075号公報JP 2006-232075 A

特許文献1記載の技術は、機体上部に回転翼が配置される回転翼航空機を対象としたものであるため、主要構成部材の存在しない機体下部で衝撃吸収ストロークを確保している。しかしながら、固定翼機、中でも小型航空機においては、空気抵抗を減らすために胴体部を極力細くする必要性があり、同様の手法で衝撃吸収ストロークを確保することが困難である。さらに、固定翼機の場合は、揚力確保のために前進速度が大きくなるため、衝撃吸収についてもこれも考慮する必要がある。さらに、4人ないし6人乗りの小型機では室内幅は1.2m程度と狭いため、衝撃吸収体等を配置する場合にもその配置に制約を受けてしまう。
そこで本発明は、室内空間の狭い航空機においても適切な衝撃吸収を可能とした航空機の座席部構造を提供することを課題とする。
Since the technique described in Patent Document 1 is intended for a rotorcraft in which rotor blades are arranged at the upper part of the fuselage, a shock absorbing stroke is ensured at the lower part of the fuselage where no main components exist. However, in fixed wing aircraft, especially small aircraft, there is a need to make the fuselage as thin as possible in order to reduce air resistance, and it is difficult to ensure a shock absorbing stroke by the same method. Furthermore, in the case of a fixed wing aircraft, the forward speed increases to ensure lift, so it is necessary to consider this also for shock absorption. Furthermore, since the interior width of a small four-seater or six-seater aircraft is as small as about 1.2 m, the arrangement of the shock absorber and the like is restricted.
SUMMARY OF THE INVENTION An object of the present invention is to provide an aircraft seat structure that can appropriately absorb shocks even in an aircraft with a narrow indoor space.

上記課題を解決するため、本発明にかかる航空機の座席部構造は、胴体下側両側端部に少なくともそれぞれ一つ配置される衝撃吸収構造と、この衝撃吸収構造を含む機体下部を底部から覆う機体表面保護部材と、を備えており、機体表面保護部材は、衝撃時には、表面層が順次、磨滅または剥離する構造であることを特徴とする。   In order to solve the above-described problems, an aircraft seat structure according to the present invention includes an impact absorbing structure arranged at least one at each of both lower ends of the fuselage, and an aircraft body that covers the lower part of the aircraft including the impact absorbing structure from the bottom. A surface protective member, and the airframe surface protective member has a structure in which the surface layer is sequentially worn or peeled off upon impact.

この衝撃吸収構造は、機体前後方向に一つまたは複数個並べて配置される衝撃吸収体と、この衝撃吸収体上に配置される平板状の介在プレートと、この介在プレートとその上の機体のメインフレームとの間に配置され、機体外殻に固定されている荷重伝達部材を備えているとよい。   The shock absorbing structure includes one or a plurality of shock absorbers arranged side by side in the longitudinal direction of the aircraft, a flat intervening plate arranged on the shock absorber, the intermediate plate and the main body of the airframe above it. It is good to provide the load transmission member arrange | positioned between frames and being fixed to the body outer shell.

機体表面保護部材の表面層は、例えば、裁断したガラス繊維を樹脂に混ぜて塗り固めた不織布状の層を含むとよい。あるいは、フィルム状の層を接着剤または粘着剤で積層させた層を含み、機体側から表面側にかけて段階的に接着剤または粘着剤による連結を減らしていてもよい。   The surface layer of the body surface protection member may include, for example, a non-woven fabric layer in which cut glass fibers are mixed with resin and hardened. Or the layer which laminated | stacked the film-form layer with the adhesive agent or the adhesive may be included, and the connection by an adhesive agent or an adhesive may be reduced in steps from the body side to the surface side.

本発明によれば、胴体下側両側端に2列に並ぶ形で衝撃吸収構造を配置することができるので、衝撃時の胴体の損傷を抑制し、乗員のいる室内空間の安全を図ることができるとともに、衝撃吸収構造の軽量化を両立することができる。また、表面保護部材により、衝撃を吸収することが可能である。   According to the present invention, since the shock absorbing structure can be arranged in two rows on both sides of the lower side of the fuselage, damage to the fuselage at the time of impact can be suppressed, and the safety of the indoor space where the occupant is present can be achieved. In addition, the impact absorbing structure can be reduced in weight. Moreover, it is possible to absorb an impact with a surface protection member.

衝撃吸収構造を上述したように構成すると、衝撃吸収体からメインフレームへと吸収した衝突荷重を効果的に分散させることができる。表面保護部材を上述のように構成することで、剥離、磨滅により、衝撃を吸収しつつ、衝突時の機体の急減速を抑制することができる。   If the shock absorbing structure is configured as described above, the collision load absorbed from the shock absorber to the main frame can be effectively dispersed. By constructing the surface protection member as described above, it is possible to suppress sudden deceleration of the airframe at the time of a collision while absorbing an impact by peeling and abrasion.

本発明にかかる航空機の座席部構造を横からみた縦断面図である。It is the longitudinal cross-sectional view which looked at the seat part structure of the aircraft concerning this invention from the side. 図1の座席部構造を前方からみた横断面図である。It is the cross-sectional view which looked at the seat part structure of FIG. 1 from the front. 図1の座席部構造を上からみた縦断面図である。It is the longitudinal cross-sectional view which looked at the seat part structure of FIG. 1 from the top. 図1の衝撃吸収構造を示す断面図である。It is sectional drawing which shows the shock absorption structure of FIG. 図4の荷重伝達部材を示す断面図である。It is sectional drawing which shows the load transmission member of FIG. 図4の荷重伝達部材の別の例を示す断面図である。It is sectional drawing which shows another example of the load transmission member of FIG. 本発明にかかる航空機の座席部構造の機体表面保護部材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the body surface protection member of the seat part structure of the aircraft concerning this invention. 図7の機体表面保護部材の構成を示す斜視図である。It is a perspective view which shows the structure of the body surface protection member of FIG.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.

図1は、本発明にかかる航空機の座席部構造を横からみた縦断面図であり、図2は、その前方からみた横断面図、図3は、上方からみた縦断面図である。ここでは、4人乗りの小型固定翼機を例に説明する。   FIG. 1 is a longitudinal sectional view of an aircraft seat structure according to the present invention as seen from the side, FIG. 2 is a transverse sectional view as seen from the front, and FIG. 3 is a longitudinal sectional view as seen from above. Here, a four-seater small fixed wing aircraft will be described as an example.

機体内部には、乗員90、91が着座する座席21、22が設けられ、台座41、42により乗員空間の床面に固定されている。機体の外殻71は、窓10〜12を有し、このうち、窓11は、乗員の発着用のドア15に設けられている。ドア15の開口部の下側の機体側壁内側には、機体前後方向に延びるメインフレーム50が配置されている。このメインフレーム50は、機体前方に配置されるエンジンルームと乗員空間とを仕切る防火壁40の前方から後部座席22の後方まで達している。メインフレーム50は、衝撃荷重に耐えられる十分な強度、断面を有する部材であり、例えば、その高さが機体胴体幅の5%以上、幅が機体胴体幅の3%以上に設定されているとよい。   Seats 21 and 22 on which occupants 90 and 91 are seated are provided inside the fuselage, and are fixed to the floor surface of the occupant space by pedestals 41 and 42. The outer shell 71 of the fuselage has windows 10 to 12, and among these, the window 11 is provided on the door 15 where the occupant wears and wears. A main frame 50 extending in the front-rear direction of the body is disposed inside the body side wall below the opening of the door 15. The main frame 50 extends from the front of the fire wall 40 that partitions the engine room and the passenger space disposed in front of the fuselage to the rear of the rear seat 22. The main frame 50 is a member having a sufficient strength and cross section to withstand an impact load. For example, the height is set to 5% or more of the fuselage body width and the width is set to 3% or more of the fuselage body width. Good.

メインフレーム50の下側には、荷重伝達部材60〜62を挟んで衝撃吸収体30〜32が配置されている。この衝撃吸収体30〜32は、アルミ製のハニカム構造体や棒状FRP(Fiber Reinforced Plastic 繊維強化プラスチック)を束ねた物など、一定の荷重が加わると下側から順次全体にわたって壊れていくように形成された部材である。   Under the main frame 50, shock absorbers 30 to 32 are arranged with load transmission members 60 to 62 interposed therebetween. The shock absorbers 30 to 32 are formed so as to be broken sequentially from the bottom to the whole when a certain load is applied, such as an aluminum honeycomb structure or a bundle of rod-shaped FRP (Fiber Reinforced Plastic). It is a member made.

衝撃吸収体30〜32は、機体の前方から後方にかけてその幅または高さが減少もしくは同一となるよう設定されているとよい。好ましくは、その幅は、前側の位置で機体胴体幅の10〜20%、後方位置で機体胴体幅の5〜15%に設定されているとよく、その高さは、前側の位置で機体胴体幅の20〜30%、後方位置で機体胴体幅の10〜20%に設定されている。   The shock absorbers 30 to 32 may be set so that the width or height decreases or becomes the same from the front to the rear of the aircraft. Preferably, the width is set to 10 to 20% of the fuselage fuselage width at the front position, and 5 to 15% of the fuselage fuselage width at the rear position, and the height is set to the fuselage fuselage at the front position. It is set to 20-30% of the width and 10-20% of the fuselage body width at the rear position.

ここでは、片側に3個を配置しているが、乗員空間全体にわたって配置される形態であれば、連続した1つの衝撃吸収体をそれぞれの側に配置してもよいし、2個または4個以上の衝撃吸収体を並べて配置してもよい。   Here, three are arranged on one side, but as long as it is arranged over the entire passenger space, one continuous shock absorber may be arranged on each side, or two or four. The above shock absorbers may be arranged side by side.

荷重伝達部材60〜62と衝撃吸収体30〜32の間には、図4に示されるように、平板状の介在プレート80〜82が配置されている(図は、荷重伝達部材61、衝撃吸収体31、介在プレート81の組み合わせを示している)。この介在プレート80〜82は、FRPや金属製であって、衝撃吸収体30〜32から伝えられる衝突荷重を荷重伝達部材60〜62に一様に伝達させるだけの十分な曲げ剛性と強度を有している。これらが衝撃吸収構造をなす。   Between the load transmission members 60 to 62 and the shock absorbers 30 to 32, flat interposition plates 80 to 82 are arranged as shown in FIG. 4 (the figure shows the load transmission member 61 and the shock absorbers). The combination of the body 31 and the interposition plate 81 is shown). The interposed plates 80 to 82 are made of FRP or metal and have sufficient bending rigidity and strength to uniformly transmit the collision load transmitted from the shock absorbers 30 to 32 to the load transmitting members 60 to 62. is doing. These form a shock absorbing structure.

荷重伝達部材60〜62は、図5または図6に示されるように、FRPまたは金属で作成した断面矩形状の部材60aまたは断面コの字状の部材60bを複数個、機体側面外殻70に接着またはリベット止め、溶接等により固定したものである。なお、図5、図6は、図4の水平方向断面に相当する。   As shown in FIG. 5 or FIG. 6, the load transmitting members 60 to 62 include a plurality of rectangular members 60 a or U-shaped members 60 b made of FRP or metal. It is fixed by bonding, riveting, welding or the like. 5 and 6 correspond to the horizontal cross section of FIG.

図7に示すように、これらの衝撃吸収構造を機体下側から覆うフェアリング55が設けられており、フェアリング55は、メインフレーム50から前方に延びる剛性部材51と機体前方でピン、リベット等により締結されている。このフェアリング55は、金属またはFRP製であって、胴体下面を形成するため空力的にスムーズな形状を有しており、本発明にかかる機体表面保護部材を構成している。   As shown in FIG. 7, a fairing 55 that covers these shock absorbing structures from the lower side of the aircraft is provided. The fairing 55 includes a rigid member 51 that extends forward from the main frame 50, a pin, a rivet, and the like in front of the aircraft. It is concluded by. The fairing 55 is made of metal or FRP and has an aerodynamically smooth shape for forming the lower surface of the fuselage, and constitutes a body surface protection member according to the present invention.

このフェアリング55の外表面には、図8に示すように剥離可能な複数層のフィルム56が接着剤を用いた接着層57により貼り付けられている。ここで、接着層57は、フェアリング55側(機体側)から表面側にかけて段階的に接着による連結部を減らすよう構成されている。接着層57に代えて粘着剤を用いた粘着層としてもよい。さらに、フィルム56の表面には、表面処理層58が設けられている。表面処理層58は、例えば、5〜30mmに裁断したガラス繊維等を樹脂に混ぜたものを外側表面に1〜5mm程度の厚さ塗り固めて、樹脂で固めた不織布状の層を設けたものである。   On the outer surface of the fairing 55, as shown in FIG. 8, a plurality of peelable films 56 are attached by an adhesive layer 57 using an adhesive. Here, the adhesive layer 57 is configured so as to reduce the number of connecting portions in a stepwise manner from the fairing 55 side (airframe side) to the surface side. Instead of the adhesive layer 57, an adhesive layer using an adhesive may be used. Furthermore, a surface treatment layer 58 is provided on the surface of the film 56. The surface treatment layer 58 is, for example, provided with a non-woven layer made of resin mixed with glass fiber or the like cut to 5 to 30 mm and coated on the outer surface to a thickness of about 1 to 5 mm. It is.

小型航空機が地面に衝突する場合は、機首を下げたいわゆる頭下げ姿勢で接地する頻度が高い。この場合、機首下部(防火壁40付近)で最初に接地し、その後、機体は水平になるように回転して接地点が後方へと移動する。本発明の座席構造等を採用した場合、衝突初期の接地時には、表面処理層58が地面との摩擦を軽減し、滑るようにするので、衝突に伴う急減速が避けられる。さらに、フィルム56を連結する接着層57が順次、磨滅することで、フィルム56が順次、剥離することで、衝突エネルギーを吸収しつつ、急減速を避けることが可能である。ここで、フェアリング55は、前端がメインフレーム50に接続される剛性部材51に締結されているため、衝突衝撃時にも機体からはずれて後方へ引きずられることがない。   When a small aircraft collides with the ground, it is frequently contacted with a so-called head-down posture with the nose lowered. In this case, the grounding is first performed at the lower part of the nose (near the fire wall 40), and then the aircraft is rotated so that the grounding point moves rearward. When the seat structure or the like of the present invention is employed, the surface treatment layer 58 reduces friction with the ground and makes it slip during ground contact at the initial stage of the collision, so that sudden deceleration due to the collision can be avoided. Furthermore, the adhesive layer 57 that connects the film 56 is sequentially worn out, and the film 56 is peeled off sequentially, so that it is possible to avoid sudden deceleration while absorbing the collision energy. Here, since the front end of the fairing 55 is fastened to the rigid member 51 connected to the main frame 50, the fairing 55 is not detached from the body and dragged rearward even during a collision impact.

接地点が後方へと移動すると、衝突荷重により、衝撃吸収体30〜32が順次、下側から潰れていく。衝突荷重はさらに、介在プレート80〜82を通じて荷重伝達部材60〜62を経てメインフレーム50や機体外殻70へと分散される。この結果、衝突荷重による乗員収容空間の変形を効果的に抑制することができ、乗員を安全に保護することができる。   When the contact point moves rearward, the shock absorbers 30 to 32 are sequentially crushed from the lower side due to the collision load. The collision load is further distributed to the main frame 50 and the outer shell 70 through the load transmission members 60 to 62 through the interposition plates 80 to 82. As a result, deformation of the passenger accommodation space due to the collision load can be effectively suppressed, and the passenger can be safely protected.

本発明にかかる座席部構造では、胴体下側の側端に2列に衝撃吸収体を配置しているので、衝突荷重を胴体全体に効果的に分配して、胴体の破損を防いで、その乗員収容空間を安全に保持して、乗員を保護することができる。また、胴体下面全体に衝撃吸収体を配置すれば、衝撃吸収性能は向上するが、衝撃吸収体に入力される衝突荷重を支えるために、太くて重いクロスメンバーを多数配置する必要があり、機体重量の増加に繋がるほか、乗員収容空間が狭められてしまう。本発明の構成によれば、衝撃吸収性能を確保しつつ、機体の軽量化や乗員収容空間の確保と両立させることが可能である。   In the seat structure according to the present invention, the shock absorbers are arranged in two rows at the lower side edge of the fuselage, so that the collision load is effectively distributed to the entire fuselage to prevent damage to the fuselage. A passenger | crew accommodation space can be hold | maintained safely and a passenger | crew can be protected. In addition, if shock absorbers are placed on the entire lower surface of the fuselage, the shock absorption performance will be improved, but in order to support the collision load input to the shock absorber, a large number of thick and heavy cross members must be placed. In addition to an increase in weight, the passenger accommodation space is narrowed. According to the configuration of the present invention, it is possible to achieve both weight reduction of the fuselage and securing of the passenger accommodation space while ensuring the impact absorption performance.

ここでは、表面処理層58と、フィルム56の双方を設ける場合を例に説明したが、いずれか一方のみを設けてもよい。この場合も、フェアリング55の表面のフィルム56の剥離や、表面処理層58の磨滅により、地面との摩擦抵抗を少なくして、地面衝突時の急停止を抑制する効果が得られる。   Here, the case where both the surface treatment layer 58 and the film 56 are provided has been described as an example, but only one of them may be provided. Also in this case, by peeling off the film 56 on the surface of the fairing 55 and polishing the surface treatment layer 58, the effect of suppressing the sudden stop at the time of the ground collision can be obtained by reducing the frictional resistance with the ground.

以上の説明では、前方にエンジン、プロペラが配置されるトラクター式小型固定翼機を例に説明したが、本発明にかかる座席部構造は後方にエンジン、プロペラが配置されるプッシャー式小型固定翼機においても適用可能である。さらに、胴体とは別に推進装置が配置される双発機等においても適用できる。これらの場合は乗員収容空間の前後方向全体にわたるように衝撃吸収体等の座席構造を配置すればよい。   In the above description, the tractor-type small fixed wing aircraft in which the engine and the propeller are arranged in the front is described as an example. It is also applicable to. Furthermore, the present invention can be applied to a twin-engine machine in which a propulsion device is arranged separately from the fuselage. In these cases, a seat structure such as a shock absorber may be arranged so as to cover the entire front-rear direction of the passenger accommodation space.

本発明にかかる航空機の座席部構造は、各種の小型航空機に採用することが可能である。   The aircraft seat structure according to the present invention can be employed in various small aircraft.

10〜12…窓、15…ドア、21、22…座席、30〜32…衝撃吸収体、40…防火壁、41、42…台座、50…メインフレーム、51…剛性部材、55…フェアリング、56…フィルム、57…接着層、58…表面処理層、60a、60b…部材、61…荷重伝達部材、60〜62…荷重伝達部材、70、71…外殻、80〜82…介在プレート、90、91…乗員。   DESCRIPTION OF SYMBOLS 10-12 ... Window, 15 ... Door, 21, 22 ... Seat, 30-32 ... Shock absorber, 40 ... Fire wall, 41, 42 ... Base, 50 ... Main frame, 51 ... Rigid member, 55 ... Fairing, 56 ... Film, 57 ... Adhesive layer, 58 ... Surface treatment layer, 60a, 60b ... Member, 61 ... Load transmission member, 60-62 ... Load transmission member, 70, 71 ... Outer shell, 80-82 ... Intervening plate, 90 91 ... Crew.

Claims (4)

航空機の座席部構造であって、
胴体下側両側端部に少なくともそれぞれ一つ配置される衝撃吸収構造と、
前記衝撃吸収構造を含む機体下部を底部から覆う機体表面保護部材と、を備えており、
前記機体表面保護部材は、衝撃時には、表面層が順次、磨滅または剥離する構造であることを特徴とする航空機の座席部構造。
An aircraft seat structure,
A shock absorbing structure disposed at least one at each end on both sides of the fuselage lower side;
A fuselage surface protection member covering the lower part of the fuselage including the shock absorbing structure from the bottom, and
The aircraft body surface protection member has a structure in which a surface layer is sequentially worn or peeled off at the time of an impact.
前記衝撃吸収構造は、機体前後方向に一つまたは複数個並べて配置される衝撃吸収体と、前記衝撃吸収体上に配置される平板状の介在プレートと、前記介在プレートとその上の機体のメインフレームとの間に配置され、機体外殻に固定されている荷重伝達部材を備えていることを特徴とする請求項1記載の航空機の座席部構造。   The shock absorbing structure includes one or more shock absorbers arranged side by side in the longitudinal direction of the body, a flat interposition plate disposed on the shock absorber, the interposition plate, and the main body of the airframe above it. The aircraft seat part structure according to claim 1, further comprising a load transmission member disposed between the frame and the outer shell. 前記機体表面保護部材の表面層は、裁断したガラス繊維を樹脂に混ぜて塗り固めた不織布状の層を含むことを特徴とする請求項1または2に記載の航空機の座席部構造。   The aircraft seat portion structure according to claim 1 or 2, wherein the surface layer of the airframe surface protection member includes a non-woven fabric layer obtained by mixing and solidifying a cut glass fiber with a resin. 前記機体表面保護部材の表面層は、フィルム状の層を接着剤または粘着剤で積層させた層を含み、機体側から表面側にかけて段階的に接着剤または粘着剤による連結を減らしていることを特徴とする請求項1または2に記載の航空機の座席部構造。   The surface layer of the body surface protection member includes a layer in which a film-like layer is laminated with an adhesive or a pressure-sensitive adhesive, and the connection by the adhesive or pressure-sensitive adhesive is gradually reduced from the body side to the surface side. The aircraft seat part structure according to claim 1 or 2, characterized by the above-mentioned.
JP2010243923A 2010-10-29 2010-10-29 Seat structure for aircraft Pending JP2012096588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243923A JP2012096588A (en) 2010-10-29 2010-10-29 Seat structure for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243923A JP2012096588A (en) 2010-10-29 2010-10-29 Seat structure for aircraft

Publications (1)

Publication Number Publication Date
JP2012096588A true JP2012096588A (en) 2012-05-24

Family

ID=46389040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243923A Pending JP2012096588A (en) 2010-10-29 2010-10-29 Seat structure for aircraft

Country Status (1)

Country Link
JP (1) JP2012096588A (en)

Similar Documents

Publication Publication Date Title
RU2131826C1 (en) Large-capacity aircraft
JP6171208B2 (en) Helicopter
JP5006931B2 (en) Airframe door mounting frame assembly
US8118286B2 (en) Impact energy dissipation device
US9162745B2 (en) Aircraft with an integrated energy-absorbing deformation structure and aircraft with such a fuselage
JP2008505790A (en) Civil airliner with main deck and lower deck
US7717372B2 (en) Reduced-perimeter aircraft
CA2872536C (en) Aircraft seat comprising a seat assembly
US20160214719A1 (en) Floor Attachment Assembly and Aircraft Seat
CA2732551C (en) Protective panel and landing gear module comprising it
US8123164B2 (en) Device for fixing a seat rail on a floor, and aircraft equipped with such a fixing device
EP1723019B1 (en) Deformable vehicle cabin with inverted deformation mode
US8523104B2 (en) Method and a rotary wing aircraft that are optimized so as to minimize the consequences for the occupants of said aircraft of an off-specification emergency landing
CN109421915A (en) Energy absorption floor lower body
JP2012096588A (en) Seat structure for aircraft
US11891161B2 (en) Aircraft
JP4478594B2 (en) Landing shock absorber for rotorcraft
US20130026289A1 (en) Energy absorption structure
JPH06298186A (en) Floor plate installation device of aircraft
US20150151828A1 (en) Aircraft Fuselage
EP2881318A1 (en) Aircraft fuselage
CN218400989U (en) Seat structure of anti-drop seat and aircraft
CN203902682U (en) A pillar of automobile
JP2010274703A (en) Shock absorbing structure
EP3159208A1 (en) Twin wire bending kinetic energy attenuation system