JP2012096243A - Mold cooling structure - Google Patents

Mold cooling structure Download PDF

Info

Publication number
JP2012096243A
JP2012096243A JP2010243726A JP2010243726A JP2012096243A JP 2012096243 A JP2012096243 A JP 2012096243A JP 2010243726 A JP2010243726 A JP 2010243726A JP 2010243726 A JP2010243726 A JP 2010243726A JP 2012096243 A JP2012096243 A JP 2012096243A
Authority
JP
Japan
Prior art keywords
mold
inner pipe
hole
flange portion
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243726A
Other languages
Japanese (ja)
Other versions
JP5630819B2 (en
Inventor
Takashi Honma
崇 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010243726A priority Critical patent/JP5630819B2/en
Publication of JP2012096243A publication Critical patent/JP2012096243A/en
Application granted granted Critical
Publication of JP5630819B2 publication Critical patent/JP5630819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold cooling structure in which an inner pipe is easily attached and detached to facilitate maintenance.SOLUTION: The mold cooling structure is constituted in the following. A flange part 12 protruded radially outwardly is provided to the lower end of an inner pipe 10, and a spring 8 is arranged under a compressed state between the flange part 12 and a buried plug 7, whereby the flange part 12 is pressed onto a shoulder surface 5c of a first through hole 5 to fix the inner pipe 10 to a molding die 1.

Description

本発明は、金型冷却構造に関する。   The present invention relates to a mold cooling structure.

ダイカストや低圧鋳造などにおいて、鋳造品の品質や生産性の向上を図るために、金型内に設けられた冷媒通路に冷媒(例えば冷却水)を流通させることにより、キャビティに射出された溶湯を冷却することがある。例えば特許文献1には、図4に示すように、キャビティ面101a付近まで延びる複数個の冷却穴102と、供給口103から金型内に冷媒を供給するための主供給通路104と、主供給通路104から複数の冷却穴102に冷媒を供給する複数の分岐供給通路105と、分岐供給通路105から冷却穴102に供給された冷媒を、排出口108から金型外に排出する排出通路109とを備えた金型の冷却構造が示されている。   In die casting, low pressure casting, etc., in order to improve the quality and productivity of the cast product, the coolant (for example, cooling water) is circulated through the coolant passage provided in the mold so that the molten metal injected into the cavity is May cool. For example, in Patent Document 1, as shown in FIG. 4, a plurality of cooling holes 102 extending to the vicinity of the cavity surface 101a, a main supply passage 104 for supplying a refrigerant into the mold from the supply port 103, and a main supply A plurality of branch supply passages 105 for supplying refrigerant from the passage 104 to the plurality of cooling holes 102, a discharge passage 109 for discharging the refrigerant supplied from the branch supply passage 105 to the cooling holes 102 to the outside of the mold from the discharge port 108, A mold cooling structure with is shown.

分岐供給通路105は、一端を冷却穴102の内部に挿入したインナパイプ(供給管)106の内部に設けられる。インナパイプ106の他端は埋め栓107に溶接等で固定され、埋め栓107は金型内の水平隔壁部110に設けられた第1貫通穴111に脱着可能に固定される。金型の底壁部120には第2貫通穴121が設けられ、第2貫通穴121には埋め栓130が脱着可能に取り付けられる。   The branch supply passage 105 is provided in an inner pipe (supply pipe) 106 having one end inserted into the cooling hole 102. The other end of the inner pipe 106 is fixed to the plug 107 by welding or the like, and the plug 107 is detachably fixed to the first through hole 111 provided in the horizontal partition 110 in the mold. A second through hole 121 is provided in the bottom wall portion 120 of the mold, and a plug 130 is detachably attached to the second through hole 121.

特開2000−42712号公報JP 2000-42712 A

上記のような金型冷却構造では、冷媒として工業用水が使用されることが多い。工業用水には、カルキ等の塩化物やゴミ等の異物などの不純物が混入しているため、この不純物がインナパイプ106の内壁に付着・堆積すると、分岐供給通路105が狭くなり冷媒の流通が阻害され、金型が十分に冷却されずに鋳造欠陥が生じる恐れがある。このため、定期的にインナパイプ106を金型から取り外して、インナパイプ106の内部を洗浄する必要がある。   In the mold cooling structure as described above, industrial water is often used as a refrigerant. Since industrial water contains impurities such as chlorides such as chalk and foreign matters such as dust, if these impurities adhere to and accumulate on the inner wall of the inner pipe 106, the branch supply passage 105 becomes narrow and the refrigerant flows. It is impeded, and the mold may not be sufficiently cooled, and casting defects may occur. For this reason, it is necessary to periodically remove the inner pipe 106 from the mold and clean the inside of the inner pipe 106.

例えば図4に示す金型では、以下のようにしてインナパイプ106のメンテナンスが行われる。まず、底壁部120の第2貫通穴121から埋め栓130を取り外した後、この第2貫通穴121を介して、水平隔壁部110の第1貫通穴111から埋め栓107及びインナパイプ106の一体品を取り外す。そして、インナパイプ106の内部を洗浄した後、埋め栓107及びインナパイプ106の一体品を第1貫通穴111に取り付け、さらに埋め栓130を第2貫通穴121に取り付ける。   For example, in the mold shown in FIG. 4, the inner pipe 106 is maintained as follows. First, after removing the plug 130 from the second through hole 121 of the bottom wall part 120, the plug 107 and the inner pipe 106 are connected to the first through hole 111 of the horizontal partition wall part 110 through the second through hole 121. Remove the unit. Then, after cleaning the inside of the inner pipe 106, an integrated product of the plug 107 and the inner pipe 106 is attached to the first through hole 111, and the plug 130 is attached to the second through hole 121.

しかし、インナパイプ106は、多いときは一つの金型に100本以上設けられる場合もあるため、上記のようにインナパイプ106ごとに埋め栓107及び埋め栓130を着脱する作業は、メンテナンスを行う作業者にとって大きな負担となる。   However, since there may be 100 or more inner pipes 106 in one mold when there are many, the operation of attaching / detaching the plug 107 and the plug 130 for each inner pipe 106 as described above performs maintenance. This is a heavy burden on the operator.

また、埋め栓107は貫通穴111に例えば螺合により固定されるが、埋め栓107の貫通穴111に対する締付力が弱すぎると、主供給通路104と排出通路109との間で冷媒がリークする恐れがある。一方、埋め栓107の締付力が強すぎると、インナパイプ106が変形し、分岐供給通路105内の冷媒の流通に支障を来たす恐れがある。従って、インナパイプ106を金型に取り付ける際には、締付力を適性に管理しながら埋め栓107を貫通穴111に取り付ける必要があるため、作業者の負担がさらに大きくなる。   Further, the plug 107 is fixed to the through hole 111 by, for example, screwing. However, if the tightening force of the plug 107 on the through hole 111 is too weak, the refrigerant leaks between the main supply passage 104 and the discharge passage 109. There is a fear. On the other hand, if the tightening force of the plug 107 is too strong, the inner pipe 106 may be deformed, which may hinder the flow of the refrigerant in the branch supply passage 105. Therefore, when attaching the inner pipe 106 to the mold, it is necessary to attach the plug 107 to the through hole 111 while appropriately controlling the tightening force, which further increases the burden on the operator.

さらに、埋め栓107は貫通穴111に対して螺合や圧入により着脱可能に取付けられるが、両者の固定部の両端が何れも冷媒と接触するため、固定部に冷媒中の不純物が侵入しやすい。不純物が固定部(螺合部あるいは圧入部)に噛み込むと埋め栓107の着脱がしにくくなり、最悪の場合、埋め栓107を第1貫通穴111から取り外すことができなくなる恐れがある。   Furthermore, the plug 107 is detachably attached to the through-hole 111 by screwing or press-fitting. However, since both ends of the both fixing portions are in contact with the refrigerant, impurities in the refrigerant easily enter the fixing portion. . If the impurities bite into the fixing part (screwed part or press-fitting part), the plug 107 becomes difficult to attach and detach, and in the worst case, the plug 107 may not be removed from the first through hole 111.

本発明の解決すべき課題は、インナパイプの着脱作業が容易でメンテナンスのしやすい金型冷却構造を提供することにある。   The problem to be solved by the present invention is to provide a mold cooling structure in which an inner pipe is easily attached and detached and easy to maintain.

前記課題を解決するためになされた本発明は、金型に形成された冷却穴と、外部から供給された冷媒が流通する供給通路と、一端が冷却穴の内部に開口し他端が供給通路に開口した連通通路を有し、他端に外径に突出したフランジ部を有するインナパイプと、連通通路を介して冷却穴に供給された冷媒を外部に排出する排出通路と、供給通路と外部とを連通する貫通穴と、この貫通穴に着脱可能に取り付けられた埋め栓とを備えた金型冷却構造であって、インナパイプのフランジ部と埋め栓との間に弾性部材を圧縮状態で配置することにより、フランジ部を金型に押し付けてインナパイプを金型に固定したことを特徴とする。   The present invention has been made to solve the above problems, a cooling hole formed in a mold, a supply passage through which a refrigerant supplied from the outside flows, one end opened inside the cooling hole, and the other end is a supply passage. An inner pipe having a communication passage opened at the other end and a flange portion projecting to the outer diameter at the other end, a discharge passage for discharging the refrigerant supplied to the cooling hole through the communication passage, and the supply passage and the outside The mold cooling structure includes a through hole that communicates with the plug and a plug that is detachably attached to the through hole, and the elastic member is compressed between the flange portion of the inner pipe and the plug. By arranging, the inner pipe is fixed to the mold by pressing the flange portion against the mold.

このように、本発明に係る金型冷却構造では、埋め栓とフランジ部との間に弾性部材を圧縮状態で配置することにより、フランジ部を金型に押し付け、これによりインナパイプを金型に固定している。この構造によれば、埋め栓を金型から取り外すことにより、フランジ部を金型に押し付ける弾性部材の圧縮力が解放され、インナパイプを金型から取り外すことができる。このように、1個の埋め栓を取り外すだけでインナパイプを取り外すことができるため、インナパイプごとに2個の埋め栓を取り外す必要があった図4に示す構成と比べ、作業性が格段に向上する。尚、ここで言う「金型」とは、成形面を有する成形金型だけでなく、成形金型に固定された部材(例えば冷却プレート)を含む。   As described above, in the mold cooling structure according to the present invention, the elastic member is disposed in a compressed state between the plug and the flange portion, thereby pressing the flange portion against the mold, thereby causing the inner pipe to be the mold. It is fixed. According to this structure, by removing the plug from the mold, the compressive force of the elastic member that presses the flange portion against the mold is released, and the inner pipe can be removed from the mold. In this way, the inner pipe can be removed simply by removing one plug, so the workability is markedly improved compared to the configuration shown in FIG. 4 in which two plugs need to be removed for each inner pipe. improves. The “mold” here includes not only a mold having a molding surface but also a member (for example, a cooling plate) fixed to the mold.

また、上記の構造によれば、インナパイプの金型への固定力を、弾性部材の弾性力(弾性係数及び圧縮量)により管理することができる。従って、弾性部材の弾性力が適正になるように、弾性部材の弾性係数や圧縮量(フランジ部と埋め栓との距離)を設定すれば、常に適正な力でインナパイプのフランジ部を金型に押し付けることができる。これにより、インナパイプの着脱時に埋め栓の締付力を管理する必要がなくなるため、作業性がさらに向上する。   Moreover, according to said structure, the fixing force to the metal mold | die of an inner pipe can be managed with the elastic force (elastic coefficient and compression amount) of an elastic member. Therefore, if the elastic coefficient and compression amount of the elastic member (distance between the flange portion and the plug) are set so that the elastic force of the elastic member is appropriate, the flange portion of the inner pipe is always molded with the proper force. Can be pressed against. As a result, it is not necessary to manage the tightening force of the embedding plug when attaching / detaching the inner pipe, so that workability is further improved.

さらに、上記の構造によれば、弾性部材によりフランジ部を金型の当接面に押し付けることにより、インナパイプを金型に対して着脱可能に取り付けることができるため、インナパイプを固定するために螺合部や圧入部を設ける必要がない。従って、螺合部や圧入部に冷媒中の不純物が侵入することはなく、インナパイプの金型からの取り外しが阻害されることはない。   Further, according to the above structure, the inner pipe can be detachably attached to the mold by pressing the flange portion against the abutting surface of the mold by the elastic member. There is no need to provide a screwing part or a press-fitting part. Therefore, impurities in the refrigerant do not enter the screwing part or the press-fitting part, and the removal of the inner pipe from the mold is not hindered.

以上のように、本発明の金型冷却構造によれば、従来品と比べてインナパイプの着脱作業が格段に容易化され、メンテナンス作業の負担を大幅に減らすことができる。   As described above, according to the mold cooling structure of the present invention, the operation of attaching and detaching the inner pipe is greatly facilitated as compared with the conventional product, and the burden of the maintenance work can be greatly reduced.

本発明の一実施形態に係る金型冷却構造の断面図である。It is sectional drawing of the metal mold | die cooling structure which concerns on one Embodiment of this invention. インナパイプのフランジ部の下面図である。It is a bottom view of the flange part of an inner pipe. 他の実施形態に係る金型冷却構造の断面図である。It is sectional drawing of the metal mold | die cooling structure which concerns on other embodiment. 従来の金型冷却構造の断面図である。It is sectional drawing of the conventional metal mold cooling structure.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る金型冷却構造を有する金型1を示す。この金型1は、成形面1aを有し、一体に形成された成形金型で構成され、インナパイプ10周辺を除いて図4に示す金型と同様の構成を成している。尚、以下では、各部位の相対的な位置関係を明確にするために図1の上下方向を用いて説明するが、これは金型の使用態様を限定するものではない。   FIG. 1 shows a mold 1 having a mold cooling structure according to an embodiment of the present invention. The mold 1 has a molding surface 1a and is formed of an integrally formed molding mold, and has the same configuration as the mold shown in FIG. 4 except for the periphery of the inner pipe 10. In the following, in order to clarify the relative positional relationship between the respective parts, description will be made using the vertical direction of FIG. 1, but this does not limit the usage mode of the mold.

金型1は、成形面1a付近まで延びた冷却穴2と、外部から供給された冷媒(例えば冷却水、特に工業用水)が流通する供給通路3と、内部に連通通路13を有するインナパイプ10と、インナパイプ10を介して冷却穴2に供給された冷媒を外部に排出する排出通路4とを備える。インナパイプ10の連通通路13の上端は冷却穴2の内部に開口し、下端は供給通路3に開口している。尚、本実施形態では、図示は省略するが、1本の供給通路3から複数のインナパイプ10の冷媒流路13が分岐して設けられると共に、これら複数の冷媒流路13から複数の冷却穴2にそれぞれ供給された冷媒が、1本の排出通路4にまとめられて金型の外部に排出される。   The mold 1 includes an inner pipe 10 having a cooling hole 2 extending to the vicinity of a molding surface 1a, a supply passage 3 through which a refrigerant (for example, cooling water, particularly industrial water) supplied from the outside flows, and a communication passage 13 inside. And a discharge passage 4 for discharging the refrigerant supplied to the cooling hole 2 via the inner pipe 10 to the outside. The upper end of the communication passage 13 of the inner pipe 10 opens into the cooling hole 2, and the lower end opens into the supply passage 3. In the present embodiment, although illustration is omitted, the refrigerant flow paths 13 of the plurality of inner pipes 10 are branched from the single supply passage 3, and a plurality of cooling holes are formed from the plurality of refrigerant flow paths 13. The refrigerant respectively supplied to 2 is collected in one discharge passage 4 and discharged to the outside of the mold.

インナパイプ10は、例えば金属で形成され、円筒部11と、円筒部11の下端部に配され、外径に突出したフランジ部12とからなる。本実施形態では、フランジ部12は円盤状をなし、フランジ部12の上側端面に円筒部11の下端部が例えばろう付け等の手段により固定される。インナパイプ10には、円筒部11及びフランジ部12を貫通した連通通路13が形成される。フランジ部12の下側端面には、図2に示すように、直径方向の溝12aが形成される。図示例では、直交する2本の溝12aが形成され、2本の溝12aの交差部(すなわちフランジ部12の中心)に連通通路13が開口している。   The inner pipe 10 is made of, for example, metal, and includes a cylindrical portion 11 and a flange portion 12 that is disposed at the lower end portion of the cylindrical portion 11 and protrudes to the outer diameter. In the present embodiment, the flange portion 12 has a disk shape, and the lower end portion of the cylindrical portion 11 is fixed to the upper end surface of the flange portion 12 by means such as brazing. The inner pipe 10 is formed with a communication passage 13 penetrating the cylindrical portion 11 and the flange portion 12. As shown in FIG. 2, a diametrical groove 12 a is formed on the lower end surface of the flange portion 12. In the illustrated example, two orthogonal grooves 12a are formed, and a communication passage 13 is opened at the intersection of the two grooves 12a (that is, the center of the flange portion 12).

金型1には、供給通路3と排出通路4とを連通する第1貫通穴5と、供給通路3と外部とを連通する第2貫通穴6とが設けられる。第1貫通穴5は、各冷却穴2の下方に設けられる。第2貫通孔6は、各第1貫通孔5の下方に設けられ、すなわち、各インナパイプ10のフランジ部12の下方に設けられる。   The mold 1 is provided with a first through hole 5 that communicates the supply passage 3 and the discharge passage 4 and a second through hole 6 that communicates the supply passage 3 and the outside. The first through hole 5 is provided below each cooling hole 2. The second through holes 6 are provided below the first through holes 5, that is, below the flange portions 12 of the inner pipes 10.

第1貫通穴5は、供給通路3に開口した大径内周面5aと、排出通路4に開口した小径内周面5bと、これらの間に形成された肩面5cとを有する。大径内周面5aの内周にはインナパイプ10のフランジ部12が配され、小径内周面5bの内周にはインナパイプ10の円筒部11が配され、肩面5cにはフランジ部12の上側端面が当接している。大径内周面5aとフランジ部12の外周面との間、及び、小径内周面5bと円筒部11の外周面との間には、それぞれ半径方向隙間が形成される。   The first through hole 5 has a large-diameter inner peripheral surface 5a opened in the supply passage 3, a small-diameter inner peripheral surface 5b opened in the discharge passage 4, and a shoulder surface 5c formed therebetween. A flange portion 12 of the inner pipe 10 is disposed on the inner periphery of the large-diameter inner peripheral surface 5a, a cylindrical portion 11 of the inner pipe 10 is disposed on the inner periphery of the small-diameter inner peripheral surface 5b, and a flange portion is provided on the shoulder surface 5c. The upper end face of 12 is in contact. Radial gaps are formed between the large-diameter inner peripheral surface 5a and the outer peripheral surface of the flange portion 12, and between the small-diameter inner peripheral surface 5b and the outer peripheral surface of the cylindrical portion 11, respectively.

第1貫通穴5、第2貫通穴6、及び冷却穴2は、おおよそ同軸上に配され、金型1の下方からドリル等の機械加工で形成される。これらを金型1の下方から形成可能とするために、第2貫通穴6の内径D1、第1貫通穴5の大径内周面5aの内径D2、小径内周面5bの内径D3、及び冷却穴2の内径D4は、D1≧D2≧D3≧D4の関係にあり、図示例では、D1=D2>D3=D4となっている。   The first through hole 5, the second through hole 6, and the cooling hole 2 are arranged approximately coaxially, and are formed from below the mold 1 by machining such as a drill. In order to allow these to be formed from below the mold 1, the inner diameter D1 of the second through hole 6, the inner diameter D2 of the large inner peripheral surface 5a of the first through hole 5, the inner diameter D3 of the small inner peripheral surface 5b, and The inner diameter D4 of the cooling hole 2 has a relationship of D1 ≧ D2 ≧ D3 ≧ D4, and in the illustrated example, D1 = D2> D3 = D4.

第2貫通孔6は埋め栓7で閉塞される。埋め栓7は、金属や樹脂、あるいはゴム等で形成され、第2貫通穴6に対して着脱可能な手段で取り付けられる。例えば、第2貫通穴6の内周面を円筒面とすると共に、埋め栓7の外周面を上方に向けて若干縮径したテーパ面とし、第2貫通穴6の円筒面状内周面に埋め栓7のテーパ面状外周面を圧入することにより、埋め栓7が第2貫通穴6に固定される。尚、埋め栓7の固定方法はこれに限らず、後述するスプリング8の弾性反力に耐え得る強度で固定できるものであればよい。例えば、埋め栓7の外周面及び第2貫通穴6の内周面にネジ溝を設け、これらを螺合させてもよい。あるいは、圧入と螺合を併用してもよい。   The second through hole 6 is closed with a plug 7. The plug 7 is made of metal, resin, rubber, or the like, and is attached to the second through hole 6 by a detachable means. For example, the inner peripheral surface of the second through-hole 6 is a cylindrical surface, and the outer peripheral surface of the plug 7 is a tapered surface slightly reduced in diameter toward the upper side. The plug 7 is fixed to the second through hole 6 by press-fitting the tapered outer peripheral surface of the plug 7. The fixing method of the embedding plug 7 is not limited to this, and any method may be used as long as it can be fixed with a strength that can withstand an elastic reaction force of a spring 8 described later. For example, screw grooves may be provided on the outer peripheral surface of the plug 7 and the inner peripheral surface of the second through hole 6 and these may be screwed together. Alternatively, press-fitting and screwing may be used in combination.

埋め栓7の上側端面とインナパイプ10のフランジ部12の下側端面との間には、弾性部材としてのスプリング8が圧縮状態で配置される。このスプリング8の弾性力で、フランジ部12の上側端面が第1貫通穴5の肩面5cに押し付けられ、これによりインナパイプ10が金型1の内部に固定される。このとき、フランジ部12の上側端面と第1貫通穴5の肩面5cとが密着することにより供給通路3と排出通路4とが遮断され、これらの間の冷媒のリークが防止される。特に、図示例では、フランジ部12の下側端面の面積が、第1貫通穴5の小径内周面5aの断面積よりも大きい。これにより、供給通路3の冷媒の圧力によりフランジ部12を肩面5cに押し付ける力が、排出通路4の冷媒の圧力によりフランジ部12を肩面5cから離隔させる力よりも大きくなるため、冷媒の圧力でさらにフランジ部12を肩面5cに押し付けることができる。   Between the upper end face of the plug 7 and the lower end face of the flange portion 12 of the inner pipe 10, a spring 8 as an elastic member is disposed in a compressed state. Due to the elastic force of the spring 8, the upper end surface of the flange portion 12 is pressed against the shoulder surface 5 c of the first through hole 5, whereby the inner pipe 10 is fixed inside the mold 1. At this time, the upper end surface of the flange portion 12 and the shoulder surface 5c of the first through-hole 5 are in close contact with each other, whereby the supply passage 3 and the discharge passage 4 are shut off, and refrigerant leakage therebetween is prevented. In particular, in the illustrated example, the area of the lower end surface of the flange portion 12 is larger than the cross-sectional area of the small-diameter inner peripheral surface 5 a of the first through hole 5. Thereby, the force of pressing the flange portion 12 against the shoulder surface 5c by the pressure of the refrigerant in the supply passage 3 is larger than the force of separating the flange portion 12 from the shoulder surface 5c by the pressure of the refrigerant in the discharge passage 4. The flange portion 12 can be further pressed against the shoulder surface 5c by pressure.

スプリング8の弾性力は、スプリング8の弾性係数及び圧縮量により調整することができる。すなわち、弾性力が適正となるように、スプリング8の種類と、フランジ部12と埋め栓7との距離とを設定することにより、常に一定の力でフランジ部12を肩面5cに押し付けることができる。特に、スプリング8の両端部を環状領域(望ましくは全周)でフランジ部12及び埋め栓7に当接させることで、フランジ部12を肩面5cに均等な力で押し付けることができる。これにより、インナパイプ10の姿勢を安定させることができると共に、フランジ部12と肩面5cとを全周で確実に密着させて、供給通路3と排出通路4との間の冷媒のリークを確実に防止することができる。   The elastic force of the spring 8 can be adjusted by the elastic coefficient of the spring 8 and the amount of compression. That is, by setting the type of the spring 8 and the distance between the flange portion 12 and the plug 7 so that the elastic force is appropriate, the flange portion 12 can always be pressed against the shoulder surface 5c with a constant force. it can. In particular, the flange portion 12 can be pressed against the shoulder surface 5c with an equal force by bringing both end portions of the spring 8 into contact with the flange portion 12 and the plug 7 in an annular region (preferably the entire circumference). As a result, the posture of the inner pipe 10 can be stabilized, and the flange portion 12 and the shoulder surface 5c are securely adhered to each other around the entire circumference, so that refrigerant leakage between the supply passage 3 and the discharge passage 4 is ensured. Can be prevented.

次に、上記の金型冷却構造における冷媒の流れ(図1の鎖線矢印参照)を説明する。外部から金型1の内部に供給された冷媒は、供給通路3を通ってインナパイプ10の内部の連通通路13に流入する。このとき、供給通路3の冷媒の一部は、スプリング8の隙間、あるいは、インナパイプ10のフランジ部12の溝12aを介してインナパイプ10内の連通通路13に流入し、その他はそのまま供給通路3を流通する。このように、フランジ部12に溝12aを形成することで、スプリング8の隙間が小さくて冷媒が通過しにくい場合でも、フランジ部12の溝12aを介して連通通路13への冷媒の流入を促進することができる。   Next, the flow of the refrigerant in the mold cooling structure (see the chain line arrow in FIG. 1) will be described. The refrigerant supplied to the inside of the mold 1 from the outside flows into the communication passage 13 inside the inner pipe 10 through the supply passage 3. At this time, a part of the refrigerant in the supply passage 3 flows into the communication passage 13 in the inner pipe 10 through the gap of the spring 8 or the groove 12a of the flange portion 12 of the inner pipe 10, and the other is supplied as it is. 3 is distributed. In this way, by forming the groove 12a in the flange portion 12, even when the gap of the spring 8 is small and it is difficult for the refrigerant to pass through, the inflow of the refrigerant into the communication passage 13 is promoted through the groove 12a of the flange portion 12. can do.

その後、冷媒が連通通路13を上方に流動し、インナパイプ10の円筒部11の上端開口部から冷却穴2の内部に供給される。この冷却穴2で、冷媒が金型1との間で熱交換を行ない、成形面1aに接する溶湯を冷却する。その後、冷媒は、冷却穴2の内周面と円筒部11の外周面との間の通路を通って排出通路4に流入し、他の冷却穴2から排出された冷媒と合流して金型1の外部に排出される。尚、冷却穴2の内周面と円筒部11の外周面との間に形成される通路の断面積は、円筒部11の内部の連通通路13の断面積よりも大きい。   Thereafter, the refrigerant flows upward in the communication passage 13 and is supplied into the cooling hole 2 from the upper end opening of the cylindrical portion 11 of the inner pipe 10. In this cooling hole 2, the refrigerant exchanges heat with the mold 1 to cool the molten metal in contact with the molding surface 1a. Thereafter, the refrigerant flows into the discharge passage 4 through the passage between the inner peripheral surface of the cooling hole 2 and the outer peripheral surface of the cylindrical portion 11, and merges with the refrigerant discharged from the other cooling holes 2 to form the mold. 1 is discharged to the outside. The cross-sectional area of the passage formed between the inner peripheral surface of the cooling hole 2 and the outer peripheral surface of the cylindrical portion 11 is larger than the cross-sectional area of the communication passage 13 inside the cylindrical portion 11.

次に、上記の金型冷却構造におけるインナパイプ10のメンテナンス方法を説明する。まず、埋め栓7を第2貫通穴6から取り外す。これにより、スプリング8の圧縮が解放され、インナパイプ10のフランジ部12を第1貫通穴5の肩面5cに押さえつけていた力が無くなり、インナパイプ10を金型1から取り外し可能となる。特に、図示のように、インナパイプ10をフランジ部12が下側になるように配置した場合は、埋め栓7を第2貫通穴6から取り外すことにより、スプリング8及びインナパイプ10が重力で下方に落ちるため、簡単にインナパイプ10を取り外すことができる。尚、何らかの事情によりフランジ部12の上側端面が肩面5cに固着したときには、フランジ部12の下側端面の溝12aにドライバー等の治具を挿入してフランジ部12を回転させることにより、フランジ部12を肩面5cから剥離し、インナパイプ10を取り外すことができる。   Next, a maintenance method for the inner pipe 10 in the mold cooling structure will be described. First, the plug 7 is removed from the second through hole 6. As a result, the compression of the spring 8 is released, the force that presses the flange portion 12 of the inner pipe 10 against the shoulder surface 5c of the first through hole 5 is eliminated, and the inner pipe 10 can be removed from the mold 1. In particular, as shown in the figure, when the inner pipe 10 is arranged so that the flange portion 12 is on the lower side, the spring 8 and the inner pipe 10 are lowered by gravity by removing the plug 7 from the second through hole 6. Therefore, the inner pipe 10 can be easily removed. When the upper end surface of the flange portion 12 is fixed to the shoulder surface 5c for some reason, a flange such as a screwdriver is inserted into the groove 12a on the lower end surface of the flange portion 12 and the flange portion 12 is rotated. The inner pipe 10 can be removed by peeling the portion 12 from the shoulder surface 5c.

金型1から取り外したインナパイプ10の内部を洗浄したら、インナパイプ10を金型1に取り付ける。具体的には、インナパイプ10のフランジ部12の上側端面を第1貫通穴5の肩面5cに当接させると共に、フランジ部12と埋め栓7との間にスプリング8を配した状態で、埋め栓7を第2貫通穴6に固定する。   After the inside of the inner pipe 10 removed from the mold 1 is cleaned, the inner pipe 10 is attached to the mold 1. Specifically, the upper end surface of the flange portion 12 of the inner pipe 10 is brought into contact with the shoulder surface 5c of the first through hole 5, and the spring 8 is disposed between the flange portion 12 and the plug 7 in a state where The embedding plug 7 is fixed to the second through hole 6.

このように、インナパイプ10の金型1からの取り外し及び取り付け作業を、埋め栓7の着脱のみで行うことができるため、図4に示すように1本のインナパイプ10に対して2個の埋め栓を取り外す必要があった場合と比べて、作業性が格段に向上する。尚、スプリング8を、インナパイプ10及び埋め栓7の一方又は双方と接合して一体化すれば、着脱作業をさらに容易化することができる。   In this way, the removal and attachment work of the inner pipe 10 from the mold 1 can be performed only by attaching and detaching the plug 7, so that two inner pipes 10 can be attached to one inner pipe 10 as shown in FIG. 4. Compared with the case where it is necessary to remove the plug, the workability is significantly improved. If the spring 8 is joined and integrated with one or both of the inner pipe 10 and the plug 7, the attaching / detaching operation can be further facilitated.

また、インナパイプ10の固定力は、スプリング8の弾性力及び圧縮量により決定されるため、常に一定の力でフランジ部12を肩面5cに押し付けることができる。従って、インナパイプ10を金型1に取り付ける際に、締付力の管理が不要となるため、作業性がさらに高められる。   Moreover, since the fixing force of the inner pipe 10 is determined by the elastic force and compression amount of the spring 8, the flange portion 12 can always be pressed against the shoulder surface 5c with a constant force. Therefore, when the inner pipe 10 is attached to the mold 1, it is not necessary to manage the tightening force, so that workability is further improved.

さらに、フランジ部12の外周面と第1貫通穴5の大径内周面5aとの間には隙間が形成されているため、例えばこれらを螺合させたり圧入したりする場合のように、冷媒中の不純物が固定部に噛み込んでインナパイプ10の着脱が阻害される事態を回避できる。   Furthermore, since a gap is formed between the outer peripheral surface of the flange portion 12 and the large-diameter inner peripheral surface 5a of the first through hole 5, for example, when these are screwed or press-fitted, It is possible to avoid a situation in which the impurities in the refrigerant bite into the fixed portion and the attachment / detachment of the inner pipe 10 is hindered.

本発明は上記の実施形態に限られない。例えば、上記の実施形態では、金型1が、成形面1aを有し、一体に形成された成形金型で構成された場合を示しているが、これに限らず、図3に示すように、金型1を、成形面1aを有する成形金型21と冷却プレート22とで構成し、これらに金型冷却構造を設けても良い。図示例では、成形面1a及び冷却穴2を有する成形金型21の下面に、冷却プレート20が環状シール23を介して取り付けられる。冷却プレート22には、供給通路3、排出通路4、第1貫通穴5、及び第2貫通穴6が設けられる。この場合、第1貫通穴5を上方から加工することが可能となるため、第1貫通穴5の小径内周面5bの内径D3を冷却穴2の内径D4よりも小径に形成することができる(D3<D4)。これにより、肩面5cの面積が広がり、フランジ部12との当接面積を拡大することができるため、供給通路3と排出通路4との間の密閉性をより一層高めることができる。尚、図3の金型1のその他の構成については、上記実施形態と同様であるため、重複説明を省略する。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the mold 1 has a molding surface 1a and is formed of an integrally formed molding mold. However, the present invention is not limited to this, as shown in FIG. The mold 1 may be composed of a molding mold 21 having a molding surface 1a and a cooling plate 22, and a mold cooling structure may be provided on these. In the illustrated example, the cooling plate 20 is attached to the lower surface of the molding die 21 having the molding surface 1 a and the cooling hole 2 via an annular seal 23. The cooling plate 22 is provided with a supply passage 3, a discharge passage 4, a first through hole 5, and a second through hole 6. In this case, since the first through-hole 5 can be processed from above, the inner diameter D3 of the small-diameter inner peripheral surface 5b of the first through-hole 5 can be formed smaller than the inner diameter D4 of the cooling hole 2. (D3 <D4). Thereby, since the area of the shoulder surface 5c spreads and the contact area with the flange part 12 can be expanded, the sealing performance between the supply passage 3 and the discharge passage 4 can be improved further. Since the other configuration of the mold 1 in FIG. 3 is the same as that of the above-described embodiment, a duplicate description is omitted.

また、供給通路3と排出通路4との間の冷媒のリークを確実に防止するために、フランジ部12の上側端面と第1貫通穴5の肩面5cとの間、あるいは、フランジ部12の外周面と第1貫通穴5の大径内周面5aとの間に、環状シールを設けてもよい。   Further, in order to reliably prevent the refrigerant from leaking between the supply passage 3 and the discharge passage 4, between the upper end surface of the flange portion 12 and the shoulder surface 5 c of the first through hole 5, or of the flange portion 12. An annular seal may be provided between the outer peripheral surface and the large-diameter inner peripheral surface 5 a of the first through hole 5.

1 金型
1a 成形面
2 冷却穴
3 供給通路
4 排出通路
5 第1貫通穴
5a 大径内周面
5b 小径内周面
5c 肩面
6 第2貫通穴
7 埋め栓
8 スプリング(弾性部材)
10 インナパイプ
11 円筒部
12 フランジ部
13 連通通路
1 Mold 1a Molding surface 2 Cooling hole 3 Supply passage 4 Discharge passage 5 First through hole 5a Large diameter inner peripheral surface 5b Small diameter inner peripheral surface 5c Shoulder surface 6 Second through hole 7 Filling plug 8 Spring (elastic member)
10 Inner pipe 11 Cylindrical part 12 Flange part 13 Communication passage

Claims (1)

金型に形成された冷却穴と、外部から供給された冷媒が流通する供給通路と、一端が冷却穴の内部に開口し他端が供給通路に開口した連通通路を有し、他端に外径に突出したフランジ部を有するインナパイプと、連通通路を介して冷却穴に供給された冷媒を外部に排出する排出通路と、供給通路と外部とを連通する貫通穴と、該貫通穴に着脱可能に取り付けられた埋め栓とを備えた金型冷却構造であって、
インナパイプのフランジ部と埋め栓との間に弾性部材を圧縮状態で配置することにより、フランジ部を金型に押し付けてインナパイプを金型に固定したことを特徴とする金型冷却構造。
It has a cooling hole formed in the mold, a supply passage through which an externally supplied refrigerant flows, a communication passage having one end opened inside the cooling hole and the other end opened in the supply passage, and is connected to the other end. An inner pipe having a flange portion protruding in the diameter, a discharge passage for discharging the coolant supplied to the cooling hole through the communication passage, a through hole for connecting the supply passage and the outside, and attachment / detachment to the through hole A mold cooling structure with a plug that can be attached,
A mold cooling structure characterized in that an elastic member is disposed in a compressed state between a flange portion of an inner pipe and a plug so that the flange portion is pressed against the mold and the inner pipe is fixed to the mold.
JP2010243726A 2010-10-29 2010-10-29 Mold cooling structure Expired - Fee Related JP5630819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243726A JP5630819B2 (en) 2010-10-29 2010-10-29 Mold cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243726A JP5630819B2 (en) 2010-10-29 2010-10-29 Mold cooling structure

Publications (2)

Publication Number Publication Date
JP2012096243A true JP2012096243A (en) 2012-05-24
JP5630819B2 JP5630819B2 (en) 2014-11-26

Family

ID=46388783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243726A Expired - Fee Related JP5630819B2 (en) 2010-10-29 2010-10-29 Mold cooling structure

Country Status (1)

Country Link
JP (1) JP5630819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117862427A (en) * 2024-03-12 2024-04-12 华翔(翼城)工业装备有限公司 Production line for V-method casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117862427A (en) * 2024-03-12 2024-04-12 华翔(翼城)工业装备有限公司 Production line for V-method casting
CN117862427B (en) * 2024-03-12 2024-05-17 华翔(翼城)工业装备有限公司 Production line for V-method casting

Also Published As

Publication number Publication date
JP5630819B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5630819B2 (en) Mold cooling structure
KR101594575B1 (en) Bushing device, water conduction mechanism, and production method therefor
JP2009545717A (en) Sealing device for refrigerant line coupling
JP7114111B2 (en) Enclosure device and mounting method of enclosure device
JP2010116952A (en) Mounting/dismounting device for pipe connection member
JP2010266129A (en) Cooling device
JP4713237B2 (en) Receptacle stopper
KR200484963Y1 (en) Cooler for diecasting
JP2013113426A (en) Method for introducing operation tool and attaching tool used therefor
CN221019010U (en) Tapping machine chuck
JP6260961B1 (en) Mold cooling pipe
JP5203091B2 (en) Detaching device and method for pipe connecting member
JP3160208B2 (en) Valve device
JP2014180672A (en) Mold cooling structure
JP2015029998A (en) Plunger device
CN210128721U (en) Sensor adapter and metering head assembly applying same
JP6900803B2 (en) Liquid drainage aid
KR101269689B1 (en) Separation method of retainer for valve and its tool
US11549592B2 (en) Cap member for shut-off valve, valve element for shut-off valve, method for manufacturing shut-off valve, and method for replacing valve element of shut-off valve
JP2004263772A (en) Butterfly valve with inter-surface adjusting function, and method for manufacturing the same
KR100645591B1 (en) A mould unit
JP2007016913A (en) Plug for socket
JP2007216238A (en) Cylinder block casting die with liner fixing device
KR20000010443U (en) Hose connector for mold cooling water supply
JP2020138263A (en) Detachable tool of oil filter case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5630819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees