JP2012095368A - Core manufacturing device - Google Patents

Core manufacturing device Download PDF

Info

Publication number
JP2012095368A
JP2012095368A JP2010237910A JP2010237910A JP2012095368A JP 2012095368 A JP2012095368 A JP 2012095368A JP 2010237910 A JP2010237910 A JP 2010237910A JP 2010237910 A JP2010237910 A JP 2010237910A JP 2012095368 A JP2012095368 A JP 2012095368A
Authority
JP
Japan
Prior art keywords
arc
iron core
laminated
shaped
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010237910A
Other languages
Japanese (ja)
Other versions
JP5557690B2 (en
Inventor
Hideki Shigematsu
英樹 重松
Ugun Shin
雨根 申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010237910A priority Critical patent/JP5557690B2/en
Priority to US13/821,140 priority patent/US9178403B2/en
Priority to PCT/JP2011/072186 priority patent/WO2012043632A1/en
Publication of JP2012095368A publication Critical patent/JP2012095368A/en
Application granted granted Critical
Publication of JP5557690B2 publication Critical patent/JP5557690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a core manufacturing device capable of easily improving a production speed.SOLUTION: This core manufacturing device for manufacturing an annular laminated core each layer of which is formed by a plurality of arc-like members 21 includes transfer means 30 for transferring each objective portion to be processed in a core material to a prescribed processing position F one by one, processing means 40 for separating the arc-like member from each objective portion to be processed by a shearing process by a die 41 and a punch 42 at the processing position, and a lamination guide 50 for disposing each arc-like member at a position for forming the laminated core by receiving the descending arc-like member and rotating it by a prescribed angle in its circumferential direction every time the shearing process is carried out.

Description

本発明は、各層が複数の円弧状部材からなる環状の積層鉄心を製造する鉄心製造装置に関する。   The present invention relates to an iron core manufacturing apparatus for manufacturing an annular laminated iron core in which each layer is composed of a plurality of arcuate members.

従来、電磁鋼板をプレス加工等して得られる円環状の薄板部材を、数十枚から数百枚積層し、積層鉄心として製造するようにしたモータコアが知られている。薄板部材の厚さは0.15〜0.5mm程度であり、薄いほどエネルギー効率が良好であるとされている。さらに、モータコアの素材を効率的に使用するために、円環状の薄板部材を、複数の円弧状の薄板部材により構成するようにしたものも知られている。   2. Description of the Related Art Conventionally, there is known a motor core in which dozens to hundreds of annular thin plate members obtained by pressing a magnetic steel sheet are laminated and manufactured as a laminated core. The thickness of the thin plate member is about 0.15 to 0.5 mm, and the thinner the plate member, the better the energy efficiency. Furthermore, in order to use the motor core material efficiently, an annular thin plate member is constituted by a plurality of arc-shaped thin plate members.

たとえば、特許文献1には、円弧状の複数の薄板セグメントにより1枚の円環状の薄板部材を構成し、これを多数積層して結合させることにより成層鉄心を製造する装置が記載されている。円弧状の薄板セグメントの中心角は360°/nであり、n枚の薄板セグメントにより1枚の円環状の薄板部材が構成される。隣接する各層の円環状の薄板部材は、それらを構成する各円弧状の薄板セグメントが、れんが積みのようにずれて重なるように、ずらして積層される。   For example, Patent Document 1 describes an apparatus for manufacturing a stratified iron core by forming a single annular thin plate member by a plurality of arc-shaped thin plate segments and laminating and bonding a large number of them. The central angle of the arc-shaped thin plate segment is 360 ° / n, and one thin thin plate member is constituted by n thin plate segments. The annular thin plate members of the adjacent layers are laminated so that the respective arc-shaped thin plate segments constituting them are shifted and overlapped like bricks.

この装置においては、薄板セグメントはプレス機で母型内に打ち抜かれる。上述のnが3であるとすれば、打ち抜かれた薄板セグメントは、母型の回転により、周方向に120°回転される。そして、次の薄板セグメントが打ち抜かれる。打ち抜かれた薄板セグメントは隣接する他の薄板セグメントと互いに結合される。このようにして3枚の薄板セグメントにより1枚の円環状の薄板部材が構成されると、母型が60°回転された後、その薄板部材の上に、次の層の円環状の薄板部材が同様にして構成される。   In this apparatus, the thin plate segment is punched into a mother die by a press machine. If the above-mentioned n is 3, the punched thin plate segment is rotated 120 ° in the circumferential direction by the rotation of the mother die. Then, the next thin plate segment is punched out. The punched sheet segments are joined together with other adjacent sheet segments. Thus, when one annular thin plate member is constituted by the three thin plate segments, after the master mold is rotated by 60 °, the annular thin plate member of the next layer is formed on the thin plate member. Is configured in the same manner.

これによれば、薄板セグメントの打抜き及び薄板部材の積層が、母型を回転する機構により行われるので、成層鉄心の製造装置をコンパクトに構成することができる。   According to this, since the punching of the thin plate segments and the lamination of the thin plate members are performed by the mechanism that rotates the mother die, the manufacturing apparatus for the stratified core can be configured in a compact manner.

特許第3634801号公報Japanese Patent No. 3634801

しかしながら、上述の成層鉄心の製造装置によれば、薄板セグメントの打抜き毎に母型を回転させるようにしているため、母型の回転及び位置決めに一定時間を要するので、生産速度の向上を図るのが困難であるという問題がある。   However, according to the above-described laminated core manufacturing apparatus, since the mother die is rotated every time the thin plate segment is punched, it takes a certain time to rotate and position the mother die, thereby improving the production speed. There is a problem that is difficult.

本発明の目的は、かかる従来技術の問題点に鑑み、生産速度を容易に向上させることができる鉄心製造装置を提供することにある。   An object of the present invention is to provide an iron core manufacturing apparatus capable of easily improving the production speed in view of the problems of the prior art.

この目的を達成するため、本発明の鉄心製造装置は、各層が複数の円弧状部材で構成される環状の積層鉄心を製造する鉄心製造装置であって、帯状の鉄心材における複数の加工対象部分を順次所定の加工位置に移送する移送手段と、前記加工位置で剪断加工により各加工対象部分から円弧状部材を分離する加工手段と、前記剪断加工が行われる毎に、分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転することにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置する積層手段とを具備することを特徴とする。   In order to achieve this object, an iron core manufacturing apparatus according to the present invention is an iron core manufacturing apparatus for manufacturing an annular laminated core in which each layer is composed of a plurality of arc-shaped members, and a plurality of parts to be processed in a belt-shaped iron core material Are sequentially transferred to a predetermined processing position, processing means for separating the arc-shaped member from each processing target portion by shearing at the processing position, and a circle that is separated and lowered each time the shearing is performed. The arc-shaped member is first lowered and received on a plurality of arc-shaped members constituting one layer, and the arc-shaped member that is sequentially lowered by rotating the arc-shaped member by a predetermined angle in the circumferential direction of the arc-shaped member. And laminating means arranged at a position that constitutes.

これによれば、加工位置で円弧状部材が剪断されて下降し、積層手段に受け取られる。そして、積層手段が回転することにより円弧状部材の配置が行われる。すなわち、従来のイナーシャの大きな母型を回転させるのではなく、積層手段を回転させるので、先行特許の装置よりもはるかに速く回転させて位置決めすることができ、積層鉄心の生産速度を向上させることができる。   According to this, the arcuate member is sheared and lowered at the processing position and is received by the laminating means. Then, the arcuate member is arranged by rotating the stacking means. In other words, the rotating means is rotated instead of rotating the conventional large mold of inertia, so that it can be rotated and positioned much faster than the device of the prior patent, and the production speed of the laminated core is improved. Can do.

本発明の一実施形態に係る鉄心製造装置により積層鉄心が製造される様子を示す図である。It is a figure which shows a mode that a laminated iron core is manufactured with the iron core manufacturing apparatus which concerns on one Embodiment of this invention. 図1の鉄心製造装置の積層ガイド及び切断手段の部分を図1のII−II線で切断した断面図である。It is sectional drawing which cut | disconnected the part of the lamination | stacking guide and cutting | disconnection means of the iron core manufacturing apparatus of FIG. 1 by the II-II line of FIG. 図1の鉄心製造装置において環状層が形成される様子を示す図である。It is a figure which shows a mode that a cyclic | annular layer is formed in the iron core manufacturing apparatus of FIG. 従来の鉄心製造装置における切断手段及び積層ガイド部分の断面図である。It is sectional drawing of the cutting | disconnection means and lamination | stacking guide part in the conventional iron core manufacturing apparatus.

以下、図面を用いて本発明の実施形態について説明する。図1は本発明の一実施形態に係る鉄心製造装置により積層鉄心が製造される様子を示す。この積層鉄心は、ステータコアとして用いられるものである。この積層鉄心は、同図に示すように、帯状の鉄心材10を加工して得られる3枚の円弧状部材21により1つの環状層20を構成し、環状層20を所定数積層することにより製造される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows how a laminated core is manufactured by an iron core manufacturing apparatus according to an embodiment of the present invention. This laminated iron core is used as a stator core. As shown in the figure, this laminated iron core is formed by forming one annular layer 20 by three arc-shaped members 21 obtained by processing a belt-like iron core material 10 and laminating a predetermined number of annular layers 20. Manufactured.

同図に示すように、鉄心製造装置は、鉄心材10上の各加工対象部分が順次各加工位置A〜Fに位置するように鉄心材10をY方向に所定の送りピッチで断続的に送る送り手段30と、最後の加工位置Fにおいて切断加工により円弧状部材21を形成し、下方に位置する環状層20に結合させる切断手段40とを備える。   As shown in the figure, the iron core manufacturing apparatus intermittently feeds the iron core material 10 at a predetermined feed pitch in the Y direction so that each processing target portion on the iron core material 10 is sequentially positioned at each machining position A to F. Feeding means 30 and cutting means 40 for forming the arcuate member 21 by cutting at the last processing position F and coupling it to the annular layer 20 located below are provided.

鉄心材10は電磁鋼板を帯状に薄く加工したものであり、一定の板厚を有する。板厚は、0.15〜0.5mm程度である。鉄心材10上の各加工対象部分は、送り手段30により、順次各加工位置A〜Fに移送され、所定の加工がなされ、円弧状部材21の形成に供される。   The iron core material 10 is obtained by thinly processing a magnetic steel sheet into a strip shape, and has a certain thickness. The plate thickness is about 0.15 to 0.5 mm. Each processing target portion on the iron core material 10 is sequentially transferred to each processing position A to F by the feeding means 30, subjected to predetermined processing, and used for forming the arc-shaped member 21.

円弧状部材21の中心角は120°である。したがって、3枚の円弧状部材21により積層鉄心の1層分の環状層20が構成される。積層鉄心は所定数の環状層20が積層されたものとして構成される。なお、1つの環状層20を構成する円弧状部材21の枚数は、3枚に限らず、他の枚数たとえば2枚や4枚、6枚等であってもよい。ただし、この枚数は、多いほど歩留りは向上するが、生産速度は低下する。   The central angle of the arc-shaped member 21 is 120 °. Accordingly, the circular layer 20 for one layer of the laminated iron core is constituted by the three arc-shaped members 21. The laminated iron core is configured by laminating a predetermined number of annular layers 20. The number of arc-shaped members 21 constituting one annular layer 20 is not limited to three, and may be other numbers such as two, four, six, and the like. However, as the number increases, the yield improves, but the production speed decreases.

図2は鉄心製造装置の要部を図1のII−II線で切断した断面図である。同図に示すように、鉄心製造装置は、切断手段40による円弧状部材21の結合が、下方の環状層20上の適切な位置に対して行われるように環状層20の周方向の回転位置を制御する積層ガイド50を備える。   FIG. 2 is a cross-sectional view taken along the line II-II in FIG. As shown in the figure, the iron core manufacturing apparatus has a circumferential rotational position of the annular layer 20 so that the arc-shaped member 21 is joined to the appropriate position on the lower annular layer 20 by the cutting means 40. A lamination guide 50 is provided for controlling the above.

切断手段40は、鉄心材10を支持するダイ41と、鉄心材10をダイ41に対して押し込むことにより、図1で示される斜線を施した部分22を鉄心材10から切り離し、円弧状部材21を最終的に形成するパンチ42と、パンチ42による切断が行われるときに鉄心材10を押さえるストリッパプレート43とを備える。   The cutting means 40 separates the hatched portion 22 shown in FIG. 1 from the iron core material 10 by pressing the iron core material 10 into the die 41 and the die 41 that supports the iron core material 10. Are finally formed, and a stripper plate 43 that holds the iron core material 10 when the punch 42 is cut.

パンチ42は、切り離した円弧状部材21をそのまま下方の環状層20の上に押圧して結合させる機能も有する。ダイ41は、ダイプレート44に保持され、一定位置に固定されている。   The punch 42 also has a function of pressing and coupling the separated arc-shaped member 21 onto the lower annular layer 20 as it is. The die 41 is held by a die plate 44 and fixed at a certain position.

図中の60はパンチ42による切断加工に同期して、所定角度ずつ積層ガイド50を回転させる回転機構である。積層ガイド50は円筒状の内壁51を備え、その中心軸52の周りに回転可能に支持される。積層ガイド50上部の円筒状の側壁は、ダイプレート44により、ベアリング54を介して支持される。回転機構60は、積層ガイド50の外周に固定されたプーリ61、プーリ61を回転させる図示していない歯付ベルト等により構成することができる。   Reference numeral 60 in the drawing denotes a rotation mechanism that rotates the stacking guide 50 by a predetermined angle in synchronization with the cutting process by the punch 42. The stacking guide 50 includes a cylindrical inner wall 51 and is rotatably supported around a central axis 52 thereof. The cylindrical side wall at the top of the stacking guide 50 is supported by the die plate 44 via the bearing 54. The rotation mechanism 60 can be configured by a pulley 61 fixed to the outer periphery of the laminated guide 50, a toothed belt (not shown) that rotates the pulley 61, and the like.

積層ガイド50は、積層ガイド50と一体的に回転し、かつ図示していない駆動手段により上下動する支持部材53を備える。支持部材53は、切断手段40により切り離された円弧状部材21により構成される環状層20を支持し、かつ環状層20の積層数に応じて上下方向位置が制御される。   The stacking guide 50 includes a support member 53 that rotates integrally with the stacking guide 50 and moves up and down by driving means (not shown). The support member 53 supports the annular layer 20 constituted by the arcuate member 21 cut by the cutting means 40, and the vertical position is controlled according to the number of laminated annular layers 20.

すなわち支持部材53の支持面53aが、環状層20が積層されていない初期状態においては、ダイ41における切刃面41aの下端近傍の位置まで上昇し、環状層20の積層数が増加するに従って下降するように、支持部材53の位置が制御される。これにより、支持部材53が支持している一番上の環状層20の位置が、常に切刃面41aの下端近傍の所定位置となるように制御される。   That is, in the initial state where the annular layer 20 is not laminated, the support surface 53a of the support member 53 rises to a position near the lower end of the cutting edge surface 41a of the die 41 and descends as the number of laminations of the annular layer 20 increases. Thus, the position of the support member 53 is controlled. Thus, the position of the uppermost annular layer 20 supported by the support member 53 is controlled so as to always be a predetermined position near the lower end of the cutting edge surface 41a.

積層ガイド50は、円弧状部材21の切り離しが行われる毎に、中心軸52の周りに所定角度だけ回転するように制御される。この回転により、積層ガイド50によって支持されている円弧状部材21も、その周方向に、所定角度だけ回転することになる。この回転は、最上の環状層20に順次結合されてゆく円弧状部材21が、積層鉄心を構成する位置に配置されるように行われる。   The lamination guide 50 is controlled to rotate by a predetermined angle around the central axis 52 every time the arcuate member 21 is separated. By this rotation, the arcuate member 21 supported by the lamination guide 50 is also rotated by a predetermined angle in the circumferential direction. This rotation is performed so that the arc-shaped member 21 that is sequentially coupled to the uppermost annular layer 20 is disposed at a position that constitutes the laminated iron core.

図3は環状層20が形成される様子を示す。同図に示すように、1つの環状層20(20i)が3枚の円弧状部材21(21a〜21c)により構成され(同図(e))、かつ円弧状部材21がレンガ積み状に重なるように、所定角度の回転は、120°で2回(同図(b)及び(d))、60°で1回(同図(f))という回転を繰り返すことにより行われる。   FIG. 3 shows how the annular layer 20 is formed. As shown in the figure, one annular layer 20 (20i) is composed of three arcuate members 21 (21a to 21c) (Fig. 5 (e)), and the arcuate members 21 overlap in a brick shape. As described above, the rotation at the predetermined angle is performed by repeating the rotation twice at 120 ° ((b) and (d) in the figure) and once at 60 ° ((f) in the same figure).

すなわち、積層ガイド50は、i−1番目の環状層20i−1の上に、i番目の環状層20iを構成する最初の円弧状部材21aを受け取ると(同図(a))、120°回転する(同図(b))。そして、次の円弧状部材21bを受け取ると(同図(c))、さらに120°回転し(同図(d))、次の円弧状部材21cを受け取る(同図(d))。これにより、i番目の環状層20iを構成する位置に対する3枚の円弧状部材21a〜21cの配置が完了する(同図(e))。   That is, when the laminated guide 50 receives the first arcuate member 21a constituting the i-th annular layer 20i on the i-1-th annular layer 20i-1, the stacking guide 50 rotates by 120 °. (FIG. (B)). When the next arcuate member 21b is received ((c) in the figure), it is further rotated by 120 ° ((d) in the figure), and the next arcuate member 21c is received ((d) in the figure). Thereby, arrangement | positioning of the three circular-arc-shaped members 21a-21c with respect to the position which comprises the i-th cyclic | annular layer 20i is completed (the figure (e)).

次に、積層ガイド50は、60°回転する(同図(f))。このとき、支持部材53が1つの環状層20の厚さ分だけ下降する。この後、同図(a)と同様にして、次のi+1番目の環状層20を形成するための円弧状部材21dを受け取る(同図(g))。このようにして、各環状層20が3枚の円弧状部材21で構成され、かつ各円弧状部材21がレンガ積み状に重なった積層鉄心を構成するように、円弧状部材21が配置される。   Next, the lamination guide 50 rotates 60 ° ((f) in the figure). At this time, the support member 53 is lowered by the thickness of one annular layer 20. Thereafter, in the same manner as in FIG. 6A, the arcuate member 21d for forming the next i + 1-th annular layer 20 is received (FIG. 5G). In this way, each circular layer 20 is configured by three arc-shaped members 21 and the arc-shaped members 21 are arranged so that each arc-shaped member 21 forms a laminated iron core that is stacked in a brick pile shape. .

積層鉄心を製造する際には、図1に示すように、送り手段30により、鉄心材10が所定の送りピッチでY方向に送られる。これにより、鉄心材10上の各加工対象部分が順次各加工位置A〜Fに移送される。各加工位置A〜Fにおいては、次のような加工が施される。   When the laminated iron core is manufactured, as shown in FIG. 1, the iron core material 10 is fed in the Y direction by a feeding means 30 at a predetermined feeding pitch. Thereby, each process object part on the iron core material 10 is sequentially transferred to each process position AF. The following processing is performed at each processing position A to F.

加工位置Aにおいては、各加工対象部分を位置決めするための基準となるパイロット孔11が鉄心材10上に設けられる。パイロット孔11は、後続する各加工位置B〜Fにおいて、各加工対象部分の正確な位置決めに利用される。   At the processing position A, pilot holes 11 serving as a reference for positioning each processing target portion are provided on the iron core material 10. The pilot hole 11 is used for accurate positioning of each processing target portion at each of the subsequent processing positions B to F.

加工位置Bにおいては、かしめにより円弧状部材21を環状層20に結合させるための半抜き穴23が設けられる。半抜き穴23は鉄心材10の上面側において凹部、下面側において凸部を構成する。すなわち、上下に重なる円弧状部材21は、上下の半抜き穴23の凸部及び凹部同士が嵌合することにより、結合するようになっている。   In the processing position B, a half punching hole 23 for connecting the arcuate member 21 to the annular layer 20 by caulking is provided. The half punched hole 23 constitutes a concave portion on the upper surface side of the iron core material 10 and a convex portion on the lower surface side. That is, the arcuate member 21 that overlaps the upper and lower portions is joined by fitting the convex portions and concave portions of the upper and lower half punched holes 23 together.

半抜き穴23は、複数のものが、円弧状部材21となる部分の周方向に沿って等間隔で設けられる。ただし、図3(g)のように、周方向に60°ずれた位置で、上下の環状層20における円弧状部材21の半抜き穴23の位置が一致し、上下の環状層20が結合し得るように、たとえば4つの半抜き穴23が、同一の半径方向位置において、周方向に30°間隔で配置される。   A plurality of half-cut holes 23 are provided at equal intervals along the circumferential direction of the portion to be the arcuate member 21. However, as shown in FIG. 3G, the positions of the half-cut holes 23 of the arc-shaped members 21 in the upper and lower annular layers 20 coincide with each other at a position shifted by 60 ° in the circumferential direction, and the upper and lower annular layers 20 are joined. For example, four half-cut holes 23 are arranged at intervals of 30 ° in the circumferential direction at the same radial position.

加工位置Cにおいては、打抜き加工により、巻き線スロット24を構成する部分が設けられる。次の加工位置Dにおいては、隣接する加工対象部分の間の不要部分25が、打抜き加工により除去される。さらに、加工位置Eにおいて、円弧状部材21の周方向における端縁を画定するスリット26が設けられる。   In the processing position C, a portion constituting the winding slot 24 is provided by punching. In the next processing position D, the unnecessary portion 25 between the adjacent processing target portions is removed by punching. Further, at the processing position E, a slit 26 that defines an edge in the circumferential direction of the arc-shaped member 21 is provided.

最後の加工位置Fにおいては、切断手段40が、ダイ41及びパンチ42により、円弧状部材21となる部分22の両端を鉄心材10から切り離す。これにより形成された円弧状部材21は、そのままパンチ42により下方に押し下げられ、積層ガイド50上において既に支持されている最も上の環状層20の上に押圧される。   At the last processing position F, the cutting means 40 separates both ends of the portion 22 that becomes the arc-shaped member 21 from the iron core material 10 by the die 41 and the punch 42. The arcuate member 21 thus formed is pushed down by the punch 42 as it is and pressed onto the uppermost annular layer 20 already supported on the lamination guide 50.

これにより、形成された円弧状部材21は、直下の環状層20に対し、半抜き穴23を介してかしめられ、結合する。ただし、結合する円弧状部材21は、図3(g)のように、下の円弧状部材21に対し、60°ずれているので、2つの下の円弧状部材21に跨って、これらの円弧状部材21と結合する。   As a result, the formed arc-shaped member 21 is caulked and joined to the annular layer 20 directly below via the half-cut hole 23. However, since the arcuate member 21 to be coupled is shifted by 60 ° with respect to the lower arcuate member 21 as shown in FIG. 3G, these circles straddle the two lower arcuate members 21. Combined with the arcuate member 21.

このようにして、加工位置Fにおいて積層ガイド50が順次受け取る円弧状部材21は、図3のように、積層ガイド50の回転、及び支持部材53の上下動により、積層鉄心を構成する位置に配置され、積層される。   In this manner, the arcuate member 21 that is sequentially received by the lamination guide 50 at the processing position F is arranged at a position that constitutes the lamination core by the rotation of the lamination guide 50 and the vertical movement of the support member 53 as shown in FIG. And stacked.

つまり、結合された円弧状部材21が1つの環状層20を構成する1枚目又は2枚目の円弧状部材21である場合には、積層ガイド50は、その円弧状部材21を受け取った後、120°回転する(図3(a)〜(d))。3枚目の円弧状部材21である場合には、次の円弧状部材21を60°ずらしてレンガ積みのように重ねるために、60°回転し、支持部材53を環状層20の厚さ分だけ下降させる(図3(e)、(f))。   That is, when the combined arcuate member 21 is the first or second arcuate member 21 constituting one annular layer 20, the lamination guide 50 receives the arcuate member 21. , 120 ° (FIGS. 3A to 3D). In the case of the third arcuate member 21, the next arcuate member 21 is rotated by 60 ° so that the next arcuate member 21 is shifted by 60 ° and stacked like a brick pile, and the support member 53 is formed by the thickness of the annular layer 20. Is lowered (FIGS. 3E and 3F).

なお、加工位置Fにおいて切り離された円弧状部材21が、1つの積層鉄心における最初の環状層20を構成するものである場合には、その円弧状部材21の半抜き穴23を、半抜き穴ではなく、貫通孔として形成することにより、不要な凸部が積層鉄心の下端に形成されるのを回避することができる。   When the arc-shaped member 21 cut off at the processing position F constitutes the first annular layer 20 in one laminated iron core, the half-cut hole 23 of the arc-shaped member 21 is replaced with the half-cut hole. Instead, by forming it as a through hole, it is possible to avoid the formation of an unnecessary convex portion at the lower end of the laminated iron core.

このようにして、数十〜数百の環状層20の積層が完了すると、積層された環状層20は、積層ガイド50から積層鉄心として取り出される。   In this way, when the lamination of several tens to several hundreds of annular layers 20 is completed, the laminated annular layers 20 are taken out from the lamination guide 50 as laminated iron cores.

図4は切断手段40及び積層ガイド50に対応する従来の切断手段80及び積層ガイド70部分の断面図である。切断手段80は鉄心材10から円弧状部材21を切り離すダイ81及びパンチ82を備える。ダイ81は積層ガイド70と一体的に中心軸72の周りで回転し得るように積層ガイド70と一体的に保持されている。   FIG. 4 is a sectional view of a conventional cutting means 80 and lamination guide 70 corresponding to the cutting means 40 and the lamination guide 50. The cutting means 80 includes a die 81 and a punch 82 for cutting the arcuate member 21 from the iron core material 10. The die 81 is held integrally with the lamination guide 70 so that it can rotate around the central axis 72 integrally with the lamination guide 70.

そして、ダイ81と、積層ガイド70とは一体的に回転し、パンチ82により切り離された円弧状部材21はダイ81内に押し込められ、ダイ81とともに回転するようになっている。したがって、ダイ81としては、1つの環状層20を構成する3枚分の円弧状部材21をそれぞれ切断するための別個の切刃を備えたものを用いている。   The die 81 and the lamination guide 70 rotate integrally, and the arcuate member 21 cut off by the punch 82 is pushed into the die 81 and rotates together with the die 81. Therefore, as the die 81, a die provided with separate cutting blades for cutting the three arc-shaped members 21 constituting one annular layer 20 is used.

したがって、回転機構60は、重いダイ81と一体的に積層ガイド70を回転させるとともに、ダイ81の別個の切刃を、パンチ82に対応する回転位置において位置決めする必要がある。つまり、大きなイナーシャに対抗して、回転を制御する必要がある。このイナーシャは、特に、大型モータのコアを製造する場合には大きくなるので、生産速度を低下させる原因となる。   Therefore, the rotation mechanism 60 needs to rotate the stacking guide 70 integrally with the heavy die 81 and position a separate cutting edge of the die 81 at a rotation position corresponding to the punch 82. In other words, it is necessary to control the rotation against a large inertia. This inertia becomes large especially when a core of a large motor is manufactured, which causes a reduction in production speed.

これに対し、本実施形態では、ダイ41は、ダイプレート44に保持され、一定位置に固定されている。そして、比較的軽い材質で構成可能な積層ガイド50のみを回転させるようにしている。このため、制御すべきイナーシャは、従来に比べ、大幅に小さい。したがって、積層ガイド50の位置決め速度が従来に比べて高い。   On the other hand, in this embodiment, the die 41 is held by the die plate 44 and fixed at a fixed position. And only the lamination guide 50 which can be comprised with a comparatively light material is rotated. For this reason, the inertia to be controlled is much smaller than in the past. Therefore, the positioning speed of the laminated guide 50 is higher than the conventional one.

以上説明したように、本実施形態によれば、ダイ41は一定位置に固定し、積層ガイド50のみを回転させるようにしたため、積層ガイド50の位置決め速度を向上させ、生産速度を向上させることができる。また、ダイ41としては、1つの環状層20を構成する3枚分の円弧状部材21をそれぞれ切断するための別個の切刃を備えたものを必要としないため、装置構成を簡便なものとすることができる。   As described above, according to the present embodiment, since the die 41 is fixed at a fixed position and only the lamination guide 50 is rotated, the positioning speed of the lamination guide 50 can be improved and the production speed can be improved. it can. Moreover, since the die 41 does not need to be provided with separate cutting blades for cutting each of the three arc-shaped members 21 constituting one annular layer 20, the device configuration is simplified. can do.

なお、本発明は、上述実施形態に限定されることなく、適宜変形して実施することができる。たとえば、上述においては言及しなかったが、各環状層20間の結合を、レーザ光による溶接により強化させるようにしてもよい。また、各環状層20間の結合を、打抜き穴23を用いたかしめにより行う代わりに、接着剤により接着することにより行うようにしてもよい。   Note that the present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications. For example, although not mentioned above, the connection between the annular layers 20 may be strengthened by welding with a laser beam. Moreover, you may make it perform the coupling | bonding between each cyclic | annular layer 20 by adhere | attaching with an adhesive agent instead of performing by caulking using the punching hole 23. FIG.

また、上述においては、複数の加工位置において、順次所定の加工を行い、最後の加工位置Fにおいては、切断加工により円弧状部材21となる部分の両端を切り離すことにより円弧状部材21を形成するようにしているが、この代わりに、最後の加工位置に置いて、打抜き加工により円弧状部材21を形成するようにしてもよい。   Further, in the above description, predetermined processing is sequentially performed at a plurality of processing positions, and at the final processing position F, the arc-shaped member 21 is formed by cutting both ends of the portion that becomes the arc-shaped member 21 by cutting. However, instead of this, the arcuate member 21 may be formed by punching at the last machining position.

また、上述においては、積層鉄心としてステータコアを製造する場合について説明したが、本発明はこれに限らず、ロータコア等の他の積層鉄心を製造する場合にも適用することができる。   In the above description, the case where the stator core is manufactured as a laminated core has been described. However, the present invention is not limited to this and can be applied to the case where other laminated cores such as a rotor core are manufactured.

10…鉄心材、20…環状層、21…円弧状部材、30…送り手段(移送手段)、40…切断手段、41…ダイ、42…パンチ、50…積層ガイド。   DESCRIPTION OF SYMBOLS 10 ... Iron core material, 20 ... Cyclic layer, 21 ... Arc-shaped member, 30 ... Feed means (transfer means), 40 ... Cutting means, 41 ... Die, 42 ... Punch, 50 ... Laminate guide.

Claims (1)

各層が複数の円弧状部材で構成される環状の積層鉄心を製造する鉄心製造装置であって、
帯状の鉄心材における複数の加工対象部分を順次所定の加工位置に移送する移送手段と、
前記加工位置で剪断加工により各加工対象部分から円弧状部材を分離する加工手段と、
前記剪断加工が行われる毎に、分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転することにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置する積層手段とを具備することを特徴とする鉄心製造装置。
An iron core manufacturing apparatus for manufacturing an annular laminated core composed of a plurality of arc-shaped members in each layer,
Transfer means for sequentially transferring a plurality of parts to be processed in the belt-shaped iron core material to a predetermined processing position;
Processing means for separating the arc-shaped member from each processing target portion by shearing at the processing position;
Each time the shearing process is performed, the separated and descending arc-shaped member is received on the plurality of arc-shaped members that are first lowered and constitute one layer, and rotated by a predetermined angle in the circumferential direction of the arc-shaped member. Thus, an iron core manufacturing apparatus comprising: a laminating unit that arranges the arc-shaped members that are sequentially lowered at positions that constitute the laminated iron core.
JP2010237910A 2010-09-29 2010-10-22 Iron core manufacturing equipment Expired - Fee Related JP5557690B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010237910A JP5557690B2 (en) 2010-10-22 2010-10-22 Iron core manufacturing equipment
US13/821,140 US9178403B2 (en) 2010-09-29 2011-09-28 Laminated body manufacturing method
PCT/JP2011/072186 WO2012043632A1 (en) 2010-09-29 2011-09-28 Layered body manufacturing device and layered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237910A JP5557690B2 (en) 2010-10-22 2010-10-22 Iron core manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2012095368A true JP2012095368A (en) 2012-05-17
JP5557690B2 JP5557690B2 (en) 2014-07-23

Family

ID=46388122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237910A Expired - Fee Related JP5557690B2 (en) 2010-09-29 2010-10-22 Iron core manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5557690B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363036B1 (en) 2012-07-23 2014-02-17 주식회사 포스코티엠씨 Die assembly having die back and multiple die piece, and blanking unit having the same
WO2014045694A1 (en) * 2012-09-24 2014-03-27 株式会社日立産機システム Device for manufacturing iron core of axial gap motor, method for manufacturing iron core of axial gap motor, and axial gap motor using iron core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634801B2 (en) * 2000-03-21 2005-03-30 シューラー・プレッセン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Apparatus for producing a stratified iron core comprising thin plate members
JP2009273202A (en) * 2008-05-01 2009-11-19 Nissan Motor Co Ltd Method and apparatus for manufacturing laminated core, and laminated core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634801B2 (en) * 2000-03-21 2005-03-30 シューラー・プレッセン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Apparatus for producing a stratified iron core comprising thin plate members
JP2009273202A (en) * 2008-05-01 2009-11-19 Nissan Motor Co Ltd Method and apparatus for manufacturing laminated core, and laminated core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363036B1 (en) 2012-07-23 2014-02-17 주식회사 포스코티엠씨 Die assembly having die back and multiple die piece, and blanking unit having the same
WO2014045694A1 (en) * 2012-09-24 2014-03-27 株式会社日立産機システム Device for manufacturing iron core of axial gap motor, method for manufacturing iron core of axial gap motor, and axial gap motor using iron core
JP2014064421A (en) * 2012-09-24 2014-04-10 Hitachi Industrial Equipment Systems Co Ltd Device and method for manufacturing iron core of axial gap motor and axial gap motor using iron core

Also Published As

Publication number Publication date
JP5557690B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2012043632A1 (en) Layered body manufacturing device and layered body manufacturing method
US9520761B2 (en) Production method for laminated iron core
EP3789133A1 (en) Device for manufacturing laminated iron core and method for manufacturing laminated iron core
JP6193642B2 (en) Manufacturing method of laminated iron core
JP5697637B2 (en) Laminated core manufacturing method and laminated core manufacturing apparatus
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
JP3722539B2 (en) Manufacturing method of annular laminated iron core and progressive mold apparatus
JP2007028799A (en) Production method for core
JP5338190B2 (en) Manufacturing apparatus and manufacturing method of laminated iron core
JP2018121469A (en) Manufacturing method of laminated core
EP2782223B1 (en) Laminated core manufacturing method and manufacturing device
JP5557690B2 (en) Iron core manufacturing equipment
US10284058B2 (en) Method and apparatus for manufacturing laminated cores
JP2007089326A (en) Stacked stator core, and its manufacturing method and its manufacturing device
JPH06141516A (en) Core for electric motor and manufacture thereof
JP3964306B2 (en) Method for manufacturing stator laminated iron core of electric motor
JP5735880B2 (en) Iron core manufacturing equipment
JP5557691B2 (en) Iron core manufacturing method and iron core manufacturing apparatus
JP6456753B2 (en) Method and apparatus for manufacturing rotor laminated core
JP6251776B2 (en) Manufacturing method of laminated iron core
JP6316783B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP2012095370A (en) Core manufacturing method and core manufacturing device
US20200195067A1 (en) Laminated core of rotary electric machine, method for manufacturing laminated core of rotary electric machine, and rotary electric machine
JPH10313556A (en) Core, manufacture therof, and mold
US20230291287A1 (en) Laminated iron core, manufacturing method of laminated iron core, and progressive die machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees