JP2012094266A - Optical member and planar light source device using the same - Google Patents

Optical member and planar light source device using the same Download PDF

Info

Publication number
JP2012094266A
JP2012094266A JP2010238330A JP2010238330A JP2012094266A JP 2012094266 A JP2012094266 A JP 2012094266A JP 2010238330 A JP2010238330 A JP 2010238330A JP 2010238330 A JP2010238330 A JP 2010238330A JP 2012094266 A JP2012094266 A JP 2012094266A
Authority
JP
Japan
Prior art keywords
light source
led light
quadrangular pyramid
pyramid shape
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238330A
Other languages
Japanese (ja)
Inventor
Toshio Awaji
淡路敏夫
Yuki Miyoshi
三吉祐輝
Daishi Imai
今井大資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010238330A priority Critical patent/JP2012094266A/en
Publication of JP2012094266A publication Critical patent/JP2012094266A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical member, as well as a planar light source device, capable of alleviating, or further, cancelling brightness unevenness against contraction of setting intervals of LED light sources and an optical sheet or enlargement of arrangement intervals of the LED light sources, in a direct backlight with a plurality of LED light sources arranged.SOLUTION: The optical member for a planar light source device with a plurality of LEDs (light-emitting diodes) set on a reflecting sheet as light sources is provided with at least two optical sheets with a quadrangular pyramid or an inverted quadrangular pyramid shape at an opposite face at an LED light source side, and the planar light source device uses the optical member.

Description

本発明は、液晶表示パネルなどの照明に用いる面状光源装置用光学部材、および該光学部材用いた面状光源装置に関する。   The present invention relates to an optical member for a planar light source device used for illumination of a liquid crystal display panel or the like, and a planar light source device using the optical member.

薄型テレビや薄型モニターなどの大型ディスプレイには、画像表示のための液晶表示装置が広く採用されている。これらの液晶表示装置には、自発光性がない液晶表示パネルを照射するためにバックライトユニットが用いられている。バックライトユニットとしては、例えば導光板と、該導光板の端面に配置したLED光源を備え、光源からの光を導光して主面全体から液晶表示パネルへ向け照射するエッジタイプや、導光板を用いず、液晶パネルの直下にLED光源を配置し、光拡散板や光学シートの主面全体から液晶パネルに向け照射する直下タイプがある。   Liquid crystal display devices for displaying images are widely used for large displays such as thin televisions and thin monitors. In these liquid crystal display devices, a backlight unit is used to irradiate a liquid crystal display panel that does not have self-luminous properties. The backlight unit includes, for example, a light guide plate and an LED light source disposed on an end face of the light guide plate, guides light from the light source, and irradiates the entire main surface toward the liquid crystal display panel, or a light guide plate There is a direct type in which an LED light source is disposed directly under the liquid crystal panel without using the light, and the liquid crystal panel is irradiated from the entire main surface of the light diffusion plate or optical sheet.

近年、液晶テレビの大画面化にともない、軽量化や薄型化に対する要望がより高くなってきているが、導光板を用いたエッジタイプでは、導光板自体の重量増によりテレビ自体の軽量化が困難になるとともに、表示画面の輝度上昇が困難になってきている。一方、導光板を用いない直下タイプでは、導光板がない分軽量化が可能であるが、LED光源の指向性が強いため、LED直上部分が非常に明るくなり著しい輝度ムラが生じ、出光面全体で輝度ムラの少ない照射光を得るためには、LED光源の配置間隔を狭くするか、光拡散板とLED光源の距離を充分離す必要があり、薄型化やコスト削減が困難な状況にある。   In recent years, with the increase in screen size of liquid crystal televisions, demands for weight reduction and thinning have increased, but with the edge type using a light guide plate, it is difficult to reduce the weight of the television itself due to the increase in the weight of the light guide plate itself. At the same time, it has become difficult to increase the brightness of the display screen. On the other hand, the direct type that does not use a light guide plate can be reduced in weight because there is no light guide plate, but because the directivity of the LED light source is strong, the portion directly above the LED becomes very bright, causing significant luminance unevenness, and the entire light exit surface In order to obtain irradiation light with little luminance unevenness, it is necessary to narrow the arrangement interval of the LED light sources or to sufficiently separate the distance between the light diffusion plate and the LED light source, and it is difficult to reduce the thickness and reduce the cost.

特許文献1には、光束制御部材をLED素子上に取り付け、LED直上部分への指向性を緩和し、直下型バックライトの光源として用いた際の明暗を抑制する方法が開示されている。特許文献2には、LED光源をマトリックス上に配置した直下型バックライトユニットにおける輝度ムラ解消を目的として、表面に略逆多角錐または略逆多角錐台形状の凹部を有し、凹部形状を有する面を入光面とする全光線透過率が65%〜100%であり、凹部形状を有する面の反対面を入光面とした全光線透過率が30%〜80%である光拡散板を用いることが開示されている。   Patent Document 1 discloses a method in which a light flux controlling member is attached on an LED element, the directivity to a portion directly above the LED is relaxed, and brightness and darkness when used as a light source of a direct type backlight is disclosed. In Patent Document 2, for the purpose of eliminating luminance unevenness in a direct type backlight unit in which an LED light source is arranged on a matrix, the surface has a concave portion of a substantially inverted polygonal pyramid or a substantially inverted polygonal truncated cone shape, and has a concave shape. A light diffusing plate having a total light transmittance of 65% to 100% with the surface as the light incident surface, and a total light transmittance of 30% to 80% with the opposite surface of the surface having the concave shape as the light incident surface. It is disclosed to use.

特開2009−117207JP2009-117207A 特開2010−117707JP 2010-117707 A

しかしながら、バックライトコスト削減のためのLED光源数のさらなる削減や、あるいは液晶テレビのさらなる薄型化、具体的には、図2に示すような反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、LEDの頭頂部と光学シートの点光源側に面までの距離ではなく、反射シートと光学シートの点光源側の面までの最も接近した距離(D)の比であるL/Dが、2.5以上においても、輝度ムラを解消できるという課題に対しては、応えられていないのが現状である。   However, further reduction in the number of LED light sources for reducing the backlight cost, or further thinning of the liquid crystal television, specifically, between a plurality of LED light sources installed on a reflective sheet as shown in FIG. The ratio between the closest distance (L) and the distance between the top of the LED and the surface of the optical sheet on the point light source side, but the closest distance (D) between the reflective sheet and the surface of the optical sheet on the point light source side However, even if L / D is 2.5 or more, the present situation is that the problem that the luminance unevenness can be solved is not satisfied.

すなわち、直下型バックライトの点光源として光束制御部材をLED素子上に配置することによりLEDの直上以外の範囲に広く配光することが可能となるが、LED光源側に配置される光拡散板とLED光源との間隔を縮小、あるいはLED光源の配置間隔を拡げていくと光束制御部材の形状に起因する明暗パターンが生じてしまい、従来の光拡散板や光学シートの構成では、さらなる液晶表示装置の薄型化やLED光源数の削減が困難となっている。   That is, it is possible to distribute light widely in a range other than directly above the LED by arranging the light flux control member on the LED element as a point light source of the direct type backlight, but the light diffusion plate arranged on the LED light source side If the distance between the LED light source and the LED light source is reduced or the arrangement distance of the LED light source is increased, a light / dark pattern is generated due to the shape of the light flux controlling member. It is difficult to reduce the thickness of the apparatus and the number of LED light sources.

一方、バックライトユニットのさらなる薄型化、あるいはLED光源の配置間隔拡大によるLED使用数の削減化において求められる、上記のL/D≧2.5となるという厳しい条件下において、反射シート上に配置されたLED光源に、略逆多角錐または略逆多角錐台形状の凹部を有し、凹部形状を有する面を入光面とする全光線透過率が65%〜100%、凹部形状を有する面の反対面を入光面とした全光線透過率が30%〜80%である光拡散板を用い、この拡散板上に熱可塑性フィルム表面に光拡散剤となる微粒子を塗布した従来タイプの“拡散シート”、従来から光拡散板に重ね合わせてきたプリズムシート、マイクロレンズシート、反射偏光シートなどを適宜重ね合わせるといった光学シート構成だけで、輝度ムラの大幅低減や解消することには、限界が生じるようになってきている。   On the other hand, the backlight unit is placed on the reflective sheet under the strict condition of L / D ≧ 2.5, which is required for further thinning the backlight unit or reducing the number of LEDs used by expanding the LED light source spacing. A surface having a concave portion having a substantially inverted polygonal pyramid or substantially inverted polygonal frustum-shaped concave portion, and having a surface having the concave shape as a light incident surface. A light diffusion plate having a total light transmittance of 30% to 80% with the opposite surface as the light incident surface, and a fine particle as a light diffusion agent coated on the surface of the thermoplastic film on the diffusion plate. Diffusion sheet ”, prism sheet, microlens sheet, reflective polarizing sheet, etc. that have been superposed on the light diffusing plate from the past. Thing is to, have come to limit occurs.

本発明は前述の課題に鑑みてなされたものであり、その目的は、LED光源を配置した直下型バックライトにおいて、さらなる薄型化、あるいはさらなるLED光源数削減を実現させることが可能な面状光源装置用光学部材および該光学部材を備えた面状光源装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is a planar light source capable of realizing further thinning or further reduction in the number of LED light sources in a direct type backlight provided with LED light sources. An optical member for an apparatus and a planar light source device including the optical member are provided.

前記目標を達成するために、本発明は以下の手段を採用した。すなわち、第1の発明は反射シート上に設置された複数個のLED(発光ダイオード)を光源とする面状光源装置用の光学部材であり、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有していることを特徴とする。   In order to achieve the above goal, the present invention employs the following means. That is, the first invention is an optical member for a planar light source device that uses a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source, and has a quadrangular pyramid shape or an inverted four on the opposite surface on the LED light source side. It has at least two optical sheets having a pyramid shape.

第2の発明は、第1の発明の光学部材において、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの四角錐形状または転倒四角錐形状が、各々独立して、いずれも底面積が10〜10μmであり、かつ底面から最高部または最深部までの高低差が10〜500μmであることを特徴とする。 According to a second invention, in the optical member of the first invention, the quadrangular pyramid shape or the falling quadrangular pyramid shape of the optical sheet having the quadrangular pyramid shape or the falling quadrangular pyramid shape on the opposite surface on the LED light source side is independently In any case, the bottom area is 10 2 to 10 6 μm 2 , and the height difference from the bottom surface to the highest part or the deepest part is 10 to 500 μm.

第3の発明は、第1〜2の発明の光学部材において、少なくとも2枚用いるLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートのうち、LED光源に最も接近して光学シート(A)が、またLED光源から最も離れて光学シート(B)がそれぞれ設置されており、光学シート(A)は光学シート(B)に対して、LED光源側を入光面とした際の全光線透過率が高く、かつ四角錐m形状または転倒四角錐形状を有する面を入光面とした際の全光線透過率が低いことを特徴とする。 According to a third invention, in the optical member of the first or second invention, the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the side of the LED light source used at least two is closest to the LED light source. The optical sheet (A) and the optical sheet (B) are installed farthest away from the LED light source, and the optical sheet (A) has an LED light source side as a light incident surface with respect to the optical sheet (B). The total light transmittance is high, and the total light transmittance is low when a surface having a quadrangular pyramid m 2 m 2 shape or a falling quadrangular pyramid shape is used as the light incident surface.

第4の発明は、第3発明の光学部材において、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートのうち、LED光源に最も接近して設置される光学シート(A)は、LED光源側を入光面とした際の全光線透過率が35%〜70%であり、かつ、四角錐形状または転倒四角錐形状を有する面を入光面とした際の全光線透過率が70%〜98%であることを特徴とする。   According to a fourth aspect of the present invention, in the optical member of the third aspect, among the optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, an optical sheet (A ) Has a total light transmittance of 35% to 70% when the LED light source side is the light incident surface, and a total light beam when a surface having a quadrangular pyramid shape or a falling quadrangular pyramid shape is the light incident surface. The transmittance is 70% to 98%.

第5の発明は、第3の発明の光学部材において、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートのうち、LED光源から最も離れて設置される光学シート(B)は、LED光源側を入光面とした際の全光線透過率が10%〜65%であり、かつ、四角錐形状または転倒四角錐形状を有する面を入光面とした際の全光線透過率は75%〜100%であることを特徴とする。   According to a fifth aspect of the present invention, in the optical member of the third aspect, among the optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, the optical sheet (B ), The total light transmittance when the LED light source side is the light incident surface is 10% to 65%, and the total light when the surface having a quadrangular pyramid shape or a falling quadrangular pyramid shape is the light incident surface The transmittance is 75% to 100%.

第6の発明は、反射シート上に設置された複数個のLED光源と、LED光源からの光を偏向、拡散させるための光学部材とを備えた面状光源装置に関するものであり、光学部材として第1〜5の発明のいずれかの光学部材を用いることを特徴とする。   6th invention is related with the planar light source device provided with the some LED light source installed on the reflective sheet, and the optical member for deflecting and diffusing the light from an LED light source, As an optical member The optical member according to any one of the first to fifth inventions is used.

第7の発明は、反射シート上に設置された複数個のLED光源と、LED光源からの光を偏向、拡散させるための光学部材とを備えた面状光源装置に関するものであり、第6の発明の面状光源装置の点光源として設置面の法線から30°以上に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDであることを特徴とする。   7th invention is related with the planar light source device provided with the some LED light source installed on the reflective sheet, and the optical member for deflecting and diffusing the light from LED light source, The pointed light source of the surface light source device of the invention is a LED with a lens having a substantially rotationally symmetric emission distribution having an emission intensity peak at 30 ° or more from the normal of the installation surface.

第8の発明は、反射シート上に設置された複数個のLED光源と、LED光源からの光を偏向、拡散させるための光学部材とを備えた面状光源装置に関するものであり、第6〜7の発明のいずれかの面光源装置において反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、反射シートの光反射面とLED光源側に最も接近した光学シートのLED光源からの入光面との距離(D)の関係が、L/D≧2.5であることを特徴とする。   8th invention is related with the planar light source device provided with the some LED light source installed on the reflective sheet, and the optical member for deflecting and diffusing the light from an LED light source, In the surface light source device of any of the seventh aspect, the closest distance (L) between the plurality of LED light sources installed on the reflection sheet, and the optical sheet closest to the light reflection surface of the reflection sheet and the LED light source side The relationship between the distance (D) to the light incident surface from the LED light source is L / D ≧ 2.5.

本発明の光学部材を、反射シート上に配置された複数個のLEDを光源とする面状光源装置に用いることにより、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小しても、輝度ムラ低減化や解消が可能になる。また、本発明の光学部材を用いた面状光源装置は、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小しても、輝度ムラ低減化や解消が可能になるため、LED光源を配置した直下型面状光源装置として、さらなる薄型化を促進できるとともに、低コスト化のためのさらなるLED光源数削減が可能となる。   By using the optical member of the present invention in a planar light source device using a plurality of LEDs arranged on a reflection sheet as a light source, the LED light source arrangement interval is larger than the conventional interval, or the LED light source and the optical sheet Even if the interval is reduced, the luminance unevenness can be reduced or eliminated. In addition, the planar light source device using the optical member of the present invention can reduce or eliminate luminance unevenness even when the LED light source arrangement interval is larger than the conventional interval or the interval between the LED light source and the optical sheet is reduced. Therefore, as a direct type planar light source device in which LED light sources are arranged, it is possible to further reduce the thickness and further reduce the number of LED light sources for cost reduction.

本発明の実施形態において、複数のLED光源を配置した面状光源を示す簡略的な要部の平面図である。In embodiment of this invention, it is a top view of the simple principal part which shows the planar light source which has arrange | positioned several LED light source. 本発明の光学部材を、複数のLED光源上に配置した実施形態の1例を示す簡略的断面図である。It is a simplified sectional view showing one example of an embodiment which arranged an optical member of the present invention on a plurality of LED light sources. 本発明の光学部材を、複数のLED光源上に配置した実施形態の別の1例を示す簡略的断面図である。It is a simplified sectional view showing another example of an embodiment which has arranged an optical member of the present invention on a plurality of LED light sources.

1:反射シート
2:LED
3:LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート
4:LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート
5、6:プリズムシート、マイクロレンズシート、反射偏光シートなど、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート以外の光学シート
D: 反射シート表面からLED光源側へ最接近した光学シートの入光面までの距離
L: LED配置間隔の最短距離
1: Reflective sheet 2: LED
3: Optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side 4: Optical sheet 5 having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, 6: Prism sheet, micro Optical sheets other than optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, such as a lens sheet and a reflective polarizing sheet
D: Distance from the reflecting sheet surface to the light incident surface of the optical sheet closest to the LED light source side
L: Minimum distance between LED placement intervals

以下、本発明の実施形態に係る光学部材および該光学部材を用いた面状光源装置について詳細に説明する。本発明の光学部材は、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有しており、これらの光学シートは、連続して重ねあわせても、また他の光学シートを介して重ね合わせることもでき、光学部材が用いられる面状光源装置のLED光源配置条件や、LED光源の出光特性によって重ね合わせる順序を最適化することが好ましい。   Hereinafter, an optical member according to an embodiment of the present invention and a planar light source device using the optical member will be described in detail. The optical member of the present invention has at least two optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side. It is also possible to superimpose via other optical sheets, and it is preferable to optimize the order of superposition according to the LED light source arrangement conditions of the planar light source device in which the optical member is used and the light output characteristics of the LED light source.

図2は本発明の光学部材を用いた面状光源装置の1例となる断面模式図を示す。反射シート1上に、複数のLED光源2が最も接近した間隔(L)で配置されており、その上方にLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有する光学シート構成からなる本発明の光学部材が、反射シートの光反射面とLED光源側に最も接近した光学シートのLED光源からの入光面との距離(D)で設置されている。図2においては、光学シート(A)と光学シート(B)が連続的に配置される場合を示しており、点光源であるLEDからの光が、光学シート(A)と光学シート(B)含む光学部材により、一部は光源側に反射され、一部は拡散、偏向し、光学シート構成の最もLED光源から離れた光学シートの出光面において輝度ムラが低減あるいは解消される。   FIG. 2 is a schematic sectional view showing an example of a planar light source device using the optical member of the present invention. A plurality of LED light sources 2 are arranged on the reflective sheet 1 at the closest interval (L), and at least two optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side above the reflective light source 1. The optical member of the present invention having an optical sheet configuration having one sheet is installed at a distance (D) between the light reflection surface of the reflection sheet and the light incident surface from the LED light source of the optical sheet closest to the LED light source side. FIG. 2 shows a case where the optical sheet (A) and the optical sheet (B) are continuously arranged, and the light from the LED which is a point light source is the optical sheet (A) and the optical sheet (B). The optical member included partially reflects to the light source side, partially diffuses and deflects, and luminance unevenness is reduced or eliminated on the light exit surface of the optical sheet farthest from the LED light source of the optical sheet configuration.

図3は本発明の光学部材を用いた面状光源装置の別の1例となる断面模式図をしめす。
図2と異なり、本発明の光学部材における光学シート構成において、光学シート(A)が、全光学シート中最もLED光源側に配置される一方、光学シート(B)が出光側の最外層に配置されている場合を示しており、この場合の光学シート(B)は面状光源装置としての輝度ムラ解消とともに、面状光源装置の前方に配置される表示装置の正面方向における輝度向上の役割も果たしている。
FIG. 3 is a schematic sectional view showing another example of the planar light source device using the optical member of the present invention.
Unlike FIG. 2, in the optical sheet configuration of the optical member of the present invention, the optical sheet (A) is disposed on the most LED light source side among all the optical sheets, while the optical sheet (B) is disposed on the outermost layer on the light output side. The optical sheet (B) in this case has a role of improving luminance in the front direction of the display device arranged in front of the planar light source device as well as eliminating luminance unevenness as the planar light source device. Plays.

図2や図3は、本発明の光学部材を形成する光学シート構成の1例に過ぎないが、光学シート構成中に、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有することにより、高い反射率と偏向作用が付与でき、ランダム化による均整化した配光と集光効果を発現させることができる。これらの作用効果により、反射シート上に配置された複数個の高指向性のLEDを光源とする面状光源装置において、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小しても、輝度ムラの低減あるいは解消された面状光源が得られることになる。   2 and 3 are merely examples of the optical sheet configuration that forms the optical member of the present invention. In the optical sheet configuration, an optical having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side is shown. By having at least two sheets, high reflectivity and deflection can be imparted, and a uniform light distribution and condensing effect can be realized by randomization. Due to these effects, in the planar light source device using a plurality of highly directional LEDs arranged on the reflection sheet as the light source, the LED light source arrangement interval is larger than the conventional interval, or the LED light source and the optical sheet Even if the interval is reduced, a planar light source with reduced or eliminated luminance unevenness can be obtained.

本発明の光学部材は、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有することが必須であり、用いられる面状光源装置におけるLED配置間隔や、LEDが配置されている反射シートと光学シートまでの距離など、LED光源や面状光源装置の仕様によっては、3枚以上用いて輝度ムラ解消を達成することも可能となる。ただし、面状光源装置が装着される液晶表示装置の薄肉化が進められている状況下においては、できる限り光学シートの枚数削減が求められており、光学部材に占めるLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの使用は2枚が好ましい。   The optical member of the present invention must have at least two optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side. Depending on the specifications of the LED light source and the planar light source device, such as the distance between the reflection sheet and the optical sheet where the light source is disposed, it is possible to achieve luminance unevenness elimination by using three or more. However, in the situation where the thinning of the liquid crystal display device to which the planar light source device is mounted is being promoted, it is required to reduce the number of optical sheets as much as possible, and on the opposite surface of the optical member on the LED light source side Two sheets of the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape are preferable.

本発明の光学部材に少なくとも2枚有するLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの四角錐形状または転倒四角錐形状は、底面積が10〜10μmであり、かつ底面から最高部または最深部までの高低差が10〜500μmであることが好ましい。底面積が10μm未満であり、かつ底面から最高部または最深部までの高低差が10μm未満であると、光学シート表面に再現性よく四角錐形状または転倒四角錐形状を賦型することが困難となり、安定的な輝度ムラ低減や解消が困難となる。また、底面積が10μmを超え、かつ底面から最高部または最深部までの高低差が500μmを超えると、賦型LED光源側の反対面に四角錐形状または転倒四角錐形状を再現性よく賦型できるものの、本発明の光学シート構成を用いても、LED光源配置間隔が従来の間隔よりも拡大、あるいはLED光源と光学シートの間隔が縮小した面状光源装置においては輝度ムラ低減化や解消が困難となる。 The quadrangular pyramid shape or the falling quadrangular pyramid shape of the optical sheet having the quadrangular pyramid shape or the falling quadrangular pyramid shape on the opposite surface on the LED light source side of the optical member of the present invention has a bottom area of 10 2 to 10 6 μm 2. It is preferable that the difference in height from the bottom surface to the highest part or the deepest part is 10 to 500 μm. When the bottom area is less than 10 2 μm 2 and the height difference from the bottom surface to the highest part or the deepest part is less than 10 μm, a quadrangular pyramid shape or a falling quadrangular pyramid shape is reproducibly formed on the optical sheet surface. It becomes difficult to reduce and eliminate stable luminance unevenness. In addition, when the bottom area exceeds 10 6 μm 2 and the height difference from the bottom to the highest or deepest part exceeds 500 μm, the reproducibility of the quadrangular pyramid shape or the falling quadrangular pyramid shape on the opposite surface of the shaped LED light source side Although it can be shaped well, even with the optical sheet configuration of the present invention, the luminance unevenness is reduced in the planar light source device in which the LED light source arrangement interval is larger than the conventional interval or the interval between the LED light source and the optical sheet is reduced. It becomes difficult to eliminate.

前記光学シート表面に形成される四角錐形状または転倒四角錐形状は、各側面が光学シート平面に対して35°〜55°の傾斜角を有することが、LED光源からの光を効率よく反射、偏向でき、輝度ムラの減少した面状光源を発現させることができるため好ましく、より好ましくは40°〜50°である。また、四角錐形状または転倒四角錐形状を形成する4つの側面の傾斜角は、同一でも異なっていてもよい。   The quadrangular pyramid shape or the falling quadrangular pyramid shape formed on the optical sheet surface efficiently reflects light from the LED light source such that each side surface has an inclination angle of 35 ° to 55 ° with respect to the optical sheet plane, Since a planar light source that can be deflected and luminance unevenness can be expressed, it is preferable, and the angle is more preferably 40 ° to 50 °. Further, the inclination angles of the four side surfaces forming the quadrangular pyramid shape or the falling quadrangular pyramid shape may be the same or different.

本発明の光学部材に少なくとも2枚有する光学シートに賦型されている四角錐形状または転倒四角錐形状の底面積および底面から最高部または最深部までの高低差は、同一でも異なっていてもよい。   The bottom area of the quadrangular pyramid shape or the falling quadrangular pyramid shape formed on the optical sheet having at least two optical members of the present invention and the height difference from the bottom surface to the highest portion or the deepest portion may be the same or different. .

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート中、LED光源に最も接近して設置される光学シート(A)は、LED光源の強い指向性を解消するために重要な機能を果たしており、光学シート表面に賦型されている四角錐形状または転倒四角錐形状による反射、偏向機能と、光拡散機能により輝度分布の出光角依存性をできるだけ平準化することが求められる。これらのことから、光学シート(A)のLED光源側を入光面とした際の全光線透過率が35%〜70%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が70%〜98%であることが好ましい。より好ましくは、LED光源側を入光面とした際の全光線透過率が35%〜65%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が75%〜96%である。   Of the optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, the optical sheet (A) installed closest to the LED light source is important for eliminating the strong directivity of the LED light source It is required to level the output angle dependency of the luminance distribution as much as possible by the reflection / deflection function and the light diffusion function by the quadrangular pyramid shape or the falling quadrangular pyramid shape formed on the optical sheet surface. . For these reasons, a surface having a total light transmittance of 35% to 70% when the LED light source side of the optical sheet (A) is used as a light incident surface, and a surface having a quadrangular pyramid shape or a falling quadrangular pyramid shape is used as the light incident surface. The total light transmittance at that time is preferably 70% to 98%. More preferably, the total light transmittance is 35% to 65% when the LED light source side is the light incident surface, and the total light transmittance when the surface having the quadrangular pyramid shape or the falling quadrangular pyramid shape is the light incident surface. 75% to 96%.

一方、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート中、LED光源から最も離れて設置される光学シート(B)は、光学シート表面に賦型されている四角錐形状または転倒四角錐形状による反射、偏向機能で輝度分布の角度依存性を平準化させるとともに、光学シート(B)よりLED光源側に設置されている光学シートからの深い出光角度を有する光を面状光源装置の法線方向へ立ち上げ、面状光源装置としての正面方向へ集光させる役割も果たす必要がある。このことから、光学シート(B)のLED光源側を入光面とした際の全光線透過率が10%〜65%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が75%〜100%であることが好ましい。より好ましくは、LED光源側を入光面とした際の全光線透過率が12%〜60%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が80%〜100%である。   On the other hand, among the optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, the optical sheet (B) installed farthest from the LED light source is a quadrangular pyramid formed on the optical sheet surface. The angle dependence of the luminance distribution is leveled by the reflection or deflection function by the shape or the falling quadrangular pyramid shape, and light having a deep light emission angle from the optical sheet installed on the LED light source side from the optical sheet (B) is surfaced It is also necessary to start up in the normal direction of the planar light source device and to collect light in the front direction as the planar light source device. From this, when the light incident surface is 10% to 65% when the LED light source side of the optical sheet (B) is used as the light incident surface, and the surface having the quadrangular pyramid shape or the falling quadrangular pyramid shape is used as the light incident surface. The total light transmittance is preferably 75% to 100%. More preferably, the total light transmittance is 12% to 60% when the LED light source side is the light incident surface, and the total light transmittance is when the surface having the quadrangular pyramid shape or the falling quadrangular pyramid shape is the light incident surface. 80% to 100%.

なかでも、これらのLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートのうち、LED光源に最も接近して設置される光学シート(A)が、LED光源から最も離れて設置される光学シート(B)に対して、LED光源側を入光面とした際の全光線透過率が高く、かつ四角錐形状または転倒四角錐形状を有する面を入光面とした全光線透過率が低いことが、LED光源配置間隔のさらなる拡大化、あるいはLED光源の配置されている反射シートと光学シート間隔のさらなる縮小化においても、輝度ムラの低減あるいは解消された面状光源装置を実現し易くなる。   Among them, the optical sheet (A) installed closest to the LED light source among the optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side is the furthest away from the LED light source. The total light beam having a high total light transmittance when the LED light source side is used as the light incident surface with respect to the installed optical sheet (B), and a surface having a quadrangular pyramid shape or a falling quadrangular pyramid shape as the light incident surface A planar light source device in which luminance unevenness is reduced or eliminated even when the transmittance of the LED light source is further expanded, or the distance between the reflection sheet and the optical sheet where the LED light source is disposed is further reduced. It becomes easy to realize.

本発明の光学部材には、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚用い、これらのなかでもLED光源に最も接近して光学シート(A)が設置され、LED光源から最も離れて光学シート(B)設置されるが、あくまでもLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの中での配置であり、併用される他の光学シートが最もLED光源に近接して設置されても、あるいは、最もLED光源から離れて設置されても本発明の効果を損なうものではない。   The optical member of the present invention uses at least two optical sheets having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, and among these, the optical sheet (A) is closest to the LED light source. It is installed and the optical sheet (B) is installed farthest from the LED light source, but it is an arrangement in an optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, and is used in combination. Even if the other optical sheet is installed closest to the LED light source, or installed farthest from the LED light source, the effect of the present invention is not impaired.

また、本発明の光学部材に用いるLED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シート以外の光学シートとしては、既存のマイクロレンズシート、プリズムシート、レンチキュラーシート、拡散シート、反射偏光シートなどあり、本光学部材が使用される面状光源装置の仕様、あるいは液晶表示装置の仕様によって、適宜これらの光学シートを重ね合わせて用いることができる。   Moreover, as an optical sheet other than the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side used for the optical member of the present invention, an existing microlens sheet, prism sheet, lenticular sheet, diffusion sheet, Depending on the specifications of the planar light source device in which the present optical member is used or the specifications of the liquid crystal display device, there are reflective polarizing sheets and the like, and these optical sheets can be used as appropriate.

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートは、透明樹脂からなるシートの片面に、あるいは透明樹脂に光拡散剤が分散されたシートの片面に四角錐形状または転倒四角錐形状が賦型されたものであり、四角錐形状または転倒四角錐形状が賦型された面の反対面は鏡面、あるいは算術平均粗さが0.5〜50μmのエンボス、マットなど凹凸形状が施されていてもよい。   An optical sheet having a quadrangular pyramid shape or an inverted quadrangular pyramid shape on the opposite surface to the LED light source side is either a quadrangular pyramid shape or an inversion on one side of a sheet made of a transparent resin or on one side of a sheet in which a light diffusing agent is dispersed in the transparent resin. The shape is a quadrangular pyramid shape, and the opposite surface of the quadrangular pyramid shape or the falling quadrangular pyramid shape is a mirror surface, or an uneven shape such as an emboss or mat with an arithmetic average roughness of 0.5 to 50 μm. May be given.

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを構成する透明樹脂は、無色透明であり、かつ光学シートの主な構成要素として適度な強度を有するものであれば特に制限されない。例えば、ポリカーボネート樹脂;ポリメチルメタクリレートなどのアクリル系樹脂;ポリスチレン、ポリビニルトルエン、ポリ(p−メチルスチレン)などのスチレン系樹脂;MS樹脂(メチルメタクリレートとスチレンの共重合体);ノルボルネン系樹脂;ポリアリレート樹脂;ポリエーテルスルホン樹脂や、これらのうち2種以上の混合樹脂などを用いることができる。好適にはポリカーボネート樹脂、スチレン系樹脂またはノルボルネン系樹脂を用いる。中でもポリカーボネート樹脂は、透明性や耐熱性、加工性に優れており、且つそれらのバランスがよいので光学シート用の樹脂として特に好ましい。   The transparent resin constituting the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side is colorless and transparent, and has an appropriate strength as a main component of the optical sheet. Not limited. For example, polycarbonate resin; acrylic resin such as polymethyl methacrylate; styrene resin such as polystyrene, polyvinyl toluene, and poly (p-methylstyrene); MS resin (copolymer of methyl methacrylate and styrene); norbornene resin; poly Arylate resin; polyethersulfone resin, or a mixed resin of two or more of these can be used. A polycarbonate resin, a styrene resin, or a norbornene resin is preferably used. Among these, polycarbonate resin is particularly preferable as a resin for an optical sheet because it is excellent in transparency, heat resistance, and workability and has a good balance.

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートに用いる光拡散剤としては、有機系微粒子、無機系微粒子、有機−無機ハイブリッド系微粒子のいずれの微粒子でも使用でき、例えば、(メタ)アクリル系樹脂、スチレン系樹脂、アミノ系樹脂、ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂、これらの共重合体などの有機系微粒子;ガラス、スメクタイト、カオリナイト、シリカ、アルミナ、酸化チタン、酸化ジルコニウムなどの無機系微粒子;アクリル−シリカなどの有機−無機ハイブリッド系微粒子などが挙げられる。これらの材質のうち、(メタ)アクリル系樹脂、シリコーン系樹脂、シリカが特に好適である。   As the light diffusing agent used for the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, any fine particles of organic fine particles, inorganic fine particles, and organic-inorganic hybrid fine particles can be used. Organic fine particles such as (meth) acrylic resin, styrene resin, amino resin, polyester resin, silicone resin, fluorine resin, and copolymers thereof; glass, smectite, kaolinite, silica, alumina, Examples thereof include inorganic fine particles such as titanium oxide and zirconium oxide; organic-inorganic hybrid fine particles such as acrylic-silica. Of these materials, (meth) acrylic resins, silicone resins, and silica are particularly suitable.

光拡散剤の平均粒子径は0.3μm〜30μmが好ましく、これ以上小さくても、大きくても光拡散効果が大きく低下して好ましくなく、より好ましくは0.5μm〜15μmである。光拡散剤の最適配合量は、LED光源側の反対面に賦型された四角錐形状または転倒四角錐形状による拡散効果、光学シートを構成する透明樹脂と光拡散剤の屈折率差、光拡散剤の粒子径によって異なるが、光学シート中に0〜20質量部分散されていることが好ましい。20質量部以上分散していると、輝度の低下が大きくなり好ましくない。   The average particle diameter of the light diffusing agent is preferably 0.3 to 30 μm, and even if it is smaller or larger than this, the light diffusing effect is greatly reduced, which is not preferable, and more preferably 0.5 to 15 μm. Optimum blending amount of light diffusing agent is the diffusion effect due to the square pyramid shape or the falling quadrangular pyramid shape formed on the opposite side of the LED light source, the refractive index difference between the transparent resin and the light diffusing agent constituting the optical sheet, the light diffusion Although depending on the particle diameter of the agent, 0 to 20 parts by mass is preferably dispersed in the optical sheet. Dispersion of 20 parts by mass or more is not preferable because the reduction in luminance becomes large.

光拡散剤の分散形態としては、光学シート全体に均一に分散した形態、入光面側あるいは四角錐形状または転倒四角錐形状の賦型面側に光拡散剤分散層を形成した形態などがある。   As a dispersion form of the light diffusing agent, there are a form in which the light diffusing agent is uniformly dispersed in the entire optical sheet, a form in which a light diffusing agent dispersion layer is formed on the light incident surface side or the shaping surface side of a quadrangular pyramid shape or a falling quadrangular pyramid shape. .

なかでも、LED光源から最も離れて設置する光学シート(B)は、表示装置の正面方向に集光機能を果たす必要があり、出光面に賦型された四角錐形状または転倒四角錐形状による屈折効果を充分発揮させなければならず、光学シート(A)より光拡散剤の分散量が少ない方が好ましく、表示装置の正面方向の要求輝度レベルによっては、光拡散剤を分散させる必要がない場合もある。   Among them, the optical sheet (B) installed farthest from the LED light source needs to perform a light collecting function in the front direction of the display device, and is refracted by a quadrangular pyramid shape or a falling quadrangular pyramid shape formed on the light emitting surface. The effect must be sufficiently exhibited, and it is preferable that the amount of dispersion of the light diffusing agent is smaller than that of the optical sheet (A). Depending on the required luminance level in the front direction of the display device, it is not necessary to disperse the light diffusing agent. There is also.

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの製法としては、上記の透明熱可塑性樹脂と光拡散剤、さらに熱安定剤などを均一に配合した熱可塑性樹脂混合物を、所望の凹凸形状の反転形状が実質全面に彫刻加工された金型を用いて、押出成形、射出成形、プレス成形などにより得ることができる。なかでも押出成形による方法が、光拡散層や、帯電防止性能や特定波長の光吸収層などの表面機能層を形成できるなど多層化が容易なことや、生産効率が高いなどの点で特に好ましい。   As a method of manufacturing an optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, a thermoplastic resin mixture in which the above transparent thermoplastic resin, a light diffusing agent, a heat stabilizer and the like are uniformly blended is used. It can be obtained by extrusion molding, injection molding, press molding or the like using a mold in which a reverse shape of a desired uneven shape is engraved on substantially the entire surface. Among them, the extrusion method is particularly preferable from the viewpoints of easy multilayering and high production efficiency such as the formation of a light diffusing layer and a surface functional layer such as an antistatic performance and a light absorbing layer having a specific wavelength. .

LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートの形状寸法は、用いる面状光源装置の形状寸法に合わせて裁断、あるいは最終寸法に応じた金型を用い成形すればよく、厚さも、用いる面光源装置の寸法、用途によって、あるいは光学シートの設置位置によって異なるが、0.2mm〜4mmが好ましい。さらに、液晶表示装置の薄型化が求められる場合には、0.2〜2mmがより好ましい。   If the shape of the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side is cut according to the shape size of the planar light source device to be used, or if it is molded using a mold according to the final dimension The thickness is also preferably 0.2 mm to 4 mm, although the thickness varies depending on the size and use of the surface light source device to be used or the installation position of the optical sheet. Furthermore, when thinning of a liquid crystal display device is calculated | required, 0.2-2 mm is more preferable.

特に、光学シート(A)はLED光源に近接して設置させるため、光学シート構成を形成する他の光学シートの重ね合せる際の支持体的役割を果たす必要があることと、熱的影響を受けやすい環境下にあり、機械的あるいは熱的変形を避けるべく0.8mm以上の厚みを有することが好ましい。   In particular, since the optical sheet (A) is installed in the vicinity of the LED light source, it is necessary to play a supporting role in superimposing other optical sheets forming the optical sheet structure, and is affected by heat. It is preferable to have a thickness of 0.8 mm or more in order to avoid mechanical or thermal deformation.

一方、光学シート(B)はLED光源から離れて設置させるため、光学シート(A)より薄めの方が好適であり、0.3mm〜1.5mmの厚みを有することが好ましい。   On the other hand, since the optical sheet (B) is placed away from the LED light source, it is preferable that the optical sheet (B) is thinner than the optical sheet (A), and preferably has a thickness of 0.3 mm to 1.5 mm.

本発明の面状光源装置に用いるLED光源は、出射強度のピークがLED光源設置面の法線方向であるランバーシャンタイプ、法線から傾いた方向である側面放射タイプの白色LEDが好ましく用いられるが、面状光源装置の輝度ムラ低減や解消のし易さから、LEDチップ上にレンズ、あるいは光束制御部材を設置した側面放射型が特に好ましく用いられる。   The LED light source used in the planar light source device of the present invention is preferably a Lambertian type whose emission intensity peak is the normal direction of the LED light source installation surface, or a side emission type white LED whose direction is inclined from the normal line. However, a side emission type in which a lens or a light flux controlling member is installed on an LED chip is particularly preferably used because of the reduction in luminance unevenness of the planar light source device and the ease of eliminating it.

なかでも、配光パターンがLED光源設置面の法線から30°以上の深い角度に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDであることが好ましい。さらに、配光パターンがLED光源設置面の法線から45°以上の深い角度に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDを光源に用いることは、LED光源配置間隔の拡大化した面状光源装置、あるいはLED光源が配置されている反射シートと光学シートの間隔が縮小した薄型面状光源装置においても、一層、輝度ムラ解消や低減をはかれることとなり、より好ましい。   Especially, it is preferable that it is LED with a lens in which a light distribution pattern has the substantially rotationally symmetrical output distribution which has the peak of an output intensity in the deep angle of 30 degrees or more from the normal line of a LED light source installation surface. Furthermore, using a LED with a lens having a substantially rotationally symmetric emission distribution with a light emission pattern having an emission intensity peak at a deep angle of 45 ° or more from the normal line of the LED light source installation surface, Even an enlarged planar light source device or a thin planar light source device in which the distance between the reflection sheet and the optical sheet on which the LED light source is disposed is reduced, which is more preferable because the luminance unevenness can be further reduced and reduced.

LED光源の配置方法としては、特に制約はなく、直線状配列セットの並列配置、格子状や千鳥状配置などが用いられる。   The arrangement method of the LED light source is not particularly limited, and a parallel arrangement of a linear arrangement set, a lattice arrangement, a staggered arrangement, or the like is used.

本発明の面状光源装置に用いる反射シートは、白色シートであり、反射機能を有する金属板、フィルム、金属箔、アルミなどを蒸着したフィルムでできており、LED光源からの出射光、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートからの偏向あるいは反射光などを、再度光学シートの出光方向に戻すとともに光学シートへの入射角度の平準化役割を担っており、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートとともに輝度ムラ解消や低減に重要な働きをしている。   The reflection sheet used in the planar light source device of the present invention is a white sheet, and is made of a metal plate having a reflection function, a film, a metal foil, a film on which aluminum or the like is deposited, emitted light from the LED light source, LED light source It plays the role of leveling the incident angle to the optical sheet as well as returning the deflection or reflected light from the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite side of the side to the light exiting direction of the optical sheet again, Together with the optical sheet having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side, it plays an important role in eliminating or reducing luminance unevenness.

LED光源を用いた直下型面状光源装置において、実質的に輝度ムラ解消可能なレベルを、図2や図3に示すように反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、反射シートの光反射面と、光学シート構成の最もLED光源側に接近した光学シートのLED光源からの入光面との距離(D)の比であるL/Dで示すと、本発明の光学シート構成を用いることにより、従来の光学シート構成では難易度が高かった、L/D≧2.5の面状光源装置の実現をも可能にすることができた。   In a direct type planar light source device using an LED light source, the level at which luminance unevenness can be substantially eliminated is closest to a plurality of LED light sources installed on a reflection sheet as shown in FIGS. L / D, which is the ratio of the distance (L) and the distance (D) between the light reflecting surface of the reflecting sheet and the light incident surface from the LED light source of the optical sheet closest to the LED light source side of the optical sheet configuration By using the optical sheet configuration of the present invention, it was possible to realize a planar light source device with L / D ≧ 2.5, which was difficult with the conventional optical sheet configuration.

次に、本発明に係る面状光源装置を、実験例、実施例、比較例により具体的に説明する。   Next, the planar light source device according to the present invention will be specifically described with reference to experimental examples, examples, and comparative examples.

<実験例1>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが72μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が鏡面である厚さ0.8mmの光学シート(P1)を得た。
<Experimental example 1>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics) is blended with 0.1 parts by weight of a phosphorus-based antioxidant (“Irgaphos 168”: manufactured by BASF) as a heat stabilizer, and by extrusion molding, A falling regular square pyramid with a base of 150 μm, an inclination angle of each side with respect to the sheet plane of 45 °, a depth of 72 μm and a curved surface at the tip is formed concavely on one entire surface, and the opposite surface is a mirror surface of thickness 0 An optical sheet (P1) of 8 mm was obtained.

<実験例2>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.05質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが72μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が鏡面である厚さ0.8mmの光学シート(P2)を得た。
<Experimental example 2>
100 parts by mass of polycarbonate ("Iupilon E2000FN": manufactured by Mitsubishi Engineering Plastics), 0.05 part by mass of silicone fine particles ("Tospearl 120": manufactured by Momentive Performance) as a light diffusing agent, phosphorus-based oxidation as a thermal stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168" manufactured by BASF), and by extrusion molding, the bottom having a bottom of 150 μm, the inclination angle of each side with respect to the sheet plane being 45 °, and the depth being 72 μm is a curved surface. The inverted regular square pyramid thus formed was shaped into a concave shape on one entire surface, and an optical sheet (P2) having a thickness of 0.8 mm whose opposite surface was a mirror surface was obtained.

<実験例3>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.1質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が80μm、シート平面に対する各側面の傾斜角が45°、高さが37μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が数平均粗さ(Ra)が4.5μmのエンボス面である厚さ0.8mmの光学シート(P3)を得た。
<Experimental example 3>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.1 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a heat stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168": manufactured by BASF), and by extrusion molding, the bottom having a bottom of 80 μm, the inclination angle of each side with respect to the sheet plane being 45 °, and the height of 37 μm being a curved surface The inverted regular square pyramid thus formed was shaped into a concave shape on one entire surface, and an optical sheet (P3) having a thickness of 0.8 mm was obtained in which the opposite surface was an embossed surface having a number average roughness (Ra) of 4.5 μm.

<実験例4>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.1質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが70μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が鏡面である厚さ1.5mmの光学シート(P4)を得た。
<Experimental example 4>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.1 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a heat stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168" manufactured by BASF), and by extrusion molding, the bottom having a bottom of 150 μm, the inclination angle of each side with respect to the sheet plane being 45 °, and the depth being 70 μm is a curved surface. The inverted regular square pyramid thus formed was shaped in a concave shape on one entire surface, and an optical sheet (P4) having a thickness of 1.5 mm having a mirror surface on the opposite surface was obtained.

<実験例5>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.2質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが70μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が鏡面である厚さ1.5mmの光学シート(P5)を得た。
<Experimental example 5>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.2 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a thermal stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168" manufactured by BASF), and by extrusion molding, the bottom having a bottom of 150 μm, the inclination angle of each side with respect to the sheet plane being 45 °, and the depth being 70 μm is a curved surface. The inverted regular square pyramid thus formed was shaped concavely on one entire surface, and an optical sheet (P5) having a thickness of 1.5 mm having a mirror surface on the opposite surface was obtained.

<実験例6>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.3質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が150μm、シート平面に対する各側面の傾斜角が45°、深さが70μmの先端が曲面となった転倒正四角錐が凹状に一方の全面に賦型され、反対面が鏡面である厚さ1.5mmの光学シート(P6)を得た。
<Experimental example 6>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.3 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a heat stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168" manufactured by BASF), and by extrusion molding, the bottom having a bottom of 150 μm, the inclination angle of each side with respect to the sheet plane being 45 °, and the depth being 70 μm is a curved surface. The inverted regular quadrangular pyramid thus formed was concavely shaped on one entire surface, and an optical sheet (P6) having a thickness of 1.5 mm having a mirror surface on the opposite surface was obtained.

<実験例7>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.2質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、底辺が80μm、シート平面に対する各側面の傾斜度が45°、高さが32μmの先端が曲面となった正四角錐が凸状に一方の全面に賦型され、反対面が鏡面である厚さ1.5mmの光学シート(P7)を得た。
<Experimental example 7>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.2 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a thermal stabilizer Compounding 0.1 parts by weight of an inhibitor ("Irgaphos 168" manufactured by BASF) and by extrusion molding, the bottom having a bottom of 80 μm, the inclination of each side with respect to the sheet plane is 45 °, and the height of 32 μm is a curved surface. The formed regular square pyramid was convexly formed on one entire surface, and an optical sheet (P7) having a thickness of 1.5 mm having a mirror surface on the opposite surface was obtained.

<実験例8>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.5質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、両面が算術平均粗さ(Ra)4.5μmのエンボス面である厚さ0.8mmの光学シート(Q1)を得た。
<Experimental Example 8>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.5 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a heat stabilizer An optical sheet having a thickness of 0.8 mm, in which 0.1 parts by mass of an inhibitor (“Irgaphos 168”: manufactured by BASF) is blended, and both surfaces are embossed surfaces having an arithmetic average roughness (Ra) of 4.5 μm by extrusion molding. (Q1) was obtained.

<実験例9>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)1質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、両面が算術平均粗さ(Ra)4.5μmのエンボス面である厚さ0.8mmの光学シート(Q2)を得た。
<Experimental Example 9>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 1 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based antioxidant as a heat stabilizer ("Irgafos 168": manufactured by BASF) 0.1 parts by mass, and by extrusion molding, an optical sheet (Q2) having a thickness of 0.8 mm, both surfaces of which are embossed surfaces having an arithmetic average roughness (Ra) of 4.5 μm )

<実験例10>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)0.5質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、両面が算術平均粗さ(Ra)4.5μmのエンボス面である厚さ1.5mmの光学シート(Q3)を得た。
<Experimental example 10>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 0.5 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based oxidation as a heat stabilizer An optical sheet having a thickness of 1.5 mm in which 0.1 parts by mass of an inhibitor ("Irgaphos 168": manufactured by BASF) is blended and both surfaces are embossed surfaces having an arithmetic average roughness (Ra) of 4.5 μm by extrusion molding (Q3) was obtained.

<実験例11>
ポリカーボネート(「ユーピロンE2000FN」:三菱エンジニアリングプラスチック社製)100質量部に、光拡散剤としてシリコーン系微粒子(「トスパール120」:モメンティブパーフォーマンス社製)1質量部、熱安定剤としてリン系酸化防止剤(「イルガフォス168」:BASF社製)0.1質量部を配合し、押出成形により、両面が算術平均粗さ(Ra)4.5μmのエンボス面である厚さ1.5mmの光学シート(Q4)を得た。
<Experimental example 11>
100 parts by weight of polycarbonate (“Iupilon E2000FN”: manufactured by Mitsubishi Engineering Plastics), 1 part by weight of silicone fine particles (“Tospearl 120”: manufactured by Momentive Performance) as a light diffusing agent, and phosphorus-based antioxidant as a heat stabilizer ("Irgafos 168": manufactured by BASF) 0.1 parts by mass, and by extrusion molding, an optical sheet (Q4) having a thickness of 1.5 mm whose both surfaces are embossed surfaces having an arithmetic average roughness (Ra) of 4.5 μm )

<全光線透過率の測定>
上記実験例1〜7で作製した四角錐または転倒四角錐が賦型された光学シート(P1)から光学シート(P7)について、面状光源装置に設置する際、LED光源側となる鏡面またはエンボス面を入光面とする全光線透過率と、LED光源側の反対面となる四角錐または転倒四角錐が賦型された面を入光面とする全光線透過率を、日本電色工業株式会社製の濁度計NDH2000を用い、JIS K7361に準拠し測定し、その結果を表1に示した。
<Measurement of total light transmittance>
When the optical sheet (P7) from the optical sheet (P1) to which the quadrangular pyramid or the falling quadrangular pyramid produced in Experimental Examples 1 to 7 is formed is installed in a planar light source device, a mirror surface or embossing on the LED light source side Nippon Denshoku Kogyo Co., Ltd. has the total light transmittance with the light incident surface as the light incident surface and the total light transmittance with the light incident surface as the square pyramid or the falling quadrangular pyramid opposite to the LED light source side. Using a company-made turbidimeter NDH2000, the measurement was performed in accordance with JIS K7361. The results are shown in Table 1.

また、上記実験例8〜11で作製した四角錐または転倒四角錐が賦型されていない光学シート(Q1)から光学シート(Q4)についても、LED光源側となるエンボス面を入光面とする全光線透過率と、LED光源側の反対面となるエンボス面を入光面とする全光線透過率を、上記と同様にJIS K7361に準拠し測定し、その結果を表1に示した。   In addition, for the optical sheets (Q1) to (Q4) in which the quadrangular pyramids or the falling quadrangular pyramids produced in Experimental Examples 8 to 11 are not shaped, the embossed surface on the LED light source side is used as the light incident surface. The total light transmittance and the total light transmittance with the embossed surface opposite to the LED light source side as the light incident surface were measured according to JIS K7361 as described above, and the results are shown in Table 1.

<実施例1〜実施例9、および比較例1〜比較例6>
設置面の法線から約70°に出射強度のピークを有するレンズ付白色LEDを、図1に示すように、210mm×210mmの白色の反射シート上に9個、70mm間隔で格子状に配置し、反射シートと一枚目の光学シート入光面との距離が20mmになるように、各一枚目の光学シートを設置した。上記実験例1〜7で作製した四角錐または転倒四角錐が賦型された光学シート(P1)から光学シート(P7)については、各光学シートの出光面に存在する凹状ないしは凸状正四角錐の配列方向が、レンズ付白色LED配置間隔の最短方向と45°で交差するように設置した。また、プリズムシートを2枚配置する場合には、プリズム賦型面がLED光源側と反対になるように、かつプリズムの延在方向が互いに直交するように重ね合わせた。
<Examples 1 to 9 and Comparative Examples 1 to 6>
As shown in FIG. 1, nine white LEDs with a lens having an emission intensity peak at about 70 ° from the normal of the installation surface are arranged in a grid pattern at intervals of 70 mm on a 210 mm × 210 mm white reflective sheet. Each first optical sheet was placed so that the distance between the reflection sheet and the first optical sheet incident surface was 20 mm. With respect to the optical sheet (P1) to the optical sheet (P7) formed with the quadrangular pyramid or the falling quadrangular pyramid produced in the experimental examples 1 to 7, the concave or convex regular square pyramid existing on the light exit surface of each optical sheet is used. The arrangement direction was set so as to intersect at 45 ° with the shortest direction of the arrangement interval of the white LED with lens. Further, when two prism sheets were arranged, they were overlapped so that the prism forming surface was opposite to the LED light source side and the extending directions of the prisms were orthogonal to each other.

輝度ムラについては、各シート構成における最上の光学シートの出光面に生じる明暗を目視にて評価し、これらの結果を表2に示した。   As for the luminance unevenness, the light and darkness generated on the light exit surface of the uppermost optical sheet in each sheet configuration was visually evaluated, and these results are shown in Table 2.

なお、マイクロレンズシートは、PTD837(SHINWHA INTERTECH社製)、プリズムシートには、BEFIII(住友3M社製)、拡散シートには、PETフィルム表面に微粒子が塗布されたタイプのCH282(SKC−HAAS社製、光拡散層の反対面から入光した際の全光線透過率は74%)、反射偏光フィルムには、DBEF−D400(住友3M社製)を用いた。   The microlens sheet is PTD837 (manufactured by SHINWHA INTERTECH), the prism sheet is BEFIII (manufactured by Sumitomo 3M), and the diffusion sheet is CH282 (SKC-HAAS, which has a PET film surface coated with fine particles. The total light transmittance when entering from the opposite surface of the light diffusion layer was 74%), and DBEF-D400 (manufactured by Sumitomo 3M) was used as the reflective polarizing film.

<輝度ムラ評価>
輝度ムラ評価は、LED上に配置した光学シートの法線方向、および法線方向に対し±30°方向から目視により判定し、下記の5段階に区分した。
<Evaluation of uneven brightness>
Luminance unevenness evaluation was visually judged from the normal direction of the optical sheet arranged on the LED and ± 30 ° direction with respect to the normal direction, and was classified into the following five stages.

1: 明確な境界線を有する明暗のパターンが確認できる
2: 明暗領域の明確な境界線は認められないが、明暗パターンが明確に認められる
3: 薄っすらとではあるが明暗パターンが認められる
4: ほぼ明暗パターンは解消されているが、全体的な輝度均一レベルには至らず
5: 明暗領域の存在が確認できず、全体的に輝度均一レベルが得られている。
1: A bright and dark pattern with a clear boundary line can be confirmed. 2: A clear boundary line in the light and dark area is not recognized, but a bright and dark pattern is clearly recognized. 3: A light and dark pattern is recognized although it is faint. 4: The light / dark pattern is almost eliminated, but the overall brightness uniformity level is not reached. 5: The presence of the brightness / darkness region cannot be confirmed, and the brightness uniformity level is obtained as a whole.

Figure 2012094266
Figure 2012094266

Figure 2012094266
Figure 2012094266

本発明の光学部材、および該光学部材を用いた面状光源装置は、LED光源直下型液晶表示装置の薄型化、コスト削減化に好適である。   The optical member of the present invention and the planar light source device using the optical member are suitable for reducing the thickness and cost of the LED light source direct type liquid crystal display device.

Claims (8)

反射シート上に設置された複数個のLED(発光ダイオード)を光源とする面状光源装置用の光学部材であって、LED光源側の反対面に四角錐形状または転倒四角錐形状を有する光学シートを少なくとも2枚有することを特徴とする面状光源装置用光学部材。   An optical member for a planar light source device having a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source, and having a quadrangular pyramid shape or a falling quadrangular pyramid shape on the opposite surface on the LED light source side An optical member for a planar light source device, characterized by having at least two. 前記光学シートの四角錐形状または転倒四角錐形状は、各々独立して底面積が10〜10μmであり、かつ底面から最高部または最深部までの高低差が10〜500μmであることを特徴とする請求項1に記載の面状光源装置用光学部材。 Each of the quadrangular pyramid shape or the falling quadrangular pyramid shape of the optical sheet has independently a bottom area of 10 2 to 10 6 μm 2 and a height difference from the bottom surface to the highest part or the deepest part is 10 to 500 μm. The optical member for a planar light source device according to claim 1. 前記光学シートのうち、LED光源に最も接近して設置される光学シート(A)が、LED光源から最も離れて設置される光学シート(B)に対して、LED光源側を入光面とした際の全光線透過率が高く、かつ四角錐形状または転倒四角錐形状を有する面を入光面とした全光線透過率が低いことを特徴とする請求項1〜2のいずれかに記載の面状光源装置用光学部材。 Among the optical sheets, the optical sheet (A) installed closest to the LED light source is the light incident surface on the LED light source side with respect to the optical sheet (B) installed farthest from the LED light source. 3. The surface according to claim 1, wherein the surface has a high total light transmittance and a low total light transmittance when a surface having a quadrangular pyramid shape or a falling quadrangular pyramid shape is used as an incident surface. Optical member for a light source device. 前記光学シートのうち、LED光源に最も接近して設置される光学シート(A)のLED光源側を入光面とした際の全光線透過率が35%〜70%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が70%〜98%であることを特徴とする請求項3に記載の面状光源装置用光学部材。 Among the optical sheets, the total light transmittance is 35% to 70% when the LED light source side of the optical sheet (A) installed closest to the LED light source is the light incident surface, and the shape is a quadrangular pyramid or falls. 4. The optical member for a planar light source device according to claim 3, wherein a total light transmittance is 70% to 98% when a surface having a quadrangular pyramid shape is used as a light incident surface. 前記光学シートのうち、LED光源から最も離れて設置される光学シート(B)のLED光源側を入光面とした際の全光線透過率が10%〜65%、かつ四角錐形状または転倒四角錐形状有する面を入光面とした際の全光線透過率が75%〜100%であることを特徴とする請求項3に記載の面状光源装置用光学部材。 Among the optical sheets, the total light transmittance when the LED light source side of the optical sheet (B) installed farthest from the LED light source is the light incident surface is 10% to 65%, and is a quadrangular pyramid shape or a falling four. 4. The optical member for a planar light source device according to claim 3, wherein the total light transmittance is 75% to 100% when a surface having a pyramid shape is used as a light incident surface. 反射シート上に設置された複数個のLED(発光ダイオード)を光源とし、請求項1〜5のいずれかに記載の光学部材を有することを特徴とする面状光源装置。   A planar light source device comprising a plurality of LEDs (light emitting diodes) installed on a reflective sheet as a light source and the optical member according to claim 1. LED光源が、設置面の法線から30°以上に出射強度のピークを有する略回転対称の出射分布を有するレンズ付LEDであることを特徴とする請求項6に記載の面状光源装置。 The planar light source device according to claim 6, wherein the LED light source is a lens-equipped LED having a substantially rotationally symmetric emission distribution having an emission intensity peak at 30 ° or more from a normal line of the installation surface. 反射シート上に設置された複数個のLED光源間の最も接近した間隔(L)と、反射シートの光反射面と、光学部材の最もLED光源側に接近した光学シートのLED光源からの入光面との距離(D)の関係が、L/D≧2.5であることを特徴とする請求項6〜7のいずれかに記載の面状光源装置。   The closest distance (L) between the plurality of LED light sources installed on the reflection sheet, the light reflection surface of the reflection sheet, and the light incident from the LED light source of the optical sheet closest to the LED light source side of the optical member The planar light source device according to any one of claims 6 to 7, wherein the relationship between the distance (D) and the surface is L / D≥2.5.
JP2010238330A 2010-10-25 2010-10-25 Optical member and planar light source device using the same Pending JP2012094266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238330A JP2012094266A (en) 2010-10-25 2010-10-25 Optical member and planar light source device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238330A JP2012094266A (en) 2010-10-25 2010-10-25 Optical member and planar light source device using the same

Publications (1)

Publication Number Publication Date
JP2012094266A true JP2012094266A (en) 2012-05-17

Family

ID=46387401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238330A Pending JP2012094266A (en) 2010-10-25 2010-10-25 Optical member and planar light source device using the same

Country Status (1)

Country Link
JP (1) JP2012094266A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104455A (en) 2015-01-05 2017-09-15 데이진 필름 솔루션스 가부시키가이샤 White reflective film for direct surface light source and direct surface light source using same
US10209566B2 (en) 2017-05-24 2019-02-19 Nichia Corporation Light-emitting device
CN111656268A (en) * 2018-11-16 2020-09-11 惠和株式会社 Optical sheet, backlight unit, liquid crystal display device, and information apparatus
US11655957B2 (en) 2018-01-30 2023-05-23 Brightview Technologies, Inc. Microstructures for transforming light having Lambertian distribution into batwing distributions
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
US11906842B2 (en) 2020-01-24 2024-02-20 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104455A (en) 2015-01-05 2017-09-15 데이진 필름 솔루션스 가부시키가이샤 White reflective film for direct surface light source and direct surface light source using same
US10209566B2 (en) 2017-05-24 2019-02-19 Nichia Corporation Light-emitting device
US11655957B2 (en) 2018-01-30 2023-05-23 Brightview Technologies, Inc. Microstructures for transforming light having Lambertian distribution into batwing distributions
CN111656268A (en) * 2018-11-16 2020-09-11 惠和株式会社 Optical sheet, backlight unit, liquid crystal display device, and information apparatus
CN111656268B (en) * 2018-11-16 2024-01-12 惠和株式会社 Optical sheet, backlight unit, liquid crystal display device, and information apparatus
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
US11906842B2 (en) 2020-01-24 2024-02-20 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same

Similar Documents

Publication Publication Date Title
TWI494615B (en) Optical prism sheet having a certain roughness thereon
JP2012043671A (en) Planar light source device
JP2012114003A (en) Optical member and planar light source device using the optical member
JP2012234047A (en) Optical sheet and surface light source device using the optical sheet
JP5470846B2 (en) Diffusion sheet and backlight unit using the same
KR20130069481A (en) Light guide plate and edge light backlight device
JPWO2007114158A1 (en) Direct backlight unit
JP2012242764A (en) Optical member and planar light source device using the same
JP2012094266A (en) Optical member and planar light source device using the same
TW200925730A (en) Diffusion sheet
JP2011123379A (en) Light beam control unit, direct backlight apparatus and liquid crystal display apparatus
KR20110065610A (en) Condensing type optical sheet
JP6975197B2 (en) Optical plates with protrusions, optical structures, backlight modules, and display devices
JP2011216271A (en) Plane light-emitting unit
JP5614128B2 (en) Optical sheet, backlight unit and display device
JP2007163810A (en) Light diffusion plate and direct backlight device
JP2008091114A (en) Direct backlight device and display device
JP2012054056A (en) Large-sized light emitting device, lighting, and large display device
JP2007080800A (en) Light guide plate of backlight unit
JP2012237978A (en) Optical sheet and planar light source device using the same
JP2011064745A (en) Optical sheet, backlight unit and display apparatus
JP2005209558A (en) Light guide plate and backlight
JP2008071716A (en) Direct backlight device
JP2005293940A (en) Light guide plate and backlight using the same
JP2010044378A (en) Light beam deflecting structure plate, surface light source device, and liquid crystal display