JP2011216271A - Plane light-emitting unit - Google Patents

Plane light-emitting unit Download PDF

Info

Publication number
JP2011216271A
JP2011216271A JP2010082357A JP2010082357A JP2011216271A JP 2011216271 A JP2011216271 A JP 2011216271A JP 2010082357 A JP2010082357 A JP 2010082357A JP 2010082357 A JP2010082357 A JP 2010082357A JP 2011216271 A JP2011216271 A JP 2011216271A
Authority
JP
Japan
Prior art keywords
light
optical sheet
emitting unit
uniformity
point light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082357A
Other languages
Japanese (ja)
Other versions
JP5546319B2 (en
Inventor
Yuji Kurokawa
裕司 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2010082357A priority Critical patent/JP5546319B2/en
Publication of JP2011216271A publication Critical patent/JP2011216271A/en
Application granted granted Critical
Publication of JP5546319B2 publication Critical patent/JP5546319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plane light-emitting unit capable of improving uniformity through restraint of luminance unevenness, even with a lengthened interval between light sources and with a shortened interval from each point light source to an optical sheet.SOLUTION: In the plane light-emitting unit, the point light sources 3 having an angle at which a luminance in a light distribution of irradiation light is maximum within a range of +30° to +80° and -30° to -80° are discretely arranged, and at their front face side, an optical sheet 2 having a number of concave parts 2b or convex parts having a slanted face or a tapered face at least on a light-emitting face of a translucent resin sheet 2a are formed in array. As the optical sheet, convex ridge parts or concave groove parts may be arrayed as one set, and a plurality of the sets may be arrayed. The point light sources 3 have directivity in a slanted direction and the optical sheet 2 irradiates light incident from a slant backside nearly toward a front direction, so that degradation of luminance at a middle part between the point light sources can be restrained to enhance uniformity of light.

Description

本発明は、離散的に配置された点光源の正面側に光学シートを設けた面発光ユニットに関し、更に詳しくは、輝度ムラを抑制して面発光の均斉度を向上させることができる面発光ユニットに関する。   The present invention relates to a surface light emitting unit in which an optical sheet is provided on the front side of discretely arranged point light sources, and more specifically, a surface light emitting unit capable of improving uniformity of surface light emission by suppressing luminance unevenness. About.

テレビ受像機やパーソナルコンピュータ等に用いられる液晶ディスプレイのバックライトユニットには、液晶パネルの背面側に光源を配置した直下ライト方式のものと、液晶パネルの背面側に導光板を配置してその側面に光源を配置したエッジライト方式のものがある。これらのバックライトユニットは、従来から光源としてCCFL(冷陰極管)等の線光源を用いるのが一般的であったが、最近ではLED(発光ダイオード)を用いたものが実用化されている。LEDは十分な輝度を有するので、液晶パネルの背面側に点光源としてマトリックス状あるいは千鳥状に配置して用いることが多い。   There are two types of backlight units for liquid crystal displays used in television receivers and personal computers: one with a direct light system in which a light source is arranged on the back side of the liquid crystal panel, and one side with a light guide plate arranged on the back side of the liquid crystal panel. There is an edge light type in which a light source is arranged. Conventionally, these backlight units generally use a linear light source such as a CCFL (Cold Cathode Tube) as a light source. Recently, those using an LED (Light Emitting Diode) have been put into practical use. Since LEDs have sufficient luminance, they are often used in a matrix or zigzag manner as point light sources on the back side of the liquid crystal panel.

ところが、LEDは配光特性に強い指向性があり、配光分布が発光面の正面方向に特に偏っているため、このLEDと液晶パネルとの間に、光拡散剤を含んだ一般的な光拡散フィルムを配置するだけでは、輝度ムラを抑えることが難しく、特に、LEDの光源間距離が長くなるほど、且つ、LEDから光拡散フィルムまでの距離が短くなるほど、輝度ムラが大きくなるという不都合があった。そのため、これまではLEDの光源間距離を通常30mm以下と短くし、LEDから光拡散フィルムまでの距離を出来るだけ長く設定して、輝度ムラを軽減するようにしているが、上記のように光源間距離を短くするとLEDの使用個数が多くなるのでコストアップを招くという問題があり、また、LEDから光拡散フィルムまでの距離を大きくとることは昨今のテレビ受像機の薄型化の流れに背くという問題がある。   However, the LED has a strong directivity in the light distribution characteristics, and the light distribution is particularly biased in the front direction of the light emitting surface. Therefore, a general light containing a light diffusing agent is interposed between the LED and the liquid crystal panel. It is difficult to suppress luminance unevenness only by disposing a diffusion film. In particular, there is a disadvantage that the luminance unevenness increases as the distance between the light sources of the LED becomes longer and the distance from the LED to the light diffusion film becomes shorter. It was. Therefore, until now, the distance between the light sources of LEDs has been shortened to typically 30 mm or less, and the distance from the LED to the light diffusion film has been set as long as possible to reduce luminance unevenness. If the distance is shortened, the number of LEDs used increases, leading to an increase in cost, and increasing the distance from the LED to the light diffusion film is contrary to the recent trend of thinning television receivers. There's a problem.

これに対し、液晶表示装置のバックライトユニットとして、配線基板上にプラスチックレンズ付きのLEDをマトリックス状に配設すると共に、その正面側に一般的な光拡散シートを設け、LEDのプラスチックレンズに、拡散粉塵と顔料と接着剤との混合物で光拡散作用を発揮する微細パターンを形成したものが提案されている(特許文献1)。   On the other hand, as a backlight unit of a liquid crystal display device, LEDs with plastic lenses are arranged in a matrix on a wiring board, and a general light diffusion sheet is provided on the front side thereof. The thing which formed the fine pattern which exhibits a light-diffusion effect with the mixture of a diffusion dust, a pigment, and an adhesive agent is proposed (patent document 1).

上記特許文献1のバックライトユニットは、LEDのプラスチックレンズの微細パターンと光拡散シートの双方によって、LEDからの光が拡散されるため、輝度ムラが軽減されて均斉度が向上すると推測される。けれども、具体的に輝度の均斉度がどの程度向上するのか、実験で証明されていないため、その有効性については確認できない。   In the backlight unit of Patent Document 1, light from the LED is diffused by both the fine pattern of the plastic lens of the LED and the light diffusion sheet. Therefore, it is presumed that the luminance unevenness is reduced and the uniformity is improved. However, the effectiveness of the luminance uniformity cannot be confirmed because it has not been proved experimentally to the extent that the luminance uniformity is actually improved.

特開2006−18261号公報JP 2006-18261 A

本発明は上記事情の下になされたもので、その解決しようとする課題は、点光源の光源間距離を長く設定し、点光源から光拡散作用を発揮する光学シートまでの距離を短くしても、輝度ムラを十分抑制して均斉度を大幅に向上させることができる面発光ユニットを提供することにある。   The present invention has been made under the above circumstances, and the problem to be solved is that the distance between the light sources of the point light sources is set long, and the distance from the point light source to the optical sheet that exhibits the light diffusion action is shortened. It is another object of the present invention to provide a surface light emitting unit capable of sufficiently suppressing unevenness in luminance and greatly improving the uniformity.

上記課題を解決するため、本発明の面発光ユニットは、離散的に配置された点光源の正面側に光学シートを設けた面発光ユニットであって、
上記点光源は、その出射光の配光分布において輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある点光源であり、
上記光学シートは、透光性樹脂シートの少なくとも出光面上に、傾斜面又はテーパー面を有する凹部又は凸部を多数配列形成した光学シート、又は、透光性樹脂シートの少なくとも出光面上に、一定方向に沿って凸状の畝部又は凹状の溝部を多数配列形成し、かつ、これら畝部又は溝部の配列を、相互に形状の異なる複数の畝部又は溝部が並んで配列されたものを一つの組とし、この複数の畝部又は溝部からなる組をさらに繰り返し並んで配列させた光学シート、のいずれかであることを特徴とするものである。
In order to solve the above problems, the surface emitting unit of the present invention is a surface emitting unit in which an optical sheet is provided on the front side of discretely arranged point light sources,
The point light source is a point light source in which the angle at which the luminance becomes maximum in the light distribution of the emitted light is in the range of + 30 ° to + 80 ° and −30 ° to −80 °,
The optical sheet is an optical sheet in which a large number of concave or convex portions having inclined surfaces or tapered surfaces are arranged on at least the light exit surface of the translucent resin sheet, or at least on the light exit surface of the translucent resin sheet, A plurality of convex ridges or concave groove portions are arrayed along a certain direction, and the arrangement of these ridge portions or groove portions is arranged in such a manner that a plurality of ridge portions or groove portions having different shapes are arranged side by side. One set is an optical sheet in which a set of a plurality of flanges or grooves is repeatedly arranged in a line.

本発明の面発光ユニットにおいては、前記光学シートに光拡散剤が含有されていることが望ましい。
そして、前記凹部又は凸部の傾斜面の傾斜角、前記凹部又は凸部のテーパー面の稜線の傾斜角、前記畝部又は溝部の斜面の傾斜角が、いずれも10°以上、70°以下の範囲内にあることが望ましく、更に、前記凹部又は凸部の丸みを帯びた先端部の曲率半径が100μm未満であることが望ましい。
また、隣接する前記点光源の光源間距離Dが40mm以上、60mm以下であり、前記点光源から前記光学シートまでの距離Lと上記光源間距離Dとの比(L/D)が0.2〜0.63の範囲内にあることが望ましい。
In the surface light emitting unit of the present invention, it is desirable that a light diffusing agent is contained in the optical sheet.
And, the inclination angle of the inclined surface of the concave portion or the convex portion, the inclination angle of the ridge line of the tapered surface of the concave portion or the convex portion, and the inclination angle of the inclined surface of the flange portion or the groove portion are all 10 ° or more and 70 ° or less. Desirably, the radius of curvature of the rounded tip of the concave or convex portion is preferably less than 100 μm.
Moreover, the distance D between the light sources of the adjacent point light sources is 40 mm or more and 60 mm or less, and the ratio (L / D) between the distance L from the point light source to the optical sheet and the distance D between the light sources is 0.2. It is desirable to be in the range of ~ 0.63.

本発明の面発光ユニットは、点光源が、従来のLEDのように出射光の配光分布において輝度が極大となる角度が0°付近、つまり正面方向に偏った指向性を示すものではなく、配光分布において輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある斜め方向の指向性を有する点光源であり、しかも、光学シートが、少なくとも出光面上に前記の傾斜面又はテーパー面を有する凹部又は凸部を配列形成し、或いは、前記の畝部又は溝部の組を繰り返し並べて配列形成することによって、斜め背後から入射する光をほぼ正面方向に出光できるようにしたものであるため、点光源の真正面の領域の輝度と、点光源と点光源の中間部の領域の輝度の差が小さくなり、後述する試験データに示されるように輝度の均斉度(面発光の均斉度)が大幅に向上する。   In the surface light emitting unit of the present invention, the point light source does not exhibit a directivity that has an angle at which the luminance becomes maximum in the light distribution of the emitted light as in the conventional LED, which is near 0 °, that is, in the front direction. It is a point light source having a directivity in an oblique direction in which the angle at which the luminance becomes maximum in the light distribution is in the range of + 30 ° to + 80 ° and −30 ° to −80 °, and the optical sheet has at least a light exit surface By arranging the concave portions or convex portions having the inclined surface or the tapered surface on the upper side, or by arranging the groups of the flange portions or the groove portions side by side, the light incident from the oblique rear side is substantially directed in the front direction. Because it is designed to emit light, the difference between the brightness of the area directly in front of the point light source and the brightness of the area between the point light source and the point light source is reduced. Degree (surface The uniformity of light emission) is greatly improved.

そして、前記光学シートに光拡散剤が含有されていると、光拡散剤によって光学シートを通過する光が強く拡散されるため、後述の試験データに示されるように輝度の均斉度が一層向上する。   When the optical sheet contains a light diffusing agent, the light passing through the optical sheet is strongly diffused by the light diffusing agent, so that the luminance uniformity is further improved as shown in test data described later. .

また、光学シートの前記凹部又は凸部の傾斜面の傾斜角、前記凹部又は凸部のテーパー面の稜線の傾斜角、前記畝部又は溝部の斜面の傾斜角がいずれも10°以上、70°以下の範囲内にあると、斜め背後から光学シートに入射した光の大半を正面側に出射できるので、後述の試験データに示されるように輝度の均斉度を確実に向上させることができる。そして、前記凹部又は凸部の丸みを帯びた先端部の曲率半径が小さくなると、均斉度が高くなる傾向が見られ、曲率半径が100μm未満であると、高い均斉度を得ることができる。   Further, the inclination angle of the inclined surface of the concave portion or the convex portion of the optical sheet, the inclination angle of the ridge line of the tapered surface of the concave portion or the convex portion, and the inclination angle of the inclined surface of the flange portion or the groove portion are all 10 ° or more and 70 °. If it is within the following range, most of the light incident on the optical sheet from obliquely behind can be emitted to the front side, so that the luminance uniformity can be reliably improved as shown in test data described later. And when the curvature radius of the rounded front-end | tip part of the said recessed part or a convex part becomes small, the tendency for a uniformity to become high is seen, and a high degree of uniformity can be obtained as a curvature radius is less than 100 micrometers.

また、本発明の面発光ユニットは、隣接する点光源の光源間距離Dを40mm以上、60mm以下と長くとり、点光源から光学シートまでの距離Lと上記光源間距離Dとの比(L/D)を0.2〜0.63の範囲内として、距離Lを短くしても、後述の試験データに示されるように高い均斉度が得られるので、点光源の配置個数を減らしてコストダウンと省エネを図ることができ、昨今の液晶テレビ受像機の薄型化にも十分対応することができる。   In the surface light emitting unit of the present invention, the distance D between adjacent point light sources is as long as 40 mm or more and 60 mm or less, and the ratio of the distance L from the point light source to the optical sheet and the distance D between the light sources (L / Even if the distance L is shortened by setting D) within the range of 0.2 to 0.63, a high degree of uniformity can be obtained as shown in the test data to be described later. It is possible to save energy and to cope with the recent thinning of liquid crystal television receivers.

液晶ディスプレイのバックライトとして使用される、本発明の一実施形態に係る面発光ユニットの分解斜視図である。It is a disassembled perspective view of the surface emitting unit which concerns on one Embodiment of this invention used as a backlight of a liquid crystal display. 同面発光ユニットの部分説明図である。It is a partial explanatory view of the same surface light emitting unit. 同面発光ユニットに使用される光学シートの部分平面図である。It is a fragmentary top view of the optical sheet used for a same surface light emission unit. 図4のA−A線拡大断面図である。It is the AA line expanded sectional view of FIG. 光学シートの凹部の他の形状を示す部分断面図である。It is a fragmentary sectional view which shows the other shape of the recessed part of an optical sheet. 光学シートの凹部の更に他の形状を示す部分断面図である。It is a fragmentary sectional view which shows other shape of the recessed part of an optical sheet. 光学シートの他の例を示す部分平面図である。It is a fragmentary top view which shows the other example of an optical sheet. 光学シートの更に他の例を示す部分平面図である。It is a fragmentary top view which shows another example of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 同光学シートの部分拡大図である。It is the elements on larger scale of the optical sheet. 同光学シートの作用説明図であって、(a)は同光学シートの点光源の上方部分を、(b)同光学シートの点光源上方部分から右方向に離れた部分を、(c)は同光学シートの更に右方向に離れた部分を示す。It is an action explanatory view of the optical sheet, (a) shows the upper part of the point light source of the optical sheet, (b) the part away from the point light source upper part of the optical sheet in the right direction, (c) The part further away in the right direction of the optical sheet is shown. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 光学シートの更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of an optical sheet. 面発光ユニットの均斉度を求めるときの輝度の測定ポイントの説明図である。It is explanatory drawing of the measurement point of a brightness | luminance when calculating | requiring the uniformity of a surface emitting unit. 実施例1〜4の面発光ユニットにおける、出光面の凹部の傾斜面の傾斜角と、均斉度との関係を示すグラフである。It is a graph which shows the relationship between the inclination | tilt angle of the inclined surface of the recessed part of the light emission surface, and uniformity in the surface emitting unit of Examples 1-4. 実施例5〜8の面発光ユニットにおける均斉度とL/Dの関係、及び、比較例1〜4の面発光ユニットにおける均斉度とL/Dの関係を示すグラフである。It is a graph which shows the relationship between the uniformity and L / D in the surface emitting unit of Examples 5-8, and the relationship between the uniformity and L / D in the surface emitting unit of Comparative Examples 1-4. 実施例9〜11の面発光ユニットにおける均斉度とL/Dの関係、及び、比較例5〜7の面発光ユニットにおける均斉度とL/Dの関係を示すグラフである。It is a graph which shows the relationship between the uniformity in the surface emitting unit of Examples 9-11, and L / D, and the relationship between the uniformity in the surface emitting unit of Comparative Examples 5-7, and L / D.

以下、本発明に係る面発光ユニットの代表的な実施形態について、図面を参照して説明する。   Hereinafter, typical embodiments of a surface emitting unit according to the present invention will be described with reference to the drawings.

図1に示す面発光ユニットは、液晶ディスプレイにおける直下ライト方式のバックライトユニットとして使用されるものである。この面発光ユニットは、配線基板5上にマトリックス状に配置されて搭載された多数の点光源3と、これらの点光源3の正面側(図1では上側)に上記配線基板5と平行に設けられた光学シート2とで構成されており、液晶パネル4の背後(図1では下方)に設置されるようになっている。なお、図示はしていないが、光学シート2と液晶パネル4の間には、従来公知の光拡散フィルムを初め、本発明に用いる光学シート以外の従来公知の各種光学シートを1枚以上配置してもよい。   The surface light emitting unit shown in FIG. 1 is used as a direct light type backlight unit in a liquid crystal display. This surface light emitting unit is provided in parallel with the wiring substrate 5 on the front side (upper side in FIG. 1) of the point light sources 3 arranged and mounted on the wiring substrate 5 in a matrix. The optical sheet 2 is arranged behind the liquid crystal panel 4 (downward in FIG. 1). Although not shown, between the optical sheet 2 and the liquid crystal panel 4, one or more conventionally known optical sheets other than the optical sheet used in the present invention, including a conventionally known light diffusion film, are arranged. May be.

上記点光源3は、出射光の配光分布において輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にあるものを使用する必要がある。そのような点光源3の好ましい代表例としては、LEDを透明樹脂からなるレンズで被覆して、輝度が極大となる角度を上記範囲内に調整したレンズ被覆LEDを挙げることができる。この実施形態では、図2に示すように、白色発光のLED3aを被覆するレンズ3bの断面形状を偏平な半楕円形状とすることによって、輝度が極大となる角度を+70°付近及び−70°付近に調整したレンズ被覆LEDが使用されている。もっとも、従来の一般的なLEDも素子を保護するためにレンズで被覆しているが、本明細書においては、これ以後、本発明に使用するLEDのように上記の配光特性を付与するためのレンズで被覆したものを「レンズ被覆LED」と記載し、従来の一般的なLEDのように素子を保護するためのレンズで被覆したものは「レンズ無しLED」又は単に「LED」と記載して区別する。   As the point light source 3, it is necessary to use the point light source 3 in which the angle at which the luminance is maximized in the light distribution of the emitted light is in the range of + 30 ° to + 80 ° and −30 ° to −80 °. A preferable representative example of such a point light source 3 is a lens-covered LED in which the LED is covered with a lens made of a transparent resin and the angle at which the luminance is maximized is adjusted within the above range. In this embodiment, as shown in FIG. 2, the cross-sectional shape of the lens 3b covering the white light emitting LED 3a is a flat semi-elliptical shape, so that the angles at which the luminance becomes maximum are around + 70 ° and around −70 °. A lens-covered LED adjusted to 1 is used. However, the conventional general LED is also covered with a lens to protect the element, but in the present specification, in order to provide the above light distribution characteristics as in the LED used in the present invention. Those covered with a lens are described as “lens-covered LED”, and those covered with a lens for protecting the element like a conventional general LED are described as “lens-less LED” or simply “LED”. To distinguish.

輝度が極大となる角度が±30°未満の点光源3は、従来のLEDと同様に配光特性に正面方向(0°)の指向性があるため、点光源3の正面側に光学シート2を配置しても、点光源3の正面方向の領域の輝度が点光源3と点光源3の中間部の領域の輝度よりもかなり高くなり、輝度ムラを十分抑制することが困難である。一方、輝度が極大となる角度が±80°を越える点光源3は、光学シート2への入光量、特に点光源3の真正面方向の領域への入光量、及び、光学シート2からの出光量がかなり減少するため、輝度の全体的な低下を招くという不都合が生じる。   Since the point light source 3 having an angle of maximum brightness of less than ± 30 ° has directivity in the front direction (0 °) in the light distribution characteristic like the conventional LED, the optical sheet 2 is provided on the front side of the point light source 3. However, the luminance of the area in the front direction of the point light source 3 is considerably higher than the luminance of the area in the middle of the point light source 3 and the point light source 3, and it is difficult to sufficiently suppress the luminance unevenness. On the other hand, the point light source 3 whose angle at which the luminance reaches a maximum exceeds ± 80 ° is incident on the optical sheet 2, particularly the incident light in the area directly in front of the point light source 3, and the emitted light from the optical sheet 2. Is considerably reduced, resulting in a disadvantage that the overall brightness is reduced.

互いに隣接する点光源3,3の光源間距離Dは、短くなればなるほど輝度ムラが減少して均斉度が高くなるが、この実施形態の面発光ユニットでは、光源間距離Dが40mm以上、60mm以下に設定され、従来のLEDの場合の光源間距離(通常、30mm以下)に比べてかなり長くなっている。そして、点光源3から光学シート2までの距離L(図2に示すように点光源3を搭載した配線基板5の表面から光学シート2の裏面までの距離L)と上記の光源間距離Dとの比(L/D)が0.2〜0.63の範囲内となるように、点光源から光学シート2までの距離Lが短縮されている。そのため、点光源3として配線基板5上に搭載されるレンズ被覆LEDの個数が従来に比べて大幅に減少し、コストダウンと省エネを図ることができると共に、点光源3から光学シート2までの距離Lの短縮によって、液晶ディスプレイの薄型化に十分対応できるようになっている。   As the distance D between the light sources 3 and 3 adjacent to each other becomes shorter, the luminance unevenness decreases and the uniformity increases, but in the surface emitting unit of this embodiment, the distance D between the light sources is 40 mm or more and 60 mm. It is set below, and is considerably longer than the distance between light sources in the case of a conventional LED (usually 30 mm or less). The distance L from the point light source 3 to the optical sheet 2 (the distance L from the surface of the wiring board 5 on which the point light source 3 is mounted to the back surface of the optical sheet 2 as shown in FIG. 2) and the above-mentioned distance D between the light sources The distance L from the point light source to the optical sheet 2 is shortened so that the ratio (L / D) is in the range of 0.2 to 0.63. For this reason, the number of lens-covered LEDs mounted on the wiring board 5 as the point light source 3 is significantly reduced compared to the conventional case, and cost reduction and energy saving can be achieved, and the distance from the point light source 3 to the optical sheet 2 can be achieved. By shortening L, the liquid crystal display can be sufficiently reduced in thickness.

この面発光ユニットは、点光源3として、配光分布における輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある斜め方向の指向性を有する点光源を使用するため、上記のように光源間距離Dを40mm〜60mmに設定し、且つ、点光源3から光学シート2までの距離Lと光源間距離Dとの比(L/D)を0.2〜0.63の範囲内に設定しても、後述する特定の光学シート2との相乗作用によって、輝度ムラを抑制して均斉度を高めることができるのであるが、光源間距離Dが60mmを越え、且つ、点光源3から光学シート2までの距離Lと光源間距離Dとの比(L/D)が0.2よりも小さくなると、輝度の均斉度が低下するという不都合が生じる。一方、光源間距離Dが40mmを下回り、且つ、L/Dが0.63を上回ると、輝度の均斉度は相当高くなるけれども、点光源3として配線基板5上に搭載されるレンズ被覆LEDの個数が従来とあまり変わらなくなるので、コストダウンと省エネを図ることが難しくなり、また、点光源3から光学シート2までの距離Lがあまり短縮されないので、液晶ディスプレイの薄型化にも対応が難しくなるという不都合が生じる。   In this surface light emitting unit, a point light source having an oblique directivity in the range of + 30 ° to + 80 ° and −30 ° to −80 ° at which the luminance in the light distribution is maximized is used as the point light source 3. For use, the distance D between the light sources is set to 40 mm to 60 mm as described above, and the ratio (L / D) between the distance L from the point light source 3 to the optical sheet 2 and the distance D between the light sources is 0.2. Even if it is set within the range of -0.63, the synergistic action with the specific optical sheet 2 described later can suppress luminance unevenness and increase the uniformity, but the distance D between the light sources is set to 60 mm. If the ratio (L / D) between the distance L from the point light source 3 to the optical sheet 2 and the distance D between the light sources is smaller than 0.2, there is a disadvantage that the uniformity of the luminance is lowered. On the other hand, when the distance D between the light sources is less than 40 mm and the L / D is more than 0.63, the uniformity of the brightness becomes considerably high, but the lens-covered LED mounted on the wiring board 5 as the point light source 3 is increased. Since the number is not much different from the conventional one, it is difficult to reduce costs and save energy, and since the distance L from the point light source 3 to the optical sheet 2 is not so shortened, it is difficult to cope with thinning of the liquid crystal display. The inconvenience arises.

この実施形態の面発光ユニットでは、点光源3として上記のレンズ被覆LEDを使用しているが、配光分布における輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある点光源であれば、レンズ被覆LED以外の点光源、例えば白熱電球、電球型蛍光灯、放電ランプ等を使用しても勿論よい。また、レンズ3bで被覆されるLED3aは、この実施形態のように白色発光する単一素子でもよいし、赤色発光、緑色発光、青色発光の3つの素子を集めて三色合成により白色発光させるものでもよい。   In the surface light emitting unit of this embodiment, the above-described lens-covered LED is used as the point light source 3, but the angles at which the luminance in the light distribution is maximized are + 30 ° to + 80 ° and −30 ° to −80 °. Of course, a point light source other than the lens-covered LED, for example, an incandescent light bulb, a light bulb type fluorescent lamp, a discharge lamp, etc., may be used as long as it is within the range. In addition, the LED 3a covered with the lens 3b may be a single element that emits white light as in this embodiment, or a combination of three elements of red light emission, green light emission, and blue light emission to emit white light by three-color synthesis. But you can.

また、点光源3の配置は、この実施形態では縦横に等間隔のマトリックス状の配置としているが、このマトリックス状の配置を45°回転させた千鳥状の配置としてもよく、要するに点光源3が規則的に均等に配置されていれば配置のパターンは特に限定されない。また、点光源3が配置される疎密の差が比較的少なくほぼ平均的に分布しているのであれば、ランダムな配置であってもよい。   Further, in this embodiment, the point light sources 3 are arranged in the form of a matrix at equal intervals in the vertical and horizontal directions. However, the arrangement of the point light sources 3 may be a staggered arrangement obtained by rotating the matrix arrangement by 45 °. The arrangement pattern is not particularly limited as long as it is regularly and evenly arranged. Further, if the point light sources 3 are arranged so that the difference in density is relatively small and distributed almost on average, the arrangement may be random.

点光源3の正面側(図1,図2では上側)に設けられる光学シート2は、図3,図4に示すように、透光性樹脂シート2aの少なくとも出光面(図4では上面)上に、倒立二等辺三角形の4つの傾斜面2cを有する倒立正四角錐形の小さな凹部2bを縦横に配列して多数形成した光学シートである。この凹部2bの傾斜面2cの傾斜角θ(出光面に対する傾斜角)は、10°以上、70°以下の範囲内にあることが望ましく、傾斜角θが10°より小さくなっても、逆に70°より大きくなっても、輝度ムラが大きくなり、十分な均斉度を得ることが難しくなる。後述する実施例の試験データ(表1,図22)で裏付けられるように、輝度の均斉度は、傾斜面2cの傾斜角θが45°付近のときに最大となり、これより傾斜角θが大きくなっても小さくなっても輝度の均斉度は低下するが、傾斜角θが35°〜55°のときには95%以上の高い均斉度が得られるので、傾斜面2cの更に望ましい傾斜角θの範囲は30°〜60°、極めて望ましい傾斜角θの範囲は35°〜55°である。   As shown in FIGS. 3 and 4, the optical sheet 2 provided on the front side of the point light source 3 (upper side in FIGS. 1 and 2) is on at least the light exit surface (upper surface in FIG. 4) of the translucent resin sheet 2a. Further, the optical sheet is formed by arranging a large number of inverted concave quadrangular pyramid-shaped concave portions 2b having four inclined surfaces 2c each having an inverted isosceles triangle. The inclination angle θ (inclination angle with respect to the light exit surface) of the inclined surface 2c of the recess 2b is preferably in the range of 10 ° or more and 70 ° or less, and even if the inclination angle θ is less than 10 °, Even if it becomes larger than 70 °, the luminance unevenness becomes large, and it becomes difficult to obtain sufficient uniformity. As supported by test data (Table 1 and FIG. 22) of Examples described later, the luminance uniformity becomes maximum when the inclination angle θ of the inclined surface 2c is around 45 °, and the inclination angle θ is larger than this. Although the brightness uniformity decreases even if it becomes smaller or smaller, since a high uniformity of 95% or more is obtained when the tilt angle θ is 35 ° to 55 °, a more desirable range of the tilt angle θ of the inclined surface 2c. Is in the range of 30 ° to 60 °, and a highly desirable tilt angle θ is in the range of 35 ° to 55 °.

本発明にいう輝度の均斉度は、光学シート2の前方(上方)から測定した点光源3の真正面方向(真上方向)の領域の輝度B1に対する、点光源3と点光源3の中間部の領域の輝度B2の比率(B2/B1)を百分率で表したものであり、均斉度が100%の場合は、点光源3の真正面方向の領域の輝度B1と、点光源3と点光源3の中間部の領域の輝度B2が等しく、輝度ムラが存在しないことを意味する。   The luminance uniformity referred to in the present invention is an intermediate portion between the point light source 3 and the point light source 3 with respect to the luminance B1 in the region directly in front of the point light source 3 (directly above) measured from the front (upper) of the optical sheet 2. The ratio (B2 / B1) of the luminance B2 of the area is expressed as a percentage. When the uniformity is 100%, the luminance B1 of the area in the front direction of the point light source 3 and the point light source 3 and the point light source 3 This means that the brightness B2 of the intermediate area is equal and there is no brightness unevenness.

倒立正四角錐形の凹部2bの大きさは、その一辺(上辺)の長さaを30〜600μm程度に設定することが好ましく、この程度の大きさであれば、光学シート2の入射面(裏面)から入射した光を各凹部2bの4つの傾斜面2cで充分に屈折、拡散して、正面側へほぼ均一な光量で出光させることができる。一辺の長さaが30μmよりも短くなると、倒立正四角錐形の凹部2bの形成が難しくなり、一辺の長さaが600μmより長くなると、光屈折、拡散作用が大幅に低下して輝度ムラの抑制が不十分となるので、いずれも好ましくない。凹部2bの更に好ましい一辺の長さaは100〜500μmであり、極めて好ましい一辺の長さaは130〜250μmである。   The size of the inverted regular quadrangular pyramid-shaped recess 2b is preferably set such that the length a of one side (upper side) thereof is about 30 to 600 μm. ) Is sufficiently refracted and diffused by the four inclined surfaces 2c of each recess 2b, and can be emitted to the front side with a substantially uniform light amount. When the length a of one side is shorter than 30 μm, it becomes difficult to form the inverted regular quadrangular pyramid-shaped recess 2b. When the length a of one side is longer than 600 μm, the light refraction and diffusing action are greatly reduced, resulting in uneven brightness. Since suppression becomes inadequate, neither is preferable. A more preferable side length a of the recess 2b is 100 to 500 μm, and a very preferable side length a is 130 to 250 μm.

凹部2bの最深部の深さdは、凹部2bの一辺の長さaと傾斜面2cの傾斜角θに依存して定まるものであるが、この最深部の深さdは透光性樹脂シート2aの厚さtの3/10〜9/10の範囲内にあることが望ましい。この程度の深さであると、透光性樹脂シート2aの引裂き強度の大幅な低下がみられないので、光学シート2の取扱い時や、製造時(特に、透光性樹脂シート2aを連続押出成形しながらエンボスロールで凹部2bを形成して光学シート2を製造する場合)に、光学シート2が破断するのを防止することができる。   The depth d of the deepest portion of the recess 2b is determined depending on the length a of one side of the recess 2b and the inclination angle θ of the inclined surface 2c. The depth d of the deepest portion is a translucent resin sheet. It is desirable to be within the range of 3/10 to 9/10 of the thickness t of 2a. When the depth is such a level, the tear strength of the translucent resin sheet 2a is not significantly reduced. Therefore, when the optical sheet 2 is handled or manufactured (in particular, the translucent resin sheet 2a is continuously extruded). It is possible to prevent the optical sheet 2 from being broken when the optical sheet 2 is manufactured by forming the recess 2b with an embossing roll while being molded.

透光性樹脂シート2aの厚さtは特に限定されないが、実用的な強度、使用樹脂量などを考慮して、0.1〜3mm程度とするのが好ましい。   The thickness t of the translucent resin sheet 2a is not particularly limited, but is preferably about 0.1 to 3 mm in consideration of practical strength, the amount of resin used, and the like.

上記のような光学シート2は、例えば、透光性樹脂シート2aをプレス成形して凹部2bを形成する方法、或いは、透光性樹脂シート2aを連続押出成形しながらエンボスロールで凹部2bを形成する方法によって製造されるが、これらの方法で製造される光学シート2は、通常、図5に示すように倒立正四角錐形の凹部2bの先端部2d(最深部)が丸みを帯びている。丸みを帯びた先端部2dの曲率半径が大きい光学シート2を用いると、先端部2dの曲率半径の小さい光学シート2を用いる場合に比べて、輝度の均斉度は若干低下する傾向が見られるが、先端部2dの曲率半径が100μm未満であれば、十分な均斉度を得ることができる。従って、凹部2bの丸みを帯びた先端部2dの曲率半径が100μm未満となるように光学シート2を製造することが望ましい。前者のプレス成形の方法で製造される光学シートは、先端部2dの曲率半径が10〜40μm程度と小さいのに対し、後者の連続押出成形とエンボス加工を組み合わせた方法で製造される光学シートは、先端部2dの曲率半径が40〜80μm程度と比較的大きいため、前者のプレス成形の方法で製造される光学シートの方が、均斉度を高める上で有利である。   The optical sheet 2 as described above is formed by, for example, a method of forming the recess 2b by press-molding the translucent resin sheet 2a, or forming the recess 2b with an embossing roll while continuously extruding the translucent resin sheet 2a. The optical sheet 2 manufactured by these methods is usually rounded at the tip 2d (deepest part) of the inverted square pyramid-shaped recess 2b as shown in FIG. When the optical sheet 2 having a rounded tip portion 2d with a large radius of curvature is used, the luminance uniformity tends to be slightly lower than when the optical sheet 2 having a tip portion 2d with a small radius of curvature is used. If the radius of curvature of the tip 2d is less than 100 μm, sufficient uniformity can be obtained. Therefore, it is desirable to manufacture the optical sheet 2 such that the radius of curvature of the rounded tip portion 2d of the recess 2b is less than 100 μm. The optical sheet manufactured by the former press molding method has a small radius of curvature of the tip portion 2d of about 10 to 40 μm, whereas the optical sheet manufactured by the combination of the latter continuous extrusion molding and embossing is Since the radius of curvature of the tip portion 2d is relatively large as about 40 to 80 μm, the former optical sheet manufactured by the press molding method is more advantageous in increasing the uniformity.

また、光学シート2の凹部2bは、図6に示すように、4つの傾斜面2cと平坦な先端部2eを有する倒立截頭正四角錐形の凹部であってもよい。ここで、倒立截頭正四角錐形とは、倒立した正四角錐の下部の頭頂部を水平に截断した形状をいう。この平坦な先端部2eの大きさ(面積)は、凹部2bの開口面積の1/4以下とすることが好ましく、1/4より大きくなると、傾斜面2cによる光屈折、拡散作用が不十分になり、均斉度が低下するという不都合が生じる。平坦な先端部2eのより好ましい大きさは、凹部1の開口面積の1/9〜1/25である。   Further, the concave portion 2b of the optical sheet 2 may be an inverted truncated quadrangular pyramidal concave portion having four inclined surfaces 2c and a flat tip portion 2e as shown in FIG. Here, the inverted truncated quadrangular pyramid shape refers to a shape obtained by horizontally cutting the top of the head of the inverted regular quadrangular pyramid. The size (area) of the flat tip portion 2e is preferably ¼ or less of the opening area of the concave portion 2b. When the flat tip portion 2e is larger than ¼, the light refraction and diffusion action by the inclined surface 2c are insufficient. Therefore, there is a disadvantage that the uniformity is lowered. A more preferable size of the flat tip 2e is 1/9 to 1/25 of the opening area of the recess 1.

尚、図示はしていないが、光学シート2の凹部2bの形状は、傾斜面を有する倒立正三角錐形、倒立正六角錐形などの倒立正多角錐形や、これらの下部の頭頂部を水平に截断した倒立截頭正多角錐形であってもよい。   Although not shown, the concave portion 2b of the optical sheet 2 has an inverted regular triangular pyramid shape such as an inverted regular triangular pyramid shape or an inverted regular hexagonal pyramid shape having an inclined surface, or a horizontal top portion of the lower head portion thereof. It may be an inverted inverted truncated regular polygonal pyramid.

上記の光学シート2は、凹部2bを縦横に配列形成しているが、図7に示す光学シート2のように、傾斜面2cを有する倒立正四角錐形の凹部2bを透光性樹脂シート2aの出光面(上面)上に45°の角度をもって斜列状に配列形成してもよい。また、図示はしていないが、凹部2bを千鳥状に配列形成してもよい。更に、凹部2bと凹部2bの間に若干の隙間をあけて配列形成してもよい。   In the optical sheet 2 described above, the concave portions 2b are arranged in the vertical and horizontal directions. However, like the optical sheet 2 shown in FIG. 7, the inverted square pyramid-shaped concave portions 2b having the inclined surfaces 2c are formed on the translucent resin sheet 2a. The light emitting surface (upper surface) may be arranged in an oblique manner at an angle of 45 °. Although not shown, the recesses 2b may be arranged in a staggered manner. Further, the array may be formed with a slight gap between the recess 2b and the recess 2b.

上記の光学シート2の凹部2bはいずれも傾斜面2cを有するものであるが、図8に示す光学シート2のように、テーパー面2fを有する凹部2bを配列形成してもよい。即ち、この図8に示す光学シート2は、透光性樹脂シート2aの出光面に、テーパー面2fを有する倒立円錐形の凹部2bを、細密充填状態となるように60°の角度をもって斜列状に配列形成したものである。   Each of the concave portions 2b of the optical sheet 2 has the inclined surface 2c. However, the concave portions 2b having the tapered surface 2f may be arrayed as in the optical sheet 2 shown in FIG. That is, in the optical sheet 2 shown in FIG. 8, an inverted conical concave portion 2b having a tapered surface 2f is formed on the light exit surface of the translucent resin sheet 2a at an angle of 60 ° so as to be closely packed. Are arranged in a shape.

この倒立円錐形の凹部2bの大きさは、その開口円の直径を30〜600μmに設定することが好ましく、この程度の大きさであれば、凹部2bを確実に形成することができ、しかも、光学シート2の入光面(裏面)から入射した光を各凹部2bのテーパー面2fで充分に屈折、拡散して、正面側へほぼ均一な光量で出光させることができる。凹部2bの開口円の更に好ましい直径は100〜500μmであり、極めて好ましい直径は130〜250μmである。   The size of the inverted conical recess 2b is preferably set such that the diameter of the opening circle is 30 to 600 μm, and if this is the size, the recess 2b can be reliably formed, Light incident from the light incident surface (back surface) of the optical sheet 2 can be sufficiently refracted and diffused by the tapered surface 2f of each recess 2b, and can be emitted to the front side with a substantially uniform light amount. A more preferable diameter of the opening circle of the recess 2b is 100 to 500 μm, and a very preferable diameter is 130 to 250 μm.

また、この倒立円錐形の凹部2bは、そのテーパー面2fの稜線の傾斜角(出光面に対する傾斜角)が、前述した倒立正四角錐形の凹部2bの傾斜面2cの傾斜角θと同様に、10°以上、70°以下の範囲内にあることが望ましく、この範囲内の傾斜角であれば、光学シート2の入光面(裏面)から入射した光をテーパー面2fで十分に屈折、拡散して正面側へ出射できるので、輝度の均斉度を向上させることができる。テーパー面2fの稜線の更に望ましい傾斜角の範囲は30°〜60°、極めて望ましい傾斜角の範囲は35°〜55°である。   Further, in the inverted conical recess 2b, the inclination angle of the ridge line of the tapered surface 2f (inclination angle with respect to the light exit surface) is the same as the inclination angle θ of the inclined surface 2c of the inverted square pyramid recess 2b described above. Desirably, the angle is within a range of 10 ° or more and 70 ° or less. If the inclination angle is within this range, light incident from the light incident surface (back surface) of the optical sheet 2 is sufficiently refracted and diffused by the tapered surface 2f. Since it can be emitted to the front side, the uniformity of luminance can be improved. The more desirable inclination angle range of the ridgeline of the tapered surface 2f is 30 ° to 60 °, and the extremely desirable inclination angle range is 35 ° to 55 °.

尚、この倒立円錐形の凹部2bの最深部の深さは、前述した倒立正四角錐形の凹部2bの深さdと同様に、透光性樹脂シート2aの厚さの3/10〜9/10の範囲内にあることが望ましく、この倒立円錐形の凹部2bの丸みを帯びた先端部の曲率半径も、前記と同様に100μm未満であることが望ましい。また、この倒立円錐形の凹部2bに代えて、倒立円錐形の下端の頭頂部を水平に截断した截頭円錐形の凹部を配列形成してもよい。   The depth of the deepest portion of the inverted conical recess 2b is 3/10 to 9 / of the thickness of the translucent resin sheet 2a, similar to the depth d of the inverted regular quadrangular pyramid recess 2b described above. The radius of curvature of the rounded tip of the inverted conical recess 2b is preferably less than 100 μm as described above. Further, instead of the inverted conical recess 2b, a frustoconical recess formed by horizontally cutting the top of the inverted conical lower end may be formed.

レンズ被覆LEDからなる点光源3の正面側に配置される光学シート2は、図9に示すように、透光性樹脂シート2aの少なくとも出光面上に、傾斜面又はテーパー面を有する多数の凸部2gを配列形成したものでもよい。この凸部2gは、前述した傾斜面2c又はテーパー面2fを有する凹部2bを上下反転させた凸形状を備えたもので、その大きさや各部の寸法、傾斜面やテーパー面の稜線の傾斜角、凸部の配列形態などが、前記凹部2bと同一になっている。それ故、この凸部2gが配列形成された光学シート2も、点光源3から光学シート2に入射した光を凸部2gの傾斜面やテーパー面で十分に屈折、拡散して正面側へほぼ均一な光量で出射できるため、輝度ムラを抑制して均斉度を向上させることができる。   As shown in FIG. 9, the optical sheet 2 disposed on the front side of the point light source 3 made of lens-covered LEDs has a large number of convex or inclined surfaces or tapered surfaces on at least the light exit surface of the translucent resin sheet 2a. The part 2g may be arranged. The convex portion 2g is provided with a convex shape obtained by vertically inverting the concave portion 2b having the inclined surface 2c or the tapered surface 2f described above, the size, the dimensions of each portion, the inclination angle of the ridgeline of the inclined surface or the tapered surface, The arrangement of the convex portions is the same as that of the concave portion 2b. Therefore, the optical sheet 2 in which the convex portions 2g are arranged and formed is also substantially refracted and diffused by the inclined surface or tapered surface of the convex portion 2g so that the light incident on the optical sheet 2 from the point light source 3 is almost directed to the front side. Since it can radiate | emit with a uniform light quantity, a brightness nonuniformity can be suppressed and a uniformity can be improved.

上述の光学シート2はいずれも、透光性樹脂シート2aの出光面(上面)のみに凹部2bや凸部2gを配列形成しているが、透光性樹脂シート2aの入光面(裏面)にも同様の凹部2bや凸部2gを配列形成してもよい。このように透光性樹脂シート2aの出光面と入光面の双方に凹部2bや凸部2gを配列形成した光学シート2を点光源3の正面側に配置すると、光屈折、拡散作用が強くなるため、後述する実施例の試験データ(表5)に示すように、高い均斉度を得ることができる。   In any of the optical sheets 2 described above, the concave portions 2b and the convex portions 2g are arrayed only on the light exit surface (upper surface) of the translucent resin sheet 2a, but the light incident surface (rear surface) of the translucent resin sheet 2a. Also, similar concave portions 2b and convex portions 2g may be formed in an array. When the optical sheet 2 in which the concave portions 2b and the convex portions 2g are arranged on both the light exit surface and the light entrance surface of the translucent resin sheet 2a is arranged on the front side of the point light source 3, the light refraction and diffusion action are strong. Therefore, a high degree of uniformity can be obtained as shown in test data (Table 5) of Examples described later.

もっとも、上記のように光学シート2(透光性樹脂シート2a)の両面に凹部2b又は凸部2gを配列形成する場合、光学シート2の入光面に形成される凹部2b又は凸部2gの傾斜面2c又はテーパー面2fの稜線の傾斜角が大きくなると、点光源3から出射された光の一部が光学シート2の入光面で全反射されて光学シート2の入光量が減少し、輝度が全体的に低下するため、光学シート2の入光面に形成する凹部2b又は凸部2gは、その傾斜面又はテーパー面の傾斜角を、光学シート2の出光面に形成する凹部2b又は凸部2gの該傾斜角よりも小さくすることが望ましい。   However, when the concave portions 2b or the convex portions 2g are arranged on both surfaces of the optical sheet 2 (translucent resin sheet 2a) as described above, the concave portions 2b or the convex portions 2g formed on the light incident surface of the optical sheet 2 are formed. When the inclination angle of the ridge line of the inclined surface 2c or the tapered surface 2f is increased, a part of the light emitted from the point light source 3 is totally reflected by the light incident surface of the optical sheet 2, and the incident light amount of the optical sheet 2 is reduced. Since the overall brightness is reduced, the concave portion 2b or convex portion 2g formed on the light incident surface of the optical sheet 2 has a concave portion 2b or convex portion 2g formed on the light exit surface of the optical sheet 2 with the inclination angle of the inclined surface or tapered surface. It is desirable to make it smaller than the inclination angle of the convex portion 2g.

光学シート2の透光性樹脂シート2aとしては、ポリカーボネート、ポリエステル、ポリエチレン、ポリプロピレン、ポリオレフィン共重合体(例えばポリ−4−メチルペンテン−1等)、ポリ塩化ビニル、環状ポリオレフィン(例えばノルボルネン構造等)、アクリル樹脂、ポリスチレン、アイオノマー、スチレン−メチルメタクリレート共重合樹脂(MS樹脂)等の透光性の熱可塑性樹脂からなるものが使用される。これらの中でも、ポリカーボネート、ポリエステル(特にポリエチレンテレフタレート)、環状ポリオレフィンからなる透光性樹脂シート2aは、耐熱性が良好であり、面発光ユニットに用いられた際に点光源3(レンズ被覆LED)からの放熱によって変形や皺等を生じ難いため、好ましく使用される。しかも、ポリカーボネートからなる透光性樹脂シート2aは、ポリカーボネート自体が透明性の良好な樹脂であり、吸湿性が少なく、高輝度で、反りが少ないため、極めて好ましく使用される。なお、透光性樹脂シート2aは、不飽和ポリエステル、エポキシ樹脂等の透光性の熱硬化性樹脂からなるものでもよく、また、2種以上の樹脂材料を混合してアロイ化し、複合化したものを使用することも可能である。   As the translucent resin sheet 2a of the optical sheet 2, polycarbonate, polyester, polyethylene, polypropylene, polyolefin copolymer (for example, poly-4-methylpentene-1), polyvinyl chloride, cyclic polyolefin (for example, norbornene structure) A material made of a light-transmitting thermoplastic resin such as acrylic resin, polystyrene, ionomer, styrene-methyl methacrylate copolymer resin (MS resin) is used. Among these, the translucent resin sheet 2a made of polycarbonate, polyester (particularly polyethylene terephthalate), and cyclic polyolefin has good heat resistance, and when used in a surface light emitting unit, from the point light source 3 (lens-covered LED). It is preferably used because it is difficult to cause deformation, wrinkles and the like due to heat radiation. Moreover, the translucent resin sheet 2a made of polycarbonate is very preferably used because the polycarbonate itself is a resin with good transparency, has low hygroscopicity, high brightness, and little warpage. The translucent resin sheet 2a may be made of a translucent thermosetting resin such as unsaturated polyester or epoxy resin, or two or more kinds of resin materials are mixed and alloyed to form a composite. It is also possible to use things.

光学シート2の透光性樹脂シート2aには、光拡散剤を含有させることが望ましい。光拡散剤が含まれていると、光学シート2(透光性樹脂シート2a)を通過する光が光拡散剤によって強く拡散されるため、輝度の均斉度が一層向上する利点があり、光学シート2と液晶パネル4との間に高価な他の光拡散フィルム等を追加して設ける必要がなくなる。   It is desirable for the light transmissive resin sheet 2a of the optical sheet 2 to contain a light diffusing agent. If the light diffusing agent is contained, the light passing through the optical sheet 2 (translucent resin sheet 2a) is strongly diffused by the light diffusing agent, so that there is an advantage that the luminance uniformity is further improved. There is no need to additionally provide another expensive light diffusion film or the like between the liquid crystal panel 4 and the liquid crystal panel 4.

光拡散剤としては、透光性樹脂シート2aの材料樹脂との光屈折率が異なる無機質粒子、金属酸化物粒子、有機ポリマー粒子等が単独で又は適宜組合わせて使用される。無機質粒子としては、ガラス[Aガラス(ソーダ石灰ガラス)、Cガラス(硼珪酸ガラス)、Eガラス(低アルカリガラス)]、シリカ、マイカ、合成マイカ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、タルク、モンモリロナイト、カオリンクレー、ベントナイト、ヘクトライト、シリコーン等の粒子が使用される。そして、金属酸化物粒子としては、酸化チタン、酸化亜鉛、アルミナ等の粒子が使用され、また、有機ポリマー粒子としては、アクリルビーズ、スチレンビーズ、ベンゾグアナミン等の粒子が使用される。   As the light diffusing agent, inorganic particles, metal oxide particles, organic polymer particles, and the like having different light refractive indexes from the material resin of the translucent resin sheet 2a are used alone or in appropriate combination. Inorganic particles include glass [A glass (soda lime glass), C glass (borosilicate glass), E glass (low alkali glass)], silica, mica, synthetic mica, calcium carbonate, magnesium carbonate, barium sulfate, talc, Particles such as montmorillonite, kaolin clay, bentonite, hectorite and silicone are used. As the metal oxide particles, particles such as titanium oxide, zinc oxide, and alumina are used, and as the organic polymer particles, particles such as acrylic beads, styrene beads, and benzoguanamine are used.

上記の光拡散剤は、その平均粒径が0.1〜100μm、好ましくは0.5〜50μm、更に好ましくは1〜30μmであるものが使用される。粒径が0.1μmより小さい光拡散剤は、凝集しやすいため分散性が悪く、均一に分散できたとしても光の波長の方が大きいので光散乱効率が悪くなる。それゆえ、0.5μm以上の、更には1μm以上の大きさの粒子が好ましいのである。一方、粒径が100μmより大きい光拡散剤は、光散乱が不均一になったり、光線透過率が低下したり、粒子が肉眼で見えたりするようになる。このため、50μm以下の、更には30μm以下の粒子が好ましいのである。   The light diffusing agent has an average particle diameter of 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 1 to 30 μm. A light diffusing agent having a particle size of less than 0.1 μm is likely to aggregate and thus has poor dispersibility. Even if the light diffusing agent can be uniformly dispersed, the light scattering efficiency is poor because the wavelength of light is large. Therefore, particles having a size of 0.5 μm or more, more preferably 1 μm or more are preferable. On the other hand, a light diffusing agent having a particle size larger than 100 μm causes light scattering to be non-uniform, light transmittance to be reduced, and particles to be visible with the naked eye. For this reason, particles of 50 μm or less, more preferably 30 μm or less, are preferable.

光拡散剤の含有量は特に限定されないが、0.05〜5.0質量%含有させることが望ましい。0.05質量%未満では、光拡散剤を含有させたことによる効果、即ち、光拡散作用の向上に伴う輝度ムラ抑制効果が不十分であり、5.0質量%より多量に含有させても、それに見合うだけの輝度ムラ抑制効果の向上が見られないので、材料の無駄使いとなる。光拡散剤のより好ましい含有量は0.1〜1.0質量%である。   Although content of a light-diffusion agent is not specifically limited, It is desirable to make it contain 0.05-5.0 mass%. If it is less than 0.05% by mass, the effect due to the inclusion of the light diffusing agent, that is, the effect of suppressing luminance unevenness accompanying the improvement of the light diffusing action is insufficient, and even if contained in a larger amount than 5.0% by mass. Since the improvement in the luminance unevenness suppressing effect corresponding to that is not seen, the material is wasted. The more preferable content of the light diffusing agent is 0.1 to 1.0% by mass.

なお、上記の光学シート2の透光性樹脂シート2aには、成形に必要な安定剤、滑剤、耐衝撃改良剤、抗酸化剤、紫外線吸収剤、光安定剤、帯電防止剤、着色剤、蛍光増白剤等が適宜含有される。   The light-transmitting resin sheet 2a of the optical sheet 2 includes a stabilizer necessary for molding, a lubricant, an impact modifier, an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a colorant, A fluorescent whitening agent or the like is appropriately contained.

本発明の面発光ユニットは、点光源3の正面側(上側)に、上述した光学シート2に代えて、図10〜図20に示すような光学シート1、即ち、透光性樹脂シートの少なくとも出光面上に、一定方向に沿って凸状の畝部又は凹状の溝部を多数配列形成し、かつ、これら畝部又は溝部の配列を、相互に形状の異なる複数の畝部又は溝部が並んで配列されたものを一つの組とし、この複数の畝部又は溝部からなる組をさらに繰り返し並んで配列させた光学シート1を設けてもよい。   The surface light-emitting unit of the present invention is provided on the front side (upper side) of the point light source 3, instead of the optical sheet 2 described above, at least an optical sheet 1 as shown in FIGS. 10 to 20, that is, a translucent resin sheet. On the light-emitting surface, a plurality of convex ridges or concave groove portions are arrayed along a certain direction, and a plurality of ridges or groove portions having different shapes are arranged in the array of these ridge portions or groove portions. You may provide the optical sheet 1 which made the arranged thing one group, and arranged the group which consists of this some collar part or groove | channel further repeatedly.

図10に示す光学シート1は、その透光性樹脂シートの上面(出光面)に、前後方向に沿う凸状の畝部1a〜1cが左右方向に多数配列形成されている。この光学シート1の上面の畝部1a〜1cは、上下左右方向に沿う面での縦断面形状がそれぞれ二等辺三角形となる上方への凸状であり、しかも、これらの畝部1a〜1cは、二等辺三角形の底角が相違する3種類の異なる形状をなしている。そして、これらの畝部1a〜1cの配列は、底角が異なる3種類の畝部1a〜1cを左右方向に並べて配列させた組Sをさらに多数組にわたって左右方向に繰り返し並べて配列させたものとなっている。また、この光学シート1の下面(入光面)はフラットな面となっている。   The optical sheet 1 shown in FIG. 10 has a plurality of convex collars 1a to 1c arranged in the left-right direction along the front-rear direction on the upper surface (light-emitting surface) of the translucent resin sheet. The flanges 1a to 1c on the upper surface of the optical sheet 1 are upward convex shapes in which the vertical cross-sectional shape on the surface along the vertical and horizontal directions is an isosceles triangle, and these flanges 1a to 1c are The isosceles triangle has three different shapes with different base angles. And the arrangement | sequence of these collar parts 1a-1c is the thing which arranged the set S which arranged three kinds of collar parts 1a-1c from which a base angle differs in the left-right direction, and repeated and arranged in the left-right direction over many more groups. It has become. Further, the lower surface (light incident surface) of the optical sheet 1 is a flat surface.

この光学シート1の畝部1a〜1cの各組Sにおける構成を、図11に基づいて説明すると、1つの組Sは、斜面の傾斜角θ(以下、底角θという)が55°の畝部1aと、斜面の傾斜角θ(以下、底角θという)が45°の畝部1bと、斜面の傾斜角θ(以下、底角θという)が25°の畝部1cとの3種類の畝部1a〜1cを1つずつ右から左に並べて配列している。また、これらの畝部1a〜1cは、二等辺三角形の底辺に相当する部分の長さである畝幅Bが等しくなるようにしている。従って、これらの畝部1a〜1cは、最大の底角θを有する畝部1aの凸状が最も上方に突出して高く、最小の底角θを有する畝部1cの凸状が最も低くなり、中間の底角θを有する畝部1bの凸状は中間の高さとなる。 The configuration of each set S of the flange portions 1a to 1c of the optical sheet 1 will be described with reference to FIG. 11. One set S has a slope angle θ 1 (hereinafter referred to as a base angle θ 1 ) of 55 °. And a flange 1b having a slope inclination angle θ 2 (hereinafter referred to as a base angle θ 2 ) of 45 ° and a slope having a slope inclination angle θ 3 (hereinafter referred to as a base angle θ 3 ) of 25 °. Three types of flanges 1a to 1c with the part 1c are arranged one by one from the right to the left. In addition, the flange portions 1a to 1c are configured such that the flange widths B, which are the lengths of the portions corresponding to the bases of the isosceles triangles, are equal. Therefore, these ridges 1a~1c is higher and protrudes convexly uppermost ridge portion 1a having a maximum base angle theta 1, the lowest convex ridge portion 1c having the smallest base angle theta 3 becomes convex ridge portion 1b having an intermediate base angle theta 2 is the mid-height.

1組として配列される畝部の数は、2以上、10以下が適当であり、より好ましくは3以上、5以下である。また、図10では、光学シート1における1個の点光源3(レンズ被覆LED)に対応する領域のみを示し、各畝部1a〜1cの凸状を拡大して見やすくするために、この領域に畝部1a〜1cの組を9組ずつだけ示しているが、実際には点光源3ごとにさらに多数の組を配列していて、点光源3のレンズ3bの直径よりも図11に示す畝幅Bの方が十分に狭くなるようになっている。さらに、この1個の点光源3に対応する光学シート1の領域内の組数は、必ずしも整数である必要はない。   The number of buttocks arranged as one set is suitably 2 or more and 10 or less, more preferably 3 or more and 5 or less. FIG. 10 shows only a region corresponding to one point light source 3 (lens-covered LED) in the optical sheet 1, and in order to enlarge the convex shape of each of the collar portions 1 a to 1 c for easy viewing, Although only nine sets of the collar portions 1a to 1c are shown, in practice, a larger number of groups are arranged for each point light source 3, and the diameter of the lens 3b of the point light source 3 is shown in FIG. The width B is sufficiently narrow. Furthermore, the number of sets in the region of the optical sheet 1 corresponding to this one point light source 3 is not necessarily an integer.

上記構成によれば、光学シート1において、図10に示す点光源3の真上の位置Eの付近では、図12(a)に示すように、点光源3からの光が斜面の傾斜角(以下、底角という)の大きな畝部1aや畝部1bでは左右方向に傾斜して出射したり全反射することも多くなるが、底角が最小の畝部1cから出射する光はほぼ上向きとなる。また、点光源3の真上より少し左右方向に離れた位置Eの付近では、図12(b)に示すように、点光源3からの光が底角の最大の畝部1aと最小の畝部1cでは左右方向に傾斜して出射するが、底角が中間の畝部1bから出射する光はほぼ上向きとなる。そして、さらに点光源3の真上から左右方向に遠く離れた位置Eの付近では、図12(c)に示すように、点光源3からの光が底角の小さい畝部1bや畝部1cでは左右方向に傾斜して出射するが、底角が最大の畝部1aから出射する光はほぼ上向きとなる。なお、図12では、光学シート1の下面での入射光の屈折は省略して示している。 According to the above configuration, in the optical sheet 1, in the vicinity of the position E 0 immediately above the point light source 3 shown in FIG. 10, the light from the point light source 3 is inclined at an inclination angle as shown in FIG. The ridge part 1a and the ridge part 1b having a large base angle (hereinafter referred to as a base angle) are often emitted in a left-right direction and are totally reflected, but the light emitted from the ridge part 1c having the smallest base angle is almost upward. It becomes. Further, in the vicinity of the position E 1 apart a little lateral direction with respect to the right above the point light source 3, as shown in FIG. 12 (b), the light from the point light source 3 is maximum ridges 1a and minimal base angle In the collar part 1c, it inclines in the left-right direction, and it radiate | emits, but the light radiate | emitted from the collar part 1b with an intermediate base angle turns upward substantially. And, in yet around from just above the point light source 3 in the horizontal direction far away E 2, as shown in FIG. 12 (c), small ridges 1b and ridges of the light base angle from a point source 3 In 1c, it inclines in the left-right direction, and it radiate | emits, but the light radiate | emitted from the collar part 1a with the largest base angle turns upward substantially. In FIG. 12, the refraction of incident light on the lower surface of the optical sheet 1 is omitted.

点光源3が、配光特性に正面方向(0°)の指向性がある従来のLEDや、配光特性に指向性がない電球などの場合は、点光源3の真上から左右方向に遠く離れた位置Eの付近では、上記のように畝部1aによって光がほぼ上向きに出射しても、位置Eの付近に入射する光量が少ないため、輝度ムラが生じることになる。けれども、この面発光ユニットでは、点光源3として、配光分布における輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある斜め方向の指向性を備えたレンズ被覆LEDを使用しているので、遠く離れた位置Eの付近に入射する光量は、他の位置E,Eの付近に入射する光量よりも多くなる。従って、それぞれの位置E,E,Eの付近からほぼ上向きに出射される光量がほぼ均一になるので、輝度ムラが抑制されて均斉度が向上する。 When the point light source 3 is a conventional LED having a directivity (0 °) directivity in the light distribution characteristic or a light bulb having no directivity in the light distribution characteristic, the point light source 3 is far from right above the point light source 3 in the left-right direction. in the vicinity of a position away E 2, light by ridge 1a as described above be emitted substantially upward, since the amount of light incident on the vicinity of the position E 2 is small, so that the luminance unevenness. However, in this surface light emitting unit, the point light source 3 is provided with a directivity in an oblique direction in which the angle at which the luminance in the light distribution is maximized is in the range of + 30 ° to + 80 ° and −30 ° to −80 °. Since the lens-covered LED is used, the amount of light incident near the position E 2 far away is larger than the amount of light incident near the other positions E 0 and E 1 . Accordingly, the amount of light emitted almost upward from the vicinity of the respective positions E 0 , E 1 , E 2 becomes substantially uniform, so that luminance unevenness is suppressed and the uniformity is improved.

光学シート1における各組Sの3種類の畝部1a〜1cの畝幅Bは必ずしも一定である必要はなく、例えば図13に示す光学シート1のように、各畝部1a〜1cの畝幅B〜Bが相違するようにしてもよい。特に、この図13に示すように、畝部1a〜1cにおける凸状の縦断面形状の三角形の底辺の両内角の和が大きいものほど、つまり、二等辺三角形の底角が大きいものほど畝幅B〜Bが広くなるようにすれば、二等辺三角形の頂角が小さく尖った畝部1a〜1cほど畝幅B〜Bが広くなるので、頂角の異なる3種類の畝部1a〜1cから出射してある程度上方を向く光の光量を均一化することができるようになり、均斉度を高めることができる。なぜなら、頂角が小さく尖った畝部1a〜1cほど光の利用率は低下するが、このように頂角が小さく尖った畝部1a〜1cほど畝幅B〜Bが広くなれば光を多く取り込むことができるので、これらが相殺されて頂角の異なる3種類の畝部1a〜1cから出射してある程度上方を向く光の光量を均一化することができるようになるからである。 The widths B of the three types of flanges 1a to 1c in each set S in the optical sheet 1 are not necessarily constant. For example, as in the optical sheet 1 shown in FIG. 13, the widths of the flanges 1a to 1c. B 1 to B 3 may be different. In particular, as shown in FIG. 13, the larger the sum of the inner angles of the bases of the triangles having the convex longitudinal cross-sections at the flanges 1a to 1c, that is, the greater the base angle of the isosceles triangle, If B 1 to B 3 are widened, the ridge widths B 1 to B 3 become wider as the ridges 1 a to 1 c of the isosceles triangle have a small apex angle, and therefore, three types of ridges having different apex angles The amount of light emitted from 1a to 1c and directed upward to some extent can be made uniform, and the uniformity can be increased. This is because the utilization of the higher ridges 1a~1c the vertical angle pointed small light decreases, but if thus wide ridge width B 1 .about.B 3 more ridges 1a~1c the vertical angle pointed small light This is because the amount of light that is emitted from the three types of flanges 1a to 1c having different apex angles and is directed upward to some extent can be made uniform.

また、上記の光学シート1は、各組Sの3種類の畝部1a〜1cの凸状の高さが相違しているが、これらの高さはシート面に平行な面で揃えるようにしてもよい。例えば、上方の光学シート1における各組Sの3種類の畝部1a〜1cの凸状の高さを揃えた場合を図14に示す。ただし、この場合は、図13に示した場合とは逆に、三角形(元の二等辺三角形を基礎とした三角形)の頂角が小さく尖った畝部1a〜1cの畝幅B〜Bほど狭くなるので、点光源3からの左右方向の距離が遠い位置では輝度を十分に得られないおそれがある。そこで、図15に示すように、もともと凸状の高さが低い畝部1bや畝部1cについては、二等辺三角形を上方に平行移動して嵩上げし、元の二等辺三角形を基礎とした四角以上の多角形とすることにより、畝部1a〜1cの畝幅Bを一定としながら、凸状の高さを揃えることができる。 In the optical sheet 1 described above, the convex heights of the three types of flanges 1a to 1c of each set S are different, but these heights are aligned on a plane parallel to the sheet surface. Also good. For example, FIG. 14 shows a case where the convex heights of the three types of collars 1a to 1c of each set S in the upper optical sheet 1 are aligned. However, in this case, contrary to the case shown in FIG. 13, the ridge widths B 1 to B 3 of the ridges 1a to 1c having a small apex angle of the triangle (triangle based on the original isosceles triangle) are small. Therefore, the luminance may not be sufficiently obtained at a position where the distance from the point light source 3 in the left-right direction is long. Therefore, as shown in FIG. 15, with respect to the collar portion 1 b and the collar portion 1 c that originally have a low convex shape, the isosceles triangle is translated upward to increase the height, and a square based on the original isosceles triangle. By setting it as the above polygon, convex height can be arrange | equalized, making the collar width B of collar parts 1a-1c constant.

また、上記の光学シート1は、各組Sの3種類の畝部1a〜1cの底角θ〜θが55°と45°と25°である場合を示したが、これらの底角θ〜θは互いに相違すればよいので、具体的な角度の値は任意である。但し、この底角の範囲は、前述した光学シート2の凹部2b又は凸部2gの傾斜面又はテーパー面の稜線の傾斜角θと同様に、10°以上、70°以下であることが好ましい。そして、底角の最大値は40°以上、70°以下であることが好ましく、50°以上、70°以下であればより好ましい。70°を超えて大きくなりすぎると、畝部1a〜1cの畝幅Bを十分な広さとした場合に、凸状の高さが高くなりすぎて光学シート1,2の成形性が悪くなり、取り扱いも難しくなる。逆に、この底角の最大値が55°より小さく、特に40°より小さくなると、各畝部1a〜1cの底角の差が少なくなるので、輝度ムラをなくして均斉度を高める効果が十分に得られ難くなる。 Further, the optical sheet 1 described above, the case base angle theta 1 through? 3 of the three ridges 1a~1c of each set S is 55 ° and 45 ° and 25 °, these base angle Since θ 1 to θ 3 may be different from each other, the specific angle value is arbitrary. However, the range of this base angle is preferably 10 ° or more and 70 ° or less, similar to the inclination angle θ of the ridgeline of the concave surface 2b or convex portion 2g of the optical sheet 2 described above or the tapered surface. The maximum value of the base angle is preferably 40 ° or more and 70 ° or less, and more preferably 50 ° or more and 70 ° or less. If it exceeds 70 ° and becomes too large, when the ridge width B of the ridge portions 1a to 1c is made sufficiently wide, the convex height becomes too high and the moldability of the optical sheets 1 and 2 deteriorates. Handling becomes difficult. On the contrary, when the maximum value of the base angle is smaller than 55 °, particularly smaller than 40 °, the difference in the base angles of the flanges 1a to 1c is reduced, so that the effect of increasing the uniformity by eliminating luminance unevenness is sufficient. It becomes difficult to obtain.

一方、各畝部1a〜1cの底角の最小値は、10°以上、25°以下であることが好ましく、10°以上、20°以下であればより好ましい。この底角の最小値が20°を超え、特に25°を超えて大きくなりすぎると、各畝部1a〜1cの底角の差が少なくなるので、輝度ムラをなくして均斉度を高める効果が十分に得られ難くなる。なお、場合によっては、底角の最小値を0°とし、各組Sのいずれか一つの畝部をシート面と平行な面としてもよい。   On the other hand, the minimum value of the base angle of each of the flanges 1a to 1c is preferably 10 ° or more and 25 ° or less, and more preferably 10 ° or more and 20 ° or less. If the minimum value of the base angle exceeds 20 °, and particularly exceeds 25 °, the difference in the base angle of each of the flanges 1a to 1c is reduced. It becomes difficult to obtain enough. In some cases, the minimum value of the base angle may be set to 0 °, and any one ridge portion of each set S may be a surface parallel to the sheet surface.

また、上記の光学シート1は、各畝部1a〜1cの縦断面形状が二等辺三角形やこの二等辺三角形を基礎とした形状である場合を示したが、これらの二等辺三角形の頂部を水平に切り取った等脚台形状としてもよい。図16に、光学シート1の畝部1a〜1cの縦断面形状を等脚台形状とした例を示す。さらに、この切り取った頂部に底角の小さい二等辺三角形を載置した将棋の駒形状の五角形としてもよく、六角以上の多角形とすることもできる。   Moreover, although said optical sheet 1 showed the case where the longitudinal cross-sectional shape of each collar part 1a-1c is a shape based on an isosceles triangle or this isosceles triangle, the top part of these isosceles triangles is horizontal. It is good also as an isosceles trapezoid shape cut out. In FIG. 16, the example which made the longitudinal cross-sectional shape of the collar parts 1a-1c of the optical sheet 1 the isosceles trapezoid shape is shown. Furthermore, it may be a shogi piece-shaped pentagon in which an isosceles triangle with a small base angle is placed on the top of the cut, or a hexagon or more polygon.

また、上記の光学シート1は、各組Sの3種類の畝部1a〜1cが同じ順序で配列されている場合を示したが、光学シート1上の組数が十分に多ければこの配列順序が光屈折・拡散作用による輝度ムラ防止効果に影響することはないので、この配列順序が組Sごとに相違していてもよく、その場合の配列順序の相違は不規則であることが好ましい。図17に、光学シート1における各組の畝部1a〜1cの配列順序が組Sごとに不規則に相違する例を示す。   In the optical sheet 1, the three kinds of collars 1a to 1c of each set S are arranged in the same order. However, if the number of sets on the optical sheet 1 is sufficiently large, this arrangement order is used. Does not affect the luminance unevenness preventing effect due to the light refraction / diffusion action, the arrangement order may be different for each set S, and the arrangement order in that case is preferably irregular. FIG. 17 shows an example in which the arrangement order of the flange portions 1 a to 1 c of each set in the optical sheet 1 is irregularly different for each set S.

また、上記の光学シート1は、各組Sに3種類の畝部1a〜1cが配列されている場合を示したが、4種類以上の畝部が配列されていてもよい。さらに、2種類の畝部が配列されているだけでも、特に縦断面形状が四角以上の多角形であれば、所期の効果をある程度得ることができる。   Moreover, although said optical sheet 1 showed the case where three types of collar parts 1a-1c were arranged in each set S, four or more types of collar parts may be arranged. Furthermore, even if only two types of collars are arranged, the desired effect can be obtained to some extent if the longitudinal cross-sectional shape is a polygon having a square shape or more.

また、上記の光学シート1は、各畝部1a〜1cの縦断面形状が垂直線に対して対称形の二等辺三角形やこの二等辺三角形を基礎とした形状である場合を示したが、必ずしもこのような対称形のものに限定されるものではない。ただし、光学シート1が各点光源3の左右方向の位置に依存しない特性を示すためには、例えば光学シート1の畝部1a〜1cの縦断面形状が左右非対称形である場合、この左右非対称の形状が右方向又は左方向に偏りすぎることは好ましくなく、この偏りが大きすぎると、光学シート1全体として考えた場合に、点光源3の左右どちら側であるかによって輝度ムラが生じるおそれもある。従って、光学シート1の個々の畝部1a〜1cの縦断面形状に左右非対称のものがあっても、偏りの程度を数値化して左右方向を正負とすると、各組Sの全ての畝部1a〜1cの偏りを合計したときにできるだけ0に近づくように偏りを分散させて平均化させることが好ましい。つまり、図18に示すように、光学シート1の各組Sに5種類の畝部1a〜1eがあったとすると、例えば畝部1a,1eは左方向に一定量だけ偏り、畝部1cは偏りのない左右対称形であり、畝部1b,1dは右方向に一定量だけ偏っているというように、偏りが分散して平均化されていることが好ましい。図19は、これら5種類の畝部1a〜1eの配列順序が隣接する組Sで相違している場合を示す。   In addition, the optical sheet 1 described above is a case where the longitudinal cross-sectional shape of each of the flange portions 1a to 1c is an isosceles triangle symmetrical with respect to a vertical line or a shape based on the isosceles triangle. It is not limited to such a symmetrical thing. However, in order for the optical sheet 1 to exhibit characteristics that do not depend on the position of each point light source 3 in the left-right direction, for example, when the vertical cross-sectional shape of the flanges 1a to 1c of the optical sheet 1 is a left-right asymmetric shape, It is not preferable that the shape of the light source is excessively biased rightward or leftward. If this bias is excessively large, luminance unevenness may occur depending on the left or right side of the point light source 3 when the optical sheet 1 is considered as a whole. is there. Therefore, even if the vertical cross-sectional shapes of the individual flange portions 1a to 1c of the optical sheet 1 are asymmetrical, if the degree of the bias is quantified and the left-right direction is positive or negative, all the flange portions 1a of each set S It is preferable that the deviations are dispersed and averaged so as to be as close to 0 as possible when the deviations of ˜1c are totaled. That is, as shown in FIG. 18, if there are five types of collars 1a to 1e in each set S of the optical sheet 1, for example, the collars 1a and 1e are biased by a certain amount in the left direction, and the collar 1c is biased. Preferably, the flanges 1b and 1d are balanced and averaged such that the ribs 1b and 1d are biased by a certain amount in the right direction. FIG. 19 shows a case where the arrangement order of these five types of collars 1a to 1e is different between adjacent sets S.

また、上記の光学シート1は、畝部の縦断面形状における三角形等の各角部が尖った状態である場合を示したが、現実には製造上の都合や面取り等が施されることにより、各角部が多少鈍った状態や丸みを帯びた状態になっていてもよい。例えば、出願人が実際に光学シート1の金型を作製したとき、畝部の型の縦断面形状の三角形の頂点部分は、曲率半径が10〜80μm程度の円弧状になっていた。また、この金型を用いて樹脂を成形したとき、実際には三角形の底辺から頂点部分までの高さの90%程度までしか樹脂は充填されなかった。しかも、試しに三角形の高さの70%程度まで樹脂を充填して光学シート1を作製してみたが、本発明の効果に大きい差異は認められなかった。これは、光学シート1の畝部が三角形の両斜辺等からなる斜面を有することが重要なのであって、これらの斜面が接する境界部分である角部の細部の状態は重要ではないからである。そして、図16において畝部の縦断面形状を等脚台形状とした場合にも同様の効果が得られるのは、同じ理由からである。   Moreover, although the said optical sheet 1 showed the case where each corner | angular part, such as a triangle, in the longitudinal cross-sectional shape of a collar part was pointed, in reality, a manufacturing convenience, chamfering, etc. are given. Each corner may be slightly dull or rounded. For example, when the applicant actually manufactured the mold of the optical sheet 1, the apex portion of the triangle of the vertical cross-sectional shape of the collar portion mold was an arc having a curvature radius of about 10 to 80 μm. Further, when the resin was molded using this mold, the resin was actually filled only up to about 90% of the height from the base of the triangle to the apex. Moreover, as a trial, the optical sheet 1 was made by filling the resin up to about 70% of the height of the triangle, but no significant difference was found in the effect of the present invention. This is because it is important that the collar portion of the optical sheet 1 has a slope formed by both oblique sides of a triangle, and the state of the details of the corner portion that is a boundary portion where these slopes contact is not important. For the same reason, the same effect can be obtained when the vertical cross-sectional shape of the buttocks in FIG. 16 is an isosceles trapezoid.

また、上記の光学シート1は、上面(出光面)に凸状の畝部を配列形成した場合を示したが、凹状の溝部が配列形成されたものであっても、同様に本発明の効果を得ることができる。この場合、凹状の縦断面形状は、上記凸状の畝部の縦断面形状を上下逆にしたものを任意に用いることができる。   In addition, the optical sheet 1 has been shown in the case where convex ridges are arranged on the upper surface (light-emitting surface), but the effect of the present invention is similarly obtained even when concave grooves are arranged. Can be obtained. In this case, the concave vertical cross-sectional shape can be arbitrarily used as the vertical cross-sectional shape of the above-mentioned convex ridge part upside down.

また、上記の光学シート1は、畝部や溝部が形成されていない下面(入光面)がフラットである場合を示したが、この下面には、同様の畝部又は溝部を上面の畝部又は溝部と異なる方向(例えば直交方向)に配列形成してもよく、また、微細なシボ加工を施してもよい。このようにすると、輝度ムラが一層抑制されて均斉度が更に向上する利点がある。   In the optical sheet 1, the lower surface (light incident surface) on which the flange portion and the groove portion are not formed is flat. On the lower surface, a similar flange portion or groove portion is provided on the upper surface. Alternatively, it may be formed in a direction different from the groove (for example, an orthogonal direction), or fine graining may be performed. In this way, there is an advantage that luminance unevenness is further suppressed and the uniformity is further improved.

上記の光学シート1には、前述した光拡散剤を前記と同じ含有量で含有させることが望ましく、また、前述した各種添加剤を必要に応じて適量添加することが望ましい。そして、光学シート1の厚さも、前述した光学シート2の厚さと実質的に同じ厚さとすることが望ましい。   It is desirable that the optical sheet 1 contains the above-described light diffusing agent in the same content as described above, and it is desirable to add the above-described various additives as appropriate. The thickness of the optical sheet 1 is desirably substantially the same as the thickness of the optical sheet 2 described above.

また、場合によっては、光学シート1を複層構造とし、表面層と基材層との間で光拡散剤や各種添加剤の種類、配合量などを適宜変更してもよい。図20は、基材層11の上に表面層12を設け、この表面層12に凸状の畝部を配列形成した2層構造の光学シート1を示す。   In some cases, the optical sheet 1 may have a multilayer structure, and the type and blending amount of the light diffusing agent and various additives may be appropriately changed between the surface layer and the base material layer. FIG. 20 shows an optical sheet 1 having a two-layer structure in which a surface layer 12 is provided on a base material layer 11 and convex ridges are arranged on the surface layer 12.

以上のような光学シート1は、前述した材料樹脂からなる透光性樹脂シートをプレス成形して畝部又は溝部を配列形成する方法、或いは、前述した材料樹脂で射出成形して畝部又は溝部を配列形成する方法、或いは、前述した材料樹脂を連続押出成形して押出方向の畝部又は溝部を配列形成する方法、或いは、前述した材料樹脂を連続押出成形しながらエンボスロールで畝部又は溝部を配列形成する方法など、所望の方法で製造することができる。   The optical sheet 1 as described above is formed by press-molding the translucent resin sheet made of the above-described material resin and arranging the ridges or grooves. Alternatively, the above-described optical resin 1 is injection-molded with the above-described material resin. Or the above-described material resin is continuously extruded to form the ridges or grooves in the extrusion direction, or the above-described material resin is continuously extruded to form the ridges or grooves with an embossing roll. Can be produced by a desired method such as a method of forming an array.

尚、上記の光学シート1や、前述した光学シート2は、必ずしもフラットシートである必要はなく、例えば液晶パネル4の形状に合わせて多少湾曲するシートであってもよい。また、上記の光学シート1や、前述した光学シート2は、二枚重ねにして点光源3の正面側に配置してもよく、その場合は均斉度が更に向上する利点がある。   Note that the optical sheet 1 and the optical sheet 2 described above are not necessarily flat sheets, and may be, for example, sheets that are slightly curved in accordance with the shape of the liquid crystal panel 4. In addition, the optical sheet 1 and the optical sheet 2 described above may be stacked on the front side of the point light source 3, and in that case, there is an advantage that the uniformity is further improved.

以上のような光学シート1又は2を点光源3の正面側(上側)に配置した面発光ユニットは、点光源3が、従来のLEDのように出射光の配光分布において輝度が極大となる角度が0°付近、つまり正面方向に偏った指向性を示すものではなく、配光分布における輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある斜め方向の指向性を有する点光源であり、しかも、光学シート2又は1が、少なくとも出光面上に傾斜面2c又はテーパー面2fを有する凹部2b又は凸部2gを配列形成し、或いは、畝部1a〜1e又は溝部の組Sを繰り返し並べて配列形成することによって、斜め背後から入射する光をほぼ正面方向に出光できるようにしたものであるため、点光源3,3間の距離Dを従来より拡大しても、点光源3と点光源3の中間部の領域の輝度が低下するのを抑えることができる。そのため、点光源3,3の光源間距離Dを40mm以上、60mm以下と長くとり、点光源3から光学シート2又は1までの距離Lと上記光源間距離Dとの比(L/D)を0.2〜0.63の範囲内として、距離Lを短くしても、点光源3の真正面の領域の輝度と、点光源3と点光源3の中間部の領域の輝度の差が小さくなり、後述の実施例の試験データに示すように高い均斉度が得られるので、点光源3の配置個数を減らしてコストダウンと省エネを図ることが可能となり、昨今の液晶テレビ受像機の薄型化などの要望に十分対応することも可能となる。   In the surface light emitting unit in which the optical sheet 1 or 2 as described above is arranged on the front side (upper side) of the point light source 3, the point light source 3 has the maximum luminance in the light distribution of the emitted light as in the conventional LED. The angle is near 0 °, that is, does not show directivity biased in the front direction, and the angle at which the luminance in the light distribution is maximized is in the range of + 30 ° to + 80 ° and −30 ° to −80 ° The light source is a point light source having directionality, and the optical sheet 2 or 1 has at least the inclined surface 2c or the tapered surface 2f on the light exit surface and the convex portion 2g or the flange portion 1a. Since the light incident from obliquely behind can be emitted almost in the front direction by repeatedly arranging the array S of grooved portions 1e or S, the distance D between the point light sources 3 and 3 is increased as compared with the prior art. Even spotlight It can suppress that the brightness | luminance of the area | region of the intermediate part of the source 3 and the point light source 3 falls. Therefore, the distance D between the light sources 3 and 3 is set to be as long as 40 mm or more and 60 mm or less, and the ratio (L / D) between the distance L from the point light source 3 to the optical sheet 2 or 1 and the distance D between the light sources is described above. Even if the distance L is shortened within the range of 0.2 to 0.63, the difference between the brightness of the area directly in front of the point light source 3 and the brightness of the area in the middle of the point light source 3 and the point light source 3 is reduced. As shown in the test data of the examples to be described later, a high degree of uniformity can be obtained, so that the number of point light sources 3 can be reduced to reduce the cost and save energy. It is possible to fully meet the demands of

ちなみに、40型液晶ディスプレイに組み込まれる従来のLED直下型のバックライトは、20〜30mmの光源間距離をあけてLEDを配置しているため、LEDの使用個数が700個前後であるが、光源間距離を例えば55mmに拡大してレンズ被覆LEDを配置した本発明の面発光ユニットをバックライトとして使用すると、レンズ被覆LEDの使用個数が150個程度に減少するため、大幅なコストダウンと省エネを図ることができる。   By the way, the conventional LED direct-type backlight incorporated in the 40-inch liquid crystal display has LEDs arranged with a distance between light sources of 20 to 30 mm, so the number of LEDs used is around 700. For example, when the surface emitting unit of the present invention in which the distance between the lenses is increased to 55 mm and the lens-covered LEDs are arranged is used as a backlight, the number of lens-covered LEDs used is reduced to about 150. Can be planned.

このような面発光ユニットは、上記のように液晶テレビ受像機やパソコンなどの液晶ディスプレイのバックライトユニットとして液晶パネル4の背後に設置されて用いられるが、それ以外の例えば照明広告などのバックライトユニットとしても用いられ、また、面照明装置等として用いることもできる。面照明装置等として用いる場合は、照明効果との関係で、点光源3の配置分布に偏りを持たせたり、それぞれの点光源3と光学シート1,2との間の距離Lを必ずしも同じではないように配置させることも考えられる。   Such a surface light emitting unit is used by being installed behind the liquid crystal panel 4 as a backlight unit of a liquid crystal display such as a liquid crystal television receiver or a personal computer as described above. It can also be used as a unit, and can also be used as a surface illumination device or the like. When used as a surface illumination device or the like, the arrangement distribution of the point light sources 3 is biased in relation to the illumination effect, or the distance L between each point light source 3 and the optical sheets 1 and 2 is not necessarily the same. It is also possible to arrange them so that they do not exist.

次に、本発明に係る面発光ユニットの更に具体的な実施例と、各実施例について行った効果確認試験について説明する。   Next, more specific examples of the surface light emitting unit according to the present invention and an effect confirmation test performed on each example will be described.

[実施例1〜4]
点光源として、配光分布において輝度が極大となる角度が+70°付近及び−70°付近であるレンズ被覆LED(OSRAM社製、LW W5KM)を、光源間距離Dを40mmとして、配線基板上に縦横のマトリックス状に配設した。そして、このレンズ被覆LEDの正面側(上側)に、凹部の傾斜面の傾斜角が異なる4種類の光学シートを、レンズ被覆LEDが配設された配線基板の表面から25mmの距離Lをあけて配線基板と平行に設置し、実施例1〜4の面配光ユニットを構成した。
実施例1〜4に使用した4種類の光学シートは、いずれも厚さ2mmのポリカーボネート樹脂シートの出光面(上面)に、一辺の長さaが130μmの倒立正四角錐形の凹部を縦横に配列形成すると共に、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズジャパン合同会社製トスパール120Sを0.3質量%含有させたものであり、実施例1の光学シートは凹部の傾斜面の傾斜角が35°、実施例2の光学シートは該傾斜角が45°、実施例3の光学シートは該傾斜角が55°、実施例4の光学シートは該傾斜角が65°である。
[Examples 1 to 4]
As a point light source, a lens-covered LED (OSW, LW W5KM) having an angle of maximum luminance in the light distribution distribution near + 70 ° and −70 ° is set on the wiring board with a distance D between the light sources of 40 mm. They were arranged in a matrix of length and width. Then, on the front side (upper side) of the lens-covered LED, four types of optical sheets having different inclination angles of the concave portions are provided at a distance L of 25 mm from the surface of the wiring board on which the lens-covered LED is disposed. It installed in parallel with the wiring board, and comprised the surface light distribution unit of Examples 1-4.
In each of the four types of optical sheets used in Examples 1 to 4, inverted square pyramid-shaped concave portions each having a side length a of 130 μm are arranged vertically and horizontally on the light exit surface (upper surface) of a polycarbonate resin sheet having a thickness of 2 mm. In addition to forming 0.3 mass% of Tospearl 120S manufactured by Momentive Performance Materials Japan GK as a light diffusing agent, the optical sheet of Example 1 has an inclination angle of the inclined surface of the recess of 35 °. The optical sheet of Example 2 has an inclination angle of 45 °, the optical sheet of Example 3 has an inclination angle of 55 °, and the optical sheet of Example 4 has an inclination angle of 65 °.

これら実施例1〜4の面発光ユニットについて、株式会社アイ・システム社製の「EYESCALE III」を使用し、室温23℃、湿度50%RHの環境下で輝度の均斉度を測定することによって、光学シートの凹部の傾斜面の傾斜角と均斉度との関係を調べた。この均斉度の測定は、図21に示すように、縦横に隣りあう4つのレンズ被覆LED(点光源3)の真上の領域A〜Aと、これら4つのレンズ被覆LEDの中間部の真上の領域Aの計5点の測定ポイントで光学シートの上方から輝度を測定し、各領域A〜Aに対する領域Aの輝度の比(%)をそれぞれ計算し、これら4つの輝度の比の平均値を均斉度として算出することにより行った。 For the surface emitting units of Examples 1 to 4, by using “EYESCALE III” manufactured by I-System Co., Ltd., by measuring the luminance uniformity under an environment of room temperature 23 ° C. and humidity 50% RH, The relationship between the inclination angle of the inclined surface of the concave portion of the optical sheet and the uniformity was investigated. As shown in FIG. 21, the measurement of the uniformity is performed in the regions A 1 to A 4 directly above the four lens-covered LEDs (point light sources 3) adjacent to each other in the vertical and horizontal directions, and in the middle portion of these four lens-covered LEDs. the brightness from above the optical sheet at the measurement points in total 5 points directly above the area a 5 is measured, calculated luminance ratio of the area a 5 for each of the areas a 1 to a 4 a (%), respectively, of the four The calculation was performed by calculating the average value of the luminance ratio as the uniformity.

上記実施例1〜4の面発光ユニットの構成と、算出した均斉度を表1に示す。そして、図22に、光学シートの出光面に形成された凹部の傾斜面の傾斜角と、均斉度との関係を示すグラフを掲載する。
なお、以下に掲げる表1〜表8において、「レンズの有無」とは、上記のように輝度が極大となる角度が+70°付近及び−70°付近である配光特性を付与するためのレンズの有無を意味する。
Table 1 shows the configurations of the surface light emitting units of Examples 1 to 4 and the calculated uniformity. And the graph which shows the relationship between the inclination | tilt angle of the inclined surface of the recessed part formed in the light emission surface of an optical sheet and uniformity is shown in FIG.
In Tables 1 to 8 below, “presence / absence of lens” means a lens for providing a light distribution characteristic in which the angles at which the luminance is maximized are near + 70 ° and −70 ° as described above. It means presence or absence.

Figure 2011216271
Figure 2011216271

この表1及び図22から、実施例1〜4の面発光ユニットは、光源間距離Dを40mmに拡大し、点光源から光学シートまでの距離Lを25mmに短縮しているにも拘わらず、光学シートの凹部の傾斜面の傾斜角が35°〜65°であるため、85%以上の高い均斉度が得られ、特に、実施例1〜3のように傾斜角が35°〜55°であると、95%以上の極めて高い均斉度が得られることが判る。そして、図22から、均斉度の最高値は、傾斜角を45°前後に設定したときに得られることも判る。   From Table 1 and FIG. 22, the surface emitting units of Examples 1 to 4 have the distance D between the light sources enlarged to 40 mm, and the distance L from the point light source to the optical sheet is shortened to 25 mm. Since the inclination angle of the inclined surface of the concave portion of the optical sheet is 35 ° to 65 °, a high degree of uniformity of 85% or more is obtained, and in particular, the inclination angle is 35 ° to 55 ° as in Examples 1 to 3. It can be seen that an extremely high homogeneity of 95% or more can be obtained. FIG. 22 also shows that the maximum value of uniformity is obtained when the inclination angle is set to around 45 °.

[実施例5〜8]
実施例1〜4で用いたレンズ被覆LED(OSRAM社製、LW W5KM)を、光源間距離Dを40mmとして、配線基板上に縦横のマトリクッス状に配設した。そして、このレンズ被覆LEDの正面側(上側)に、傾斜面の傾斜角が55°の倒立正四角錐形の凹部(一辺の長さaは130μm)を縦横に配列形成した厚さ2mmの光学シートであって、且つ、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズジャパン合同会社製トスパール120Sを0.4質量%含有させた光学シートを、レンズ被覆LEDが配設された配線基板からの距離Lを変えて配線基板と平行に設置し、実施例5〜8の面配光ユニットを構成した。実施例5はレンズ被覆LED(配線基板)から光学シートまでの距離Lを25mm(L/D=0.63)とし、実施例6は該距離Lを20mm(L/D=0.50)とし、実施例7は該距離Lを15mm(L/D=0.38)とし、実施例8は該距離Lを10mm(L/D=0.25)とした。
これら実施例5〜8の面配光ユニットについて、実施例1〜4と同様にして均斉度を測定し、光源間距離Dが40mmである場合のL/Dと均斉度との関係を調べた。
実施例5〜8の面発光ユニットの構成と均斉度を下記表2に示す。そして、図23に、光源間距離Dが40mmである場合の実施例5〜8の均斉度とL/Dとの関係を示すグラフを掲載する。
[Examples 5 to 8]
The lens-covered LEDs used in Examples 1 to 4 (manufactured by OSRAM, LW W5KM) were arranged in a matrix form vertically and horizontally on the wiring board with a distance D between light sources of 40 mm. An optical sheet having a thickness of 2 mm in which concave portions of an inverted regular quadrangular pyramid having an inclination angle of 55 ° (a length of one side is 130 μm) is formed on the front side (upper side) of the lens-covered LED vertically and horizontally. And an optical sheet containing 0.4% by mass of Tospearl 120S manufactured by Momentive Performance Materials Japan GK as a light diffusing agent, and the distance L from the wiring board on which the lens-covered LEDs are disposed. It changed and installed in parallel with the wiring board, and comprised the surface light distribution unit of Examples 5-8. In Example 5, the distance L from the lens-covered LED (wiring board) to the optical sheet is 25 mm (L / D = 0.63), and in Example 6, the distance L is 20 mm (L / D = 0.50). In Example 7, the distance L was 15 mm (L / D = 0.38), and in Example 8, the distance L was 10 mm (L / D = 0.0.25).
For the surface light distribution units of Examples 5 to 8, the uniformity was measured in the same manner as in Examples 1 to 4, and the relationship between L / D and the uniformity when the inter-light source distance D was 40 mm was examined. .
Table 2 below shows the configurations and uniformity of the surface emitting units of Examples 5 to 8. And the graph which shows the relationship between the uniformity of Examples 5-8 in case the distance D between light sources is 40 mm and L / D in FIG. 23 is published.

[比較例1〜4]
比較のために、実施例5〜8の光学シートに変えて、同じ光拡散剤を0.4質量%含んだ両面がフラットな厚さ2mmの光拡散シートを使用した以外は実施例5〜8と同様にして、比較例1〜4の面発光ユニットを構成した。そして、これらの比較例1〜4の面発光ユニットについて同様に均斉度を測定し、光源間距離Dが40mmである場合のL/Dと均斉度との関係を調べた。
比較例1〜4の面発光ユニットの構成と均斉度を下記表2に併記する。そして、図23に、光源間距離Dが40mmである場合の比較例1〜4の均斉度とL/Dとの関係を示すグラフを併せて掲載する。
[Comparative Examples 1-4]
For comparison, in place of the optical sheets of Examples 5 to 8, Examples 5 to 8 were used except that a light diffusion sheet having a thickness of 2 mm and containing 0.4% by mass of the same light diffusing agent was used. In the same manner, the surface emitting units of Comparative Examples 1 to 4 were configured. And the uniformity was similarly measured about these surface emitting units of Comparative Examples 1-4, and the relationship between L / D and uniformity when the distance D between light sources was 40 mm was investigated.
The structures and uniformity of the surface emitting units of Comparative Examples 1 to 4 are also shown in Table 2 below. And in FIG. 23, the graph which shows the relationship between the uniformity of Comparative Examples 1-4 in case the distance D between light sources is 40 mm, and L / D is also published.

[実施例9〜11]
光源間距離Dを55mmに変更した以外は、実施例5〜7と同様にして実施例9〜11の面発光ユニットを構成し、これら実施例9〜11の面発光ユニットについて同様に均斉度を測定することにより、光源間距離Dが55mmである場合のL/Dと均斉度との関係を調べた。
これら実施例9〜11の面発光ユニットの構成と均斉度を下記表3に示す。そして、図24に、光源間距離Dが55mmである場合の実施例9〜11の均斉度とL/Dとの関係を示すグラフを掲載する。
[Examples 9 to 11]
Except that the inter-light source distance D was changed to 55 mm, the surface emitting units of Examples 9 to 11 were configured in the same manner as in Examples 5 to 7, and the degree of uniformity was similarly set for the surface emitting units of these Examples 9 to 11. By measuring, the relationship between L / D and uniformity when the inter-light source distance D was 55 mm was examined.
Table 3 below shows the configurations and uniformity of the surface light emitting units of Examples 9 to 11. And the graph which shows the relationship between the uniformity degree of Examples 9-11 in case the distance D between light sources is 55 mm in FIG. 24, and L / D is published.

[比較例5〜7]
比較のために、実施例9〜11の光学シートに変えて、同じ光拡散剤を0.4質量%含んだ両面がフラットな厚さ2mmの光拡散シートを使用した以外は実施例9〜11と同様にして、比較例5〜7の面発光ユニットを構成した。そして、これらの比較例5〜7の面発光ユニットについて同様に均斉度を測定し、光源間距離Dが55mmである場合の比較例5〜7の均斉度とL/Dとの関係を調べた。
比較例5〜7の面発光ユニットの構成と均斉度を下記表3に併記する。そして図24に、光源間距離Dが55mmである場合の比較例5〜7の均斉度とL/Dとの関係を示すグラフを併せて掲載する。
[Comparative Examples 5 to 7]
For comparison, the optical sheets of Examples 9 to 11 were changed to Examples 9 to 11 except that a light diffusing sheet having a thickness of 2 mm and having both surfaces containing 0.4% by mass of the same light diffusing agent was used. In the same manner, surface emitting units of Comparative Examples 5 to 7 were configured. And the uniformity was similarly measured about these surface emitting units of Comparative Examples 5-7, and the relationship between the uniformity of Comparative Examples 5-7 and L / D when the distance D between light sources was 55 mm was investigated. .
The structures and uniformity of the surface emitting units of Comparative Examples 5 to 7 are also shown in Table 3 below. And in FIG. 24, the graph which shows the relationship between the uniformity of Comparative Examples 5-7 in case the distance D between light sources is 55 mm, and L / D is also published.

Figure 2011216271
Figure 2011216271

Figure 2011216271
Figure 2011216271

表2、表3、図23、図24から、光源間距離Dが40mmである場合も、55mmである場合も、出光面に凹部を配列形成した光学シートを用いた実施例の面発光ユニットであるか、両面フラットな光拡散シートを用いた比較例の面発光ユニットであるかに拘わらず、L/Dが大きくなれば均斉度が高くなる関係を有することが判る。そして、出光面に凹部を配列形成した光学シートを用いたL/Dが0.25〜0.63の範囲にある実施例5〜11の面発光ユニットは、68.7〜97.6%の均斉度を有するのに対し、両面フラットな光拡散シートを用いたL/Dが0.25〜0.63の範囲にある比較例1〜7の面発光ユニットは、均斉度が46.5〜88.5%と大きく低下しており、このことから、実施例5〜11の光学シートに配列形成された凹部は、均斉度を向上させる上で極めて有効に作用していることが判る。   From Table 2, Table 3, FIG. 23, and FIG. 24, it is the surface emitting unit of the Example using the optical sheet which formed the recessed part on the light-emitting surface even if the distance D between light sources is 40 mm or 55 mm. Regardless of whether or not it is a surface emitting unit of a comparative example using a flat light diffusing sheet on both sides, it can be seen that as L / D increases, the degree of uniformity increases. And the surface emitting unit of Examples 5-11 in which L / D using the optical sheet which formed the recessed part on the light emission surface in the range of 0.25-0.63 is 68.7-97.6%. The surface emitting units of Comparative Examples 1 to 7 having a uniformity and having a L / D in the range of 0.25 to 0.63 using a double-sided flat light diffusion sheet have a uniformity of 46.5. 88.5%, which is a significant reduction. From this, it can be seen that the recesses arranged in the optical sheets of Examples 5 to 11 act very effectively in improving the uniformity.

[比較例8]
実施例5の面発光ユニットに用いた光学シートに代えて、入光面(裏面)に、傾斜面の傾斜角が55°の倒立正四角錐形の凹部(一辺の長さaは130μm)を縦横に配列形成し、出光面(上面)をフラットにしたポリカーボネート樹脂製の光学シート(厚さ2mm)を用いた以外は実施例5と同様にして、比較例8の面発光ユニットを構成した。そして、この比較例8の面発光ユニットについて同様に均斉度を測定すると共に、輝度を測定し、実施例5の面発光ユニットの均斉度及び輝度と比較した。
この比較例8の面発光ユニットの構成、均斉度、輝度と、実施例5の面発光ユニットの構成、均斉度、輝度を下記表4に示す。
[Comparative Example 8]
Instead of the optical sheet used in the surface light emitting unit of Example 5, an inverted regular quadrangular pyramid-shaped concave portion (the length of one side a is 130 μm) on the light incident surface (rear surface) is 55 °. A surface emitting unit of Comparative Example 8 was constructed in the same manner as in Example 5 except that an optical sheet made of polycarbonate resin (thickness 2 mm) having a flat output surface (upper surface) was used. Then, the uniformity of the surface light emitting unit of Comparative Example 8 was measured in the same manner, and the luminance was measured and compared with the uniformity and luminance of the surface light emitting unit of Example 5.
Table 4 below shows the configuration, uniformity, and luminance of the surface emitting unit of Comparative Example 8, and the configuration, uniformity, and luminance of the surface emitting unit of Example 5.

Figure 2011216271
Figure 2011216271

この表4から、比較例8の面発光ユニットのように、凹部を入光面に配列形成した光学シートを用いたものは、実施例5の面発光ユニットのように、凹部を出光面に配列形成した光学シートを用いたものよりも、均斉度が若干高くなるようであるが、比較例8の面発光ユニットは、全体の輝度が約25%ほど大きく低下して暗くなるという不都合を生じることが判る。これは、レンズ被覆LEDから出射された光の一部が、光学シートの凹部が配列形成された裏面によって全反射され、光学シートへの入光量および光学シートの出射面からの出光量が減少するからと考えられる。   From Table 4, the optical sheet having the concave portions arranged on the light incident surface like the surface light emitting unit of Comparative Example 8 is arranged with the concave portions on the light emitting surface like the surface light emitting unit of Example 5. Although the degree of uniformity seems to be slightly higher than that using the formed optical sheet, the surface light emitting unit of Comparative Example 8 has the disadvantage that the overall luminance is greatly reduced by about 25% and darkens. I understand. This is because part of the light emitted from the lens-covered LED is totally reflected by the rear surface on which the concave portions of the optical sheet are arranged, and the amount of light incident on the optical sheet and the amount of light emitted from the exit surface of the optical sheet are reduced. It is thought from.

[実施例12]
実施例5の面発光ユニットに用いた光学シートに代えて、出光面(上面)に、傾斜面の傾斜角が55°の倒立正四角錐形の凹部(一辺の長さaは130μm)を縦横に配列形成すると共に、入光面(裏面)に、傾斜面の傾斜角が25°の倒立正四角錐形の凹部(一辺の長さaは130μm)を縦横に配列形成したポリカーボネート樹脂製の光学シート(厚さ2mm)を用いた以外は、実施例5と同様にして、実施例12の面発光ユニットを構成した。そして、この実施例12の面発光ユニットについて同様に均斉度を測定し、実施例5の面発光ユニットと対比して、光学シートの両面に凹部を形成することの有効性を調べた。
この実施例12の面発光ユニットの構成および均斉度と、実施例5の面発光ユニットの構成および均斉度を、下記表5に併記する。
[Example 12]
Instead of the optical sheet used in the surface light emitting unit of Example 5, an inverted regular quadrangular pyramid-shaped concave portion (the length of one side a is 130 μm) having an inclination angle of 55 ° is formed vertically and horizontally on the light exit surface (upper surface). An optical sheet made of polycarbonate resin in which concave portions having an inverted regular square pyramid shape with an inclination angle of 25 ° (a length of one side is 130 μm) are formed vertically and horizontally on the light incident surface (back surface). A surface emitting unit of Example 12 was configured in the same manner as Example 5 except that 2 mm in thickness was used. And the uniformity was measured similarly about the surface emitting unit of this Example 12, and the effectiveness of forming a recessed part in both surfaces of an optical sheet compared with the surface emitting unit of Example 5 was investigated.
The configuration and uniformity of the surface emitting unit of Example 12 and the configuration and uniformity of the surface emitting unit of Example 5 are also shown in Table 5 below.

Figure 2011216271
Figure 2011216271

この表5から、実施例12の面発光ユニットのように、出光面の凹部の傾斜面の傾斜角(55°)よりも小さい傾斜角(25°)の傾斜面を有する凹部を光学シートの入光面(裏面)に配列形成したものは、輝度の低下を殆ど招くことなく均斉度が顕著に高められることが判る。これは、光学シートの入射面に形成された凹部の傾斜面の傾斜角が小さいため、レンズ被覆LEDから出射された光が光学シートの入射面で殆ど全反射されることなく光学シートに入射され、しかも、光学シートの入射面と出射面の双方の凹部によって光が屈折・拡散されるからと考えられる。   From Table 5, as in the surface light emitting unit of Example 12, a concave portion having an inclined surface with an inclination angle (25 °) smaller than the inclined angle (55 °) of the inclined surface of the concave portion of the light exit surface is entered into the optical sheet. It can be seen that the arrangement formed on the light surface (rear surface) can remarkably increase the uniformity with almost no decrease in luminance. This is because the angle of inclination of the inclined surface of the recess formed on the incident surface of the optical sheet is small, so that the light emitted from the lens-covered LED is incident on the optical sheet with almost no total reflection at the incident surface of the optical sheet. Moreover, it is considered that light is refracted and diffused by the concave portions on both the incident surface and the exit surface of the optical sheet.

[比較例9〜10]
実施例5の面発光ユニットのレンズ被覆LEDに代えて、従来のLED、つまり、レンズ無しLED(輝度が極大となる角度が正面(0°)付近であり、該角度が+70°付近及び−70°付近である配光特性を付与するためのレンズが無いLED、以下同じ)を用いた以外は実施例5と同様にして、比較例9の面発光ユニットを構成した。
また、比較例1の面発光ユニットのレンズ被覆LEDに代えて、レンズ無しLEDを用いた以外は比較例1と同様にして、比較例10の面発光ユニットを構成した。
そして、これらの比較例9〜10の面発光ユニットについて同様に均斉度を測定し、比較例9と実施例5の面発光ユニットの均斉度を対比すると共に、比較例10と比較例1の面発光ユニットの均斉度を対比することによって、LEDのレンズ(輝度が極大となる角度が+70°付近及び−70°付近である配光特性を付与するためのレンズ)の有無と、光学シートの出光面の凹部の有無が、均斉度に与える影響を調べた。
比較例9〜10の面発光ユニットの構成および均斉度、実施例5の面発光ユニットの構成および均斉度、比較例1の面発光ユニットの構成および均斉度を下記表6に示す。
[Comparative Examples 9 to 10]
Instead of the lens-covered LED of the surface light emitting unit of Example 5, a conventional LED, that is, a lensless LED (the angle at which the luminance becomes maximum is near the front (0 °), and the angle is around + 70 ° and −70. A surface emitting unit of Comparative Example 9 was configured in the same manner as Example 5 except that an LED without a lens for imparting a light distribution characteristic in the vicinity of 0 ° (hereinafter the same) was used.
Moreover, it replaced with the lens covering LED of the surface emitting unit of the comparative example 1, and comprised the surface emitting unit of the comparative example 10 like the comparative example 1 except having used LED without a lens.
And the uniformity of the surface emitting units of Comparative Examples 9 to 10 was measured in the same manner, and the uniformity of the surface emitting units of Comparative Example 9 and Example 5 was compared, and the surfaces of Comparative Example 10 and Comparative Example 1 were compared. By comparing the uniformity of the light-emitting units, the presence or absence of LED lenses (lenses for providing light distribution characteristics where the angles at which the luminance is maximized is near + 70 ° and −70 °) and the light output of the optical sheet The effect of the presence or absence of concave portions on the surface was examined.
Table 6 below shows the configurations and uniformity of the surface emitting units of Comparative Examples 9 to 10, the configuration and uniformity of the surface emitting unit of Example 5, and the configurations and uniformity of the surface emitting unit of Comparative Example 1.

Figure 2011216271
Figure 2011216271

この表6から、実施例5の面発光ユニットと比較例9の面発光ユニットは、いずれも出光面に凹部を配列形成した同じ光学シートを用いているが、実施例5ではレンズ被覆LEDを使用し、比較例9ではレンズ無しLEDを使用しているため、レンズ被覆LEDを使用した実施例5の面発光ユニットの方が、比較例9の面発光ユニットよりも遥かに高い均斉度を有することが判る。そして、比較例1と比較例10の面発光ユニットは、いずれも両面がフラットな同じ拡散シートを用いているが、比較例1ではレンズ被覆LEDを使用し、比較例10ではレンズ無しLEDを使用しているため、レンズ被覆LEDを使用した比較例1の面発光ユニットの方が、比較例10の面発光ユニットよりも高い均斉度を有することが判る。このことから、レンズ被覆LEDの使用は、均斉度を高める上で極めて有効であることが立証される。   From Table 6, the surface light emitting unit of Example 5 and the surface light emitting unit of Comparative Example 9 both use the same optical sheet in which concave portions are arranged on the light emitting surface, but in Example 5, a lens-covered LED is used. In Comparative Example 9, a lensless LED is used, so that the surface emitting unit of Example 5 using a lens-covered LED has a much higher degree of uniformity than the surface emitting unit of Comparative Example 9. I understand. The surface emitting units of Comparative Example 1 and Comparative Example 10 both use the same diffusion sheet that is flat on both sides, but Comparative Example 1 uses a lens-covered LED, and Comparative Example 10 uses a lensless LED. Therefore, it can be seen that the surface emitting unit of Comparative Example 1 using the lens-covered LED has a higher degree of uniformity than the surface emitting unit of Comparative Example 10. This demonstrates that the use of lens-covered LEDs is extremely effective in increasing uniformity.

また、実施例5と比較例1の面発光ユニットは、いずれもレンズ被覆LEDを使用しているが、実施例5では出光面に凹部を配列形成した光学シートを使用しているのに対し、比較例1では両面フラットな光拡散シートを使用しているため、出光面に凹部を配列形成した光学シートを使用する実施例5の面発光ユニットの方が、比較例1の面発光ユニットよりも高い均斉度を有することが判る。そして、比較例9と比較例10の面発光ユニットは、いずれもレンズ無しLEDを使用しているが、比較例9では出光面に凹部を配列形成した光学シートを使用しているのに対し、比較例10では両面がフラットな光拡散シートを使用しているため、出光面に凹部を配列形成した光学シートを用いる比較例9の面発光ユニットの方が、比較例10の面発光ユニットよりも高い均斉度を有することが判る。このことから、光学シートの出光面に凹部を配列形成することは、均斉度を高める上で極めて有効であることが立証される。   Moreover, although the surface emitting units of Example 5 and Comparative Example 1 both use lens-covered LEDs, in Example 5, an optical sheet having concave portions arranged on the light-emitting surface is used. Since Comparative Example 1 uses a light diffusion sheet that is flat on both sides, the surface light emitting unit of Example 5 that uses an optical sheet in which concave portions are arranged on the light emitting surface is more suitable than the surface light emitting unit of Comparative Example 1. It can be seen that it has a high degree of uniformity. And although the surface emitting units of Comparative Example 9 and Comparative Example 10 both use lensless LEDs, Comparative Example 9 uses an optical sheet in which concave portions are arrayed on the light exit surface. Since Comparative Example 10 uses a light diffusion sheet that is flat on both sides, the surface emitting unit of Comparative Example 9 that uses an optical sheet in which concave portions are arranged on the light exit surface is more than the surface emitting unit of Comparative Example 10. It can be seen that it has a high degree of uniformity. From this, it is proved that the formation of the concave portions on the light exit surface of the optical sheet is extremely effective in increasing the uniformity.

以上より、出光面に凹部を配列形成した光学シートとレンズ被覆LEDを用いる実施例5の面発光ユニットの均斉度が最も高くなり、両面がフラットな拡散シートとレンズ無しLEDを用いる比較例10の面発光ユニットの均斉度が最も低くなることが判る。また、両面がフラットな拡散シートとレンズ被覆LEDを使用する比較例1の面発光ユニットの方が、レンズ無しLEDと出光面に凹部を配列形成した光学シートを使用する比較例9の面発光ユニットよりも、均斉度が高いことから、レンズ被覆LEDの使用の方が、出光面に凹部を配列形成した光学シートの使用よりも、均斉度を高める上で有効性が大きいことが判る。   As described above, the uniformity of the surface light emitting unit of Example 5 using the optical sheet having the concave portions arranged on the light-emitting surface and the lens-covered LED is the highest, and Comparative Example 10 using the diffusion sheet and the lens-less LED having both flat surfaces. It can be seen that the uniformity of the surface emitting unit is the lowest. Further, the surface light emitting unit of Comparative Example 1 using a diffusion sheet and a lens-covered LED having flat surfaces on both sides is a surface light emitting unit of Comparative Example 9 using an optical sheet in which concave portions are arranged on the light emitting surface. Since the degree of uniformity is higher than that, it can be seen that the use of the lens-covered LED is more effective in increasing the degree of uniformity than the use of the optical sheet in which concave portions are arranged on the light-emitting surface.

[実施例13]
実施例5の面発光ユニットに使用した光学シートに代えて、底角がそれぞれ55°、45°、35°、25°、10°の断面が二等辺三角形の5つの凸状の畝部(畝幅200μm)を並べて配列したもの一つの組として、この組をさらに繰り返し並べて出光面に配列形成したポリカーボネート樹脂製の光学シート(図18に示す断面形状の光学シート、厚さ2.0mm)を使用し、実施例5と同様にして実施例13の面発光ユニットを構成した。そして、この面発光ユニットについて同様に均斉度を測定した。
この実施例13の面発光ユニットの構成および均斉度を、下記の表7に示す。
[Example 13]
Instead of the optical sheet used in the surface light emitting unit of Example 5, five convex ridges (i.e., sections whose base angles are 55 °, 45 °, 35 °, 25 °, and 10 ° are isosceles triangles, respectively) Using a polycarbonate resin optical sheet (optical sheet having a cross-sectional shape shown in FIG. 18, thickness 2.0 mm) in which this group is further repeatedly arranged and arranged on the light-emitting surface. Then, the surface emitting unit of Example 13 was configured in the same manner as Example 5. And the uniformity was measured similarly about this surface emitting unit.
The structure and the uniformity of the surface emitting unit of Example 13 are shown in Table 7 below.

[比較例11]
比較のために、実施例13の面発光ユニットのレンズ被覆LEDに代えて、レンズ無しLEDを用いた以外は実施例13と同様にして、比較例11の面発光ユニットを構成し、その均斉度を同様にして測定した。
この比較例11の面発光ユニットの構成および均斉度を、下記の表7に併記する。
[Comparative Example 11]
For comparison, the surface light emitting unit of Comparative Example 11 was constructed in the same manner as in Example 13 except that a lensless LED was used instead of the lens-covered LED of the surface light emitting unit of Example 13, and the degree of uniformity was determined. Was measured in the same manner.
The configuration and uniformity of the surface emitting unit of Comparative Example 11 are also shown in Table 7 below.

Figure 2011216271
Figure 2011216271

この表7から、底角が異なる5つの畝部を一つの組として繰り返し並べて配列した光学シートを用いた実施例13の面発光ユニットは、均斉度が96.6%であり、出光面に倒立正四角錐形の凹部を配列形成した光学シートを用いた実施例1〜13の面発光ユニットと遜色のない均斉度を有することが判る。そして、比較例11の面発光ユニットは、実施例13の面発光ユニットと同じ光学シートを使用しているにも拘わらず、レンズ無しLEDを点光源として使用しているため、均斉度が65.6%と大幅に低下している。このことから、点光源としてレンズ被覆LEDを使用することは、均斉度を高める上で極めて有効であることが判る。   From Table 7, the surface emitting unit of Example 13 using the optical sheet in which five flanges having different base angles are repeatedly arranged as a set is arranged with a uniformity of 96.6% and inverted on the light emitting surface. It can be seen that the surface light emitting units of Examples 1 to 13 using the optical sheet in which regular quadrangular pyramid-shaped concave portions are arranged have the same degree of uniformity. And although the surface emitting unit of the comparative example 11 uses the same optical sheet as the surface emitting unit of Example 13, it uses LED without a lens as a point light source, Therefore A uniformity is 65. It has fallen significantly to 6%. From this, it can be seen that the use of a lens-covered LED as a point light source is extremely effective in increasing the uniformity.

[実施例14]
光学シートとして、傾斜面の傾斜角が55°の倒立正四角錐形の凹部(一辺の長さaは200μm)を出光面に縦横に配列形成したポリカーボネート樹脂製の光学シート(厚さ2mm、光拡散剤0.4質量%含有)をプレス成形により作製した。この光学シートの凹部の丸みを帯びた先端部の曲率半径を測定したところ、17μmであった。
実施例5の面発光ユニットの光学シートに代えて上記の光学シートを使用した以外は実施例5と同様にして、実施例14の面発光ユニットを構成し、同様に均斉度を測定した。
この実施例14の面発光ユニットの構成および均斉度を下記の表8に示す。
[Example 14]
As an optical sheet, an optical sheet made of polycarbonate resin (thickness: 2 mm, light diffusion) in which concave portions of an inverted regular quadrangular pyramid having an inclination angle of 55 ° (the length of one side a is 200 μm) are arranged vertically and horizontally on the light exit surface. 0.4 mass% of the agent) was prepared by press molding. It was 17 micrometers when the curvature radius of the rounded front-end | tip part of this optical sheet was measured.
A surface light emitting unit of Example 14 was constructed in the same manner as in Example 5 except that the above optical sheet was used in place of the optical sheet of the surface light emitting unit of Example 5, and the uniformity was measured in the same manner.
The configuration and uniformity of the surface light emitting unit of Example 14 are shown in Table 8 below.

なお、実施例5の面発光ユニットと対比させるために、実施例5の面発光ユニットの構成および均斉度を下記の表8に併記する。実施例5の面発光ユニットに用いた光学シートは、傾斜面の傾斜角が55度の倒立正四角錐形の凹部(一辺の長さaは130μm)を出光面に配列形成したポリカーボネート樹脂製の光学シート(厚さ2mm、光拡散剤0.4質量%含有)であって、上記材料樹脂を連続押出成形しながらエンボスロールで片面(出光面)に凹部を形成したものであり、凹部の丸みを帯びた先端部の曲率半径が60μmと比較的大きいものである。   In addition, in order to contrast with the surface emitting unit of Example 5, the structure and uniformity of the surface emitting unit of Example 5 are also shown in Table 8 below. The optical sheet used in the surface light emitting unit of Example 5 is an optical sheet made of polycarbonate resin in which concave portions having an inverted regular quadrangular pyramid shape whose inclination angle is 55 degrees (the length of one side is 130 μm) are arranged on the light emission surface. A sheet (thickness 2 mm, containing 0.4% by weight of a light diffusing agent), in which a concave portion is formed on one side (light emitting surface) with an embossing roll while continuously extruding the material resin. The radii of curvature at the tip end are relatively large at 60 μm.

Figure 2011216271
Figure 2011216271

この表8から、プレス成形で作製された光学シートを用いる実施例14の面発光ユニットと、連続押出成形とエンボス加工で作製された光学シートを用いる実施例5は、ほぼ同等の均斉度を有するが、凹部の先端部の曲率半径が小さいプレス成形された光学シートを用いる実施例14の方が若干高い均斉度を示す傾向があることが判る。   From Table 8, the surface emitting unit of Example 14 using the optical sheet produced by press molding and Example 5 using the optical sheet produced by continuous extrusion molding and embossing have substantially the same degree of uniformity. However, it can be seen that Example 14 using a press-molded optical sheet having a small curvature radius at the tip of the concave portion tends to exhibit a slightly higher degree of uniformity.

1 光学シート
1a,1b,1c,1d,1e 畝部
θ,θ,θ 底角(畝部の斜面の傾斜角)
2 光学シート
2a 透光性樹脂シート
2b 凹部
2c 凹部の傾斜面
2d 凹部の丸みを帯びた先端部
2f テーパー面
2g 凸部
θ 凹部の傾斜面の傾斜角
3 点光源(レンズ被覆LED)
3a LED
3b レンズ
4 液晶パネル
5 配線基板
S 畝部の組
D 光源間距離
L 点光源から光学シートまでの距離
1 Optical sheet 1a, 1b, 1c, 1d, 1e ridge part θ 1 , θ 2 , θ 3 base angle (inclination angle of slope of ridge part)
2 Optical sheet 2a Translucent resin sheet 2b Concave part 2c Inclined surface of concave part 2d Rounded tip part of concave part 2f Tapered surface 2g Convex part θ Inclination angle of inclined surface of concave part 3 Point light source (lens-covered LED)
3a LED
3b Lens 4 Liquid crystal panel 5 Wiring board S Set of collar part D Distance between light sources L Distance from point light source to optical sheet

Claims (5)

離散的に配置された点光源の正面側に光学シートを設けた面発光ユニットであって、
上記点光源は、その出射光の配光分布において輝度が極大となる角度が+30°〜+80°及び−30°〜−80°の範囲内にある点光源であり、
上記光学シートは、透光性樹脂シートの少なくとも出光面上に、傾斜面又はテーパー面を有する凹部又は凸部を多数配列形成した光学シート、又は、透光性樹脂シートの少なくとも出光面上に、一定方向に沿って凸状の畝部又は凹状の溝部を多数配列形成し、かつ、これら畝部又は溝部の配列を、相互に形状の異なる複数の畝部又は溝部が並んで配列されたものを一つの組とし、この複数の畝部又は溝部からなる組をさらに繰り返し並んで配列させた光学シート、のいずれかであることを特徴とする面発光ユニット。
A surface emitting unit provided with an optical sheet on the front side of discretely arranged point light sources,
The point light source is a point light source in which the angle at which the luminance becomes maximum in the light distribution of the emitted light is in the range of + 30 ° to + 80 ° and −30 ° to −80 °,
The optical sheet is an optical sheet in which a large number of concave or convex portions having inclined surfaces or tapered surfaces are arranged on at least the light exit surface of the translucent resin sheet, or at least on the light exit surface of the translucent resin sheet, A plurality of convex ridges or concave groove portions are arrayed along a certain direction, and the arrangement of these ridge portions or groove portions is arranged in such a manner that a plurality of ridge portions or groove portions having different shapes are arranged side by side. A surface light-emitting unit characterized in that it is one of optical sheets in which a set of a plurality of flanges or grooves is repeatedly arranged side by side.
前記光学シートに光拡散剤が含有されていることを特徴とする請求項1に記載の面発光ユニット。   The surface light-emitting unit according to claim 1, wherein the optical sheet contains a light diffusing agent. 前記凹部又は凸部の傾斜面の傾斜角、前記凹部又は凸部のテーパー面の稜線の傾斜角、前記畝部又は溝部の斜面の傾斜角が、いずれも10°以上、70°以下の範囲内にあることを特徴とする請求項1又は請求項2に記載の面発光ユニット。   The inclination angle of the inclined surface of the concave portion or the convex portion, the inclination angle of the ridge line of the tapered surface of the concave portion or the convex portion, and the inclination angle of the inclined surface of the flange portion or the groove portion are all in the range of 10 ° or more and 70 ° or less. The surface emitting unit according to claim 1 or 2, wherein 前記凹部又は凸部の丸みを帯びた先端部の曲率半径が100μm未満であることを特徴とする請求項1ないし請求項3のいずれかに記載の面発光ユニット。   The surface emitting unit according to any one of claims 1 to 3, wherein a radius of curvature of the rounded tip portion of the concave portion or the convex portion is less than 100 µm. 隣接する前記点光源の光源間距離Dが40mm以上、60mm以下であり、前記点光源から前記光学シートまでの距離Lと上記光源間距離Dとの比(L/D)が0.2〜0.63の範囲内にあることを特徴とする請求項1ないし請求項4のいずれかに記載の面発光ユニット。   The distance D between adjacent point light sources is 40 mm or more and 60 mm or less, and the ratio (L / D) between the distance L from the point light source to the optical sheet and the distance D between the light sources is 0.2 to 0. 5. The surface emitting unit according to claim 1, wherein the surface emitting unit is within a range of .63.
JP2010082357A 2010-03-31 2010-03-31 Surface emitting unit Expired - Fee Related JP5546319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082357A JP5546319B2 (en) 2010-03-31 2010-03-31 Surface emitting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082357A JP5546319B2 (en) 2010-03-31 2010-03-31 Surface emitting unit

Publications (2)

Publication Number Publication Date
JP2011216271A true JP2011216271A (en) 2011-10-27
JP5546319B2 JP5546319B2 (en) 2014-07-09

Family

ID=44945815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082357A Expired - Fee Related JP5546319B2 (en) 2010-03-31 2010-03-31 Surface emitting unit

Country Status (1)

Country Link
JP (1) JP5546319B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133147A1 (en) * 2012-03-09 2013-09-12 株式会社小糸製作所 Illuminating apparatus
JP2016081906A (en) * 2014-10-20 2016-05-16 キヤノン株式会社 Light source device and image display device
JP2016081872A (en) * 2014-10-22 2016-05-16 株式会社ジャパンディスプレイ Illumination device, display device and illumination method
CN108345056A (en) * 2018-05-17 2018-07-31 浙江彩丞照明科技有限公司 A kind of anti-dazzle tabula rasa with different base angle pyramids
CN111025757A (en) * 2019-12-25 2020-04-17 业成科技(成都)有限公司 Electronic device and method for manufacturing the same
CN112145998A (en) * 2019-06-28 2020-12-29 浙江宇视科技有限公司 Anti-dazzle light filling lamp and supervisory equipment
JP2022022964A (en) * 2020-03-31 2022-02-07 大日本印刷株式会社 Surface light source device and display device
EP4006095A4 (en) * 2019-07-30 2023-08-09 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110765A (en) * 2007-10-29 2009-05-21 Omron Corp Surface light source device and liquid crystal display device
JP2009193902A (en) * 2008-02-18 2009-08-27 Stanley Electric Co Ltd Illuminating device, signboard illuminating device, and direct backlight for liquid panel
JP2010044377A (en) * 2008-07-18 2010-02-25 Sumitomo Chemical Co Ltd Light beam deflection structure plate, surface light source device, and liquid crystal display
JP2010062456A (en) * 2008-09-05 2010-03-18 Sharp Corp Light source, video image display device, lighting device, and method of manufacturing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110765A (en) * 2007-10-29 2009-05-21 Omron Corp Surface light source device and liquid crystal display device
JP2009193902A (en) * 2008-02-18 2009-08-27 Stanley Electric Co Ltd Illuminating device, signboard illuminating device, and direct backlight for liquid panel
JP2010044377A (en) * 2008-07-18 2010-02-25 Sumitomo Chemical Co Ltd Light beam deflection structure plate, surface light source device, and liquid crystal display
JP2010062456A (en) * 2008-09-05 2010-03-18 Sharp Corp Light source, video image display device, lighting device, and method of manufacturing them

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013133147A1 (en) * 2012-03-09 2015-07-30 株式会社小糸製作所 lighting equipment
WO2013133147A1 (en) * 2012-03-09 2013-09-12 株式会社小糸製作所 Illuminating apparatus
JP2016081906A (en) * 2014-10-20 2016-05-16 キヤノン株式会社 Light source device and image display device
US10126594B2 (en) 2014-10-20 2018-11-13 Canon Kabushiki Kaisha Tri-color LED groups spaced for optimal color mixing
JP2016081872A (en) * 2014-10-22 2016-05-16 株式会社ジャパンディスプレイ Illumination device, display device and illumination method
CN108345056A (en) * 2018-05-17 2018-07-31 浙江彩丞照明科技有限公司 A kind of anti-dazzle tabula rasa with different base angle pyramids
CN112145998A (en) * 2019-06-28 2020-12-29 浙江宇视科技有限公司 Anti-dazzle light filling lamp and supervisory equipment
EP4006095A4 (en) * 2019-07-30 2023-08-09 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and molded body
CN111025757A (en) * 2019-12-25 2020-04-17 业成科技(成都)有限公司 Electronic device and method for manufacturing the same
CN111025757B (en) * 2019-12-25 2022-06-21 业成科技(成都)有限公司 Electronic device and method for manufacturing the same
JP7064722B2 (en) 2020-03-31 2022-05-11 大日本印刷株式会社 Surface light source device and display device
JP2022091774A (en) * 2020-03-31 2022-06-21 大日本印刷株式会社 Diffusion member, surface light source device and display device
JP7185862B2 (en) 2020-03-31 2022-12-08 大日本印刷株式会社 Diffusion member, surface light source device, and display device
JP2022022964A (en) * 2020-03-31 2022-02-07 大日本印刷株式会社 Surface light source device and display device

Also Published As

Publication number Publication date
JP5546319B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5546319B2 (en) Surface emitting unit
JP6021292B2 (en) Edge light type backlight unit
WO2011030594A1 (en) Light diffusing plate used for point light sources, and direct-lighting point-light-source backlight device
WO2008026540A1 (en) Light diffusing sheet and backlight unit
JPWO2007114158A1 (en) Direct backlight unit
JP2009175597A (en) Optical sheet and backlight unit using the same
JP2013225058A (en) Optical plate and direct point light source backlight device
JP5279015B2 (en) Light guide plate
JP2012234047A (en) Optical sheet and surface light source device using the optical sheet
JP2007114587A (en) Light diffusion sheet
JP5614128B2 (en) Optical sheet, backlight unit and display device
JP2010287546A (en) Backlight unit
JP4316281B2 (en) Optical unit and backlight unit using the same
JPWO2009078439A1 (en) Optical sheet and backlight unit using the same
JP6974004B2 (en) Optical sheet for backlight unit and backlight unit
JP2010197919A (en) Optical sheet and backlight unit using the same
JP2008134290A (en) Light diffusion sheet
JP5546305B2 (en) Surface emitting unit and light diffusion sheet unit
JP2007178875A (en) Light diffusion sheet
JP2011150077A (en) Optical sheet, backlight unit and display device
JP5019746B2 (en) Direct light type backlight unit
JP5791386B2 (en) Direct type point light source backlight device
JP2008071716A (en) Direct backlight device
JP2004145329A (en) Optical sheet and back light unit using the same
JP2012242649A (en) Optical sheet, backlight unit, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees