JP2012093521A - Apparatus for manufacturing electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor - Google Patents

Apparatus for manufacturing electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2012093521A
JP2012093521A JP2010240126A JP2010240126A JP2012093521A JP 2012093521 A JP2012093521 A JP 2012093521A JP 2010240126 A JP2010240126 A JP 2010240126A JP 2010240126 A JP2010240126 A JP 2010240126A JP 2012093521 A JP2012093521 A JP 2012093521A
Authority
JP
Japan
Prior art keywords
coating
hood
charge transport
mesh
coated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010240126A
Other languages
Japanese (ja)
Other versions
JP2012093521A5 (en
JP5653167B2 (en
Inventor
Miki Tanabe
幹 田辺
Hidenori Ogawa
英紀 小川
Tatsuya Ikesue
龍哉 池末
Yoshihisa Saito
善久 斉藤
Takahiro Mitsui
隆浩 満居
Mayumi Oshiro
真弓 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010240126A priority Critical patent/JP5653167B2/en
Publication of JP2012093521A publication Critical patent/JP2012093521A/en
Publication of JP2012093521A5 publication Critical patent/JP2012093521A5/ja
Application granted granted Critical
Publication of JP5653167B2 publication Critical patent/JP5653167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing an electrophotographic photoreceptor and a method for manufacturing an electrophotographic photoreceptor, by which problems of dripping a coating film or irregularity in coating that occurs in the process of forming a photosensitive layer of an electrophotographic photoreceptor by an immersion coating can be effectively suppressed and a uniform coating film can be formed.SOLUTION: The apparatus for manufacturing an electrophotographic photoreceptor includes means 10 of gripping a cylindrical coating object 9 to be vertically moved and a coating tank 1 housing a coating liquid 2, and carries out immersing the cylindrical coating object 9 in the coating liquid 2 housed in the coating tank 1 and then pulling up the object to form a coating film on the surface of the cylindrical coating object 9. The apparatus for manufacturing an electrophotographic photoreceptor includes a cap 3 above the coating tank 1, the cap having an opening 4 to allow the cylindrical coating object 9 to pass through, and a hood 5 having a larger cross-sectional area than the opening 4, disposed on the cap 3 as in contact with the cap 3 so as to enclose the periphery of the opening 4. An upper part of the hood 5 is formed into a mesh, while a lower part is not formed into a mesh.

Description

本発明は電子写真感光体の製造装置および製造方法に関するものである。   The present invention relates to a manufacturing apparatus and a manufacturing method of an electrophotographic photosensitive member.

有機電子写真感光体は、導電性支持体の表面に有機材料で構成される感光層を塗布して製造される。感光層を塗布する手段は種々のものが知られているが、浸漬塗布法は一般に用いられている。円筒状の被塗布体を浸漬塗布する時には、感光層用塗布液を収容した塗布層に、円筒状被塗布体をその長手方向が液面に垂直になるようにして所定の位置まで浸漬し、次いで被塗布体を引き上げることによって被塗布体の表面に塗布膜を塗布する。塗布膜は、塗布液から引き上げられた直後から自然乾燥し始めるが、塗布膜の流動性が無くなり、指で触れても塗料が指に付着しない程度に固化するまで自然乾燥させることを指触乾燥と称することもある。通常は、指触乾燥に続いて熱風乾燥などの乾燥工程を行うことにより、塗布膜を完全に乾燥、固化させる。積層型感光体ではこの塗布工程、乾燥工程を各層ごとに繰り返し行うことによって感光体を製造する。   An organic electrophotographic photoreceptor is produced by applying a photosensitive layer made of an organic material on the surface of a conductive support. Various means for applying the photosensitive layer are known, but the dip coating method is generally used. When the cylindrical coated body is dip-coated, the cylindrical coated body is immersed in a coating layer containing the photosensitive layer coating solution so that its longitudinal direction is perpendicular to the liquid surface, Next, the coated film is applied to the surface of the coated body by pulling up the coated body. The coating film begins to dry naturally immediately after it is lifted from the coating solution, but the coating film loses its fluidity and is naturally dried until it is solidified to the extent that the paint does not adhere to the finger even when touched with a finger. Sometimes called. Usually, the coating film is completely dried and solidified by performing a drying process such as hot air drying following the touch drying. In the laminated type photoconductor, the photoconductor is manufactured by repeating the coating step and the drying step for each layer.

感光体の電気的特性は感光体の膜厚に左右される。感光体の一部分に著しく電気的特性の異なる部分がある場合、そこに画像ムラなどの画像欠陥が発生するため、感光層を構成する各層の塗布膜の膜厚は、長手方向、周方向を問わず全体が一様になっていることが望ましい。
被塗布体を塗布液から引き上げた直後は塗布膜に流動性があるため、微小な塗布膜の凹凸はこの流動性により均されてレベリングされる。すなわち、塗布膜の流動性が、塗布膜の平滑化に対して有益に働く。
The electrical characteristics of the photoreceptor depend on the film thickness of the photoreceptor. If there are parts of the photoconductor that have significantly different electrical characteristics, image defects such as image unevenness will occur, so the coating film thickness of each layer constituting the photosensitive layer may be in the longitudinal direction or the circumferential direction. It is desirable that the whole be uniform.
Immediately after the substrate is pulled up from the coating solution, the coating film has fluidity, so that the unevenness of the minute coating film is leveled by the fluidity. That is, the fluidity of the coating film is beneficial for smoothing the coating film.

しかし一方、被塗布体の表面に塗布された塗布液の流動性が指触乾燥により失われるまでの間、塗布された塗布液は重力により鉛直下方に流れていく。そのため塗布膜の流動性が長時間維持されてしまうと、塗布膜の膜厚を均一に保てなくなる。例えば前述の円筒状被塗布体の場合では、塗布時の上方側で膜厚は薄く、逆に下方側は厚くなり、被塗布体の長手方向での膜厚差が生じる。この問題をタレという。
タレを抑制するには、塗料中に速乾性の溶剤を含有させて指触乾燥を短時間で終了させることが有効である。そのため、塗料中の固形分の良溶媒となり、かつ揮発性の高い溶剤を塗料に含有させて用いることが広く行われている。
However, until the fluidity of the coating liquid applied to the surface of the coated body is lost by touch drying, the applied coating liquid flows vertically downward due to gravity. Therefore, if the fluidity of the coating film is maintained for a long time, the coating film thickness cannot be kept uniform. For example, in the case of the above-mentioned cylindrical coated body, the film thickness is thin on the upper side at the time of coating, and on the contrary, it is thick on the lower side, resulting in a difference in film thickness in the longitudinal direction of the coated body. This problem is called sauce.
In order to suppress sagging, it is effective to include a quick-drying solvent in the paint and finish the touch drying in a short time. For this reason, it is widely used that a good solvent with a solid content in the paint and a highly volatile solvent is contained in the paint.

しかし速乾性の溶剤を含有させた場合、塗布液の固化が短時間で終了するかわりに、塗布膜が固化するまでに十分なレベリングができていなければ微小な塗布ムラが残ってしまうことになる。また、被塗布体の周囲の気流の影響で、塗布膜が固化するまでにかかる時間が場所によってばらついてしまう時にもムラは生じる。さらにまた、前記の通り溶剤は塗料中の固形分の良溶媒であるため、固化したばかりの塗布膜が濃い溶剤蒸気と接触することにより流動性を再度得てタレてしまい、そこに局所的な膜厚異常を生じる場合もある。すなわち塗布液から引き上げられた直後の被塗布体の周囲の雰囲気をいかにうまく制御するかが、塗布ムラとタレを両立させるための課題となる。   However, when a fast-drying solvent is contained, solidification of the coating solution is completed in a short time, but minute coating unevenness will remain unless sufficient leveling is achieved before the coating film solidifies. . In addition, unevenness also occurs when the time required for the coating film to solidify varies depending on the location due to the airflow around the object to be coated. Furthermore, as described above, since the solvent is a good solvent for the solid content in the paint, the coating film that has just solidified comes into contact with the thick solvent vapor, so that fluidity is obtained again and dripping. An abnormal film thickness may occur. That is, how to properly control the atmosphere around the object to be coated immediately after being pulled up from the coating solution is a problem for achieving both coating unevenness and sagging.

塗布液から引き上げた直後の被塗布体の周囲の雰囲気を制御するため、被塗布体の周囲を覆うフードや排気装置に関する技術がこれまでに提案されている。
塗工液槽と被塗布体の周囲を覆いで覆う技術が特許文献1で提案されている。これは塗布装置の周囲の風の影響を防ぐための覆いを塗工液槽と被塗布体の周囲に設けるというものであるが、覆いの内部の雰囲気に含まれる溶剤蒸気の濃度は任意の状態を取り得る。そのため低沸点溶剤を含有する低粘度の塗料を用いる場合などにタレが起こる場合があった。
Techniques related to a hood and an exhaust device that cover the periphery of the coated body have been proposed so far in order to control the atmosphere around the coated body immediately after being pulled up from the coating solution.
Patent Document 1 proposes a technique for covering the periphery of the coating liquid tank and the object to be coated. This is to provide a cover to prevent the influence of the wind around the coating device around the coating liquid tank and the object to be coated, but the concentration of the solvent vapor contained in the atmosphere inside the cover is in an arbitrary state. Can take. Therefore, sagging may occur when using a low-viscosity paint containing a low-boiling solvent.

特許文献2では、塗布槽の上方に、外風を遮蔽するための、全壁面が10μm〜1mmの開孔径を有するメッシュ状の筒状遮風器を設けた電子写真感光体製造装置が提案されている。しかし遮風器の全壁面がメッシュ状になっているため、遮風器の下部の溶剤蒸気が希薄になり、速乾性塗料を用いた場合に塗布膜のレベリングが不十分になる場合があった。   Patent Document 2 proposes an electrophotographic photosensitive member manufacturing apparatus provided with a mesh-shaped cylindrical wind shield having an opening diameter of 10 μm to 1 mm on the entire wall surface for shielding outside air above the coating tank. ing. However, since the entire wall surface of the wind shield is mesh-like, the solvent vapor at the bottom of the wind shield becomes dilute, and the level of the coating film may be insufficient when using a fast-drying paint. .

特許文献3では、塗布液受け皿の上部に塗布槽の外周よりも大きな開口を有する蓋を設け、前記塗布槽の上端を前記蓋の開口より突出させた浸漬塗布装置が提案されている。そして、その浸漬塗布装置に、蓋の開口径と同径以上の内周を有し、かつ、外周に外部と連通する連通孔が設けられた円筒状フードを、蓋の開口の上部に該開口と同心円になるように配した浸漬塗布装置も提案されている。この装置では、塗布槽の上部の溶剤蒸気濃度の低減に主眼が置かれているため、フードの連通孔の部分でフード内外の雰囲気を速やかに交換させる必用があり、その際発生する気流によりムラが発生する場合があった。また、塗布槽の上端が蓋より上に突出した構造になっているため、塗料の液面から蒸発した溶剤蒸気は直ちにフードの連通孔を通してフードの外部に拡散する。そのため、電子写真感光体を大量生産する場合、塗布装置の周囲に拡散した溶剤蒸気の処理が問題になる場合があった。   Patent Document 3 proposes a dip coating apparatus in which a lid having an opening larger than the outer periphery of the coating tank is provided on the upper part of the coating liquid tray, and the upper end of the coating tank projects from the opening of the lid. The dip coating device has a cylindrical hood having an inner circumference equal to or larger than the opening diameter of the lid and provided with a communication hole communicating with the outside on the outer circumference. A dip coating device arranged so as to have a concentric circle is also proposed. In this device, since the main focus is on reducing the solvent vapor concentration at the top of the coating tank, it is necessary to quickly exchange the atmosphere inside and outside the hood at the portion of the communication hole of the hood. May occur. In addition, since the upper end of the coating tank protrudes above the lid, the solvent vapor evaporated from the liquid surface of the paint immediately diffuses to the outside of the hood through the communication hole of the hood. For this reason, when mass-producing electrophotographic photoreceptors, the treatment of solvent vapor diffused around the coating apparatus may be a problem.

特許文献4では、塗布槽の上方全面を覆う溶剤蒸気溜室と該溶剤蒸気溜室の上方に設けられた乾燥フードを有し、該溶媒蒸気溜室と該乾燥フードの間に溶媒蒸気を排出するための排出口を設けた塗布装置が提案されている。この装置の場合、排出口の部分で溶剤蒸気の濃度が希薄化するためタレの抑制には効果的である。しかしその反面、排出口の存在する部分に塗布膜が到達した時、塗布膜が急速に固化するため、排出口付近の気流の流れによって塗布ムラが生じる場合があった。   In Patent Document 4, a solvent vapor reservoir chamber that covers the entire upper surface of the coating tank, and a drying hood provided above the solvent vapor reservoir chamber, the solvent vapor is discharged between the solvent vapor reservoir chamber and the dry hood. There has been proposed a coating apparatus provided with a discharge port. In the case of this apparatus, since the concentration of the solvent vapor is diluted at the discharge port, it is effective for suppressing sagging. However, on the other hand, when the coating film reaches the portion where the discharge port exists, the coating film is rapidly solidified, so that coating unevenness may occur due to the flow of airflow near the discharge port.

特開昭59−127678号公報JP 59-127678 A 特開平09−197689号公報JP 09-197689 A 特開平10−337514号公報JP 10-337514 A 特開2003−57858号公報Japanese Patent Laid-Open No. 2003-57858

近年は電子写真装置の高画質化、高精細化が進んでいる。そのため電子写真感光体の電気的特性の乱れについても従来より厳しく管理する必用が生じている。これは、従来の電子写真装置ならば画像欠陥として現れなかったレベルの比較的軽微な電気的特性の乱れが、高精細な電子写真装置で出力した画像では容易に視認できる画像欠陥になり得るためである。感光体の電気的特性の乱れを抑制して均一化をはかるためには、感光層の膜厚が一様に保たれていなければならない。よって従来の塗布技術よりも、膜厚の均一性や平滑性に優れた塗布膜を形成できる感光層塗布技術が現在必用とされている。塗布膜のタレや膜厚ムラに対しては、塗布液から引き上げられた直後の塗布膜の流動性の制御が大きく影響する。そのため、その制御を容易化できれば塗布技術の向上に繋がる。その観点で、従来の塗布装置には更なる改善の余地が残されていた。また、電子写真装置も市場のニーズに合わせて多種多様なものが作られるようになり、それぞれの電子写真装置に最適化して設計される感光体の種類や構成も多岐に渡っている。従って生産性の観点からは、多様な感光層用塗布液のそれぞれに対応した最適な状態に、簡便な方法で塗布条件を設定変更して塗布できる製造装置が望まれていた。   In recent years, the improvement in image quality and definition of electrophotographic apparatuses has been progressing. For this reason, it is necessary to manage the electrical characteristics of the electrophotographic photosensitive member more strictly than in the past. This is because a relatively slight disturbance in electrical characteristics at a level that did not appear as an image defect in a conventional electrophotographic apparatus can become an image defect that can be easily recognized in an image output by a high-definition electrophotographic apparatus. It is. In order to suppress the disturbance of the electrical characteristics of the photosensitive member and to achieve uniformity, the film thickness of the photosensitive layer must be kept uniform. Therefore, a photosensitive layer coating technique capable of forming a coating film having a more uniform film thickness and smoothness than the conventional coating technique is currently required. Control of the fluidity of the coating film immediately after being pulled up from the coating solution greatly affects the sagging and film thickness unevenness of the coating film. Therefore, if the control can be facilitated, the coating technique can be improved. From this point of view, there is room for further improvement in the conventional coating apparatus. Also, various types of electrophotographic apparatuses have been made to meet market needs, and there are a wide variety of types and configurations of photoconductors designed to be optimized for each electrophotographic apparatus. Therefore, from the viewpoint of productivity, there has been a demand for a manufacturing apparatus that can apply by changing the application conditions in a simple manner in an optimum state corresponding to each of various coating solutions for the photosensitive layer.

本発明の目的は、感光層用塗布液の塗布を行う際に生じる塗布膜のタレとムラを簡便な方法で効果的に抑制し、感光層膜厚を均一に形成することのできる電子写真感光体製造装置および電子写真感光体製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photosensitive film that can effectively suppress sagging and unevenness of a coating film generated when a coating solution for a photosensitive layer is applied by a simple method and can form a uniform photosensitive layer thickness. And a method of manufacturing an electrophotographic photosensitive member.

上記目的を達成するため、本発明の電子写真感光体製造装置は、以下のように構成されることを特徴とする。
すなわち、円筒状被塗布体を昇降可能に把持する手段と塗布液を収容する塗布槽とを有し、該塗布槽に収容された塗布液に該円筒状被塗布体を浸漬した後引き上げて該円筒状被塗布体の表面に塗布膜を形成する電子写真感光体製造装置において、該電子写真感光体製造装置は該塗布槽の上方に該円筒状被塗布体を通過させるための開口を有する蓋を有し、該蓋の上には該開口より断面積が大きいフードが該開口の周囲を囲むようにして該蓋と密着して設けられており、該フード上部はメッシュ状であり、該フード下部は非メッシュ状になっていることを特徴とする電子写真感光体製造装置である。
In order to achieve the above object, the electrophotographic photoreceptor manufacturing apparatus of the present invention is configured as follows.
That is, it has means for gripping the cylindrical coated body so that it can be moved up and down, and a coating tank for storing the coating liquid, and the cylindrical coated body is dipped in the coating liquid stored in the coating tank and then pulled up. An electrophotographic photosensitive body manufacturing apparatus for forming a coating film on a surface of a cylindrical coated body, wherein the electrophotographic photosensitive body manufacturing apparatus has a lid having an opening for allowing the cylindrical coated body to pass above the coating tank. And a hood having a cross-sectional area larger than the opening is provided in close contact with the lid so as to surround the opening, the upper portion of the hood is mesh-shaped, and the lower portion of the hood is An electrophotographic photoreceptor manufacturing apparatus characterized by being non-mesh.

また、本発明の電子写真感光体製造方法は、前記電子写真感光体製造装置において、該フード上部のメッシュ状の領域と該フード下部の非メッシュ状の領域との境界面を境界面Sとした時、該円筒状被塗布体を該塗布液に浸漬した後に行なわれる該円筒状被塗布体を引き上げる動作が、該境界面S以上の高さに該円筒状被塗布体の下端部が到達するまで停止することなく行なわれることを特徴とする電子写真感光体製造方法である。   Further, in the electrophotographic photoreceptor manufacturing method according to the present invention, in the electrophotographic photoreceptor manufacturing apparatus, a boundary surface between a mesh-like region above the hood and a non-mesh region below the hood is defined as a boundary surface S. The operation of pulling up the cylindrical coated body performed after immersing the cylindrical coated body in the coating solution causes the lower end portion of the cylindrical coated body to reach a height higher than the boundary surface S. An electrophotographic photosensitive member manufacturing method characterized in that the process is carried out without stopping.

本発明の電子写真感光体製造装置によれば、感光層用塗料の浸漬塗布を行う際、塗布液から引き上げられた直後の被塗布体の周辺の溶剤蒸気の濃度を段階的に希薄化させていくことができる。そのため、タレの悪化を抑制しつつ塗布膜のレベリング性を適度に維持することが可能になり、塗布ムラの発生を抑制することができる。また、固化する前の塗布膜に周囲の気流が直接吹き付けることを防いで気流により生じるムラを防ぐこともできる。
また、本発明の電子写真感光体製造方法によれば、被塗布体の下端部に生じる塗料のタレを抑制することができる。
According to the electrophotographic photoreceptor manufacturing apparatus of the present invention, when performing dip coating of the coating material for the photosensitive layer, the concentration of the solvent vapor around the coated body immediately after being pulled up from the coating solution is gradually diluted. I can go. Therefore, the leveling property of the coating film can be appropriately maintained while suppressing the deterioration of the sagging, and the occurrence of coating unevenness can be suppressed. In addition, it is possible to prevent the surrounding airflow from directly blowing on the coating film before solidification, thereby preventing unevenness caused by the airflow.
Moreover, according to the electrophotographic photoreceptor manufacturing method of the present invention, it is possible to suppress the sagging of the paint that occurs at the lower end of the coated body.

本発明の電子写真感光体製造装置の概略図である。It is the schematic of the electrophotographic photoreceptor manufacturing apparatus of this invention. 本発明の電子写真感光体製造装置に適用可能なフードの一例である。It is an example of the hood applicable to the electrophotographic photoreceptor manufacturing apparatus of the present invention. 本発明の電子写真感光体製造装置に適用可能なフードの一例である。It is an example of the hood applicable to the electrophotographic photoreceptor manufacturing apparatus of the present invention. 本発明の電子写真感光体製造装置に適用可能なフードの一例である。It is an example of the hood applicable to the electrophotographic photoreceptor manufacturing apparatus of the present invention. 本発明の電子写真感光体製造装置に適用可能なフードの一例である。It is an example of the hood applicable to the electrophotographic photoreceptor manufacturing apparatus of the present invention. 本発明の電子写真感光体製造装置の概略断面図である。It is a schematic sectional drawing of the electrophotographic photoreceptor manufacturing apparatus of this invention.

本発明の電子写真感光体製造装置および電子写真感光体製造方法について以下に説明する。
本発明の電子写真感光体製造装置の概略図を図1に示す。被塗布体9はその上端側が被塗布体把持手段10によって把持されており、把持手段10は被塗布体9を把持したまま昇降可能である。把持手段10は被塗布体9をフード5の内部と塗布槽の蓋3に開いている開口4とを通過させて、塗布槽1に収容された塗布液2に所定の深さまで浸漬させることができる。フード5の断面積は開口4の断面積よりも大きい。フード5は開口の周囲を囲むようにして、蓋3の上に密接して設けられている。また、フード5の上部はメッシュ状の部分6になっており、一方フード5の下部は非メッシュ状の部分7になっている。
The electrophotographic photoreceptor manufacturing apparatus and the electrophotographic photoreceptor manufacturing method of the present invention will be described below.
FIG. 1 shows a schematic view of an electrophotographic photoreceptor manufacturing apparatus of the present invention. The upper end side of the coated body 9 is gripped by the coated body gripping means 10, and the gripping means 10 can move up and down while gripping the coated body 9. The gripping means 10 allows the coated body 9 to pass through the inside of the hood 5 and the opening 4 opened in the lid 3 of the coating tank, and is immersed in the coating liquid 2 accommodated in the coating tank 1 to a predetermined depth. it can. The cross-sectional area of the hood 5 is larger than the cross-sectional area of the opening 4. The hood 5 is provided closely on the lid 3 so as to surround the periphery of the opening. The upper portion of the hood 5 is a mesh-like portion 6, while the lower portion of the hood 5 is a non-mesh-like portion 7.

塗布膜の塗布は、塗布液2に浸漬させた被塗布体9を所定の速度で塗布液2から引き上げることにより行われる。塗布膜の膜厚は、被塗布体9の引き上げ速度や塗布液2の粘度/固形分を変更することで調節できる。
塗布液2から引き上げられた被塗布体9は、再び蓋3の開口4とフード5の内部を通過していく。ここで、被塗布体9を引き上げる動作は、フード5のメッシュ状の部分6と非メッシュ状の部分7とが成す境界面(境界面S)8を、被塗布体9の下端部が通過するまでは停止することなく行われる。
The coating film is applied by pulling up the substrate 9 immersed in the coating solution 2 from the coating solution 2 at a predetermined speed. The film thickness of the coating film can be adjusted by changing the lifting speed of the substrate 9 and the viscosity / solid content of the coating liquid 2.
The substrate 9 pulled up from the coating solution 2 passes through the opening 4 of the lid 3 and the inside of the hood 5 again. Here, in the operation of pulling up the object 9 to be applied, the lower end of the object 9 passes through the boundary surface (boundary surface S) 8 formed by the mesh-like portion 6 and the non-mesh-like portion 7 of the hood 5. Until it is done without stopping.

このようにして塗布膜を塗布された被塗布体は、フードの上方から塗布装置の系外に取り出され、続いて乾燥工程(不図示)に送られて乾燥され、塗布膜の形成は完了する。
塗布槽に収容された塗布液の液面から蓋の上面までの領域は、最も溶剤蒸気が濃い領域になる。簡単のため、この領域のことをここでは領域Aと呼ぶことにする。塗布膜が領域Aにある間、塗布膜の流動性は高い状態に保たれ続けるため、塗布膜のタレが生じやすい。したがって塗布膜の同一部分が領域Aに留まる時間は短い方がよい。目安としては、10秒以内、更に望ましくは5秒以内に領域Aを通過することが好ましい。時間の短縮は、被塗布体を引き上げる速度を速めるか、塗布液の液面から蓋の上面までの距離を短くすることにより達成することができる。ただし、被塗布体の引き上げ速度は塗布膜の膜厚を決める重要なパラメータの一つであり、また、引き上げ速度が速すぎると塗布液面の波打ちなどの影響による塗布膜の乱れが悪化する懸念もある。したがって、多様な感光体の製造に適した装置の構成を考える上では、塗布液面から蓋の上面までの距離を短くする方が現実的である。具体的にはこの距離を20mm以下程度にしておけばよい。
The coated body thus coated with the coating film is taken out of the system of the coating apparatus from above the hood, then sent to a drying step (not shown) and dried, and the formation of the coating film is completed. .
The region from the liquid level of the coating solution stored in the coating tank to the upper surface of the lid is the region where the solvent vapor is most concentrated. For the sake of simplicity, this region will be referred to herein as region A. While the coating film is in the region A, the fluidity of the coating film continues to be kept high, so that the coating film tends to sag. Therefore, it is better that the time during which the same portion of the coating film stays in the region A is short. As a guideline, it is preferable to pass through the region A within 10 seconds, more preferably within 5 seconds. The shortening of the time can be achieved by increasing the speed at which the coated body is pulled up or shortening the distance from the liquid surface of the coating liquid to the upper surface of the lid. However, the lifting speed of the coated body is one of the important parameters for determining the film thickness of the coating film, and if the lifting speed is too high, the coating film may be disturbed due to the influence of the wavy surface of the coating liquid. There is also. Therefore, in considering the configuration of an apparatus suitable for manufacturing various photoconductors, it is more realistic to shorten the distance from the coating liquid surface to the upper surface of the lid. Specifically, this distance may be about 20 mm or less.

前記の通り、領域Aの上には、蓋に密接するようにしてフードが設けられている。そのため、両者の接する部分からフード外の雰囲気が流れ込むことはない。フードは下部が非メッシュ状で、上部はメッシュ状になっている。簡単のため、ここではフードの非メッシュ状の部分に囲まれたフード内の領域を領域Bとし、フードのメッシュ上の部分に囲まれたフード内の領域を領域Cと呼ぶことにする。   As described above, the hood is provided on the region A so as to be in close contact with the lid. Therefore, the atmosphere outside the hood does not flow from the part where both are in contact. The hood has a non-mesh shape at the bottom and a mesh shape at the top. For simplicity, the region in the hood surrounded by the non-mesh portion of the hood is referred to as region B, and the region in the hood surrounded by the portion on the mesh of the hood is referred to as region C.

フードを設ける大きな理由の一つは、フードの内部、すなわち領域Bおよび領域Cを通過中の被塗布体の塗布膜に対し、フードの外部を流れる気流が直接あたってムラを作らないようにするためである。領域Cを囲うメッシュ状の部分は開孔を有するため、フード内外の雰囲気はその開孔を通じて緩やかに交換されるが、開孔径を2mm以下、より好ましくは1mm以下にしておくことにより、フード外の気流が被塗布体に直接吹き付ける影響を十分に抑制できる。   One of the main reasons for providing the hood is to prevent the air current flowing outside the hood from directly applying to the coating film of the coated body passing through the inside of the hood, that is, the region B and the region C, so as not to cause unevenness. Because. Since the mesh-shaped part surrounding the region C has an opening, the atmosphere inside and outside the hood is gently exchanged through the opening. However, by setting the opening diameter to 2 mm or less, more preferably 1 mm or less, Can sufficiently suppress the effect of direct air flow on the substrate.

領域A、領域Bおよび領域Cは、被塗布体が通過するための開口を通じてこの順に連通している。よって、塗布液表面から立ち昇る溶剤蒸気は領域Aから領域B、領域Cへと順に移動していく。一方、フードの上端部は被塗布体が通過できるよう開放されているため、そこからフード内外の雰囲気の交換が行われる。さらに、領域Cではフードのメッシュ状の開孔を通してもフード内外の雰囲気が緩やかに交換される。よって、領域Cでは領域Aに比べて溶剤蒸気は希薄化する。また、領域Aと領域Cに挟まれる領域Bでは、領域Aおよび領域Cとだけ雰囲気の交換が行われるため、最も溶剤蒸気の濃度が高い領域Aと、最も濃度が低い領域Cの中間の溶剤蒸気濃度になる。   The region A, the region B, and the region C communicate with each other in this order through an opening through which the coated body passes. Accordingly, the solvent vapor rising from the surface of the coating liquid moves in order from the region A to the region B and the region C. On the other hand, since the upper end portion of the hood is opened so that the coated body can pass therethrough, the atmosphere inside and outside the hood is exchanged from there. Further, in the region C, the atmosphere inside and outside the hood is gently exchanged through the mesh-shaped opening of the hood. Therefore, the solvent vapor is diluted in the region C as compared with the region A. In the region B sandwiched between the region A and the region C, the atmosphere is exchanged only between the region A and the region C, so that the solvent between the region A having the highest solvent vapor concentration and the region C having the lowest concentration is used. Vapor concentration.

引き上げられた被塗布体の表面の塗布膜は、適度に溶剤蒸気の濃度が低下した領域Bを通過する間に、表面のレベリングと固化の両方が緩やかに進行し、平滑でなおかつタレの少ない良好な膜に形作られていく。続いて溶剤蒸気濃度がより低い領域Cを通過する時、塗布膜の固化は更に進み、同時に塗布膜の表面の流動性は大きく低下する。そのため領域Cを通過中の塗布膜はレベリングされにくくなるが、その一方でタレの発生を抑制することができる。そして塗布膜がフード上端からフード外に出るまでの間に塗布膜の表面を十分固化させることにより、フード外の気流に塗布膜が晒されて発生するムラを抑制できる。   The coating film on the surface of the substrate to be coated that has been pulled up is smooth and smooth with little sagging while both leveling and solidification of the surface proceed slowly while passing through the region B where the concentration of the solvent vapor is moderately reduced. It will be formed into a simple film. Subsequently, when passing through the region C where the solvent vapor concentration is lower, the solidification of the coating film further proceeds, and at the same time, the fluidity of the surface of the coating film is greatly reduced. Therefore, the coating film passing through the region C is hardly leveled, but on the other hand, the occurrence of sagging can be suppressed. Then, by sufficiently solidifying the surface of the coating film from the upper end of the hood to the outside of the hood, it is possible to suppress unevenness that occurs when the coating film is exposed to the airflow outside the hood.

仮にフード全体が非メッシュ状になっていたとすると、領域Aから上昇してくる溶剤蒸気がフード内を満たしてしまい、塗布膜の表面の流動性が長時間保たれてしまうために塗布膜のタレが悪化する。その対策として、フードの長さを短くし、フード上端の開口部で生じる雰囲気の交換のみを利用して、フード内の溶剤蒸気を希薄化する方法を考えることもできる。しかしその場合、表面の流動性が高いままの塗布膜がフード上端から排出されてフード外の気流に直接晒されるため、塗布膜のムラは悪化してしまう。このような問題は低粘度の塗布液を用いて比較的厚い塗布膜を塗布する場合に顕著に表れる。例えば、低粘度の電荷輸送層用塗布液を用いて、乾燥後の塗布膜の厚さが10μm以上になるよう塗布する場合などに起きやすい。   If the entire hood is non-mesh, the solvent vapor rising from the region A fills the hood, and the fluidity of the surface of the coating film is maintained for a long time. Gets worse. As a countermeasure, a method of diluting the solvent vapor in the hood can be considered by shortening the length of the hood and using only the exchange of the atmosphere generated at the opening at the upper end of the hood. However, in that case, since the coating film with high surface fluidity is discharged from the upper end of the hood and directly exposed to the airflow outside the hood, the unevenness of the coating film becomes worse. Such a problem appears remarkably when a relatively thick coating film is applied using a low-viscosity coating solution. For example, this is likely to occur when a coating solution for a charge transport layer having a low viscosity is applied so that the thickness of the coating film after drying is 10 μm or more.

また、フード全体がメッシュ状になっていたとすると、フード内外の雰囲気がフード上端の開口部とメッシュの開孔を通じて交換されるため、フード内の溶剤蒸気は全体的に希薄化する。そのためフード内を通過する塗布膜は速やかに固化が進行し、タレは起こり難くなる。しかしその反面、塗布膜の表面の流動性が保たれる時間は短くなるので、塗布液から被塗布体を引き上げる動作により生じる微小な塗布ムラが完全にレベリングされる前に固化してムラになる問題が発生しやすくなる。この問題に対し、領域Aを通過する時間を長くしてレベリングさせる方法を考えることもできるが、領域Aは溶剤蒸気濃度が高いため、塗布膜のタレは悪化してしまう。このような問題は、低沸点溶剤を多く含む塗料を用いて、比較的厚い塗布膜を塗布する場合に起こりやすい。例えば沸点が40℃〜80℃程度の溶剤を30wt%以上含有する電荷輸送層用塗布液を用いて、乾燥後の塗布膜の厚さが10μm以上になるよう塗布する場合などがそれに該当する。   Further, if the entire hood has a mesh shape, the atmosphere inside and outside the hood is exchanged through the opening at the upper end of the hood and the opening of the mesh, so that the solvent vapor in the hood is totally diluted. For this reason, the coating film passing through the hood is rapidly solidified, and sagging hardly occurs. However, on the other hand, the time during which the fluidity of the surface of the coating film is maintained is shortened, so that the minute coating unevenness caused by the operation of pulling up the coated body from the coating solution is solidified before being completely leveled and becomes uneven. Problems are likely to occur. To solve this problem, it is possible to consider a method of leveling by extending the time for passing through the region A. However, since the region A has a high solvent vapor concentration, the sagging of the coating film is deteriorated. Such a problem is likely to occur when a relatively thick coating film is applied using a paint containing a large amount of a low boiling point solvent. For example, this applies to a case where a coating solution for a charge transport layer containing 30 wt% or more of a solvent having a boiling point of about 40 ° C. to 80 ° C. is applied so that the thickness of the coating film after drying is 10 μm or more.

上記の通り、本発明の電子写真感光体製造装置では、塗布液を塗布した塗布膜を、フード外の気流が直接吹き付けないよう保護しながら溶剤蒸気の濃度が高い領域、中程度の領域、低い領域の順に通過させてフード外に排出することが特徴になっている。その中でも、溶剤蒸気の濃度が中程度になる領域Bが、塗布膜の平滑さとタレの防止を両立させるために重要な役割を果たしている。領域Bの溶剤蒸気濃度が中程度になるためには、相対的に溶剤蒸気が希薄化している領域C内の雰囲気が必要となる。そのためフードのメッシュ状の部分は、フード内外の雰囲気が緩やかに交換するために適した大きさの開孔が、適度な密度で存在していなければならない。開孔径が小さすぎると、フード内外の雰囲気の交換が困難になる。また、単位面積あたりに開孔部が占める面積の割合が小さすぎてもフード内外の雰囲気の交換が不十分となる。目安として、開口部の開孔径が100μm以上のメッシュであれば、開孔を通じた雰囲気の交換を生じさせることができる。前述の通り、開孔径が2mmを超えるとフード外を流れる気流の影響が問題になってくるため、開孔径は2mm以下、より好ましくは1mm以下に留める方がよい。また、メッシュ状の部分の単位面積あたりに開孔部が占める面積の割合が30%〜80%の範囲にあれば、フード内外の雰囲気の交換は適度に行われるので好ましい。   As described above, in the electrophotographic photoreceptor manufacturing apparatus of the present invention, the coating film coated with the coating solution is protected from being directly blown by the airflow outside the hood, and the solvent vapor concentration is high, medium, and low. It is characterized by being discharged out of the hood through the order of the regions. Among these, the area | region B where the density | concentration of solvent vapor | steam is medium plays an important role in order to make smoothness of a coating film and prevention of sagging simultaneously. In order for the solvent vapor concentration in the region B to be medium, an atmosphere in the region C where the solvent vapor is relatively diluted is required. For this reason, the mesh-shaped portion of the hood must have openings having a suitable size for moderately changing the atmosphere inside and outside the hood. If the hole diameter is too small, it becomes difficult to exchange the atmosphere inside and outside the hood. Moreover, even if the ratio of the area which an opening part occupies per unit area is too small, exchange of the atmosphere inside and outside the hood becomes insufficient. As a guide, if the opening diameter of the opening is 100 μm or more, the atmosphere can be exchanged through the opening. As described above, since the influence of the airflow flowing outside the hood becomes a problem when the aperture diameter exceeds 2 mm, the aperture diameter is preferably 2 mm or less, more preferably 1 mm or less. Moreover, if the ratio of the area which an opening part occupies per unit area of a mesh-shaped part exists in the range of 30%-80%, since replacement | exchange of the atmosphere inside and outside a hood is performed moderately, it is preferable.

領域Bは、塗布膜のレベリングと固化が並行して行われる領域になるため、塗布膜はある程度以上の時間をかけて領域Bを通過させる必要がある。ただし、領域Bに塗布膜が留まる時間が長すぎるとタレの悪化を招く恐れがある。使用する塗料の粘度や温度、塗料に含まれる溶剤、塗工速度などにもよるが、目安としては、塗布膜が領域Bを通過するために要する時間を3秒以上、20秒以下とすることが好ましい。引き上げ動作によって塗布液の液面に乱れが発生しない現実的な塗工速度を前提とした場合、塗布槽の蓋の上面から、フードの非メッシュ状の領域とメッシュ状の領域の境界面Sまでの距離の目安は、20mm以上、50mm以下が好ましい。   Since the region B is a region where leveling and solidification of the coating film are performed in parallel, the coating film needs to pass through the region B over a certain amount of time. However, if the time for which the coating film remains in the region B is too long, the sagging may be deteriorated. Although it depends on the viscosity and temperature of the paint used, the solvent contained in the paint, the coating speed, etc., as a guideline, the time required for the coating film to pass through the region B should be 3 seconds or more and 20 seconds or less. Is preferred. From the upper surface of the coating tank lid to the boundary surface S between the non-mesh area and the mesh area of the hood, assuming a realistic coating speed that does not cause disturbance in the liquid surface of the coating liquid due to the lifting operation The standard of the distance is preferably 20 mm or more and 50 mm or less.

領域Cは、塗布膜が十分に固化するまでの間、フード外の気流から塗布膜を保護する機能を果たす。そのため、塗布膜の表面が固化するために要する時間よりも長い時間をかけて、塗布膜が領域Cを通過するようにする必要がある。使用する塗料の粘度や温度、塗料に含まれる溶剤、塗工速度などにもよるが、目安としては、塗布膜が領域C通過するために要する時間を20秒以上にすることが好ましい。引き上げ動作によって塗布液の液面に乱れが発生しない現実的な塗工速度を前提とした場合、フードの非メッシュ状の領域とメッシュ状の領域の境界面Sからフード上端までの好ましい距離の目安は20mm以上である。これらの時間および距離には、塗布膜に及ぼす悪影響を排除するために設けられる上限はない。よって、これらの上限は、実際の装置の寸法や生産効率を考慮して設定すればよい。   The region C functions to protect the coating film from the airflow outside the hood until the coating film is sufficiently solidified. Therefore, it is necessary to allow the coating film to pass through the region C over a longer time than the time required for the surface of the coating film to solidify. Although it depends on the viscosity and temperature of the coating material used, the solvent contained in the coating material, the coating speed, etc., as a guideline, it is preferable that the time required for the coating film to pass through the region C is 20 seconds or more. Assuming a realistic coating speed at which the coating liquid surface is not disturbed by the lifting operation, a guideline for a preferable distance from the boundary surface S between the non-mesh area of the hood and the mesh area to the upper end of the hood Is 20 mm or more. These times and distances have no upper limit provided to eliminate adverse effects on the coating film. Therefore, these upper limits may be set in consideration of the actual device dimensions and production efficiency.

フードのメッシュ状の部分を通じて行われるフード内外の雰囲気の交換は、フードの周方向に関して均等に行われることが最も好ましい。よって、ある程度の幅の太さを有し、なおかつ開孔を有さない骨組みに対してメッシュを貼り付けた構成よりも、骨組みを用いずにフードの形状を維持可能な強度を有する金属製のメッシュなどを用いて、フードのメッシュ状の部分を構成する方が好ましい。   The exchange of the atmosphere inside and outside the hood performed through the mesh-like portion of the hood is most preferably performed uniformly in the circumferential direction of the hood. Therefore, it is made of a metal that has a certain width and has a strength capable of maintaining the shape of the hood without using a frame, rather than a structure in which a mesh is attached to a frame that does not have an opening. It is preferable to form a mesh-like portion of the hood using a mesh or the like.

また、領域Bおよび領域Cを塗布膜が通過している間、被塗布体の周方向に関しては、塗布膜に触れる溶剤蒸気の濃度が均一であることが望ましい。よって、塗布槽の蓋の開口およびフードの水平方向の断面は円形になっていることが好ましい。また、円筒状被塗布体の塗布中に、円筒状被塗布体の水平方向断面が成す円と、塗布槽の蓋の開口が成す円、およびフードの水平方向断面が成す円の全てが同心円を成すよう配置されていることが、さらに好ましい。   Further, while the coating film passes through the region B and the region C, it is desirable that the concentration of the solvent vapor that touches the coating film is uniform in the circumferential direction of the object to be coated. Therefore, it is preferable that the opening of the lid of the coating tank and the horizontal section of the hood are circular. In addition, during the application of the cylindrical coated body, all of the circle formed by the horizontal cross section of the cylindrical coated body, the circle formed by the opening of the lid of the coating tank, and the circle formed by the horizontal cross section of the hood are concentric. More preferably, they are arranged.

フードの周面の開孔は、その開孔を通じてフード内外の雰囲気の交換が行われなければ、それは実質的には非メッシュ状の部分と同じ機能を果たすといえる。そのため、フードのメッシュ状の部分にある開孔を何らかの方法によって塞いだ状態になっている場合、その開孔が塞がれた領域は非メッシュ状の領域に相当する。例えば図2に示すように、全体がメッシュ状になっている円筒状フード11の下部全周を、全体が非メッシュ状になっている円筒状フード12により隙間無く覆った形状のフードを使用した場合、これは本発明の実施形態のひとつとなる。なお、図2では円筒状フード11の外側に円筒状フード12を組み付けた構成が示されているが、逆に円筒状フード11の内側に円筒状フード12を組み付けた構成になっていたとしてもやはり本発明の実施形態のひとつとなる。   If the atmosphere inside and outside the hood is not exchanged through the opening, it can be said that the opening of the peripheral surface of the hood performs substantially the same function as the non-mesh portion. Therefore, when the opening in the mesh-like portion of the hood is closed by some method, the area where the opening is closed corresponds to a non-mesh area. For example, as shown in FIG. 2, a hood having a shape in which the entire circumference of the lower portion of the cylindrical hood 11 having a mesh shape is covered with a cylindrical hood 12 having a non-mesh shape without gaps is used. In this case, this is one of the embodiments of the present invention. In FIG. 2, a configuration in which the cylindrical hood 12 is assembled to the outside of the cylindrical hood 11 is shown, but conversely, even if the cylindrical hood 12 is assembled to the inside of the cylindrical hood 11, This is also one embodiment of the present invention.

本発明の電子写真感光体製造装置に好適に用いることのできるフードの形状の例を図3から図5に示す。図3は被塗布体が1本の時に用いる角柱型のフードである。図4と図5は、縦横4列ずつに並べた16本の被塗布体を同時に塗布できる製造装置に用いるためのフードの例である。図4は、図3の角柱型のフードを縦横4列ずつに並べて連結した構成になっている。図5は円筒状のフードを縦横4列ずつ並べて配置した構成になっている。なお、本発明の電子写真感光体製造装置に用いられるフードの形態は、これらに限定されるものではない。   Examples of the shape of the hood that can be suitably used in the electrophotographic photoreceptor manufacturing apparatus of the present invention are shown in FIGS. FIG. 3 shows a prismatic hood used when there is only one object to be coated. FIG. 4 and FIG. 5 are examples of hoods for use in a manufacturing apparatus capable of simultaneously applying 16 objects to be coated arranged in four rows and four columns. FIG. 4 shows a configuration in which the prismatic hoods of FIG. FIG. 5 shows a configuration in which cylindrical hoods are arranged side by side in four rows. The form of the hood used in the electrophotographic photoreceptor manufacturing apparatus of the present invention is not limited to these.

本発明の電子写真感光体製造方法は、本発明の電子写真感光体製造装置を用い、以下のようにして被塗布体への塗布液の塗布を行うことを特徴とする。すなわち、塗布液に浸漬された円筒状被塗布体を引き上げる動作が、フード上部のメッシュ状の領域とフード下部の非メッシュ状の領域との境界面S以上の高さに円筒状被塗布体の下端部が到達するまで停止することなく行なわれることを特徴とする。   The method for producing an electrophotographic photosensitive member of the present invention is characterized in that the coating liquid is applied to an object to be coated using the electrophotographic photosensitive member production apparatus of the present invention as follows. That is, the operation of pulling up the cylindrical coated body immersed in the coating liquid is performed at a height equal to or higher than the boundary surface S between the mesh-like region at the top of the hood and the non-mesh-shaped region at the bottom of the hood. It is performed without stopping until the lower end portion reaches.

境界面Sよりも下の領域とは、すなわち前記の領域Aおよび/または領域Bである。被塗布体の下端側の一部が領域Aおよび/または領域Bに留まった状態で被塗布体を引き上げる動作を停止させると、これらの領域の雰囲気に含まれる比較的高い濃度の溶剤蒸気の影響で、塗布膜のタレが発生する場合がある。このタレは、引き上げる動作が停止した時に境界面Sよりも下側に位置していた塗布膜に現れる。タレが生じた部分では塗布膜に膜厚ムラが発生し、それが感光体の電気的特性の局所的な異常の原因になるため好ましくない。被塗布体を引き上げる動作が前記境界面S以上の高さに該円筒状被塗布体の下端部が到達するまで停止せずに行われるならば、塗布液を塗布された被塗布体の全体が領域C以上の高さに位置することになる。その場合、前記の通り、平滑に形成された塗布膜の固化の進行のみが行われるので、被塗布体の塗布下端側の一部に塗布ムラが生じる問題の発生を抑制することができる。   The region below the boundary surface S is the region A and / or the region B described above. When the operation of pulling up the coated body is stopped in a state in which a part of the lower end side of the coated body remains in the region A and / or the region B, the influence of a relatively high concentration of solvent vapor contained in the atmosphere of these regions Thus, sagging of the coating film may occur. This sagging appears in the coating film located below the boundary surface S when the pulling-up operation is stopped. In the sagging portion, film thickness unevenness occurs in the coating film, which causes a local abnormality in the electrical characteristics of the photoreceptor, which is not preferable. If the operation of pulling up the coated body is performed without stopping until the lower end of the cylindrical coated body reaches a height equal to or higher than the boundary surface S, the entire coated body to which the coating liquid has been applied is It is located at a height higher than the region C. In that case, as described above, only the solidification of the smoothly formed coating film is performed, so that it is possible to suppress the occurrence of a problem that uneven coating occurs in a part of the coating lower end side of the coated body.

次に、本発明の電子写真感光体製造装置および電子写真感光体製造方法で製造される電子写真感光体の構成を具体的に説明する。
本発明の電子写真感光体製造装置および電子写真感光体製造方法は、円筒状の支持体の上に電荷発生層と電荷輸送層を積層してなる積層型の電子写真感光体の製造に用いることができる。また、電荷発生物質と電荷輸送物質を含有する単一の層からなる単層型の電子写真感光体の製造にも用いることができる。
Next, the structure of the electrophotographic photosensitive member manufactured by the electrophotographic photosensitive member manufacturing apparatus and the electrophotographic photosensitive member manufacturing method of the present invention will be specifically described.
The electrophotographic photoreceptor production apparatus and the electrophotographic photoreceptor production method of the present invention are used for producing a multilayer electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a cylindrical support. Can do. Further, it can also be used for the production of a single layer type electrophotographic photosensitive member comprising a single layer containing a charge generation material and a charge transport material.

以下に、電子写真感光体の感光層を支持する支持体と、支持体の上に形成される積層型感光体の導電層、中間層、電荷発生層、電荷輸送層、保護層の構成に関して具体的に述べる。本発明の電子写真感光体製造装置および電子写真感光体製造方法は、これらの各層の塗布に適用することができる。   The following is a specific description of the structure of the support that supports the photosensitive layer of the electrophotographic photoreceptor and the conductive layer, intermediate layer, charge generation layer, charge transport layer, and protective layer of the multilayer photoreceptor formed on the support. State it. The electrophotographic photoreceptor manufacturing apparatus and the electrophotographic photoreceptor manufacturing method of the present invention can be applied to the application of these layers.

円筒状支持体は、導電性を有する導電性支持体であればよい。導電性支持体の材質としては、たとえば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属あるいは合金などが挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着することによって形成した層を有するプラスチック製支持体などを用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を適当な結着樹脂とともにプラスチックや紙に含浸した支持体や、導電性結着樹脂を用いて形成したプラスチック製の支持体などを用いることもできる。これらの支持体の表面は、レーザー光などの散乱による干渉縞の防止などを目的として、切削処理、粗面化処理、アルマイト処理などが施してあってもよい。   The cylindrical support body should just be an electroconductive support body which has electroconductivity. Examples of the material of the conductive support include metals or alloys such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel. . A plastic support having a layer formed by vacuum deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can also be used. In addition, a support made by impregnating plastic or paper with carbon black, tin oxide particles, titanium oxide particles, silver particles or the like together with a suitable binder resin, or a plastic made using a conductive binder resin. A support or the like can also be used. The surface of these supports may be subjected to cutting treatment, roughening treatment, anodizing treatment, etc. for the purpose of preventing interference fringes due to scattering of laser light or the like.

導電性支持体と、後述する中間層や電荷発生層との間には、レーザー光などの散乱による干渉縞の防止や、導電性支持体の傷の被覆を目的とした導電層を形成してもよい。
導電層は、カーボンブラック、導電性顔料や抵抗調節顔料を結着樹脂とともに溶剤に分散および/または溶解させて得られる導電層用塗布液を、支持体の上に塗布、乾燥して形成することができる。導電層用塗布液には、加熱や放射線照射によって重合し、硬化物となる化合物(重合性の化合物)を含有させてもよい。
導電層の層厚は、0.2〜40μmであることが好ましく、1〜35μmであることがより好ましく、5〜35μmであることがより一層好ましい。
Between the conductive support and an intermediate layer or charge generation layer, which will be described later, a conductive layer is formed for the purpose of preventing interference fringes due to scattering of laser light or the like and covering the scratches on the conductive support. Also good.
The conductive layer is formed by applying and drying a conductive layer coating liquid obtained by dispersing and / or dissolving carbon black, a conductive pigment or a resistance adjusting pigment in a solvent together with a binder resin on a support. Can do. The conductive layer coating liquid may contain a compound (polymerizable compound) that is polymerized by heating or radiation irradiation to become a cured product.
The thickness of the conductive layer is preferably 0.2 to 40 μm, more preferably 1 to 35 μm, and still more preferably 5 to 35 μm.

導電層に用いられる結着樹脂としては、たとえば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体/共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the conductive layer include polymers / copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, and polyvinyl alcohol. , Polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.

導電層に用いられる導電性顔料および抵抗調節顔料としては、たとえば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属や合金の粒子や、これらを樹脂の粒子の表面に蒸着したものなどが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズなどの金属酸化物の粒子でもよい。これらの粒子は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合するだけでもよいし、固溶体や融着の形にしてもよい。   Examples of conductive pigments and resistance control pigments used in the conductive layer include particles of metals and alloys such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those deposited on the surface of resin particles. Etc. Alternatively, particles of metal oxide such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide may be used. These particles may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.

導電性支持体または導電性支持体の上に形成された導電層と電荷発生層との間には、バリア機能や接着機能を有する中間層を形成してもよい。中間層は、感光層の接着性改良、塗工性改良、導電性支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などを目的として形成される。   An intermediate layer having a barrier function or an adhesive function may be formed between the conductive support or the conductive layer formed on the conductive support and the charge generation layer. The intermediate layer is formed for the purpose of improving the adhesion of the photosensitive layer, improving the coating property, improving the charge injection from the conductive support, and protecting the photosensitive layer from electrical breakdown.

中間層の材料としては、たとえば、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ、ゼラチンなどが挙げられる。
中間層は、上記の材料を溶剤に溶解させて得られる中間層用塗布液を塗布、乾燥して形成することができる。
中間層の層厚は0.05〜7μmであることが好ましく、0.1〜5μmであることがより好ましい。
Examples of the material for the intermediate layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue, Examples include gelatin.
The intermediate layer can be formed by applying and drying an intermediate layer coating solution obtained by dissolving the above materials in a solvent.
The layer thickness of the intermediate layer is preferably 0.05 to 7 μm, and more preferably 0.1 to 5 μm.

導電性支持体、導電層または中間層の上には、電荷発生物質を含有する電荷発生層が形成される。
電荷発生層に用いられる電荷発生物質としては、たとえば、セレン−テルル、ピリリウム、チアピリリウム系染料、各種の中心金属および各種の結晶系(α、β、γ、ε、X型など)を有するフタロシアニン顔料、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン顔料などが挙げられる。これらの電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。
A charge generation layer containing a charge generation material is formed on the conductive support, the conductive layer, or the intermediate layer.
Examples of the charge generating material used in the charge generating layer include selenium-tellurium, pyrylium, thiapyrylium dyes, various central metals, and various crystal systems (α, β, γ, ε, X type, etc.). And anthanthrone pigments, dibenzpyrenequinone pigments, pyranthrone pigments, azo pigments such as monoazo, disazo, and trisazo, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, and quinocyanine pigments. These charge generation materials may be used alone or in combination of two or more.

電荷発生層用塗布液は、電荷発生物質を0.3〜4倍量(質量比)の結着樹脂及び溶剤とともに、ホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルまたは高圧分散機などを用いる方法で分散して得ることができる。結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体及び共重合体などが挙げられる。また、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリアリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂及びエポキシ樹脂などが挙げられる。   The coating solution for the charge generation layer is a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill or high pressure, together with a binder resin and a solvent in an amount of 0.3 to 4 times (mass ratio). The dispersion can be obtained by a method using a disperser or the like. Examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene. In addition, examples include polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyarylate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

電荷発生層は、上記の電荷発生層用塗布液を塗布、乾燥して形成することができる。
電荷発生層の層厚は5μm以下であることが好ましく、0.1〜2μmであることがより好ましい。
電荷発生層の上には、電荷輸送層が形成される。
電荷輸送層には、そこに含有される結着樹脂自体が電荷輸送能を持つ場合を除き、電荷輸送物質が含有される。電荷輸送層に用いられる電荷輸送物質としては、たとえば、ポリ−N−ビニルカルバゾール、ポリスチリルアントラセンなどの複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール、カルバゾールなどの複素環化合物、トリフェニルメタンなどのトリアリールアルカン誘導体、トリフェニルアミンなどのトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体といった低分子化合物などが挙げられる。
The charge generation layer can be formed by applying and drying the charge generation layer coating solution.
The thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.1 to 2 μm.
A charge transport layer is formed on the charge generation layer.
The charge transport layer contains a charge transport material except when the binder resin itself contained therein has a charge transport capability. Examples of the charge transport material used in the charge transport layer include poly-N-vinyl carbazole, polystyryl anthracene and other high molecular compounds having a heterocyclic ring and a condensed polycyclic aromatic compound, pyrazoline, imidazole, oxazole, triazole, and carbazole. And low molecular weight compounds such as triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, and hydrazone derivatives.

電荷輸送層は、電荷輸送物質と結着樹脂とを溶剤に溶解させて得られた電荷輸送層用塗布液を電荷発生層の上に塗布、乾燥させて形成することができる。結着樹脂としては、前記の電荷発生層用の結着樹脂と同様のものを使用する事ができる。また、架橋性のモノマーやオリゴマーを塗布液に含有させ、それを被塗布体に塗布してから重合させることにより、強靭な電荷輸送層を形成することもできる。また、結着樹脂自体に電化輸送性の分子構造を持たせた電荷輸送能を有する結着樹脂を用いることもできるが、その場合は電荷輸送能を有する結着樹脂のみを用いて電荷輸送層を形成することもできる。   The charge transport layer can be formed by applying and drying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent on the charge generation layer. As the binder resin, the same binder resin as that for the charge generation layer can be used. In addition, a tough charge transport layer can be formed by adding a crosslinkable monomer or oligomer to the coating solution and polymerizing it after coating it on the substrate. In addition, it is possible to use a binder resin having a charge transporting capability in which the binder resin itself has a charge transporting molecular structure. In that case, the charge transport layer is formed using only the binder resin having the charge transporting capability. Can also be formed.

電荷輸送層中に含まれる電荷輸送物質の量は20〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。ただし、結着樹脂自体が電荷輸送能を有する場合、それ以外の電荷輸送物質の添加量は0〜50質量%でよい。
また、電荷輸送層の耐久性を向上させるため、各種のフィラーや潤滑剤を含有させてもよい。フィラーの例としては、アルミナ、シリカなどを挙げることができる。また、潤滑剤の例としては、フッ素原子含有樹脂粒子などを挙げることができる。
電荷輸送層の層厚は、5μm以上、50μm以下であることが好ましく、さらには8μm以上、35μm以下であることがより好ましい。
The amount of the charge transport material contained in the charge transport layer is preferably 20 to 70% by mass, and more preferably 30 to 50% by mass. However, when the binder resin itself has a charge transport capability, the amount of the other charge transport material added may be 0 to 50% by mass.
Moreover, in order to improve the durability of the charge transport layer, various fillers and lubricants may be contained. Examples of the filler include alumina and silica. Examples of the lubricant include fluorine atom-containing resin particles.
The thickness of the charge transport layer is preferably 5 μm or more and 50 μm or less, and more preferably 8 μm or more and 35 μm or less.

以上に述べた電荷発生層と電荷輸送層の形成までを行うことにより完成する電子写真感光体もあるが、必要に応じて最表面に保護層を設ける場合もある。一般的に、保護層は電子写真感光体の耐久性向上のために用いられる。そのため、耐磨耗性に優れる結着樹脂やフィラーなどを保護層に含有させることが多い。また、電子写真感光体の電気的特性を悪化させないよう電荷輸送物質を含有させる場合もあるが、このような保護層は、第二の電荷輸送層とみなすこともできる。   Some electrophotographic photoreceptors are completed by performing the formation of the charge generation layer and the charge transport layer as described above, but a protective layer may be provided on the outermost surface as necessary. Generally, the protective layer is used for improving the durability of the electrophotographic photosensitive member. Therefore, the protective layer often contains a binder resin, a filler, or the like that has excellent wear resistance. In addition, a charge transport material may be included so as not to deteriorate the electrical characteristics of the electrophotographic photosensitive member, but such a protective layer can be regarded as a second charge transport layer.

保護層に用いることのできる結着樹脂、電荷輸送物質、フィラーおよび潤滑剤の例は、前記電荷輸送層の説明で列挙したものと同様である。これらを溶剤に溶解させて得られた保護層用塗布液を最表面に塗布、乾燥させることにより、保護層を有する電子写真感光体を得ることができる。
保護層の膜厚は、0.1μm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。
Examples of binder resins, charge transport materials, fillers and lubricants that can be used for the protective layer are the same as those listed in the description of the charge transport layer. An electrophotographic photosensitive member having a protective layer can be obtained by applying a coating solution for a protective layer obtained by dissolving these in a solvent to the outermost surface and drying.
The thickness of the protective layer is preferably 0.1 μm or more and 20 μm or less, and more preferably 1 μm or more and 10 μm or less.

以上に述べた各層には、必用に応じて酸化防止剤や紫外線吸収剤などの各種の添加剤を添加することができる。
なお、電子写真感光体の表面を正に帯電させて用いる正帯電型の電子写真感光体などでは、先に電荷輸送層を形成し、その次に電荷発生層を塗布して電子写真感光体を製造する場合もある。
Various additives such as an antioxidant and an ultraviolet absorber can be added to each layer described above as necessary.
In the case of a positively charged electrophotographic photosensitive member used by positively charging the surface of the electrophotographic photosensitive member, a charge transporting layer is formed first, and then a charge generating layer is applied to form the electrophotographic photosensitive member. It may be manufactured.

以上に述べた各層の塗布液に用いる溶剤は、個々の塗布液に合わせて適切なものを選択して用いることができる。例えば電荷輸送層の場合、通常は結着樹脂や電荷輸送物質を溶剤に溶解させて塗布液にするため、これらの材料を溶解させることのできる溶剤の中から選択すればよい。また、電荷発生層の電荷発生物質のように、溶剤に溶解させた結着樹脂中に分散させて用いる材料を含有する塗布液の場合は、それらの材料の分散性が良好な溶剤を選択するとよい。   As the solvent used in the coating solution for each layer described above, an appropriate solvent can be selected and used in accordance with each coating solution. For example, in the case of a charge transport layer, since a binder resin or a charge transport material is usually dissolved in a solvent to form a coating solution, the solvent may be selected from solvents that can dissolve these materials. In addition, in the case of a coating liquid containing a material used by being dispersed in a binder resin dissolved in a solvent, such as a charge generation material of a charge generation layer, a solvent having good dispersibility of those materials is selected. Good.

塗布液に用いることのできる溶剤の例としては、メタノール、エタノール、n−プロパノールのようなアルコール、シクロヘキサン、ベンゼン、トルエン、キシレンのような炭化水素、ジクロロメタン、モノクロロベンゼンのようなハロゲン化炭化水素、テトラヒドロフランのようなエーテル、メチラールのようなアセタール、アセトン、メチルエチルケトン、シクロヘキサノンのようなケトン、酢酸エチル、酢酸−n−ブチルのようなエステルなど、各種の有機溶剤を挙げることができる。また、水を用いることもできる。
これらの溶剤は1種類のみ用いてもよいが、保存性や塗工性といった塗布液の使いやすさを向上させるため、沸点の異なる複数の溶剤を組み合わせて用いることもできる。
塗布液の粘度の測定をする場合は、塗布液に含有される溶剤や塗布液の粘度に合わせて適切な手段および機器を選択すればよく、例えばB型粘度計を用いることにより測定することができる。本発明においては、芝浦システム株式会社製 単一円筒型回転粘度計ビスメトロン 形式VS−A1を使用し、測定温度23℃、回転数60rpmにて塗布液の粘度を測定した。
Examples of solvents that can be used in the coating solution include alcohols such as methanol, ethanol, and n-propanol, hydrocarbons such as cyclohexane, benzene, toluene, and xylene, halogenated hydrocarbons such as dichloromethane and monochlorobenzene, Examples include various organic solvents such as ethers such as tetrahydrofuran, acetals such as methylal, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, and esters such as ethyl acetate and n-butyl acetate. Water can also be used.
These solvents may be used alone, but a plurality of solvents having different boiling points can also be used in combination in order to improve the usability of the coating solution such as storage stability and coating property.
When measuring the viscosity of the coating solution, it is sufficient to select appropriate means and equipment in accordance with the solvent contained in the coating solution and the viscosity of the coating solution. For example, the viscosity can be measured by using a B-type viscometer. it can. In the present invention, the viscosity of the coating solution was measured at a measurement temperature of 23 ° C. and a rotation speed of 60 rpm using a single cylindrical rotational viscometer bismetron type VS-A1 manufactured by Shibaura System Co., Ltd.

以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。
〔実施例1〕
<電子写真感光体の作成>
長さ370mmの円筒状アルミニウムシリンダーを支持体とした。この支持体の直径(外径)φ1は30mmであった。
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these. In the examples, “part” means “part by mass”.
[Example 1]
<Creation of electrophotographic photoreceptor>
A cylindrical aluminum cylinder having a length of 370 mm was used as a support. The diameter (outer diameter) φ1 of this support was 30 mm.

次に、以下の成分:
酸化スズの被覆層を有する硫酸バリウム粒子からなる粉体(商品名:パストランPC1、三井金属鉱業(株)製) 60部
酸化チタン(商品名:TITANIX JR、テイカ(株)製) 15部
レゾール型フェノール樹脂(商品名:フェノライト J−325、大日本インキ化学工業(株)製、固形分70%) 43部
2−メトキシ−1−プロパノール 50部
メタノール 50部
からなる溶液を直径1mmのガラスビーズを用いたサンドミルで3時間分散処理を施し、分散液を調製した。
Next, the following ingredients:
Powder made of barium sulfate particles having a tin oxide coating layer (trade name: Pastoran PC1, manufactured by Mitsui Mining & Smelting Co., Ltd.) 60 parts Titanium oxide (trade name: TITANIX JR, manufactured by Teika Co., Ltd.) 15 parts Resol type Phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70%) 43 parts 2-methoxy-1-propanol 50 parts Methanol 50 parts a solution of 1 mm diameter glass beads Dispersion treatment was carried out for 3 hours with a sand mill using a to prepare a dispersion.

この分散液に、以下の成分:
シリコーン樹脂(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製) 3.6部
シリコーンオイル(商品名:SH28PA、東レシリコーン(株)製) 0.015部
を添加して攪拌した。
The dispersion contains the following ingredients:
Silicone resin (trade name: Tospearl 120, manufactured by Momentive Performance Materials Japan GK) 3.6 parts Silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.) 0.015 part was added and stirred. .

更に、2−メトキシ−1−プロパノールとメタノールを等量ずつ混合した溶剤を添加し、塗布液の液温23℃で測定した時の粘度が48mPa・sとなるよう調整して導電層用塗布液を得た。
ここで、導電層用塗布液の粘度は次のようにして測定した。
測定装置:単一円筒型回転粘度計ビスメトロン 形式VS−A1(芝浦システム株式会社製)。
ローターはNo.1を使用した。塗布液が約500ml入っている500mlビーカーにローターを入れ、次いでローターを60rpmで回転させた。ローターの回転開始から60秒後に測定された値を導電層用塗布液の粘度とした。
この導電層用塗布液を、室温23℃の環境下で、被塗布体の引き上げ速度7mm/sで支持体の上に浸漬塗布した。続いて140℃のオーブンで1時間加熱硬化させることにより、被塗布体の長手方向中央部で測定した膜厚が15μmの導電層を形成した。
Further, a solvent in which 2-methoxy-1-propanol and methanol are mixed in equal amounts is added, and the coating solution for the conductive layer is adjusted so as to have a viscosity of 48 mPa · s when measured at a solution temperature of 23 ° C. Got.
Here, the viscosity of the conductive layer coating solution was measured as follows.
Measuring apparatus: Single cylindrical rotational viscometer bismetron type VS-A1 (manufactured by Shibaura System Co., Ltd.).
The rotor is no. 1 was used. The rotor was placed in a 500 ml beaker containing about 500 ml of the coating solution, and then the rotor was rotated at 60 rpm. The value measured 60 seconds after the start of rotation of the rotor was taken as the viscosity of the conductive layer coating solution.
This conductive layer coating solution was dip-coated on the support at a room temperature of 23 ° C. at a lifting speed of 7 mm / s. Subsequently, by heating and curing in an oven at 140 ° C. for 1 hour, a conductive layer having a thickness of 15 μm measured at the center in the longitudinal direction of the coated body was formed.

導電層の浸漬塗布に用いた塗布装置の概略図を図6に示す。塗布槽1の蓋3には被塗布体9を通過させるための円形の開口4があり、その直径(内径)φ2は50mmであった。この開口4の周囲を囲うようにして、蓋3の上には蓋3と密接して設けられた円筒形のフード5がある。フード5の直径(内径)φ3は62mmであった。フード5の下部は非メッシュ状の部分7になっているが、ここでは開孔を有さないマイラーシートを用いた。また、フードの上部はメッシュ状の部分6になっているが、ここではステンレス製メッシュを用いた。ステンレス製メッシュの開孔径(開き目)Mは0.5mm、単位面積あたりに開孔部の面積が占める割合So(開口率)は61%であった。   FIG. 6 shows a schematic diagram of a coating apparatus used for dip coating of the conductive layer. The lid 3 of the coating tank 1 has a circular opening 4 for allowing the article 9 to pass through, and its diameter (inner diameter) φ2 was 50 mm. A cylindrical hood 5 provided in close contact with the lid 3 is provided on the lid 3 so as to surround the opening 4. The diameter (inner diameter) φ3 of the hood 5 was 62 mm. Although the lower part of the hood 5 is a non-mesh portion 7, a Mylar sheet having no aperture is used here. Moreover, although the upper part of the food | hood has the mesh-shaped part 6, the stainless steel mesh was used here. The opening diameter (opening) M of the stainless steel mesh was 0.5 mm, and the ratio So (opening ratio) occupied by the area of the opening per unit area was 61%.

塗布液2の液面から塗布槽の蓋の上面までの距離L(a)は20mmであった。また、塗布槽の蓋の上面から、フードのマイラーシート部とステンレス製メッシュ部との境界面S(図6中の8)までの距離L(b)は20mmであった。また、境界面Sからフードの上端までの距離L(c)は50mmであった。
被塗布体9は被塗布体把持手段10により把持され、塗布液2に浸漬させられる。この時、被塗布体9の上端から2mmの位置に塗布液2の液面が来るように浸漬を行った。続いて被塗布体9を塗布液2から引き上げ、塗布膜の塗布を行ったが、この引き上げる動作は被塗布体9の下端部が前記境界面Sの上方20mmに到達するまで停止することなく行うように設定した。被塗布体9は、引き上げ動作が停止してから5秒間その位置で静止し、続いて更に上方に引き上げられて塗布装置の外に排出され、乾燥工程に送られた。
The distance L (a) from the liquid surface of the coating liquid 2 to the upper surface of the lid of the coating tank was 20 mm. Further, the distance L (b) from the upper surface of the lid of the coating tank to the boundary surface S (8 in FIG. 6) between the mylar sheet portion of the hood and the stainless steel mesh portion was 20 mm. Further, the distance L (c) from the boundary surface S to the upper end of the hood was 50 mm.
The coated body 9 is gripped by the coated body gripping means 10 and immersed in the coating liquid 2. At this time, the immersion was performed so that the liquid surface of the coating liquid 2 comes to a position 2 mm from the upper end of the body 9 to be coated. Subsequently, the object to be coated 9 was pulled up from the coating liquid 2 and the coating film was applied. This lifting operation is performed without stopping until the lower end of the object to be coated 9 reaches 20 mm above the boundary surface S. Was set as follows. The object to be coated 9 was stopped at that position for 5 seconds after the lifting operation was stopped, and then pulled up further, discharged out of the coating apparatus, and sent to the drying process.

塗布の際、塗布液は次の経路で循環させた。まず、塗布液は、送液用ポンプを備えた送液装置13により送液用の配管14を通じて塗布槽1の下方から塗布槽の内部に導かれる。塗布液は塗布槽の上端からオーバーフローし、液受け部16に溜まる。液受け部16に溜まった塗料17は、回収液用の配管15を通じて再び送液装置13に戻される。   During coating, the coating solution was circulated through the following route. First, the coating liquid is introduced into the inside of the coating tank from the lower side of the coating tank 1 through the piping 14 for liquid feeding by a liquid feeding device 13 equipped with a pump for liquid feeding. The coating liquid overflows from the upper end of the coating tank and accumulates in the liquid receiving portion 16. The paint 17 collected in the liquid receiving portion 16 is returned again to the liquid feeding device 13 through the recovered liquid piping 15.

次に、以下の成分:
共重合ナイロン樹脂(商品名:アミランCM8000、東レ(株)製) 10部
メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学(株)製) 30部
をメタノール400部/n−ブタノール200部の混合溶剤に溶解させた。
Next, the following ingredients:
Copolymerized nylon resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) 10 parts Methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) 30 parts of methanol 400 parts / n- It was dissolved in a mixed solvent of 200 parts of butanol.

さらに、メタノール/n−ブタノールを2/1の質量比で混合した溶剤を加え、塗布液の液温23℃で測定した粘度が4mPa・sとなるように調整して中間層用塗布液を得た。
ここで、中間層用塗布液の粘度は次のようにして測定した。
測定装置:単一円筒型回転粘度計ビスメトロン 形式VS−A1(芝浦システム株式会社製)。
測定には低粘度アダプターを使用した。低粘度アダプターのカップシリンダーに塗布液を20ml入れ、次いでローターを60rpmで回転させた。ローターの回転開始から60秒後に測定された値を中間層用塗布液の粘度とした。
この中間層用塗布液を、室温23℃の環境下で、導電層を塗布したのと同一構成の塗布装置を使用し、被塗布体の引き上げ速度6mm/sで導電層の上に浸漬塗布した。続いて30分間100℃のオーブンで乾燥(加熱乾燥)させることにより、被塗布体の長手方向中央部で測定した膜厚が0.4μmの中間層を形成した。
Further, a solvent in which methanol / n-butanol is mixed at a mass ratio of 2/1 is added, and the viscosity measured at 23 ° C. of the coating solution is adjusted to 4 mPa · s to obtain a coating solution for intermediate layer. It was.
Here, the viscosity of the intermediate layer coating solution was measured as follows.
Measuring apparatus: Single cylindrical rotational viscometer bismetron type VS-A1 (manufactured by Shibaura System Co., Ltd.).
A low viscosity adapter was used for the measurement. 20 ml of the coating solution was placed in a cup cylinder of a low viscosity adapter, and then the rotor was rotated at 60 rpm. The value measured 60 seconds after the start of rotation of the rotor was taken as the viscosity of the intermediate layer coating solution.
This intermediate layer coating solution was dip-coated on the conductive layer at a room temperature of 23 ° C. using a coating apparatus having the same configuration as the conductive layer applied at a lifting speed of 6 mm / s. . Subsequently, by drying (heating drying) in an oven at 100 ° C. for 30 minutes, an intermediate layer having a thickness of 0.4 μm measured at the center in the longitudinal direction of the coated body was formed.

次に、以下の成分:
ヒドロキシガリウムフタロシアニン(CuKα特性X線回折において、7.4°および28.2°(ブラッグ角2θ±0.2°))に強いピークを有するもの) 20部
下記構造式(1)で示されるカリックスアレーン化合物 0.2部
Next, the following ingredients:
Hydroxygallium phthalocyanine (having strong peaks at 7.4 ° and 28.2 ° (Bragg angle 2θ ± 0.2 °) in CuKα characteristic X-ray diffraction)) 20 parts Calix represented by the following structural formula (1) Arene compound 0.2 parts

Figure 2012093521
Figure 2012093521

ポリビニルブチラール(商品名:エスレックBX−1、積水化学製) 10部
シクロヘキサノン 600部
に、直径1mmのガラスビーズを用いたサンドミル装置で4時間分散処理を施し、その後酢酸エチル700部を加えた。
Polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) 10 parts Cyclohexanone 600 parts were subjected to a dispersion treatment for 4 hours in a sand mill apparatus using glass beads having a diameter of 1 mm, and then 700 parts of ethyl acetate was added.

さらに、シクロヘキサノン/酢酸エチルを1/2の質量比で混合した溶剤を加え、固形分が2wt%となるように調整して電荷発生層用分散液を調製した。
この電荷発生層用塗布液を、室温23℃の環境下で、導電層を塗布したのと同一構成の塗布装置を使用し、被塗布体の引き上げ速度6.5mm/sで中間層の上に浸漬塗布した。続いて10分間85℃のオーブンで乾燥(加熱乾燥)させることにより、被塗布体の長手方向中央部で測定した膜厚が0.15μmの電荷発生層を形成した。
Furthermore, a solvent in which cyclohexanone / ethyl acetate was mixed at a mass ratio of 1/2 was added to adjust the solid content to 2 wt% to prepare a charge generation layer dispersion.
The charge generation layer coating solution is applied on the intermediate layer at a room temperature of 23 ° C. using the same coating apparatus as that applied to the conductive layer at a lifting speed of 6.5 mm / s. Immersion applied. Subsequently, by drying (heating drying) in an oven at 85 ° C. for 10 minutes, a charge generation layer having a thickness of 0.15 μm measured at the center in the longitudinal direction of the coated body was formed.

次に、以下の成分:
下記構造式(CTM−1)で示される電荷輸送物質 50部
Next, the following ingredients:
50 parts of a charge transport material represented by the following structural formula (CTM-1)

Figure 2012093521
下記構造式(CTM−2)で示される電荷輸送物質 50部
Figure 2012093521
50 parts of a charge transport material represented by the following structural formula (CTM-2)

Figure 2012093521
Figure 2012093521

ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)社製) 100部
をモノクロロベンゼン520部/メチラール280部の混合溶剤に溶解させた。
100 parts of polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) were dissolved in a mixed solvent of 520 parts monochlorobenzene / 280 parts methylal.

さらに、モノクロロベンゼン/メチラールを65/35の質量比で混合した混合溶剤を加え、塗布液の液温23℃で測定した粘度が250mPa・sとなるように調整して電荷輸送層用塗布液を得た。
ここで、電荷輸送層用塗布液の粘度は次のようにして測定した。
測定装置:単一円筒型回転粘度計ビスメトロン 形式VS−A1(芝浦システム株式会社製)。
ローターはNo.2を使用した。塗布液が約100ml入っている100mlビーカーにローターを入れ、次いでローターを60rpmで回転させた。ローターの回転開始から60秒後に測定された値を電荷輸送層用塗布液の粘度とした。
この電荷輸送層用塗布液を、室温23℃の環境下で、導電層を塗布したのと同一構成の塗布装置を使用し、被塗布体の引き上げ速度2.5mm/sで電荷発生層の上に浸漬塗布した。
Further, a mixed solvent in which monochlorobenzene / methylal was mixed at a mass ratio of 65/35 was added, and the viscosity of the coating liquid measured at a liquid temperature of 23 ° C. was adjusted to 250 mPa · s to prepare a coating liquid for a charge transport layer. Obtained.
Here, the viscosity of the charge transport layer coating solution was measured as follows.
Measuring apparatus: Single cylindrical rotational viscometer bismetron type VS-A1 (manufactured by Shibaura System Co., Ltd.).
The rotor is no. 2 was used. The rotor was placed in a 100 ml beaker containing about 100 ml of the coating solution, and then the rotor was rotated at 60 rpm. The value measured 60 seconds after the start of rotation of the rotor was taken as the viscosity of the charge transport layer coating solution.
The charge transport layer coating solution is applied on the charge generation layer at a lifting speed of 2.5 mm / s using a coating apparatus having the same configuration as that for coating the conductive layer in an environment of room temperature of 23 ° C. Was applied by dip coating.

続いて60分間100℃のオーブンで乾燥(加熱乾燥)させて電荷輸送層を形成し、電子写真感光体を得た。被塗布体の長手方向中央部で測定した電荷輸送層の膜厚は18μmであった。
また、これと全く同様にして、長さ370mm、直径(外径)30mmの円筒状アルミニウムシリンダーに対して電荷輸送層用塗布液の塗布と乾燥を行い、塗布膜上端部のタレの評価に用いるサンプルを作成した。
Subsequently, it was dried (heat-dried) in an oven at 100 ° C. for 60 minutes to form a charge transport layer, thereby obtaining an electrophotographic photosensitive member. The thickness of the charge transport layer measured at the center in the longitudinal direction of the coated body was 18 μm.
In the same manner, the coating solution for the charge transport layer is applied and dried on a cylindrical aluminum cylinder having a length of 370 mm and a diameter (outer diameter) of 30 mm, which is used for evaluation of sagging at the upper end of the coating film. A sample was created.

<画像評価>
このようにして得た電子写真感光体を、キヤノン(株)製の電子写真複写機iR3245に装着し、全面ハーフトーンの画像を出力した。出力画像に発生した画像ムラを目視により以下のランク基準に従い評価した結果は表1に示すようにランクAであった。
A=画像ムラが無く良好な状態
B=軽微な画像ムラがあるが実使用上問題無い状態
C=画像ムラがあり、実使用上問題となる状態
<Image evaluation>
The electrophotographic photoreceptor thus obtained was mounted on an electrophotographic copying machine iR3245 manufactured by Canon Inc., and an entire halftone image was output. As shown in Table 1, rank A was obtained as a result of visually evaluating image unevenness generated in the output image according to the following rank criteria.
A = Good state with no image unevenness B = Slight image unevenness but no problem in actual use C = There is image unevenness and becomes a problem in actual use

<塗布膜上端部のタレの評価>
塗布膜上端部のタレの評価をするために作成したサンプルを用いて、以下の測定を行った。
まず、被塗布体の長手方向中央部の塗布膜の平均膜厚d(1)を測定した。平均膜厚は、測定1回ごとに被塗布体を周方向に45°ずつ回転させ、被塗布体の周方向8箇所で測定した膜厚を平均して求めた。
<Evaluation of the sagging at the upper end of the coating film>
The following measurements were performed using a sample prepared for evaluating the sagging of the upper end portion of the coating film.
First, the average film thickness d (1) of the coating film at the center in the longitudinal direction of the coated body was measured. The average film thickness was determined by rotating the coated body by 45 ° in the circumferential direction for each measurement and averaging the film thicknesses measured at 8 locations in the circumferential direction of the coated body.

続いて、浸漬塗布した時に被塗布体の鉛直上方側になっていた方のシリンダー端部から10mmの位置で、同様にして塗布膜の平均膜厚d(2)を測定した。
次に、タレの指標としてD=d(2)/d(1)を求めた。Dは0以上1以下の値をとり、1に近いほどタレが少なく良好な状態になっていることを意味する。
実施例1のタレ評価用サンプルを測定した結果は0.88であった。
Subsequently, the average film thickness d (2) of the coating film was measured in the same manner at a position 10 mm from the end of the cylinder that was on the vertically upper side of the object to be coated when dip coating was performed.
Next, D = d (2) / d (1) was determined as a sagging index. D takes a value from 0 to 1, and the closer to 1, the less sagging and the better.
The measurement result of the sagging evaluation sample of Example 1 was 0.88.

〔実施例2〕
実施例1と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整をモノクロロベンゼン/メチラールを70/30の比となるように行ったこと以外は実施例1と同様にして電荷輸送層用塗布液を調整した。
続いて、電荷輸送層用塗布液の塗布装置のφ2、φ3、L(a)、L(b)、L(c)、M、Soを表1のように変更し、被塗布体を引き上げる動作が被塗布体の下端部が境界面Sに一致した時に停止するように変更した。これら変更以外は実施例1と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体、およびタレ評価用のサンプルを作成した。
続いて、実施例1と同様にして、電子写真感光体の画像評価とタレの評価を行った。評価結果を表1に示す。
[Example 2]
In the same manner as in Example 1, coating of the charge generation layer was performed.
Further, the charge transport layer coating solution was prepared in the same manner as in Example 1 except that the charge transport layer coating solution was adjusted to a monochlorobenzene / methylal ratio of 70/30.
Subsequently, φ2, φ3, L (a), L (b), L (c), M, and So of the coating device for the charge transport layer coating solution are changed as shown in Table 1, and the object to be coated is pulled up. However, it changed so that it might stop, when the lower end part of a to-be-coated body corresponds to the boundary surface S. Except for these changes, the charge transport layer coating solution was applied in the same manner as in Example 1 to prepare an electrophotographic photosensitive member and a sample for sagging evaluation.
Subsequently, in the same manner as in Example 1, image evaluation and sagging evaluation of the electrophotographic photosensitive member were performed. The evaluation results are shown in Table 1.

Figure 2012093521
Figure 2012093521

〔実施例3〜6〕
実施例1と同様にして、電荷発生層の塗布までを行った。
電荷輸送層用塗布液の塗布装置のφ2、φ3、L(a)、L(b)、L(c)、M、Soを表1のように変更した以外は実施例1と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体、およびタレ評価用のサンプルを作成した。
続いて、実施例1と同様にして、電子写真感光体の画像評価とタレの評価を行った。評価結果を表1に示す。
[Examples 3 to 6]
In the same manner as in Example 1, coating of the charge generation layer was performed.
Charge in the same manner as in Example 1 except that φ2, φ3, L (a), L (b), L (c), M, and So of the coating device for the coating solution for the charge transport layer were changed as shown in Table 1. The transport layer coating solution was applied to prepare an electrophotographic photoreceptor and a sample for sagging evaluation.
Subsequently, in the same manner as in Example 1, image evaluation and sagging evaluation of the electrophotographic photosensitive member were performed. The evaluation results are shown in Table 1.

〔実施例7〕
実施例3と同様にして、電荷発生層の塗布までを行った。
電荷輸送層用塗布液を塗布する際、被塗布体を引き上げる動作が、被塗布体の下端部が境界面Sの下方25mmの位置で停止するように変更した以外は実施例3と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体、およびタレ評価用のサンプルを作成した。
続いて、実施例1と同様にして、電子写真感光体の画像評価とタレの評価を行った。評価結果を表1に示す。
画像評価で発生した画像ムラは、電荷輸送層の塗布の際、被塗布体を引き上げる動作が停止した時に境界面Sより下方に位置していた領域で発生した。
Example 7
In the same manner as in Example 3, the application up to the charge generation layer was performed.
When applying the coating liquid for the charge transport layer, the operation of pulling up the coated body is the same as in Example 3 except that the lower end portion of the coated body is changed to stop at a position 25 mm below the boundary surface S. The charge transport layer coating solution was applied to prepare an electrophotographic photoreceptor and a sample for sagging evaluation.
Subsequently, in the same manner as in Example 1, image evaluation and sagging evaluation of the electrophotographic photosensitive member were performed. The evaluation results are shown in Table 1.
The image unevenness generated in the image evaluation occurred in a region located below the boundary surface S when the operation of lifting the object to be coated was stopped when the charge transport layer was applied.

〔比較例1〕
実施例3と同様にして、電荷発生層の塗布までを行った。
電荷輸送層用塗布液の塗布装置のフードを、直径(内径)60mm、長さ180mmで全体がマイラーシートで構成されたフードに変更した以外は実施例3と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体、およびタレ評価用のサンプルを作成した。
続いて、実施例3と同様にして、電子写真感光体の画像評価とタレの評価を行った。評価結果を表1に示す。
[Comparative Example 1]
In the same manner as in Example 3, the application up to the charge generation layer was performed.
The coating liquid for the charge transport layer is the same as in Example 3 except that the hood of the coating apparatus for the coating liquid for the charge transport layer is changed to a hood having a diameter (inner diameter) of 60 mm and a length of 180 mm. Was applied to prepare an electrophotographic photosensitive member and a sample for sagging evaluation.
Subsequently, in the same manner as in Example 3, image evaluation and sagging evaluation of the electrophotographic photosensitive member were performed. The evaluation results are shown in Table 1.

〔比較例2〕
実施例3と同様にして、電荷発生層の塗布までを行った。
電荷輸送層用塗布液の塗布装置のフードを、直径(内径)60mm、長さ180mmで全体がM=0.5mm、So=61%のステンレス製メッシュで構成されたフードに変更した。かかる変更以外は実施例3と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体、およびタレ評価用のサンプルを作成した。
続いて、実施例3と同様にして、電子写真感光体の画像評価とタレの評価を行った。評価結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 3, the application up to the charge generation layer was performed.
The hood of the coating device for the charge transport layer coating solution was changed to a hood composed of a stainless steel mesh having a diameter (inner diameter) of 60 mm, a length of 180 mm, and M = 0.5 mm and So = 61% as a whole. Except for this change, the charge transport layer coating solution was applied in the same manner as in Example 3 to prepare an electrophotographic photoreceptor and a sample for sagging evaluation.
Subsequently, in the same manner as in Example 3, image evaluation and sagging evaluation of the electrophotographic photosensitive member were performed. The evaluation results are shown in Table 1.

表1から、フード内の溶剤蒸気濃度を段階的に変化させることにより、ムラとタレの発生を同時に抑制できることが分かる。また、塗布液に浸漬させた被塗布体を引き上げる動作が,被塗布体の下端部が境界面S以上に到達するまで停止することなく行われることにより、より良好な塗布膜が得られることが分かる。   From Table 1, it can be seen that the generation of unevenness and sagging can be suppressed simultaneously by changing the solvent vapor concentration in the hood stepwise. Further, the operation of pulling up the coated body immersed in the coating solution is performed without stopping until the lower end of the coated body reaches the boundary surface S or more, whereby a better coated film can be obtained. I understand.

〔実施例8〕
実施例3と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整において、構造式(CTM−1)で示される電荷輸送物質を100部とし、構造式(CTM−2)で示される電荷輸送物質を用いず、モノクロロベンゼンの代わりにo−キシレンを用いて行ったこと以外は実施例3と同様にして電荷輸送層用塗布液を調整した。
次に、実施例3と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体を作成した。
続いて、実施例3と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
Example 8
In the same manner as in Example 3, the application up to the charge generation layer was performed.
In the preparation of the coating solution for the charge transport layer, the charge transport material represented by the structural formula (CTM-1) is 100 parts, and the monochlorobenzene is used without using the charge transport material represented by the structural formula (CTM-2). Instead, a charge transport layer coating solution was prepared in the same manner as in Example 3 except that o-xylene was used.
Next, a charge transport layer coating solution was applied in the same manner as in Example 3 to prepare an electrophotographic photoreceptor.
Subsequently, in the same manner as in Example 3, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

Figure 2012093521
Figure 2012093521

〔比較例3〕
電荷輸送層用塗布液として実施例8で用いたものを用いる以外は、比較例1と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 3]
An electrophotographic photosensitive member was prepared by applying the charge transport layer in the same manner as in Comparative Example 1 except that the charge transport layer coating solution used in Example 8 was used.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔比較例4〕
電荷輸送層用塗布液として実施例8で用いたものを用いる以外は、比較例2と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 4]
The charge transport layer was applied in the same manner as in Comparative Example 2 except that the charge transport layer coating solution used in Example 8 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔実施例9〕
実施例3と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整において、o−キシレンの代わりにモノクロロベンゼンを用い、モノクロロベンゼンとメチラールの比が40/60となるように調整したこと以外は実施例8と同様にして電荷輸送層用塗布液を調整した。
次に、実施例8と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体を作成した。
続いて、実施例8と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
Example 9
In the same manner as in Example 3, the application up to the charge generation layer was performed.
Further, in the adjustment of the coating solution for the charge transport layer, the charge was obtained in the same manner as in Example 8 except that monochlorobenzene was used instead of o-xylene and the ratio of monochlorobenzene and methylal was adjusted to 40/60. A coating solution for the transport layer was prepared.
Next, a charge transport layer coating solution was applied in the same manner as in Example 8 to prepare an electrophotographic photoreceptor.
Subsequently, image evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 8. The evaluation results are shown in Table 2.

〔比較例5〕
電荷輸送層用塗布液として実施例9で用いたものを用いる以外は、比較例1と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 5]
The charge transport layer was applied in the same manner as in Comparative Example 1 except that the charge transport layer coating solution used in Example 9 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔実施例10〕
実施例3と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整において、o−キシレンの代わりにモノクロロベンゼンを用い、メチラールの代わりにテトラヒドロフランを用いた以外は実施例8と同様にして電荷輸送層用塗布液を調整した。
次に、実施例8と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体を作成した。
続いて、実施例8と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
Example 10
In the same manner as in Example 3, the application up to the charge generation layer was performed.
Further, in the adjustment of the coating solution for the charge transport layer, the coating solution for the charge transport layer was prepared in the same manner as in Example 8 except that monochlorobenzene was used instead of o-xylene and tetrahydrofuran was used instead of methylal.
Next, a charge transport layer coating solution was applied in the same manner as in Example 8 to prepare an electrophotographic photoreceptor.
Subsequently, image evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 8. The evaluation results are shown in Table 2.

〔比較例6〕
電荷輸送層用塗布液として実施例10で用いたものを用いる以外は、比較例1と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 6]
The charge transport layer was applied in the same manner as in Comparative Example 1 except that the charge transport layer coating solution used in Example 10 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔比較例7〕
電荷輸送層用塗布液として実施例10で用いたものを用いる以外は、比較例2と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 7]
A charge transport layer was applied in the same manner as in Comparative Example 2 except that the charge transport layer coating solution used in Example 10 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔実施例11〕
実施例3と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整において、テトラヒドロフランの代わりにメチルエチルケトンを用いた以外は実施例10と同様にして電荷輸送層用塗布液を調整した。
次に、実施例10と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体を作成した。
続いて、実施例10と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
Example 11
In the same manner as in Example 3, the application up to the charge generation layer was performed.
Further, in the adjustment of the charge transport layer coating solution, a charge transport layer coating solution was prepared in the same manner as in Example 10 except that methyl ethyl ketone was used instead of tetrahydrofuran.
Next, a charge transport layer coating solution was applied in the same manner as in Example 10 to prepare an electrophotographic photoreceptor.
Subsequently, image evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 10. The evaluation results are shown in Table 2.

〔比較例8〕
電荷輸送層用塗布液として実施例11で用いたものを用いる以外は、比較例1と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 8]
The charge transport layer was applied in the same manner as in Comparative Example 1 except that the charge transport layer coating solution used in Example 11 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔比較例9〕
電荷輸送層用塗布液として実施例11で用いたものを用いる以外は、比較例2と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 9]
The charge transport layer was applied in the same manner as in Comparative Example 2 except that the charge transport layer coating solution used in Example 11 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔実施例12〕
実施例3と同様にして、電荷発生層の塗布までを行った。
また、電荷輸送層用塗布液の調整において、テトラヒドロフランの代わりにジクロロメタンを用いた以外は実施例10と同様にして電荷輸送層用塗布液を調整した。
次に、実施例10と同様にして電荷輸送層用塗布液を塗布し、電子写真感光体を作成した。
続いて、実施例10と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
Example 12
In the same manner as in Example 3, the application up to the charge generation layer was performed.
In addition, the charge transport layer coating solution was prepared in the same manner as in Example 10 except that dichloromethane was used instead of tetrahydrofuran in preparing the charge transport layer coating solution.
Next, a charge transport layer coating solution was applied in the same manner as in Example 10 to prepare an electrophotographic photoreceptor.
Subsequently, image evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 10. The evaluation results are shown in Table 2.

〔比較例10〕
電荷輸送層用塗布液として実施例12で用いたものを用いる以外は、比較例1と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
[Comparative Example 10]
The charge transport layer was applied in the same manner as in Comparative Example 1 except that the charge transport layer coating solution used in Example 12 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.

〔比較例11〕
電荷輸送層用塗布液として実施例12で用いたものを用いる以外は、比較例2と同様にして電荷輸送層の塗布を行い、電子写真感光体を作成した。
続いて、比較例1と同様にして、電子写真感光体の画像評価を行った。評価結果を表2に示す。
表2から、実施例の塗布装置および塗布方法を用いることにより、様々な種類の溶剤を用いた塗布液で、塗布膜に発生するムラを抑制でき、その結果として、画像ムラの発生を抑制できることが分かる。
[Comparative Example 11]
The charge transport layer was applied in the same manner as in Comparative Example 2 except that the charge transport layer coating solution used in Example 12 was used to prepare an electrophotographic photosensitive member.
Subsequently, in the same manner as in Comparative Example 1, image evaluation of the electrophotographic photosensitive member was performed. The evaluation results are shown in Table 2.
From Table 2, by using the coating apparatus and the coating method of the examples, it is possible to suppress unevenness generated in the coating film with coating liquids using various types of solvents, and as a result, it is possible to suppress the occurrence of image unevenness. I understand.

1‥‥塗布槽
2‥‥塗布液
3‥‥塗布槽の蓋
4‥‥開口
5‥‥フード
6‥‥フードのメッシュ状の部分
7‥‥フードの非メッシュ状の部分
8‥‥境界面S
9‥‥被塗布体
10‥‥被塗布体把持手段
11‥‥全体がメッシュ状の円筒状フード
12‥‥全体が非メッシュ状の円筒状フード
13‥‥送液装置
14‥‥送液用の配管
15‥‥回収液用の配管
16‥‥液受け部に溜まった塗料
17‥‥液受け部
DESCRIPTION OF SYMBOLS 1 ... Coating tank 2 ... Coating liquid 3 ... Coating tank lid 4 ... Opening 5 ... Hood 6 ... Hood-like mesh part 7 ... Hood non-mesh-like part 8 ... Interface S
9 ... Subject 10 ... Subject gripping means 11 ... Cylindrical hood 12 with whole mesh ... Cylindrical hood 13 with whole mesh 13 ... Liquid feeding device 14 ... For liquid feeding Piping 15 Piping for recovered liquid 16 Paint remaining in liquid receiving part 17 Liquid receiving part

Claims (2)

円筒状被塗布体を昇降可能に把持する手段と塗布液を収容する塗布槽とを有し、前記塗布槽に収容された塗布液に前記円筒状被塗布体を浸漬した後に引き上げて前記円筒状被塗布体の表面に塗布膜を形成する電子写真感光体製造装置において、前記電子写真感光体製造装置は前記塗布槽の上方に前記円筒状被塗布体を通過させるための開口を有する蓋を有し、前記蓋の上には前記開口より断面積が大きいフードが前記開口の周囲を囲むようにして前記蓋と密接して設けられており、前記フードの上部はメッシュ状であり、前記フードの下部は非メッシュ状になっていることを特徴とする電子写真感光体製造装置。   It has means for gripping the cylindrical coated body so that it can be moved up and down, and a coating tank for storing the coating liquid, and the cylindrical coated body is pulled up after being immersed in the coating liquid stored in the coating tank. In the electrophotographic photosensitive body manufacturing apparatus for forming a coating film on the surface of the coated body, the electrophotographic photosensitive body manufacturing apparatus has a lid having an opening for allowing the cylindrical coated body to pass above the coating tank. On the lid, a hood having a cross-sectional area larger than that of the opening is provided in close contact with the lid so as to surround the opening, and the upper portion of the hood is mesh-shaped, and the lower portion of the hood is An electrophotographic photoreceptor manufacturing apparatus characterized by being non-mesh. 請求項1に記載の電子写真感光体製造装置を用いる電子写真感光体製造方法において、前記フードの上部のメッシュ状の領域と前記フードの下部の非メッシュ状の領域との境界面を境界面Sとした場合、前記円筒状被塗布体を前記塗布液に浸漬した後に行なわれる前記円筒状被塗布体を引き上げる動作が、前記境界面S以上の高さに前記円筒状被塗布体の下端部が到達するまで停止することなく行なわれることを特徴とする電子写真感光体製造方法。   The electrophotographic photosensitive member manufacturing method using the electrophotographic photosensitive member manufacturing apparatus according to claim 1, wherein a boundary surface between a mesh-like region above the hood and a non-mesh region below the hood is a boundary surface S. In this case, the operation of pulling up the cylindrical coated body performed after immersing the cylindrical coated body in the coating liquid has a lower end portion of the cylindrical coated body at a height higher than the boundary surface S. An electrophotographic photosensitive member manufacturing method, which is performed without stopping until it reaches.
JP2010240126A 2010-10-26 2010-10-26 Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method Active JP5653167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240126A JP5653167B2 (en) 2010-10-26 2010-10-26 Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240126A JP5653167B2 (en) 2010-10-26 2010-10-26 Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method

Publications (3)

Publication Number Publication Date
JP2012093521A true JP2012093521A (en) 2012-05-17
JP2012093521A5 JP2012093521A5 (en) 2013-12-12
JP5653167B2 JP5653167B2 (en) 2015-01-14

Family

ID=46386918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240126A Active JP5653167B2 (en) 2010-10-26 2010-10-26 Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method

Country Status (1)

Country Link
JP (1) JP5653167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075540A (en) * 2016-11-10 2018-05-17 シャープ株式会社 Dip coating device, electrophotographic photosensitive body and image forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942060A (en) * 1982-09-02 1984-03-08 Canon Inc Method and device for producing coated film
JPS5990662A (en) * 1982-11-16 1984-05-25 Canon Inc Coating device
JPS60110372A (en) * 1983-11-21 1985-06-15 Konishiroku Photo Ind Co Ltd Coating and drying apparatus
JPS60110373A (en) * 1983-11-21 1985-06-15 Konishiroku Photo Ind Co Ltd Coating and drying apparatus
JPH09197689A (en) * 1996-01-19 1997-07-31 Fuji Xerox Co Ltd Device for manufacturing electrophotographic sensitive material
JPH1069102A (en) * 1996-08-29 1998-03-10 Fuji Xerox Co Ltd Dip coating device to produce electrophotographic photoreceptor
JPH10337514A (en) * 1997-06-06 1998-12-22 Fuji Xerox Co Ltd Dip coating device and device for manufacturing electrophotography photosensitive body
JP2002278103A (en) * 2001-03-15 2002-09-27 Ricoh Co Ltd Manufacturing device for electrophotographic sensitive body
WO2010044475A1 (en) * 2008-10-15 2010-04-22 Canon Kabushiki Kaisha Dip-coating process and method for making electrophotographic photosensitive member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942060A (en) * 1982-09-02 1984-03-08 Canon Inc Method and device for producing coated film
JPS5990662A (en) * 1982-11-16 1984-05-25 Canon Inc Coating device
JPS60110372A (en) * 1983-11-21 1985-06-15 Konishiroku Photo Ind Co Ltd Coating and drying apparatus
JPS60110373A (en) * 1983-11-21 1985-06-15 Konishiroku Photo Ind Co Ltd Coating and drying apparatus
JPH09197689A (en) * 1996-01-19 1997-07-31 Fuji Xerox Co Ltd Device for manufacturing electrophotographic sensitive material
JPH1069102A (en) * 1996-08-29 1998-03-10 Fuji Xerox Co Ltd Dip coating device to produce electrophotographic photoreceptor
JPH10337514A (en) * 1997-06-06 1998-12-22 Fuji Xerox Co Ltd Dip coating device and device for manufacturing electrophotography photosensitive body
JP2002278103A (en) * 2001-03-15 2002-09-27 Ricoh Co Ltd Manufacturing device for electrophotographic sensitive body
WO2010044475A1 (en) * 2008-10-15 2010-04-22 Canon Kabushiki Kaisha Dip-coating process and method for making electrophotographic photosensitive member
JP2010115641A (en) * 2008-10-15 2010-05-27 Canon Inc Dip-coating process and method of manufacturing electrophotographic photosensitive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075540A (en) * 2016-11-10 2018-05-17 シャープ株式会社 Dip coating device, electrophotographic photosensitive body and image forming apparatus

Also Published As

Publication number Publication date
JP5653167B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
KR101476578B1 (en) Process for producing electrophotographic photosensitive member
CN111198484B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US8455170B2 (en) Method for producing electrophotographic photosensitive member
US8980510B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method for producing electrophotographic photosensitive member
WO2011027911A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2019035901A (en) Electrophotographic photosensitive member, and electrophotographic apparatus and process cartridge each including that electrophotographic photosensitive member
US10018928B2 (en) Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus each including the electrophotographic photosensitive member
CN110568735B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6282137B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2019139225A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5653167B2 (en) Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method
US20160011527A1 (en) Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2016200732A (en) Manufacturing method of electrophotographic photoreceptor
JP2021098182A (en) Coating dryer and coating dry method
JP2005031433A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2017142336A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and electrophotographic device
JP5446333B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2012108187A (en) Method for manufacturing electrophotographic photoreceptor
US10983449B2 (en) Method for manufacturing electrophotographic photoconductor
JP4233474B2 (en) Immersion coating apparatus and method for producing electrophotographic photosensitive member using the apparatus
JP2000181097A (en) Electrophotographic photoreceptor, its production and image-forming device
JP6702809B2 (en) Electrophotographic photoreceptor, manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JP5561998B2 (en) Immersion coating method, electrophotographic photoreceptor manufacturing method, and apparatus used for the dip coating method
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R151 Written notification of patent or utility model registration

Ref document number: 5653167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03