JP2012092425A - Thick steel plate excellent in toughness of weld heat-affected zone - Google Patents

Thick steel plate excellent in toughness of weld heat-affected zone Download PDF

Info

Publication number
JP2012092425A
JP2012092425A JP2011134428A JP2011134428A JP2012092425A JP 2012092425 A JP2012092425 A JP 2012092425A JP 2011134428 A JP2011134428 A JP 2011134428A JP 2011134428 A JP2011134428 A JP 2011134428A JP 2012092425 A JP2012092425 A JP 2012092425A
Authority
JP
Japan
Prior art keywords
less
steel plate
toughness
mass
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011134428A
Other languages
Japanese (ja)
Other versions
JP5723234B2 (en
Inventor
Hidenori Nako
秀徳 名古
Akira Ibano
朗 伊庭野
Yoshiomi Okazaki
喜臣 岡崎
Tetsushi Deura
哲史 出浦
Takashi Sugitani
崇 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011134428A priority Critical patent/JP5723234B2/en
Publication of JP2012092425A publication Critical patent/JP2012092425A/en
Application granted granted Critical
Publication of JP5723234B2 publication Critical patent/JP5723234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate excellent in toughness of a weld heat-affected zone and capable of improving HAZ toughness when large energy welding is performed in a high-strength steel plate having a tensile strength of 80 kg-class.SOLUTION: The thick steel plate: satisfies a predefined chemical composition; has a value of D obtained from formula: D=62×[Mn]+27×[Ni]+111×[Cr], of more than 238 and less than 388; and includes oxides whose constituting elements other than oxygen consist of Ti in a content more than 10 mass%, Al in a content less than 20 mass%, Ca in a content more than 5 mass% and less than 40 mass%, REM in a content more than 5 mass% and less than 50 mass%, and Zr in a content more than 5 mass% and less than 40 mass%. Among the oxides, the number of oxides each having an equivalent circle diameter less than 2 μm is 300 pieces/mmor more; the number of oxides each having an equivalent circle diameter of 2 μm or more and less than 5 μm is 30-70 pieces/mm; and the number of oxides each having an equivalent circle diameter of 5 μm or more is less than 30 pieces/mm.

Description

本発明は、主に高層建造物に適用される厚鋼板に関し、より詳しくは、大入熱後の熱影響部(以下、HAZとも述べる。)の強度および靭性に優れた厚鋼板に関するものである。   The present invention relates to a thick steel plate mainly applied to a high-rise building, and more particularly to a thick steel plate excellent in the strength and toughness of a heat-affected zone after large heat input (hereinafter also referred to as HAZ). .

近年、建造物の高層化、大型化に伴い、使用される鋼材の高強度化、厚肉化が求められつつあり、引張り強度80キロを超えるような高強度厚鋼板において、50mm以上の板厚の厚鋼板の溶接が不可避となっている。以上のような実情もあり、溶接施工効率向上を目的とした大入熱溶接が求められている。   In recent years, with the increase in the height and size of buildings, it has been required to increase the strength and thickness of the steel used, and in a high-strength thick steel plate with a tensile strength exceeding 80 kg, a thickness of 50 mm or more The welding of thick steel plates is inevitable. In view of the above circumstances, high heat input welding for the purpose of improving welding construction efficiency is required.

しかしながら、大入熱溶接時のHAZは、加熱によって高温のオーステナイト(γ)領域に長時間保持された後、徐冷されるため、加熱時におけるγ粒の成長、冷却過程における粗大フェライト(α)粒の生成に代表されるような組織の粗大化がもたらされやすく、それが大入熱溶接時のHAZ靭性低下の原因となっている。また、高強度化は一般に靭性を低下させるため、厚鋼板の強度と、大入熱溶接時におけるHAZの靭性(以下、HAZ靭性とも述べる。)とを、安定して高い水準に保つ技術を開発することが必要課題となっている。   However, since HAZ during high heat input welding is kept in a high temperature austenite (γ) region by heating for a long time and then gradually cooled, γ grains grow during heating, and coarse ferrite (α) during the cooling process. The coarsening of the structure as typified by the formation of grains is likely to be caused, which causes a reduction in the HAZ toughness during high heat input welding. In addition, toughness generally lowers toughness, so we developed a technology to stably maintain the strength of thick steel plates and the toughness of HAZ during high heat input welding (hereinafter also referred to as HAZ toughness). It has become a necessary task.

HAZ靭性を確保するための手段としては、酸化物、窒化物、硫化物等の介在物粒子によるγ粒成長ピン止め、介在物粒子を起点とする粒内α生成による組織の微細化に関する技術等が提案されている。こうした技術の提案例として、特許文献1や特許文献2に記載の技術があり、鋼材中に微細なTi含有窒化物をγ粒成長ピン止め粒子として分散析出させることで、大入熱溶接時のHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えることが開示されている。しかしながら、Ti含有窒化物は、溶接入熱を増大させると消失しやすく、安定したHAZ靭性が得られないという課題があり、近年の溶接入熱増大に対応することはできない。   Means for ensuring HAZ toughness include pinning gamma grain growth by inclusion particles such as oxides, nitrides, and sulfides, and techniques for refining the structure by intragranular α formation starting from inclusion particles. Has been proposed. As a proposal example of such a technique, there are techniques described in Patent Document 1 and Patent Document 2, and by dispersing and precipitating fine Ti-containing nitrides as γ-growth growth pinning particles in steel, It is disclosed to suppress the austenite grain coarsening that occurs in HAZ and to suppress degradation of HAZ toughness. However, Ti-containing nitrides tend to disappear when welding heat input is increased, and there is a problem that stable HAZ toughness cannot be obtained, and cannot cope with the recent increase in welding heat input.

すなわち、特許文献1、特許文献2に記載の技術ともに想定する入熱量が低レベルにとどまっている。また、特許文献1には溶接構造用鋼の具体的な引張り強度は明記されていないものの、添加されている合金元素濃度から推定すると、引張り強度は80キロクラスに達していない比較的低いレベルにとどまっているものと考えられる。   That is, the amount of heat input that is assumed in both the techniques described in Patent Document 1 and Patent Document 2 remains at a low level. Moreover, although the specific tensile strength of welded structural steel is not specified in Patent Document 1, when estimated from the concentration of the added alloying element, the tensile strength is at a relatively low level that does not reach 80 kg class. It seems that it has remained.

これに対し、特許文献3〜6では、高温で安定な酸化物系介在物をγ粒成長ピン止め粒子として利用する技術が提案されている。しかしながら、酸化物系介在物はTi含有窒化物に比べて数が少なく、十分なピン止め効果を得ることができないため、大入熱溶接に対して対応することが十分にはできず、尚一層の改善が必要である。   On the other hand, Patent Documents 3 to 6 propose a technique in which oxide inclusions that are stable at high temperatures are used as γ-grown pinning particles. However, the number of oxide inclusions is smaller than that of Ti-containing nitrides, and a sufficient pinning effect cannot be obtained. Improvement is necessary.

すなわち、特許文献3には、REMやZrを含む酸化物を存在させることによって良好なHAZ特性が得られると記載されてはいるものの、想定した入熱は低い水準にとどまっており、必ずしも大入熱溶接で良好なHAZ特性が得られるとはいいえない。また、特許文献4には、特許文献3と同様にREMやZrを含む酸化物を利用する技術が記載されており、HAZ靭性としてシャルピー吸収エネルギーを評価しているものの、材料の信頼性という観点では、平均値のみならずその最小値も高い水準に保障する必要があると考えられる。   That is, Patent Document 3 describes that good HAZ characteristics can be obtained by the presence of an oxide containing REM or Zr, but the assumed heat input is only at a low level and is not necessarily large. No good HAZ properties can be obtained by thermal welding. Patent Document 4 describes a technique using an oxide containing REM and Zr as in Patent Document 3, and evaluates Charpy absorbed energy as HAZ toughness, but it is a viewpoint of material reliability. Therefore, it is considered necessary to guarantee not only the average value but also its minimum value to a high level.

更には、特許文献5には、酸化物系介在物とTi含有介在物の両方をγ粒成長ピン止め粒子として利用することで、高いHAZ靭性を得る技術が記載されている。しかしながら、近年の入熱量の増大傾向を考慮すると、Ti含有介在物の利用には限界があり、酸化物系介在物による大入熱でのHAZ靭性向上手段を早急に確立する必要があるということができる。また、発明者らは特許文献6で、微細酸化物系介在物のγ粒成長ピン止め効果を活用した技術を提案しているが、この技術は微細Mn硫化物の再析出抑制を併用した技術であり、溶存酸素量、溶存硫黄量に基づき合金添加量を決定するという煩雑な制御を必要としている。   Furthermore, Patent Document 5 describes a technique for obtaining high HAZ toughness by using both oxide inclusions and Ti-containing inclusions as γ-growth growth pinning particles. However, considering the recent trend of increasing heat input, there is a limit to the use of Ti-containing inclusions, and it is necessary to immediately establish means for improving HAZ toughness with large heat input by oxide inclusions. Can do. In addition, the inventors have proposed a technique that utilizes the gamma grain growth pinning effect of fine oxide inclusions in Patent Document 6, but this technique is a technique that also uses reprecipitation suppression of fine Mn sulfide. Therefore, the complicated control of determining the alloy addition amount based on the dissolved oxygen amount and the dissolved sulfur amount is required.

また、介在物粒子を起点とする粒内ベイナイト(以下、IGBとも述べる。)生成による組織の微細化に関する技術として、発明者らは特許文献7、特許文献8で、介在物組成や介在物形状を制御することで、IGB生成を促進する技術を提案している。しかしながら、これら特許文献7、8で提案されている厚鋼板の強度クラスは50〜60キロクラスと比較的低いレベルにとどまっており、高強度と大入熱溶接時におけるHAZ靭性を両立しているとは言い難い。   In addition, as a technique related to the refinement of the structure by the generation of intragranular bainite (hereinafter also referred to as IGB) starting from inclusion particles, the inventors have disclosed inclusion compositions and inclusion shapes in Patent Document 7 and Patent Document 8. The technology which accelerates | stimulates IGB production | generation is proposed by controlling this. However, the strength classes of the thick steel plates proposed in these Patent Documents 7 and 8 remain at a relatively low level of 50 to 60 kg, and both high strength and HAZ toughness during high heat input welding are compatible. It's hard to say.

更には、高強度厚鋼板では、強度確保のため多量の合金元素が添加されるが、合金元素の濃度の増加はIGB生成の駆動力が働き始める温度(T温度)を下げる傾向にあるため、IGBの生成にとっては不利になる。よって、高強度厚鋼板において、介在物起点のIGB生成を得るためには、よりいっそうIGB生成能に優れる介在物の分散形態とすると共に、合金の成分組成を適切に制御する必要があるといえる。 Furthermore, in high-strength thick steel plates, a large amount of alloying elements are added to ensure strength, but increasing the concentration of alloying elements tends to lower the temperature at which the driving force for IGB generation begins to work (T 0 temperature). This is disadvantageous for the generation of IGB. Therefore, in the high-strength thick steel plate, it can be said that in order to obtain IGB generation starting from inclusions, it is necessary to appropriately control the component composition of the alloy as well as to form a dispersion form of inclusions that are further excellent in IGB generation ability. .

また、引張り強度60〜80キロクラスの高強度厚鋼板において、介在物起点のIGB生成を得る技術として、特許文献9により、Ti酸化物を活用した技術が提案されている。しかしながら、この特許文献9に記載の技術では、規定のTi酸化物分散形態を得るための製法として、溶製段階で、Ti添加後に静止状態で長時間保持を行うことが提案されており、溶製コストの著しい増大を招くことが想定される。更に、この特許文献9に記載の技術では、HAZ靭性の評価が、シャルピー衝撃エネルギーの平均値を求めることで行われている。しかしながら、安全性の観点からはシャルピー衝撃エネルギーの平均値を求めるだけでは不十分で、シャルピー衝撃エネルギーの最小値で評価することが必要であると考えられる。   Further, as a technique for obtaining IGB generation starting from inclusions in a high-strength thick steel sheet having a tensile strength of 60 to 80 kilo class, Patent Document 9 proposes a technique using Ti oxide. However, in the technique described in Patent Document 9, as a manufacturing method for obtaining a prescribed Ti oxide dispersion form, it has been proposed to hold in a stationary state for a long time after addition of Ti at the melting stage. It is assumed that the manufacturing cost is significantly increased. Furthermore, in the technique described in Patent Document 9, the HAZ toughness is evaluated by obtaining an average value of Charpy impact energy. However, from the viewpoint of safety, it is not sufficient to obtain only the average value of Charpy impact energy, and it is considered necessary to evaluate with the minimum value of Charpy impact energy.

特開2001−98340号公報JP 2001-98340 A 特開2008−308736号公報JP 2008-308336 A 特開2001−20031号公報Japanese Patent Laid-Open No. 2001-20031 特開2007−247005号公報JP 2007-247005 A 特開2008−223062号公報JP 2008-223062 A 特開2009−179844号公報JP 2009-179844 A 特開2010−168644号公報JP 2010-168644 A 特開2008−223081号公報JP 2008-223081 A 特開2006−124759号公報JP 2006-124759 A

本発明は、上記従来の実情を鑑みてなされたもので、引張り強度80キロクラスの高強度鋼板において、大入熱溶接を行った際の、HAZ靭性の最小値、更には平均値を向上させることができる溶接熱影響部の靭性に優れた厚鋼板を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional circumstances, and improves the minimum value and further the average value of HAZ toughness when performing high heat input welding in a high-strength steel sheet having a tensile strength of 80 kg class. It is an object of the present invention to provide a thick steel plate excellent in toughness of a weld heat affected zone.

請求項1記載の発明は、質量%で、C:0.03〜0.12%、Si:0.02〜0.50%、Mn:1.4〜3.0%、P:0.03%以下(0%を含まない)、S:0.015%以下(0%を含まない)、Al:0.07%以下(0%を含む)、Cr:0.5〜2.0%、Ti:0.010〜0.080%、REM:0.0003〜0.02%、Zr:0.0003〜0.02%、Ca:0.0005〜0.010%、N:0.002〜0.020%を含有し、残部が鉄および不可避的不純物である厚鋼板であって、D=62×[Mn]+27×[Ni]+111×[Cr]という式から求められるD値が、238<D<388を満足すると共に、酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、5%<Ca<40%、5%<REM<50%、5%<Zr<40%である酸化物を含有し、且つ、前記酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上5μm未満の酸化物が30〜70個/mm、円相当径が5μm以上の酸化物が30個/mm未満存在することを特徴とする溶接熱影響部の靭性に優れた厚鋼板である。
但し、上式で[ ]は各元素の含有量(質量%)を示す。
Invention of Claim 1 is the mass%, C: 0.03-0.12%, Si: 0.02-0.50%, Mn: 1.4-3.0%, P: 0.03 % Or less (excluding 0%), S: 0.015% or less (not including 0%), Al: 0.07% or less (including 0%), Cr: 0.5 to 2.0%, Ti: 0.010-0.080%, REM: 0.0003-0.02%, Zr: 0.0003-0.02%, Ca: 0.0005-0.010%, N: 0.002- It is a thick steel plate containing 0.020%, the balance being iron and inevitable impurities, and the D value obtained from the equation D = 62 × [Mn] + 27 × [Ni] + 111 × [Cr] is 238 <D <388 and the constituent elements excluding oxygen are 10% <Ti, Al <20%, 5% <Ca <40%, 5% by mass. <REM <50% contain 5% <Zr <oxides is 40%, and, among the oxides, oxides of less than the circle equivalent diameter of 2μm is 300 / mm 2 or more, the equivalent circle diameter oxides of less than 5μm or more 2μm 30-70 pieces / mm 2, the steel plate of the circle equivalent diameter is superior in toughness of the heat affected zone more oxide 5μm is characterized by the presence of less than 30 / mm 2 It is.
However, in the above formula, [] indicates the content (% by mass) of each element.

尚、上記記載を含め、本発明で説明する円相当径とは、酸化物等の大きさに着目して、その面積が等しくなるように想定した円の直径を求めたもので、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)で観察することで求めることができる。   In addition, including the above description, the equivalent circle diameter described in the present invention refers to the diameter of a circle that is assumed to have the same area by paying attention to the size of an oxide or the like. It can obtain | require by observing with a microscope (TEM) or a scanning electron microscope (SEM).

請求項2記載の発明は、酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、8%<Ca<40%、5%<REM<50%、5%<Zr<40%であって、且つ、10%<REM+Zr<70%を満足し、更には、TiとCaの質量比が1超1.4未満である酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上存在することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた厚鋼板である。 According to the second aspect of the present invention, the constituent elements excluding oxygen are, in mass%, 10% <Ti, Al <20%, 8% <Ca <40%, 5% <REM <50%, 5% <Zr <. 40% and satisfying 10% <REM + Zr <70%, and among oxides having a mass ratio of Ti and Ca of more than 1 and less than 1.4, the equivalent circle diameter is less than 2 μm. The thick steel plate having excellent toughness of the weld heat affected zone according to claim 1, wherein the number of objects is 300 / mm 2 or more.

請求項3記載の発明は、更に、円相当径が0.05μm未満のTi含有窒化物を5.0×10個/mm以上含有することを特徴とする請求項1または2に記載の溶接熱影響部の靭性に優れた厚鋼板である。 The invention according to claim 3 further includes 5.0 × 10 6 pieces / mm 2 or more of Ti-containing nitride having an equivalent circle diameter of less than 0.05 μm. It is a thick steel plate with excellent toughness of the weld heat affected zone.

請求項4記載の発明は、更に、質量%で、Ni:0.05〜2.0%、Cu:0.05〜2.0%、Mo:0.05〜2.0%よりなる群から選ばれる1種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板である。   The invention according to claim 4 further includes, in mass%, Ni: 0.05-2.0%, Cu: 0.05-2.0%, Mo: 0.05-2.0%. It is a thick steel plate excellent in the toughness of the welding heat affected zone in any one of Claims 1 thru | or 3 characterized by containing 1 or more types chosen.

請求項5記載の発明は、更に、質量%で、Nb:0.002〜0.10%および/またはV:0.002〜0.10%を含有することを特徴とする請求項1乃至4のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板である。   The invention described in claim 5 further contains Nb: 0.002 to 0.10% and / or V: 0.002 to 0.10% by mass%. It is a thick steel plate excellent in the toughness of the welding heat affected zone in any one of.

請求項6記載の発明は、更に、質量%で、B:0.0003〜0.005%を含有することを特徴とする請求項1乃至5のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板である。   The invention according to claim 6 further includes B: 0.0003 to 0.005% by mass%, and the toughness of the weld heat affected zone according to any one of claims 1 to 5 It is an excellent thick steel plate.

本発明によると、引張り強度80キロクラスの高強度鋼板において、小〜中入熱溶接は勿論のこと、大入熱溶接を行った場合であっても、HAZ靭性の最小値、また平均値を向上させることができ、優れたHAZ靭性とすることができる。   According to the present invention, in a high strength steel plate with a tensile strength of 80 kg class, the minimum value or average value of the HAZ toughness can be obtained not only for small to medium heat input welding but also for large heat input welding. It can be improved and excellent HAZ toughness can be obtained.

まず、発明者らは、粒内ベイナイト(IGB)の生成能に優れた酸化物形態を見出すことを目的として検討を行った。既に、発明者らは、前記特許文献7において、界面エネルギーの観点からIGB生成に有利な酸化物組成を見出しているが、それに加えて、酸化物サイズがIGB生成に及ぼす影響を調査した。   First, the inventors studied for the purpose of finding an oxide form excellent in the ability to produce intragranular bainite (IGB). The inventors have already found an oxide composition advantageous for IGB generation from the viewpoint of interfacial energy in Patent Document 7, and in addition to that, investigated the influence of oxide size on IGB generation.

従来からは、酸化物の粗大化は一律にHAZ靭性に悪影響を及ぼすと考えられていた。しかしながら、この調査の結果、酸化物の粗大化はIGB生成を促進する作用があり、且つ、HAZ靭性を評価する温度が上昇するにつれ、許容される酸化物サイズが大きくなることを見出した。そのうえで、建築用厚鋼板で主に必要とされる0℃でのHAZ靭性に対しては、特に円相当径が2μm以上の酸化物のうち、円相当径が2μm以上5μm未満の酸化物を所定数分散させ、且つ、5μm以上の酸化物の個数を一定個数未満に抑えることで、優れたHAZ靭性が得られることを明らかにした。   Conventionally, it has been thought that the coarsening of the oxide uniformly has an adverse effect on the HAZ toughness. However, as a result of this investigation, it was found that the coarsening of the oxide has the effect of promoting IGB generation, and that the allowable oxide size increases as the temperature at which HAZ toughness is evaluated rises. In addition, for HAZ toughness at 0 ° C., which is mainly required for heavy steel plates for construction, among oxides having an equivalent circle diameter of 2 μm or more, an oxide having an equivalent circle diameter of 2 μm or more and less than 5 μm is predetermined. It has been clarified that excellent HAZ toughness can be obtained by performing number dispersion and suppressing the number of oxides of 5 μm or more to less than a certain number.

また、一般には、強度確保のための合金元素の添加は、IGB生成の駆動力が働き始める温度(T温度)を下げる傾向にあるため、IGB生成に対して不利になると考えられる。これに対し、発明者らは、T温度と実際にIGB生成が始まる温度(TIGB温度)との差に着目し、合金元素を適正なバランスに基づき制御して添加することで、たとえT温度が低くても十分なIGB生成が得られることを見出した。すなわち、合金元素をD値に基づき制御することで、T温度の低下が最小限に抑えられると共に、IGBと競合する粒界ベイナイトの生成を抑制され、T温度とTIGB温度の差が拡大することで、IGB生成能の駆動力が増加し、十分なIGB生成が得られる。 In general, the addition of an alloy element for ensuring strength tends to lower the temperature (T 0 temperature) at which the driving force for IGB generation starts to work, and is considered to be disadvantageous for IGB generation. On the other hand, the inventors pay attention to the difference between the T 0 temperature and the temperature at which IGB generation actually starts ( TIGB temperature), and by adding the alloying element in a controlled manner based on an appropriate balance, even if T It has been found that sufficient IGB generation can be obtained even at a low 0 temperature. That is, by controlling the alloy element based on the D value, the decrease in the T 0 temperature is minimized, and the generation of grain boundary bainite competing with the IGB is suppressed, and the difference between the T 0 temperature and the T IGB temperature is reduced. By enlarging, the driving force of the IGB generation capability increases and sufficient IGB generation is obtained.

以上のように、酸化物組成およびサイズの制御に加えて、合金元素のバランス制御を実施することで、引張り強度80キロクラスの高強度鋼板において、大入熱溶接を行った際のHAZ靭性の最小値を向上させることが可能となる。以上説明したような知見を基に、本発明を完成したものであるが、各構成要件を規定した理由は下記に示す通りである。尚、本明細書で記載している引張り強度80キロクラスの高強度鋼板とは、具体的には引張り強度が780MPaを超える高強度鋼板のことを示す。   As described above, in addition to controlling the oxide composition and size, by carrying out balance control of the alloy elements, the HAZ toughness when performing high heat input welding on a high strength steel sheet with a tensile strength of 80 kg class. It becomes possible to improve the minimum value. The present invention has been completed on the basis of the knowledge described above. The reasons for defining each constituent element are as follows. In addition, the high strength steel plate having a tensile strength of 80 kg described in the present specification specifically indicates a high strength steel plate having a tensile strength exceeding 780 MPa.

(円相当径が2μm未満の酸化物が300個/mm以上)
酸化物の円相当径を2μm未満とすることで、IGB生成の促進によってHAZ靭性を促進することができる。酸化物の円相当径が2μm以上であると、HAZ高温加熱における液状化が十分に進行せず、IGBの生成量が減少し、HAZ靭性が低下する。また、酸化物の組成が、10%<Ti、Al<20%、5%<Ca<40%、5%<REM<50%、5%<Zr<40%という範囲から外れると、HAZにおける液状化→結晶化過程が進行せず、IGB生成が促進されなくなる。また、円相当径が2μm未満の酸化物が300個/mmより少ないと、IGB生成の起点が不足するため、やはりIGBの生成量が減少し、十分なHAZ靭性が得られなくなる。
(Equivalent circle diameter of less than 2 μm is 300 oxides / mm 2 or more)
By setting the equivalent circle diameter of the oxide to less than 2 μm, HAZ toughness can be promoted by promoting the generation of IGB. If the equivalent circle diameter of the oxide is 2 μm or more, liquefaction during high-temperature heating of the HAZ does not proceed sufficiently, the amount of IGB generated decreases, and the HAZ toughness decreases. If the composition of the oxide is out of the range of 10% <Ti, Al <20%, 5% <Ca <40%, 5% <REM <50%, 5% <Zr <40%, the liquid state in HAZ → The crystallization process does not proceed and IGB generation is not promoted. On the other hand, if the number of oxides having an equivalent circle diameter of less than 2 μm is less than 300 / mm 2 , the starting point of IGB generation is insufficient, so that the amount of IGB generation is also reduced and sufficient HAZ toughness cannot be obtained.

(円相当径が2μm以上5μm未満の酸化物が30〜70個/mm
円相当径が2μm以上5μm未満の酸化物は、前記した規定の組成を有する円相当径が2μm未満の酸化物に比べてIGBの生成能が高いため、30個/mm以上分散させることで、引張り強度80キロクラスの高強度鋼板においても、HAZ組織の微細化に著しい効果がある。一方で、個数密度が70個/mmを超えると、脆性破壊起点としての悪影響が顕在化するため、70個/mm以下に制御する必要がある。
(30-70 oxides / mm 2 with an equivalent circle diameter of 2 μm or more and less than 5 μm)
Oxides of less than the circle equivalent diameter of 2 [mu] m or more 5μm, since the equivalent circle diameter having the composition specified which is the is high ability of producing IGB compared to oxide of less than 2 [mu] m, by dispersing 30 / mm 2 or more Even in a high-strength steel sheet with a tensile strength of 80 kg class, there is a remarkable effect in refining the HAZ structure. On the other hand, when the number density exceeds 70 pieces / mm 2 , an adverse effect as a brittle fracture starting point becomes obvious, so it is necessary to control the number density to 70 pieces / mm 2 or less.

(円相当径が5μm以上の酸化物が30個/mm未満)
円相当径が5μm以上の酸化物は、脆性破壊起点としてのHAZ靭性に大きな悪影響を及ぼすため、30個/mm未満に制御する必要がある。
(Equivalent circle diameter is less than 30 oxide / mm 2 with 5 μm or more)
An oxide having an equivalent circle diameter of 5 μm or more has a great adverse effect on the HAZ toughness as a brittle fracture starting point, and therefore needs to be controlled to be less than 30 pieces / mm 2 .

(製造方法)
上記した要件を満足する本発明の厚鋼板、特に、酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、5%<Ca<40%、5%<REM<50%、5%<Zr<40%である酸化物を含有し、且つ、その酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上5μm未満の酸化物が30〜70個/mm、円相当径が5μm以上の酸化物が30個/mm未満、夫々存在する厚鋼板を製造するためには、以下の製造要件を満足するようにして、厚鋼板を製造する必要がある。
(Production method)
The thick steel plate of the present invention that satisfies the above requirements, in particular, the constituent elements excluding oxygen are 10% <Ti, Al <20%, 5% <Ca <40%, 5% <REM <50% in mass%. 5% <Zr <40% is included, and among the oxides, 300 / mm 2 or more of oxides with an equivalent circle diameter of less than 2 μm and an equivalent circle diameter of 2 to 5 μm In order to produce a thick steel plate having 30 to 70 oxides / mm 2 and an equivalent circle diameter of 5 μm or more and less than 30 oxides / mm 2 , respectively, the following production requirements must be satisfied: It is necessary to manufacture a thick steel plate.

その製造要件は、溶製時において、Mn、Siを用いた脱酸により溶鋼中の溶存酸素量を、質量%で、0.002〜0.01%とした後、Al→Ti→(REM、Zr)→Caの順に、Ti添加からCa添加までの時間t1が3〜20分となるようにして制御しつつ、各元素を添加し、Ca添加から鋳込み開始までの時間t2(分)を、ta(分)<t2(分)<tb(分)を満足する範囲に保ち、且つ、鋳造時における1500〜1450℃の温度範囲での冷却時間t3を300秒以内とすることである。また、この際、Ti、REM、Zrの添加量は、[Ti]/([REM]+[Zr])で求められる値を0.8以上11.8未満としなければならない。尚、前式で[ ]は各元素の溶鋼への添加量(質量%)を示す。これらの製造要件の規定理由については、以下の欄で詳しく説明する。   The manufacturing requirements are as follows: at the time of melting, the amount of dissolved oxygen in molten steel is 0.002 to 0.01% by mass% by deoxidation using Mn and Si, and then Al → Ti → (REM, In order of Zr) → Ca, the time t1 from the addition of Ti to the addition of Ca is controlled so as to be 3 to 20 minutes, each element is added, and the time t2 (minutes) from the addition of Ca to the start of casting is This is to keep ta (min) <t2 (min) <tb (min) in a range that satisfies the condition, and to set a cooling time t3 within a temperature range of 1500 to 1450 ° C. during casting within 300 seconds. At this time, the addition amount of Ti, REM, and Zr must be a value obtained by [Ti] / ([REM] + [Zr]) of 0.8 or more and less than 11.8. In the above formula, [] indicates the amount (mass%) of each element added to the molten steel. The reasons for specifying these manufacturing requirements will be described in detail in the following sections.

尚、先に示したta(分)とtb(分)は、以下の計算式から求めることができる。
ta=4−10×[Ca]/([Ti]+2[Al]+5[REM]+2[Zr]+0.01)
tb=25−40×[Ca]/([Ti]+2[Al]+5[REM]+2[Zr]+0.01)
但し、[Ca]、[Ti]、[Al]、[REM]、および[Zr]は、夫々Ca、Ti、Al、REM、およびZrの溶鋼への添加量(質量%)を示す。
The ta (minute) and tb (minute) shown above can be obtained from the following calculation formula.
ta = 4-10 × [Ca] / ([Ti] +2 [Al] +5 [REM] +2 [Zr] +0.01)
tb = 25−40 × [Ca] / ([Ti] +2 [Al] +5 [REM] +2 [Zr] +0.01)
However, [Ca], [Ti], [Al], [REM], and [Zr] indicate the amounts (mass%) of Ca, Ti, Al, REM, and Zr added to the molten steel, respectively.

また、酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、8%<Ca<40%、5%<REM<50%、5%<Zr<40%であって、且つ、10%<REM+Zr<70%を満足し、更には、TiとCaの質量比が1超1.4未満である酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上という条件を確保するためには、Caの添加量[Ca]を、以下の計算式に基づいて求められるA≦[Ca]≦Bの範囲に制御すれば良い。尚、以下の計算式に基づいて求められるAおよびBの値は、実験によって求められたものである。 Further, the constituent elements excluding oxygen are 10% <Ti, Al <20%, 8% <Ca <40%, 5% <REM <50%, 5% <Zr <40% in mass%, And 10% <REM + Zr <70% is satisfied, and furthermore, among oxides having a mass ratio of Ti and Ca of more than 1 and less than 1.4, 300 oxides / mm having an equivalent circle diameter of less than 2 μm / mm In order to secure the condition of 2 or more, the additive amount [Ca] of Ca may be controlled within a range of A ≦ [Ca] ≦ B obtained based on the following calculation formula. The values of A and B obtained based on the following calculation formula are obtained by experiments.

A=2.25×[Of]
B=[Of]×[Ti]/(0.25×[REM]+0.12×[Zr])
但し、[Of]はCa添加前の溶存酸素量(質量%)、[Ti]、[REM]、および[Zr]は、夫々Ti、REM、およびZrの溶鋼への添加量(質量%)を示す。
A = 2.25 × [Of]
B = [Of] × [Ti] / (0.25 × [REM] + 0.12 × [Zr])
However, [Of] is the amount of dissolved oxygen (% by mass) before addition of Ca, and [Ti], [REM], and [Zr] are the amounts (% by mass) of addition of Ti, REM, and Zr to the molten steel, respectively. Show.

すなわち、Ca添加量[Ca]がA値より少ないと、添加したCaの大部分がCa単体の酸化物として消費されるため、IGB生成の起点となる酸化物(構成元素が上記の要件を満足する酸化物)が十分に得られなくなる。また、Ca添加量[Ca]がB値を超えると、酸化物中のTi/Ca比が1を下回るようになるため、IGB生成の起点となる酸化物を必要数確保できなくなる。   That is, when the Ca addition amount [Ca] is less than the A value, most of the added Ca is consumed as an oxide of Ca alone, so that the oxide that serves as the starting point of IGB generation (the constituent elements satisfy the above requirements) Oxide) cannot be obtained sufficiently. Further, when the Ca addition amount [Ca] exceeds the B value, the Ti / Ca ratio in the oxide becomes less than 1, so that it becomes impossible to secure the necessary number of oxides that are the starting points for the generation of IGB.

・Al添加前の溶鋼中の溶存酸素量:0.002〜0.01%
Al添加前の溶鋼中の溶存酸素量が0.002%より低い場合は、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要量確保できなくなる。また、溶存酸素量が0.01%より高い場合は、円相当径が2μm以上の粗大介在物が増加し、HAZ靭性を劣化させてしまう。
・ Amount of dissolved oxygen in molten steel before addition of Al: 0.002 to 0.01%
When the amount of dissolved oxygen in the molten steel before the addition of Al is lower than 0.002%, it becomes impossible to secure a necessary amount of oxide inclusions having an appropriate composition that is the starting point of IGB generation. On the other hand, when the dissolved oxygen content is higher than 0.01%, coarse inclusions having an equivalent circle diameter of 2 μm or more increase and the HAZ toughness is deteriorated.

・溶製時において、Al→Ti→(REM、Zr)→Caの順に添加
この添加順序以外の順序で各元素を添加すると、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要数確保できなくなる。特に、Caは脱酸力が極めて強いため、TiやAlに先立って添加すると、TiやAlと結びつく酸素が全てなくなってしまうことになる。
At the time of melting, the addition of Al → Ti → (REM, Zr) → Ca in this order When each element is added in an order other than this addition order, an oxide inclusion having an appropriate composition that becomes the starting point of IGB generation The necessary number cannot be secured. In particular, since Ca has a very strong deoxidizing power, if it is added prior to Ti or Al, all of the oxygen associated with Ti and Al will be lost.

・Ti添加からCa添加までの時間t1が3〜20分
Ti添加からCa添加までの時間t1が3分よりも短くなると、Ca添加に先立つ酸化物の反応が十分に進行せず、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要数確保できなくなる。また、この時間t1が20分より長くなると、Ca添加に先立つ酸化物の反応が過剰に進行し、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要数確保できなくなる。
・ Time t1 from Ti addition to Ca addition is 3 to 20 minutes If time t1 from Ti addition to Ca addition is shorter than 3 minutes, the reaction of oxide prior to Ca addition does not proceed sufficiently, and IGB generation The required number of oxide inclusions having an appropriate composition as a starting point cannot be secured. Moreover, when this time t1 becomes longer than 20 minutes, the reaction of the oxide prior to Ca addition proceeds excessively, and it becomes impossible to secure the required number of oxide inclusions having an appropriate composition that becomes the starting point of IGB generation.

・Ca添加から鋳込み開始までの時間t2(分)が、ta(分)<t2(分)<tb(分)を満足する時間
Ca添加から鋳込み開始までの時間t2は、酸化物の生成状況に影響を及ぼす要件であり(Caが他の酸化物から酸素を奪って酸化物を形成する時間)、この時間t2がta(分)以下になると、Ca添加後の酸化物反応が十分に進行せず、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要数確保できなくなる。また、この時間t2がtb(分)以上になると、Ca添加後の酸化物の反応が過剰に進行し、IGB生成の起点となる適切な組成を有する酸化物系介在物を必要数確保できなくなる。尚、taとtbを求める式は、各元素の酸化物へのなり易さを考慮し、実験によって求められたものである。
・ Time t2 (min) from Ca addition to casting start satisfies ta (min) <t2 (min) <tb (min) Time t2 from Ca addition to casting start depends on oxide generation status This is an influential requirement (time for Ca to take oxygen from other oxides to form oxides), and when this time t2 is less than ta (min), the oxide reaction after Ca addition proceeds sufficiently. Therefore, the required number of oxide inclusions having an appropriate composition that is the starting point of IGB generation cannot be secured. Moreover, when this time t2 becomes tb (min) or more, the reaction of the oxide after the Ca addition proceeds excessively, and it becomes impossible to secure the required number of oxide inclusions having an appropriate composition that becomes the starting point of IGB generation. . The equations for obtaining ta and tb are obtained by experiments in consideration of the ease with which each element becomes an oxide.

・鋳造時の1500〜1450℃における冷却時間t3を300秒以内
鋳造時の1500〜1450℃における冷却時間t3が300秒を超えると、円相当径で5μm以上の粗大な酸化物系介在物の生成量が増加し、HAZ靭性が劣化することになる。
・ Cooling time t3 at 1500 to 1450 ° C. during casting is within 300 seconds If the cooling time t3 at 1500 to 1450 ° C. during casting exceeds 300 seconds, formation of coarse oxide inclusions with a circle equivalent diameter of 5 μm or more The amount increases and the HAZ toughness deteriorates.

・Ti、REM、Zrの添加量:[Ti]/([REM]+[Zr])で求められる値を0.8以上11.8未満
[Ti]/([REM]+[Zr])で求められる値が0.8を下回ると、弱脱酸元素であるTiに比べ、強脱酸元素であるREM、Zrの添加量が多くなる。このような添加量であると、溶鋼中のフリー酸素濃度が低下し、続くCa添加時における酸化物成長速度が低下するため、円相当径が2μm以上5μm未満の酸化物を30個/mm以上確保することができなくなる。一方、[Ti]/([REM]+[Zr])で求められる値が11.8以上になると、逆に円相当径が2μm以上5μm未満の酸化物が70個/mmを超えてしまう。
Addition amount of Ti, REM, Zr: The value obtained by [Ti] / ([REM] + [Zr]) is 0.8 or more and less than 11.8 [Ti] / ([REM] + [Zr]) When the required value is less than 0.8, the amount of addition of REM and Zr, which are strong deoxidation elements, is larger than that of Ti, which is a weak deoxidation element. With such an addition amount, the free oxygen concentration in the molten steel decreases, and the oxide growth rate during subsequent Ca addition decreases. Therefore, 30 oxides / mm 2 with an equivalent circle diameter of 2 μm or more and less than 5 μm. No more can be secured. On the other hand, when the value obtained by [Ti] / ([REM] + [Zr]) is 11.8 or more, the number of oxides having an equivalent circle diameter of 2 μm or more and less than 5 μm exceeds 70 / mm 2. .

尚、本発明の厚鋼板を製造するに当たっては、以上説明した溶製〜鋳造段階における要件以外の製造方法については特に限定されないが、得られた鋳片を加熱した後、熱間圧延を行い、焼入れを施したうえで、更に、オーステナイト・フェライト二相域に再加熱し、焼入れ焼戻し処理を行うことが推奨される。   In producing the thick steel plate of the present invention, the production method other than the requirements in the smelting to casting steps described above is not particularly limited, but after heating the obtained slab, hot rolling is performed, After quenching, it is recommended that the austenite / ferrite two-phase region be reheated and quenched and tempered.

(Ti含有窒化物を5.0×10個/mm以上)
また、発明者らは、前記酸化物の制御に加えて、厚鋼板に微細なTi含有窒化物を適切な個数以上含有させることで、HAZ熱サイクル中のオーステナイト粒粗大化をピン止めにより抑制し、HAZ組織を微細化することで靭性向上に寄与できること、特にHAZ靭性の平均値を向上させることができることを見出した。
(Ti-containing nitride is 5.0 × 10 6 pieces / mm 2 or more)
Further, in addition to controlling the oxide, the inventors contain a suitable number of fine Ti-containing nitrides in the thick steel plate, thereby suppressing austenite grain coarsening during the HAZ thermal cycle by pinning. It has been found that by making the HAZ structure finer, it can contribute to the improvement of toughness, in particular, the average value of the HAZ toughness can be improved.

尚、本発明で定義するTi含有窒化物には、TiNは勿論のこと、TiNのTiの一部、具体的にはTiに代えて原子比で50%以下の元素を他の窒化物形成元素(Nb、Zr、V等)で置換したものも含まれる。   The Ti-containing nitride defined in the present invention includes not only TiN but also a part of Ti of TiN, specifically, an element having an atomic ratio of 50% or less in place of Ti and other nitride-forming elements. Those substituted with (Nb, Zr, V, etc.) are also included.

このTi含有窒化物は前記酸化物と比較すると非常に微細であり、溶接による入熱前は鋼材内に非常に数多く微細分散させておくことが可能であるため、たとえ入熱量が100kJ/mm以上となるような大入熱溶接によりTi含有窒化物の多くが消失したとしても、まだ十分な数のTi含有窒化物を残存させることが可能である。このように、大入熱溶接後にもまだ十分な数のTi含有窒化物を残存させることができるので、HAZのオーステナイト粒粗大化のピン止め作用を有効に発揮させることができる。   This Ti-containing nitride is very fine as compared with the oxide, and since it can be finely dispersed in the steel before heat input by welding, even if the heat input is 100 kJ / mm or more Even if much of the Ti-containing nitride disappears due to such high heat input welding, a sufficient number of Ti-containing nitrides can still remain. In this way, a sufficient number of Ti-containing nitrides can still remain after high heat input welding, so that the pinning action of HAZ austenite grain coarsening can be effectively exhibited.

更に確実にHAZ靭性を確保するためには、円相当径が0.05μm未満のTi含有窒化物を5.0×10個/mm以上含有させることが好ましい。Ti含有窒化物の円相当径が0.05μm以上になると、HAZのオーステナイト粒粗大化のピン止め作用が低下してしまう。また、円相当径が0.05μm未満のTi含有窒化物の個数密度が5.0×10個/mmを下回ると、オーステナイト粒粗大化のピン止め作用を有効に発揮させることができない。より好ましくは8.0×10個以上である。 In order to ensure HAZ toughness more reliably, it is preferable to contain 5.0 × 10 6 pieces / mm 2 or more of Ti-containing nitride having an equivalent circle diameter of less than 0.05 μm. When the equivalent circle diameter of the Ti-containing nitride is 0.05 μm or more, the pinning action of HAZ austenite grain coarsening is reduced. If the number density of Ti-containing nitrides having an equivalent circle diameter of less than 0.05 μm is less than 5.0 × 10 6 pieces / mm 2 , the pinning action of austenite grain coarsening cannot be effectively exhibited. More preferably, it is 8.0 × 10 6 or more.

尚、本発明では、鋼材内に導入する微細なTi含有窒化物の円相当径の下限については特に規定しないが、測定を行う透過型電子顕微鏡(TEM)の測定限界から、実際の円相当径の下限は0.01μm程度であるということができる。   In the present invention, the lower limit of the equivalent circle diameter of the fine Ti-containing nitride introduced into the steel material is not particularly specified, but from the measurement limit of a transmission electron microscope (TEM) for measurement, the actual equivalent circle diameter is determined. Can be said to be about 0.01 μm.

(製造方法)
上記した要件を満足する本発明の厚鋼板、即ち、円相当径が0.05μm未満のTi含有窒化物を5.0×10個/mm以上含有する厚鋼板を製造するためには、前記した製造要件に加えて、以下の製造要件を満足するようにして、厚鋼板を製造する必要がある。
(Production method)
In order to produce a thick steel plate of the present invention that satisfies the above-described requirements, that is, a steel plate containing 5.0 × 10 6 pieces / mm 2 or more of Ti-containing nitride having an equivalent circle diameter of less than 0.05 μm, In addition to the manufacturing requirements described above, it is necessary to manufacture a thick steel plate so as to satisfy the following manufacturing requirements.

その製造要件は、圧延前の加熱温度を1050〜1200℃とすることと、900℃以上の圧下率を40%以上とすることである。これらの製造要件の規定理由を、以下の欄で詳しく説明する。   The manufacturing requirements are that the heating temperature before rolling is 1050 to 1200 ° C., and the rolling reduction of 900 ° C. or more is 40% or more. The reasons for defining these manufacturing requirements will be explained in detail in the following sections.

・圧延前の加熱温度を1050〜1200℃
圧延前の加熱温度が1050℃を下回ると、十分な個数のTi含有窒化物が析出しない。一方、圧延前の加熱温度が1200℃を上回ると、Ti含有窒化物の粗大化が進行し、所定のサイズを有する粒子が十分に得られなくなる。
・ The heating temperature before rolling is 1050 to 1200 ° C.
When the heating temperature before rolling is lower than 1050 ° C., a sufficient number of Ti-containing nitrides are not precipitated. On the other hand, when the heating temperature before rolling exceeds 1200 ° C., the Ti-containing nitride is coarsened and particles having a predetermined size cannot be sufficiently obtained.

・900℃以上の圧下率を40%以上
Ti含有窒化物は、圧延中にも歪誘起で析出する。900℃以上での圧下率が40%を下回ると、歪量が不足し、所定の分散を得られなくなる。また、900℃未満では、Ti拡散が十分に進行しなくなるため、たとえ圧下率が確保されていても、同様に所定の分散を得られなくなる。
-Rolling rate of 900 ° C or higher is 40% or more Ti-containing nitride is also precipitated during rolling during strain induction. When the rolling reduction at 900 ° C. or higher is less than 40%, the amount of strain becomes insufficient and a predetermined dispersion cannot be obtained. Further, if the temperature is lower than 900 ° C., Ti diffusion does not proceed sufficiently, so that even if the rolling reduction is ensured, a predetermined dispersion cannot be obtained in the same manner.

(化学成分組成)
次に、本発明の厚鋼板における化学成分組成について説明する。本発明の厚鋼板は、酸化物、Ti含有窒化物の分散状態等が適切であっても、夫々の化学成分(元素)の含有量が適正範囲内でなければ、母材(厚鋼板)の特性とHAZを良好にすることができない。従って、本発明の厚鋼板では、夫々の化学成分の含有量が、以下に説明する範囲内にあることも要件とする。これらの化学成分のうち、酸化物を構成するAl、Ca、Ti等の含有量は、その作用効果から明らかなように、酸化物を構成する量を含めたものである。尚、下記の化学成分の含有量(%)は全て質量%を示す。
(Chemical composition)
Next, the chemical component composition in the thick steel plate of the present invention will be described. The steel plate of the present invention is suitable for the base material (thick steel plate) if the content of each chemical component (element) is not within the proper range even if the oxide, Ti-containing nitride dispersion state is appropriate. Characteristics and HAZ cannot be improved. Therefore, in the thick steel plate of the present invention, it is also a requirement that the content of each chemical component is within the range described below. Among these chemical components, the content of Al, Ca, Ti, etc. constituting the oxide includes the amount constituting the oxide, as is apparent from its action and effect. In addition, all the content (%) of the following chemical component shows the mass%.

C:0.03〜0.12%
Cは、鋼板の強度を確保するための必須元素である。Cの含有量が0.03%より低い場合は、必要な強度を確保できなくなる。一方で、Cの含有量が過剰になると、硬質な島状マルテンサイト(MA)が多く生成して母材の靭性劣化を招くことになる。従って、Cの含有量は0.12%以下とする必要がある。Cの含有量の好ましい下限は0.04%、好ましい上限は0.10%である。
C: 0.03-0.12%
C is an essential element for ensuring the strength of the steel sheet. If the C content is lower than 0.03%, the required strength cannot be ensured. On the other hand, when the C content is excessive, a large amount of hard island martensite (MA) is generated, leading to deterioration of the toughness of the base material. Therefore, the C content needs to be 0.12% or less. The minimum with preferable content of C is 0.04%, and a preferable upper limit is 0.10%.

Si:0.02〜0.50%
Siは、鋼板の強度を確保するための有効な元素である。また、Ti活量を上昇させる作用があり、少量の添加はHAZ靭性の向上に有効なTiNの微細分散を促進する。しかしながら、過剰に添加すると、硬質な島状マルテンサイト(MA)が多く生成してHAZ靭性に悪影響を及ぼす。従って、Siの含有量は0.02〜0.50%とする。好ましい下限は0.05%、より好ましい下限は0.10%、更に好ましい下限は0.20%であり、好ましい上限は0.40%、より好ましい上限は0.30%である。
Si: 0.02 to 0.50%
Si is an effective element for ensuring the strength of the steel sheet. Moreover, there exists an effect | action which raises Ti activity, and addition of a small quantity promotes the fine dispersion | distribution of TiN effective for the improvement of HAZ toughness. However, if it is added in excess, a large amount of hard island martensite (MA) is produced, which adversely affects the HAZ toughness. Therefore, the Si content is 0.02 to 0.50%. A preferred lower limit is 0.05%, a more preferred lower limit is 0.10%, a still more preferred lower limit is 0.20%, a preferred upper limit is 0.40%, and a more preferred upper limit is 0.30%.

Mn:1.4〜3.0%
Mnは、鋼板の強度を確保するのに有用な元素であり、こうした効果を有効に発揮させるには1.4%以上含有させる必要がある。しかし、3.0%を超えて過剰に含有させるとHAZの強度が上昇しすぎてHAZ靭性に悪影響を及ぼすので、Mnの含有量は1.4〜3.0%とする。好ましい下限は1.5%、より好ましい下限は1.6%、更に好ましい下限は1.8%であり、好ましい上限は2.8%、より好ましい上限は2.5%である。
Mn: 1.4 to 3.0%
Mn is an element useful for ensuring the strength of the steel sheet, and it is necessary to contain 1.4% or more in order to exert such an effect effectively. However, if the content exceeds 3.0%, the HAZ strength increases excessively and adversely affects the HAZ toughness. Therefore, the Mn content is set to 1.4 to 3.0%. A preferred lower limit is 1.5%, a more preferred lower limit is 1.6%, a still more preferred lower limit is 1.8%, a preferred upper limit is 2.8%, and a more preferred upper limit is 2.5%.

P:0.03%以下(0%を含まない)
Pは、粒界破壊を起こし易く靭性に悪影響を及ぼす不純物元素であるので、その含有量はできるだけ少ないことが好ましい。母材およびHAZの靭性を確保するという観点からして、Pの含有量は0.03%以下に抑制する必要があり、好ましくは0.02%以下とする。しかし、工業的に鋼中のPを0%にすることは困難である。
P: 0.03% or less (excluding 0%)
Since P is an impurity element that easily causes grain boundary fracture and adversely affects toughness, its content is preferably as small as possible. From the viewpoint of ensuring the toughness of the base material and the HAZ, the P content must be suppressed to 0.03% or less, and preferably 0.02% or less. However, it is difficult to make P in steel 0% industrially.

S:0.015%以下(0%を含まない)
Sは、Mn硫化物を形成して母材の靭性を劣化させる元素であるので、その含有量はできるだけ少ないことが好ましい。母材の靭性を確保するという観点からして、Sの含有量は0.015%以下に抑制する必要があり、好ましくは0.010%以下とする。しかし、工業的に鋼中のSを0%にすることは困難である。
S: 0.015% or less (excluding 0%)
Since S is an element that forms Mn sulfide and degrades the toughness of the base material, its content is preferably as small as possible. From the viewpoint of ensuring the toughness of the base material, the S content must be suppressed to 0.015% or less, and preferably 0.010% or less. However, it is difficult to industrially make S in steel 0%.

Al:0.07%%以下(0%を含む)
Alは、Ti、Ca、REM、Zrに先立ち添加することによって、IGBの生成に有効な酸化物を形成する上で有用な元素である。しかしながら、その含有量が過剰であると粗大酸化物が生成して母材およびHAZの靭性が劣化するので、0.07%以下に抑える必要がある。Alの含有量の好ましい下限は0.005%、より好ましい0.01%であり、好ましい上限は0.06%、より好ましい上限は0.04%である。
Al: 0.07% or less (including 0%)
Al is an element useful for forming an oxide effective for generating IGB by adding it prior to Ti, Ca, REM, and Zr. However, if the content is excessive, a coarse oxide is generated and the toughness of the base material and the HAZ deteriorates, so it is necessary to keep it to 0.07% or less. The preferable lower limit of the Al content is 0.005%, more preferably 0.01%, the preferable upper limit is 0.06%, and the more preferable upper limit is 0.04%.

Cr:0.5〜2.0%
Crは、鋼板の強度確保に有効な元素であり、強度確保のため0.5%以上添加する必要がある。しかし、過剰に添加すると、HAZ強度の過大な上昇を招き、HAZの靭性に悪影響を及ぼすため、2.0%以下に抑える必要がある。Crの含有量の好ましい下限は0.6%、より好ましい0.7%であり、好ましい上限は1.8%、より好ましい上限は1.6%である。
Cr: 0.5 to 2.0%
Cr is an effective element for securing the strength of the steel sheet, and it is necessary to add 0.5% or more for securing the strength. However, if added excessively, the HAZ strength will be excessively increased and the toughness of the HAZ will be adversely affected, so it is necessary to keep it at 2.0% or less. The preferable lower limit of the Cr content is 0.6%, more preferably 0.7%, the preferable upper limit is 1.8%, and the more preferable upper limit is 1.6%.

Ti:0.010〜0.080%
Tiは、Alの添加後、Ca、REMやZrに先立ち添加することによって、IGBの生成に有効な酸化物を形成してHAZ靭性の向上に寄与する元素である。こうした効果を有効に発揮させるためには、0.010%以上含有させる必要がある。しかしながら、その含有量が過剰であると粗大酸化物が多く生成してHAZ靭性を劣化させるので、0.080%以下に抑える必要がある。Tiの含有量の好ましい下限は0.012%、好ましい上限は0.060%である。
Ti: 0.010 to 0.080%
Ti is an element that contributes to the improvement of HAZ toughness by forming an oxide effective for the generation of IGB by adding prior to Ca, REM and Zr after the addition of Al. In order to exhibit such an effect effectively, it is necessary to make it contain 0.010% or more. However, if the content is excessive, a large amount of coarse oxide is generated and the HAZ toughness is deteriorated, so it is necessary to suppress it to 0.080% or less. The preferable lower limit of the Ti content is 0.012%, and the preferable upper limit is 0.060%.

REM(希土類元素):0.0003〜0.02%
REM(希土類元素)は、Tiの添加後、Caの添加に先立って添加することで、IGBの生成に有効な酸化物を形成し、HAZ靭性の向上に寄与する元素である。こうした効果は、それらの含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、0.0003%以上含有させる必要がある。しかし、過剰に含有させると、酸化物が粗大になって母材およびHAZの靭性を劣化させるため、0.02%以下に抑えるべきである。REMの含有量の好ましい下限は0.0005%、好ましい上限は0.015%である。
REM (rare earth element): 0.0003 to 0.02%
REM (rare earth element) is an element that forms an oxide effective for the generation of IGB and contributes to the improvement of HAZ toughness by being added prior to the addition of Ca after the addition of Ti. Such effects increase as their content increases, but in order to effectively exhibit these effects, it is necessary to contain 0.0003% or more. However, if it is excessively contained, the oxide becomes coarse and deteriorates the toughness of the base material and the HAZ, so it should be suppressed to 0.02% or less. The preferable lower limit of the REM content is 0.0005%, and the preferable upper limit is 0.015%.

Zr:0.0003〜0.02%
Zrは、REMと同様にTiの添加後、Caの添加に先立って添加することで、IGBの生成に有効な酸化物を形成し、HAZ靭性の向上に寄与する元素である。こうした効果は、それらの含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、0.0003%以上含有させる必要がある。しかし、過剰に含有させると、酸化物が粗大になって母材およびHAZの靭性を劣化させるため、0.02%以下に抑えるべきである。Zrの含有量の好ましい下限は0.0005%、好ましい上限は0.015%である。
Zr: 0.0003 to 0.02%
Zr is an element that contributes to the improvement of HAZ toughness by forming an oxide effective for the generation of IGB by adding Ti prior to the addition of Ca, similar to REM. Such effects increase as their content increases, but in order to effectively exhibit these effects, it is necessary to contain 0.0003% or more. However, if it is excessively contained, the oxide becomes coarse and deteriorates the toughness of the base material and the HAZ, so it should be suppressed to 0.02% or less. The preferable lower limit of the Zr content is 0.0005%, and the preferable upper limit is 0.015%.

Ca:0.0005〜0.010%
Caは、Ti、REM、Zrの添加後、3〜20分後に添加することによって、IGBの生成に有効な酸化物を形成してHAZ靭性の向上に寄与する元素である。こうした効果を有効に発揮させるためには、0.0005%以上含有させる必要がある。しかしながら、その含有量が過剰であると粗大酸化物が生成して母材およびHAZの靭性が劣化するので0.010%以下に抑える必要がある。Caの含有量の好ましい下限は0.0008%、好ましい上限は0.008%である。
Ca: 0.0005 to 0.010%
Ca is an element that contributes to the improvement of HAZ toughness by forming an oxide effective for the generation of IGB by adding 3 to 20 minutes after the addition of Ti, REM, and Zr. In order to exhibit such an effect effectively, it is necessary to contain 0.0005% or more. However, if the content is excessive, a coarse oxide is generated and the toughness of the base material and the HAZ deteriorates, so it is necessary to keep it to 0.010% or less. The preferable lower limit of the Ca content is 0.0008%, and the preferable upper limit is 0.008%.

N:0.002〜0.020%
Nは、高温で溶け残る窒化物(Ti含有窒化物)を形成することによって、母材およびHAZの靭性を確保する上で有用な元素である。その含有量を0.002%以上とすることで、所望のTi含有窒化物を確保することができる。しかし、その含有量が過剰になると、固溶N量が増大して歪時効によって母材およびHAZの靭性が劣化するので0.020%以下に抑える必要がある。Nの含有量の好ましい下限は0.003%、好ましい上限は0.018%である。
N: 0.002 to 0.020%
N is an element useful for securing the toughness of the base material and the HAZ by forming a nitride (Ti-containing nitride) that remains undissolved at a high temperature. By making the content 0.002% or more, a desired Ti-containing nitride can be secured. However, if its content becomes excessive, the amount of dissolved N increases and the toughness of the base material and HAZ deteriorates due to strain aging, so it is necessary to keep it to 0.020% or less. The preferable lower limit of the N content is 0.003%, and the preferable upper limit is 0.018%.

以上が本発明で規定する必須の含有元素であって、残部は鉄および不可避的不純物である。不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれるSn、As、Pb等の元素の混入が許容される。また、更に以下に示す元素を積極的に含有させることも有効であり、含有される化学成分(元素)の種類によって厚鋼板の特性が更に改善される。   The above are the essential elements specified in the present invention, and the balance is iron and inevitable impurities. As an inevitable impurity, mixing of elements such as Sn, As, and Pb brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. Further, it is also effective to positively contain the following elements, and the characteristics of the thick steel plate are further improved depending on the kind of chemical components (elements) contained.

Ni:0.05〜2.0%、Cu::0.05〜2.0%、Mo:0.05〜2.0%よりなる群から選ばれる1種以上
Ni、Cu、およびMoは、いずれもが鋼板の高強度化に有効な元素であり、その効果はそれらの含有量が増加するにつれて増大する。こうした効果を有効に発揮させるためには、いずれも0.05%以上含有させることが好ましい。しかし、それらを過剰に含有させると、強度の過大な上昇を招き、HAZ靭性に悪影響を及ぼすため、いずれも2.0%以下に抑えることが好ましい。これらの元素の含有量のより好ましい下限はいずれもが0.1%、更に好ましい下限はいずれもが0.15%であり、より好ましい上限はいずれもが1.8%、更に好ましい上限はいずれもが1.6%である。
One or more selected from the group consisting of Ni: 0.05-2.0%, Cu :: 0.05-2.0%, Mo: 0.05-2.0% Ni, Cu, and Mo are: All are effective elements for increasing the strength of steel sheets, and the effect increases as their content increases. In order to exhibit such an effect effectively, it is preferable to contain 0.05% or more of all. However, if they are contained excessively, the strength is excessively increased and the HAZ toughness is adversely affected. The more preferable lower limit of the content of these elements is 0.1% for all, the more preferable lower limit is 0.15% for all, the more preferable upper limit is 1.8%, and the more preferable upper limit is any. Is 1.6%.

Nb:0.002〜0.10%および/またはV:0.002〜0.10%
NbおよびVは、炭窒化物として析出し、γ粒の粗大化を抑制することで、母材靭性を良好にするのに有効な元素である。その効果はそれらの含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、いずれも0.002%以上含有させることが好ましい。しかし、それらを過剰に含有させると、HAZ組織の粗大化を招き、HAZ靭性を劣化させるため、いずれも0.10%以下に抑えることが好ましい。それらの含有量のより好ましい下限はいずれもが0.005%、より好ましい上限はいずれもが0.08%である。
Nb: 0.002-0.10% and / or V: 0.002-0.10%
Nb and V precipitate as carbonitrides and are effective elements for improving the base material toughness by suppressing the coarsening of γ grains. Although the effect increases as the content thereof increases, in order to effectively exhibit such an effect, it is preferable that the content is 0.002% or more. However, if they are contained excessively, the HAZ structure is coarsened and the HAZ toughness is deteriorated. The more preferable lower limit of the content is 0.005% for all, and the preferable upper limit is 0.08% for all.

B:0.0003〜0.005%
Bは、粗大なIGBの生成を抑制することで、母材およびHAZの靭性を向上させるのに有効な元素である。その効果はその含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、0.0003%以上含有させることが好ましい。しかし、その含有量が過剰になると、オーステナイト粒界でのBN析出を招き、母材およびHAZの靭性を劣化させるため、0.003%以下に抑えることが好ましい。Bの含有量のより好ましい下限は0.0005%、更に好ましい下限は0.0010%、最も好ましい下限は0.0015%であって、より好ましい上限は0.004%である。
B: 0.0003 to 0.005%
B is an element effective in improving the toughness of the base material and the HAZ by suppressing the formation of coarse IGB. The effect increases as the content increases, but in order to effectively exhibit such an effect, it is preferable to contain 0.0003% or more. However, if the content is excessive, BN precipitation at the austenite grain boundary is caused and the toughness of the base material and the HAZ is deteriorated. Therefore, it is preferably suppressed to 0.003% or less. The more preferable lower limit of the B content is 0.0005%, the still more preferable lower limit is 0.0010%, the most preferable lower limit is 0.0015%, and the more preferable upper limit is 0.004%.

(D値)
以上の化学成分組成を満足した上で、本発明の厚鋼板は、D=62×[Mn]+27×[Ni]+111×[Cr]という式から求められるD値が、238<D<388を満足する必要がある(但し、前式で[ ]は各元素の含有量(質量%)を示す。)。このD値が238より低いと、酸化物起点のIGB生成が十分に得られなくなりHAZ靭性が低下してしまう。一方、D値が388より大きいと、HAZの強度が過大に上昇しHAZ靭性を確保できなくなる。
(D value)
After satisfying the above chemical composition, the thick steel plate of the present invention has a D value calculated from the formula of D = 62 × [Mn] + 27 × [Ni] + 111 × [Cr] such that 238 <D <388. It is necessary to satisfy (however, in the above formula, [] indicates the content (% by mass) of each element). When this D value is lower than 238, the oxide-origin IGB generation cannot be sufficiently obtained, and the HAZ toughness is lowered. On the other hand, if the D value is larger than 388, the strength of the HAZ increases excessively and the HAZ toughness cannot be secured.

本発明は厚鋼板に関する発明であるが、一般に厚鋼板とは、JISで定義されるように、板厚が3.0mm以上の鋼板のことを示す。一方、本発明の厚鋼板は、50mm以上の板厚の厚鋼板の溶接を対象として発明されたものであり、対象とする鋼板は、板厚が50mm以上の鋼板であるということができると思われるが、これらは単に好ましい態様に過ぎず、本発明を50mm未満の板厚の厚鋼板へ適用することを排除するものではない。   Although this invention is invention regarding a thick steel plate, generally a thick steel plate shows the steel plate whose plate | board thickness is 3.0 mm or more as defined by JIS. On the other hand, the thick steel plate of the present invention was invented for welding thick steel plates having a thickness of 50 mm or more, and the target steel plate can be said to be a steel plate having a thickness of 50 mm or more. However, these are merely preferred embodiments and do not exclude application of the present invention to thick steel plates having a thickness of less than 50 mm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

(実施例1)
実施例1では、まず、表1および表2に示す各成分組成(尚、Al,Ti,REM,Zr,Caについては添加後の質量%を記載している。)の鋼を、真空溶解炉(VIF:150kg)によって溶製した後、その溶鋼を用いて鋳片(断面形状:150mm×250mm)を鋳造し、更にその鋳片を用いて熱間圧延を行うことで、板厚50mmの熱間圧延板を得た。
Example 1
In Example 1, first, steels having respective component compositions shown in Tables 1 and 2 (in addition, Al, Ti, REM, Zr, and Ca indicate the mass% after addition) are used in a vacuum melting furnace. (VIF: 150 kg) After melting, cast slab (cross-sectional shape: 150 mm × 250 mm) using the molten steel, and further hot rolling using the slab, heat of 50 mm thickness A rolled sheet was obtained.

この熱間圧延板(厚鋼板)を製造するにあたり、制御した各条件を表3および表4に示す。その条件は、Al添加前の溶鋼中の溶存酸素量[O]、Al,Ti,REM,Zr,Caの添加順序、[Ti]/([REM]+[Zr])、Ti添加からCa添加までの時間t1、Ca添加から鋳込み開始までの時間t2、鋳造時の1500〜1450℃における冷却時間t3、Ca添加量[Ca]である。   Tables 3 and 4 show the controlled conditions in producing this hot-rolled sheet (thick steel sheet). The conditions include the amount of dissolved oxygen [O] in the molten steel before Al addition, the order of addition of Al, Ti, REM, Zr, and Ca, [Ti] / ([REM] + [Zr]), and addition of Ti to addition of Ca Time t1, time t2 from the addition of Ca to the start of casting, cooling time t3 at 1500 to 1450 ° C. during casting, and Ca addition amount [Ca].

尚、表1および表2において、REMは、質量%で、Ceを50%程度とLaを25%程度含有するミッシュメタルの形態で添加した。また、表1および表2で、「−」は該当元素を添加していないことを示す。   In Tables 1 and 2, REM was added in the form of a misch metal containing, by mass%, about 50% Ce and about 25% La. In Tables 1 and 2, “-” indicates that the corresponding element is not added.

また、表1および表2において、Al,Ti,REM,Zr,Caの添加順序は、Al→Ti→(REM,Zr)→Caの順序のときを「○」、それ以外の順序のときを「×」で示す。また、Ca添加から鋳込み開始までの時間t2については、前記したta(分)<t2(分)<tb(分)を満足するものを「○」、満足しないものを「×」で示す。   In Tables 1 and 2, the order of addition of Al, Ti, REM, Zr, and Ca is “◯” when the order of Al → Ti → (REM, Zr) → Ca, and other orders. Indicated by “x”. As for the time t2 from the addition of Ca to the start of casting, “o” indicates that the above ta (min) <t2 (min) <tb (min) is satisfied, and “x” indicates that it is not satisfied.

また、Ca添加量[Ca]に関しては、前記したA≦[Ca]≦Bの関係を満足するものを「○」、満足しないものを「×」で示した。   As for the Ca addition amount [Ca], “◯” indicates that the relationship of A ≦ [Ca] ≦ B described above is satisfied, and “×” indicates that the relationship is not satisfied.

以上の要件で製造した各熱間圧延板(厚鋼板)を用いて、各種大きさの酸化物(酸化物系介在物)の個数密度、HAZ靭性(最小値)、引張り強度を測定により求め出した。これらの測定結果を表3および表4に示す。   Using each hot-rolled sheet (thick steel plate) manufactured according to the above requirements, the number density, HAZ toughness (minimum value), and tensile strength of various sized oxides (oxide inclusions) are obtained by measurement. did. These measurement results are shown in Tables 3 and 4.

Figure 2012092425
Figure 2012092425

Figure 2012092425
Figure 2012092425

Figure 2012092425
Figure 2012092425

Figure 2012092425
Figure 2012092425

(円相当径が2μm未満の酸化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、Carl Zeiss社製の電界放射式走査型電子顕微鏡「SUPRA35(商品名)」(以下、FE−SEMと呼ぶ)を用いて観察した。その観察条件は、倍率:5000倍、観察視野:0.0024μm、観察箇所:20箇所とした。画像解析によって、この観察視野中の各酸化物の面積を測定し、その面積から各酸化物の円相当径を算出した。尚、各酸化物が上記した成分組成を満足するものであることは、EDX(エネルギー分散型X線検出器)によって確認した。そして、円相当径が2μm未満となる酸化物の個数(N1)を1mm相当の個数密度に換算して求めた。但し、円相当径が0.2μm以下となる酸化物については、EDXの信頼性が十分でないため、解析から除外した。
(Measurement of number density of oxides with equivalent circle diameter less than 2 μm)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. The parallel cross section was observed using a field emission scanning electron microscope “SUPRA35 (trade name)” (hereinafter referred to as FE-SEM) manufactured by Carl Zeiss. The observation conditions were as follows: magnification: 5000 times, observation visual field: 0.0024 μm 2 , observation location: 20 locations. The area of each oxide in this observation field was measured by image analysis, and the equivalent circle diameter of each oxide was calculated from the area. In addition, it was confirmed by EDX (energy dispersive X-ray detector) that each oxide satisfies the above-described component composition. Then, the number (N1) of oxides having an equivalent circle diameter of less than 2 μm was determined by converting to a number density equivalent to 1 mm 2 . However, oxides having an equivalent circle diameter of 0.2 μm or less were excluded from the analysis because the reliability of EDX was not sufficient.

また、測定した酸化物のうちで、酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、8%<Ca<40%、5%<REM<50%、5%<Zr<40%であって、且つ、10%<REM+Zr<70%を満足し、更には、TiとCaの質量比が1超1.4未満である酸化物のうち、円相当径が2μm未満の酸化物の個数(NA)を1mm相当の個数密度に換算して求めた。 Further, among the measured oxides, the constituent elements excluding oxygen are 10% <Ti, Al <20%, 8% <Ca <40%, 5% <REM <50%, 5% <% by mass. Zr <40%, 10% <REM + Zr <70% is satisfied, and among oxides having a mass ratio of Ti and Ca of more than 1 and less than 1.4, the equivalent circle diameter is less than 2 μm The number (NA) of oxides was determined by converting the number density to 1 mm 2 .

(円相当径が2μm以上5μm未満の酸化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、FE−SEMを用いて観察した。その観察条件は、倍率:1000倍、観察視野:0.06μm、観察箇所:20箇所とした。画像解析によって、この観察視野中の各酸化物の面積を測定し、その面積から各酸化物の円相当径を算出した。尚、各酸化物が上記した成分組成を満足するものであることは、EDX(エネルギー分散型X線検出器)によって確認した。そして、円相当径が2μm以上5μm未満となる酸化物の個数(N2)を1mm相当の個数密度に換算して求めた。
(Measurement of number density of oxides with equivalent circle diameter of 2 μm or more and less than 5 μm)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. Parallel cross sections were observed using FE-SEM. The observation conditions were as follows: magnification: 1000 times, observation visual field: 0.06 μm 2 , observation location: 20 locations. The area of each oxide in this observation field was measured by image analysis, and the equivalent circle diameter of each oxide was calculated from the area. In addition, it was confirmed by EDX (energy dispersive X-ray detector) that each oxide satisfies the above-described component composition. Then, the number of oxides (N2) having an equivalent circle diameter of 2 μm or more and less than 5 μm was calculated by converting it to a number density corresponding to 1 mm 2 .

(円相当径が5μm以上の酸化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、FE−SEMを用いて観察した。その観察条件は、倍率:1000倍、観察視野:0.06μm、観察箇所:20箇所とした。画像解析によって、この観察視野中の各酸化物の面積を測定し、その面積から各酸化物の円相当径を算出した。尚、各酸化物が上記した成分組成を満足するものであることは、EDX(エネルギー分散型X線検出器)によって確認した。そして、円相当径が5μm以上となる酸化物の個数(N3)を1mm相当の個数密度に換算して求めた。
(Measurement of number density of oxides with equivalent circle diameter of 5 μm or more)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. Parallel cross sections were observed using FE-SEM. The observation conditions were as follows: magnification: 1000 times, observation visual field: 0.06 μm 2 , observation location: 20 locations. The area of each oxide in this observation field was measured by image analysis, and the equivalent circle diameter of each oxide was calculated from the area. In addition, it was confirmed by EDX (energy dispersive X-ray detector) that each oxide satisfies the above-described component composition. Then, the number (N3) of oxides having an equivalent circle diameter of 5 μm or more was determined by converting into a number density equivalent to 1 mm 2 .

(HAZ靭性の評価)
各厚鋼板の表面から深さt/4(t:板厚)の位置から、12.5×32×55mmの試験片を切り出し、1400℃で5秒間保持した後、800℃〜500℃の冷却時間が200秒となるように速度を制御して冷却した。これは、角継ぎ手サブマージアーク溶接(入熱量:50kJ/mm)を模擬した熱サイクルである。これら試験片から、シャルピー衝撃試験片(JIS Z 2202のVノッチ試験片)を3本ずつ採取し、0℃でシャルピー衝撃試験を行い、吸収エネルギーvEを測定した。これら各3本ずつのシャルピー衝撃試験測定結果から、最小の吸収エネルギーvE(min)が70Jを超えるものを、HAZ靭性に優れると評価した。
(Evaluation of HAZ toughness)
A test piece of 12.5 × 32 × 55 mm was cut out from the position of depth t / 4 (t: plate thickness) from the surface of each thick steel plate, held at 1400 ° C. for 5 seconds, and then cooled to 800 ° C. to 500 ° C. Cooling was performed by controlling the speed so that the time was 200 seconds. This is a thermal cycle simulating corner joint submerged arc welding (heat input: 50 kJ / mm). From these test pieces, three Charpy impact test pieces (JIS Z 2202 V-notch test pieces) were sampled and subjected to a Charpy impact test at 0 ° C. to measure the absorbed energy vE 0 . From each of these three Charpy impact test measurement results, those having a minimum absorbed energy vE 0 (min) exceeding 70 J were evaluated as having excellent HAZ toughness.

(引張り強度の評価)
各厚鋼板の表面から深さt/4(t:板厚)の位置から、圧延方向に直角にJIS Z 2201の4号試験片を採取し、JIS Z 2241の引張り試験を実施して、引張り強度TSを求めた。TS>780MPaを満たすものを強度に優れると評価した。
(Evaluation of tensile strength)
From the position of depth t / 4 (t: plate thickness) from the surface of each thick steel plate, JIS Z 2201 No. 4 test piece was sampled at right angles to the rolling direction, and a tensile test of JIS Z 2241 was carried out for The strength TS was determined. Those satisfying TS> 780 MPa were evaluated as having excellent strength.

No.1〜32は、本発明の要件を満足する発明例であり、化学成分組成、酸化物の分散等が適切になされており、HAZ靭性並びに強度が優れていることが分かる。すなわち、No.1〜32は、大入熱後のHAZの強度および靭性に優れた厚鋼板であるということができる。   No. 1-32 are invention examples that satisfy the requirements of the present invention, and it is understood that chemical component composition, oxide dispersion, etc. are appropriately performed, and that HAZ toughness and strength are excellent. That is, no. 1-32 can be said to be thick steel plates excellent in the strength and toughness of HAZ after large heat input.

尚、一般的に、HAZ靭性と引張り強度は負の相関を示す傾向がある。本発明の要件を満足する発明例の中で、引張り強度が810〜820MPaであったNo.2、6、32を比較すると、酸化物個数NAが請求項2記載の要件を満たさなかったNo.6のみがE(min)が110kJを下回っている。 In general, HAZ toughness and tensile strength tend to show a negative correlation. Among the inventive examples that satisfy the requirements of the present invention, No. 1 having a tensile strength of 810 to 820 MPa. 2, 6, and 32, the oxide number NA does not satisfy the requirement of claim 2. Only 6 has E 0 (min) below 110 kJ.

これに対し、No.33〜64は、本発明の要件のうちいずれかの要件を満足しない比較例であり、HAZ靭性、強度の少なくとも一方で、評価基準を満足していないことが分かる。   In contrast, no. 33 to 64 are comparative examples that do not satisfy any of the requirements of the present invention, and it can be seen that at least one of HAZ toughness and strength does not satisfy the evaluation criteria.

(実施例2)
実施例2では、実施例1のNo.1、6、26、並びにそれらと略同様の成分組成(表5に示す。尚、Al,Ti,REM,Zr,Caについては添加後の質量%を記載している。)の鋼を、真空溶解炉(VIF:150kg)によって溶製した後、その溶鋼を用いて鋳片(断面形状:150mm×250mm)を鋳造し、更にその鋳片を用いて表6に示す要領で熱間圧延を行うことで、板厚50mmの熱間圧延板を得た。
(Example 2)
In Example 2, No. 1 in Example 1 was obtained. 1, 6, 26, and steels having substantially the same component composition (shown in Table 5. In addition, Al, Ti, REM, Zr, and Ca are described in terms of mass% after addition). After melting with a melting furnace (VIF: 150 kg), a cast slab (cross-sectional shape: 150 mm × 250 mm) is cast using the molten steel, and hot rolling is performed as shown in Table 6 using the slab. Thus, a hot-rolled sheet having a thickness of 50 mm was obtained.

この熱間圧延板(厚鋼板)を製造するにあたり、制御した各条件を表6に示す。その条件は、Al添加前の溶鋼中の溶存酸素量[O]、Al,Ti,REM,Zr,Caの添加順序、[Ti]/([REM]+[Zr])、Ti添加からCa添加までの時間t1、Ca添加から鋳込み開始までの時間t2、鋳造時の1500〜1450℃における冷却時間t3に加えて、Ca添加量[Ca]、圧延前の加熱温度、900℃以上での圧下率である。   Table 6 shows the controlled conditions in producing this hot-rolled sheet (thick steel sheet). The conditions include the amount of dissolved oxygen [O] in the molten steel before Al addition, the order of addition of Al, Ti, REM, Zr, and Ca, [Ti] / ([REM] + [Zr]), and addition of Ti to addition of Ca In addition to the time t1, the time t2 from the Ca addition to the start of casting, the cooling time t3 at 1500 to 1450 ° C. during casting, the Ca addition amount [Ca], the heating temperature before rolling, the rolling reduction at 900 ° C. or higher It is.

尚、表5において、REMは、実施例1と同様に、質量%で、Ceを50%程度とLaを25%程度含有するミッシュメタルの形態で添加した。また、表5で、「−」は該当元素を添加していないことを示す。   In Table 5, REM was added in the form of a misch metal containing about 50% Ce and about 25% La in the same manner as in Example 1. In Table 5, “-” indicates that the corresponding element is not added.

また、表6において、Al,Ti,REM,Zr,Caの添加順序は、Al→Ti→(REM,Zr)→Caの順序のときを「○」、それ以外の順序のときを「×」で示す。また、Ca添加から鋳込み開始までの時間t2については、前記したta(分)<t2(分)<tb(分)を満足するものを「○」、満足しないものを「×」で示す。   In Table 6, the order of addition of Al, Ti, REM, Zr, and Ca is “◯” when Al → Ti → (REM, Zr) → Ca, and “X” when other orders are added. It shows with. As for the time t2 from the addition of Ca to the start of casting, “o” indicates that the above ta (min) <t2 (min) <tb (min) is satisfied, and “x” indicates that it is not satisfied.

また、Ca添加量[Ca]に関しては、前記したA≦[Ca]≦Bの関係を満足するものを「○」、満足しないものを「×」で示した。   As for the Ca addition amount [Ca], “◯” indicates that the relationship of A ≦ [Ca] ≦ B described above is satisfied, and “×” indicates that the relationship is not satisfied.

以上の要件で製造した各熱間圧延板(厚鋼板)を用いて、各種大きさの酸化物(酸化物系介在物)の個数密度、円相当径が0.05μm未満のTi含有窒化物の個数密度、HAZ靭性(最小値および平均値)、引張り強度を測定により求め出した。これらの測定結果を表7に示す。   Using each hot-rolled sheet (thick steel plate) manufactured according to the above requirements, the number density of oxides (oxide inclusions) of various sizes, the Ti-containing nitride having an equivalent circle diameter of less than 0.05 μm The number density, HAZ toughness (minimum value and average value), and tensile strength were determined by measurement. These measurement results are shown in Table 7.

尚、各種大きさの酸化物(酸化物系介在物)の個数密度の測定、引張り強度の評価、並びにHAZ靭性の評価のうち最小値の評価は先に説明した実施例1と同様である。   In addition, the evaluation of the minimum value among the measurement of the number density of oxides (oxide inclusions) of various sizes, the evaluation of the tensile strength, and the evaluation of the HAZ toughness is the same as in Example 1 described above.

Figure 2012092425
Figure 2012092425

Figure 2012092425
Figure 2012092425

Figure 2012092425
Figure 2012092425

(円相当径が0.05μm未満のTi含有窒化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面からTEMレプリカ試験片を作製し、透過型電子顕微鏡(TEM)を用いてその断面を観察した。観察条件は、倍率:15万倍、観察視野:0.66μm×0.78μmで、4視野観察した。そして、EDX(エネルギー分散型X線検出器)によってTi、Nを含む粒子を判別してその粒子をTi含有窒化物とした。更に画像解析によって、この観察視野中のTi含有窒化物の面積を測定し、円相当径に換算して0.05μm未満のTi含有窒化物の個数を計測し、1mm相当の個数密度に換算して求めた。但し、円相当径が0.01μm以下の粒子については、EDXの信頼性が十分でないため、解析から除外した。
(Measurement of the number density of Ti-containing nitrides having an equivalent circle diameter of less than 0.05 μm)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. A TEM replica test piece was prepared from the parallel cross section, and the cross section was observed using a transmission electron microscope (TEM). The observation conditions were magnification: 150,000 times, observation field: 0.66 μm × 0.78 μm, and four fields of view were observed. And the particle | grains containing Ti and N were discriminate | determined by EDX (energy dispersive X-ray detector), and the particle | grains were made into Ti containing nitride. Further, by image analysis, the area of the Ti-containing nitride in this observation field is measured, the number of Ti-containing nitrides less than 0.05 μm is measured in terms of the equivalent circle diameter, and the number density is equivalent to 1 mm 2. And asked. However, particles having an equivalent circle diameter of 0.01 μm or less were excluded from the analysis because the reliability of EDX was not sufficient.

(HAZ靭性の評価)
HAZ靭性の評価のうち最小値については実施例1と同一の方法で評価したが、平均値は実施例1と同一の条件で作製された試験片から、シャルピー衝撃試験片(JIS Z 2202のVノッチ試験片)を3本ずつ採取し、−20℃でシャルピー衝撃試験を行い、吸収エネルギーvE−20を測定することで評価した。採取した各3本ずつのシャルピー衝撃試験測定結果より、吸収エネルギーの平均値vE−20(ave)を求め、吸収エネルギーvE−20(ave)が80Jを超えるものを、HAZ靭性に優れると評価した。
(Evaluation of HAZ toughness)
Among the evaluations of the HAZ toughness, the minimum value was evaluated by the same method as in Example 1. However, the average value was determined from a Charpy impact test piece (V of JIS Z 2202) from a test piece prepared under the same conditions as in Example 1. Three notch specimens) were collected and evaluated by performing Charpy impact test at −20 ° C. and measuring absorbed energy vE- 20 . From the collected Charpy impact test results for each three samples, the average value of absorbed energy vE- 20 (ave) was determined, and the absorbed energy vE- 20 (ave) exceeding 80 J was evaluated as having excellent HAZ toughness. .

No.1A、No.6A、No.26A、No.26Bは、化学成分組成、酸化物の分散、更にはTi含有窒化物の分散が適切になされた請求項3記載の発明例であり、引張り強度並びにHAZ靭性の最小値が優れている上に、HAZ靭性の平均値が80Jを超えており、大入熱後のHAZ靭性並びに強度が更に優れていることが分かる。   No. 1A, no. 6A, no. 26A, no. 26B is an invention example according to claim 3 in which chemical composition, oxide dispersion, and Ti-containing nitride dispersion are appropriately made, and the tensile strength and the minimum value of HAZ toughness are excellent, The average value of HAZ toughness exceeds 80 J, and it can be seen that the HAZ toughness and strength after large heat input are further excellent.

これに対し、No.1、No.1B、No.6、No.6B、およびNo.26は、大入熱後のHAZの強度および靭性に優れた厚鋼板であるものの、Ti含有窒化物の分散が請求項3記載の要件を満足しないため、HAZ靭性の平均値は80J以下となった。   In contrast, no. 1, no. 1B, No. 1 6, no. 6B, and no. Although 26 is a thick steel plate having excellent HAZ strength and toughness after large heat input, the dispersion of Ti-containing nitride does not satisfy the requirements of claim 3, so the average value of HAZ toughness is 80 J or less. It was.

Claims (6)

質量%で、C:0.03〜0.12%、Si:0.02〜0.50%、Mn:1.4〜3.0%、P:0.03%以下(0%を含まない)、S:0.015%以下(0%を含まない)、Al:0.07%以下(0%を含む)、Cr:0.5〜2.0%、Ti:0.010〜0.080%、REM:0.0003〜0.02%、Zr:0.0003〜0.02%、Ca:0.0005〜0.010%、N:0.002〜0.020%を含有し、残部が鉄および不可避的不純物である厚鋼板であって、
D=62×[Mn]+27×[Ni]+111×[Cr]という式から求められるD値が、238<D<388を満足すると共に、
酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、5%<Ca<40%、5%<REM<50%、5%<Zr<40%である酸化物を含有し、且つ、前記酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上5μm未満の酸化物が30〜70個/mm、円相当径が5μm以上の酸化物が30個/mm未満存在することを特徴とする溶接熱影響部の靭性に優れた厚鋼板。
但し、上式で[ ]は各元素の含有量(質量%)を示す。
In mass%, C: 0.03-0.12%, Si: 0.02-0.50%, Mn: 1.4-3.0%, P: 0.03% or less (excluding 0%) ), S: 0.015% or less (excluding 0%), Al: 0.07% or less (including 0%), Cr: 0.5-2.0%, Ti: 0.010-0. 080%, REM: 0.0003-0.02%, Zr: 0.0003-0.02%, Ca: 0.0005-0.010%, N: 0.002-0.020%, A steel plate with the balance being iron and inevitable impurities,
The D value obtained from the equation D = 62 × [Mn] + 27 × [Ni] + 111 × [Cr] satisfies 238 <D <388,
Constituent elements excluding oxygen contain oxides by mass% of 10% <Ti, Al <20%, 5% <Ca <40%, 5% <REM <50%, 5% <Zr <40% Of the oxides, 300 / mm 2 or more of oxides having an equivalent circle diameter of less than 2 μm, 30 to 70 / mm 2 of oxides having an equivalent circle diameter of 2 to 5 μm, and equivalent circle diameters. Is a thick steel plate excellent in toughness of the weld heat affected zone, characterized in that less than 30 oxides / mm 2 of 5 μm or more exist.
However, in the above formula, [] indicates the content (% by mass) of each element.
酸素を除く構成元素が、質量%で、10%<Ti、Al<20%、8%<Ca<40%、5%<REM<50%、5%<Zr<40%であって、且つ、10%<REM+Zr<70%を満足し、更には、TiとCaの質量比が1超1.4未満である酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上存在することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた厚鋼板。 The constituent elements excluding oxygen are 10% by mass, 10% <Ti, Al <20%, 8% <Ca <40%, 5% <REM <50%, 5% <Zr <40%, and 10% <REM + Zr <70% is satisfied. Further, among oxides having a mass ratio of Ti and Ca of more than 1 and less than 1.4, 300 oxides / mm 2 or more having an equivalent circle diameter of less than 2 μm The thick steel plate excellent in toughness of the weld heat affected zone according to claim 1, wherein the steel plate has excellent toughness. 更に、円相当径が0.05μm未満のTi含有窒化物を5.0×10個/mm以上含有することを特徴とする請求項1または2に記載の溶接熱影響部の靭性に優れた厚鋼板。 Furthermore, excellent toughness of the heat affected zone according to claim 1 or 2, characterized in that the circle equivalent diameter containing Ti-containing nitride of less than 0.05 .mu.m 5.0 × 10 6 cells / mm 2 or more Thick steel plate. 更に、質量%で、Ni:0.05〜2.0%、Cu:0.05〜2.0%、Mo:0.05〜2.0%よりなる群から選ばれる1種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板。   Furthermore, it contains at least one selected from the group consisting of Ni: 0.05 to 2.0%, Cu: 0.05 to 2.0%, and Mo: 0.05 to 2.0% by mass%. The thick steel plate excellent in the toughness of the welding heat affected zone according to any one of claims 1 to 3. 更に、質量%で、Nb:0.002〜0.10%および/またはV:0.002〜0.10%を含有することを特徴とする請求項1乃至4のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板。   The welding heat according to any one of claims 1 to 4, further comprising Nb: 0.002 to 0.10% and / or V: 0.002 to 0.10% in mass%. A thick steel plate with excellent toughness in the affected area. 更に、質量%で、B:0.0003〜0.005%を含有することを特徴とする請求項1乃至5のいずれかに記載の溶接熱影響部の靭性に優れた厚鋼板。   Furthermore, it contains B: 0.0003-0.005% by mass%, The thick steel plate excellent in the toughness of the welding heat affected zone in any one of the Claims 1 thru | or 5 characterized by the above-mentioned.
JP2011134428A 2010-09-29 2011-06-16 Thick steel plate with excellent toughness in weld heat affected zone Active JP5723234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134428A JP5723234B2 (en) 2010-09-29 2011-06-16 Thick steel plate with excellent toughness in weld heat affected zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010219511 2010-09-29
JP2010219511 2010-09-29
JP2011134428A JP5723234B2 (en) 2010-09-29 2011-06-16 Thick steel plate with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2012092425A true JP2012092425A (en) 2012-05-17
JP5723234B2 JP5723234B2 (en) 2015-05-27

Family

ID=46386098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134428A Active JP5723234B2 (en) 2010-09-29 2011-06-16 Thick steel plate with excellent toughness in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP5723234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045829A1 (en) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
EP2862953A4 (en) * 2012-06-19 2016-04-13 Kobe Steel Ltd Steel material having excellent toughness in weld-heat-affected zone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
JP2011117057A (en) * 2009-12-07 2011-06-16 Kobe Steel Ltd Thick steel plate having superior toughness at weld heat-affected zone and superior uniformity of strength
JP2012092422A (en) * 2010-09-29 2012-05-17 Kobe Steel Ltd Thick steel plate excellent in toughness of weld heat-affected zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
JP2011117057A (en) * 2009-12-07 2011-06-16 Kobe Steel Ltd Thick steel plate having superior toughness at weld heat-affected zone and superior uniformity of strength
JP2012092422A (en) * 2010-09-29 2012-05-17 Kobe Steel Ltd Thick steel plate excellent in toughness of weld heat-affected zone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862953A4 (en) * 2012-06-19 2016-04-13 Kobe Steel Ltd Steel material having excellent toughness in weld-heat-affected zone
WO2014045829A1 (en) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
JP2014058734A (en) * 2012-09-19 2014-04-03 Kobe Steel Ltd Thick steel plate excellent in toughness of heat affected zone
EP2899289A4 (en) * 2012-09-19 2016-06-01 Kobe Steel Ltd Thick steel sheet having excellent welding heat-affected part toughness

Also Published As

Publication number Publication date
JP5723234B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5201665B2 (en) High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
JP5207914B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
EP1736562A1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5444093B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5394785B2 (en) Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP2009197267A (en) Steel member having excellent toughness in weld heat affected zone, and method for producing the same
JP5824434B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP5394849B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JPWO2013088715A1 (en) Steel material for large heat input welding
KR101488633B1 (en) Steel for welding
JPWO2013077022A1 (en) Steel for welding
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2011127220A (en) Method for manufacturing steel member excellent in toughness at weld heat-affected zone
JP5883369B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2016079461A (en) Thick steel plate for tank excellent in the toughness of weld heat affected zone
KR101151577B1 (en) Steel plate
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP5723234B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
KR20110128154A (en) Thick steel plate
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP5434437B2 (en) High heat input welding steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150327

R150 Certificate of patent or registration of utility model

Ref document number: 5723234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150