JP2012092424A - Method and device of gas carburizing - Google Patents

Method and device of gas carburizing Download PDF

Info

Publication number
JP2012092424A
JP2012092424A JP2011067639A JP2011067639A JP2012092424A JP 2012092424 A JP2012092424 A JP 2012092424A JP 2011067639 A JP2011067639 A JP 2011067639A JP 2011067639 A JP2011067639 A JP 2011067639A JP 2012092424 A JP2012092424 A JP 2012092424A
Authority
JP
Japan
Prior art keywords
gas
low
carburizing
heat treatment
metamorphic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067639A
Other languages
Japanese (ja)
Other versions
JP5793803B2 (en
Inventor
Takahiro Fujita
貴弘 藤田
Koji Abe
浩次 阿部
Fumitaka Abukawa
文隆 虻川
Tsunetaka Yamada
恒孝 山田
Toshiaki Ohashi
俊明 大橋
Masao Kanayama
正男 金山
Koji Horiuchi
宏次 堀内
Eiju Torasawa
英寿 十良澤
Akihiro Nagaishi
昭浩 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2011067639A priority Critical patent/JP5793803B2/en
Publication of JP2012092424A publication Critical patent/JP2012092424A/en
Application granted granted Critical
Publication of JP5793803B2 publication Critical patent/JP5793803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for gas carburizing, capable of performing heat treatment in a stable atmosphere and also reducing equipment cost.SOLUTION: Converted gas is produced using hydrocarbon gas, air and a catalyst, and low-COconverted gas which has a carbon potential higher than that of the converted gas and is reduced in COconcentration is produced. One of the converted gas, the low-COconverted gas and a gaseous mixture of the converted gas and the low-COconverted gas is used as atmospheric gas in a series of heat treatment processes for carburizing.

Description

本発明は、ガス浸炭方法と、その方法の実施に用いて好適なガス浸炭装置に関する。   The present invention relates to a gas carburizing method and a gas carburizing apparatus suitable for use in carrying out the method.

従来のガス浸炭方法として、変成炉で生成された吸熱型の変成ガスを用いるものがあり、前記変成ガスの浸炭力の弱さを補うために、変成ガスに加えてエンリッチガスを炉内に供給して浸炭を行うことで、所定の表面浸炭濃度を確保している。そして、例えば特許文献1に開示されているように、変成ガス、エンリッチガス、空気等の流量を調整することにより、炉内雰囲気のカーボンポテンシャル(以下、CPと表記する)を制御していた。   As a conventional gas carburizing method, there is one using an endothermic shift gas generated in a shift furnace. In order to compensate for the weak carburizing power of the shift gas, an enriched gas is supplied into the furnace in addition to the shift gas. By performing carburizing, a predetermined surface carburizing concentration is secured. For example, as disclosed in Patent Document 1, the carbon potential of the furnace atmosphere (hereinafter referred to as CP) is controlled by adjusting the flow rate of the modified gas, the enriched gas, the air, or the like.

これに対し、炉内において、予熱、浸炭、冷却、焼入等の各工程ごとに、それぞれ所定のCPに生成された変成ガスのみを供給して前記炉内の雰囲気を調整する方法も提案されている(特許文献2)。   On the other hand, a method for adjusting the atmosphere in the furnace by supplying only the modified gas generated in a predetermined CP for each process such as preheating, carburizing, cooling, quenching and the like in the furnace is also proposed. (Patent Document 2).

さらに、炭化水素と、二酸化炭素、酸素等の源ガスを混合した原料混合ガスを触媒層を有する変成炉に導入して変成ガスを生成し、この変成ガスを冷却した後に水分及び二酸化炭素を吸着分離してなるガスを、それ単独で、又は前記変成ガスと混合して、浸炭用雰囲気ガスとして用いる方法も提案されている(特許文献3)。   Furthermore, a raw material mixed gas, which is a mixture of hydrocarbons and source gases such as carbon dioxide and oxygen, is introduced into a shift furnace having a catalyst layer to generate a shift gas, and after cooling the shift gas, moisture and carbon dioxide are adsorbed. There has also been proposed a method in which the separated gas is used alone or mixed with the modified gas as a carburizing atmosphere gas (Patent Document 3).

特開2006−283116号公報JP 2006-283116 A 特開2009−91632号公報JP 2009-91632 A 特開2004−10952号公報Japanese Patent Laid-Open No. 2004-10952

しかしながら、特許文献1に記載のもののように、変成ガスに加えてエンリッチガスや空気等を炉内に供給すると、雰囲気がばらつきやすいため、浸炭の品質にばらつきが発生するおそれがある。また、空気を加えた場合には、被処理体が酸化することもあるため、浸炭処理の効率及び被処理体の品質が低下する。さらに、CP制御のために各種の分析計や演算機、センサー、流量計等、さまざまな精密機器が必要であるため、設備コストの増大にもつながる。   However, when enriched gas, air, or the like is supplied into the furnace in addition to the metamorphic gas as described in Patent Document 1, the atmosphere tends to vary, so that there is a possibility that the quality of carburization may vary. In addition, when air is added, the object to be processed may be oxidized, so that the efficiency of the carburizing process and the quality of the object to be processed are reduced. Furthermore, various kinds of precision instruments such as various analyzers, calculators, sensors, and flow meters are necessary for CP control, leading to an increase in equipment cost.

特許文献2のもののように、処理の工程ごとに異なるCPの変成ガスを供給するには、複数のガス変成炉が必要となり、設備コストの増大が避けられない。また、浸炭工程用に高CPの変成ガスを変成炉で生成させると、変成炉がスーティングするおそれがある。   As in the case of Patent Document 2, in order to supply different CP conversion gas for each processing step, a plurality of gas conversion furnaces are necessary, and an increase in equipment cost is inevitable. In addition, if a high CP shift gas is generated in the shift furnace for the carburizing process, the shift furnace may be sooted.

特許文献3のものは、源ガスとして、炭化水素、二酸化炭素、酸素、必要に応じて窒素と、単独ガスを供給するので、コストアップが避けられず、実用性に欠ける。   Since the thing of patent document 3 supplies hydrocarbon, a carbon dioxide, oxygen, nitrogen as needed, and single gas as a source gas, cost increase cannot be avoided and lacks practicality.

本発明は、前記の如き事情に鑑みてなされたものであり、安定した雰囲気で熱処理ができ、且つ、設備コストも低減できるガス浸炭方法及びガス浸炭装置を提供しようとするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas carburizing method and a gas carburizing apparatus that can perform heat treatment in a stable atmosphere and can reduce equipment costs.

前記課題を解決するため、本発明に係るガス浸炭方法は、炭化水素系ガスと空気と触媒とを用いて変成ガスを生成するとともに、この変成ガスより高いカーボンポテンシャルを有しCO濃度が小さい低CO変成ガスを生成し、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスの混合ガスのいずれかを、浸炭のための一連の熱処理工程で雰囲気ガスとして用いることを特徴とする(請求項1)。 In order to solve the above problems, the gas carburizing method according to the present invention generates a modified gas using a hydrocarbon-based gas, air, and a catalyst, and has a higher carbon potential than the modified gas and a low CO 2 concentration. generates a low CO 2 converted gas, the reformed gas, the low CO 2 converted gas, one of the mixed gas of the said converted gas low CO 2 converted gas, as the atmosphere gas in a series of heat treatment processes for carburizing (Claim 1).

本発明によれば、浸炭のための一連の熱処理工程のそれぞれにおいて、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスの混合ガスの中から、処理品に求められる品質に応じて最適なガスを選んで熱処理を行うことができる。前記低CO変成ガスは、前記変成ガスよりCP値が高いので、より大きな浸炭力を発揮する。よって、従来のようにエンリッチガスを添加する必要がなく、またエンリッチガスのように炭化水素ガスの分解を伴わないので、常に安定した雰囲気で熱処理を行うことができる。複数の変成炉が必要なわけでもないし、CP制御のために多数の精密機器が必要なわけでもないので、設備コスト上も有利である。 According to the present invention, in each of a series of heat treatment processes for carburizing, the reformed gas, the low CO 2 converted gas, from a gas mixture of the converted gas and the low CO 2 converted gas, calculated to the treated product Heat treatment can be performed by selecting an optimal gas according to the quality to be obtained. Since the low CO 2 modified gas has a higher CP value than the modified gas, it exhibits a greater carburizing power. Therefore, it is not necessary to add the enriched gas as in the conventional case, and the hydrocarbon gas is not decomposed unlike the enriched gas, so that the heat treatment can always be performed in a stable atmosphere. There is no need for a plurality of transformation furnaces, and a large number of precision instruments are not necessary for CP control, which is advantageous in terms of equipment cost.

なお、本発明に係るガス浸炭方法において、浸炭のための一連の熱処理工程とは、複数の熱処理室間で被処理体を移動させながら行うものであっても良いし、単一の熱処理室で一連の熱処理工程を順次行うものであっても良い。   In the gas carburizing method according to the present invention, the series of heat treatment steps for carburizing may be performed while moving an object to be processed between a plurality of heat treatment chambers, or in a single heat treatment chamber. A series of heat treatment steps may be sequentially performed.

好適な実施の一形態として、前記変成ガスを単独で雰囲気ガスとして用いるか、あるいは、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いる第1の熱処理工程と、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いるか、あるいは、前記低CO変成ガスを単独で雰囲気ガスとして用いる第2の熱処理工程と、を備える態様を例示する(請求項2)。 As a preferred embodiment, the first modification process using the modification gas alone as the atmosphere gas, or using both the modification gas and the low CO 2 modification gas as the atmosphere gas, and the modification gas, A mode in which both the low CO 2 modified gas is used as an atmospheric gas or a second heat treatment step in which the low CO 2 modified gas is used alone as an atmospheric gas is exemplified (Claim 2).

さらに、前記変成ガスを単独で雰囲気ガスとして用いるか、あるいは、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いる第3及び第4の熱処理工程を備える態様とすることもできる(請求項3)。 Further, whether to use the converted gas alone as the atmosphere gas, or may be a mode comprising a third and fourth heat treatment step of using both the said reformed gas low CO 2 converted gas as the atmosphere gas ( Claim 3).

具体例としては、前記第1の熱処理工程が昇温工程であり、前記第2の熱処理工程が浸炭工程であり、前記第3の熱処理工程が拡散工程であり、前記第4の熱処理工程が降温工程である(請求項4)。   As a specific example, the first heat treatment step is a temperature raising step, the second heat treatment step is a carburizing step, the third heat treatment step is a diffusion step, and the fourth heat treatment step is a temperature drop. It is a process (claim 4).

好適な実施の一形態として、前記低CO変成ガスは、前記変成ガスからその中に含まれるCOを分離することで生成できる(請求項5)。 As a preferred embodiment, the low CO 2 modified gas can be generated by separating CO 2 contained therein from the modified gas (Claim 5).

好適な実施の一形態として、前記一連の熱処理工程に含まれる浸炭工程において、前記雰囲気ガスの炉内流速が1.5m/s以上の流速である態様(請求項6)や、前記雰囲気ガスの炉内流量が炉内雰囲気置換回数29回/h以上となる流量である態様(請求項7)を採用することもできる。これらの態様によれば、有効硬化層深さを確実に目標値に到達させることができるとともに、浸炭時間も短縮できる。   As a preferred embodiment, in the carburizing step included in the series of heat treatment steps, an aspect (Claim 6) in which the flow velocity in the furnace of the atmospheric gas is a flow velocity of 1.5 m / s or more, A mode (Claim 7) in which the flow rate in the furnace is a flow rate at which the number of atmosphere replacements in the furnace is 29 times / h or more can be adopted. According to these aspects, the effective hardened layer depth can surely reach the target value, and the carburizing time can be shortened.

一方、本発明に係るガス浸炭装置は、炭化水素系ガスと空気と触媒とを用いて変成ガスを生成する変成炉と、該変成炉と浸炭のための一連の処理を行う熱処理室とを連結する変成ガス管路と、前記変成ガスより高いカーボンポテンシャルを有しCO濃度が小さい低CO変成ガスを生成する低CO変成ガス生成装置と、該低CO変成ガス生成装置の低CO変成ガス出口と前記熱処理室とを連結する低CO変成ガス管路と、前記変成ガス管路と前記低CO変成ガス管路上に配設され、前記熱処理室に、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスとの混合ガスのいずれを導入するかを切り替えるバルブと、を備えたものである(請求項8)。 On the other hand, a gas carburizing apparatus according to the present invention connects a shift furnace that generates a shift gas using a hydrocarbon gas, air, and a catalyst, and a heat treatment chamber that performs a series of processes for the carburization and the shift furnace. a reformed gas conduit to a low CO 2 converted gas generator for generating a CO 2 concentration is less low CO 2 reformed gas has a higher carbon potential than the converted gas, low CO of the low CO 2 converted gas generator A low CO 2 metamorphic gas line connecting the two metamorphic gas outlets and the heat treatment chamber, the metamorphic gas line and the low CO 2 metamorphic gas line disposed on the heat treatment chamber, low CO 2 converted gas, in which and a valve for switching between whether to introduce any of a gas mixture of the low CO 2 converted gas and the reformed gas (claim 8).

前記ガス浸炭装置によれば、前記バルブの切り替えで、前記熱処理室に、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスの混合ガスの中から、処理品に求められる品質に応じて最適なガスを選んで供給することができる。前記低CO変成ガスは、前記変成ガスよりCP値が高いので、より大きな浸炭力を発揮する。よって、従来のようにエンリッチガスを添加する必要がなく、したがって、常に安定した雰囲気で熱処理を行うことができる。従来例のように複数の変成炉が必要なわけでもないし、CP制御のために多数の精密機器が必要なわけでもないので、コスト上も有利である。 According to the gas carburization apparatus, by switching of the valve, in the heat treatment chamber, the reformed gas, the low CO 2 converted gas, from a gas mixture of the said converted gas low CO 2 converted gas, the treated product The optimum gas can be selected and supplied according to the required quality. Since the low CO 2 modified gas has a higher CP value than the modified gas, it exhibits a greater carburizing power. Therefore, it is not necessary to add an enriched gas as in the prior art, and therefore heat treatment can be performed in a stable atmosphere at all times. Since a plurality of transformation furnaces are not required as in the conventional example, and a large number of precision instruments are not required for CP control, this is advantageous in terms of cost.

なお、本発明に係るガス浸炭装置において、前記熱処理室は、浸炭のための一連の処理を行う複数の熱処理室であっても良いし、浸炭のための一連の処理を行う単一の熱処理室であっても良い。   In the gas carburizing apparatus according to the present invention, the heat treatment chamber may be a plurality of heat treatment chambers that perform a series of processes for carburization, or a single heat treatment chamber that performs a series of processes for carburization. It may be.

好適な実施の一形態として、前記低CO変成ガス生成装置が、前記変成ガスからその中に含まれるCOを吸着分離するCO吸着器である態様を例示する(請求項9)。 As a preferred embodiment, a mode in which the low CO 2 shift gas generating device is a CO 2 adsorber that adsorbs and separates CO 2 contained therein from the shift gas is exemplified (claim 9).

本発明の実施の一形態に係るガス浸炭装置の配管系を示す系統図である。It is a distribution diagram showing the piping system of the gas carburizing device concerning one embodiment of the present invention. 本発明の一実施例における処理工程図である。It is a processing-process figure in one Example of this invention. 本発明の一実施例に係る流速とカーボン濃度が0.3wt%である試験片表面からの深さとの関係を示すグラフである。It is a graph which shows the relationship between the flow velocity which concerns on one Example of this invention, and the depth from the test piece surface whose carbon concentration is 0.3 wt%. 本発明の一実施例に係る流量とカーボン濃度が0.3wt%である試験片表面からの深さとの関係を示すグラフである。It is a graph which shows the relationship between the flow volume which concerns on one Example of this invention, and the depth from the test piece surface whose carbon concentration is 0.3 wt%.

以下、添付図面を参照して、本発明の実施の一形態に係るガス浸炭方法及びガス浸炭装置について説明する。   Hereinafter, a gas carburizing method and a gas carburizing apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明に係るガス浸炭方法は、炭化水素系ガスと空気を原料ガスとして変成炉で変成ガスを生成するとともに、この変成ガスより高いカーボンポテンシャルを有しCO濃度が小さい低CO変成ガスを生成し、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスの混合ガスのいずれかを、浸炭のための一連の熱処理工程で雰囲気ガスとして用いるものである。 Gas carburizing method according to the present invention is to produce a reformed gas by reforming furnace as the hydrocarbon gas and air feed gas, the CO 2 concentration is less low CO 2 reformed gas has a higher carbon potential than the reformed gas One of the generated modified gas, the low CO 2 modified gas, and the mixed gas of the modified gas and the low CO 2 modified gas is used as an atmospheric gas in a series of heat treatment steps for carburizing.

なお、本発明において、浸炭のための一連の熱処理工程とは、複数の熱処理室間で被処理体を移動させながら行うものであっても良いし、単一の熱処理室で一連の熱処理工程を順次行うものであっても良い。   In the present invention, the series of heat treatment steps for carburizing may be performed while moving an object to be processed between a plurality of heat treatment chambers, or a series of heat treatment steps in a single heat treatment chamber. It may be performed sequentially.

前記変成ガスは、従来公知の変成炉を用いて生成できる。変成炉で生成される変成ガスは、炭化水素系ガス(例えば、13Aガス、天然ガス、プロパン、ブタン等)と空気の混合比や、また目的とするガス組成、CP値によって様々であるが、概ね、CO:18〜25体積%、H:30〜41体積%、N:35〜50体積%、CO:0.12〜0.25体積%、HO:0.6体積%以下、CH:0.04体積%以下であることが好ましい。炭化水素系ガスとして13A(都市ガス)を用いた場合、さらに変成ガス組成の一例を挙げると次の通りである(850℃、CP値0.8のとき)。 The shift gas can be generated using a conventionally known shift furnace. The shift gas generated in the shift furnace varies depending on the mixing ratio of hydrocarbon gas (for example, 13A gas, natural gas, propane, butane, etc.) and air, the target gas composition, and the CP value. generally, CO: 18 to 25 vol%, H 2: 30-41 vol%, N 2: 35 to 50 vol%, CO 2: 0.12~0.25 vol%, H 2 O: 0.6% by volume hereinafter, CH 4: is preferably 0.04 vol% or less. When 13A (city gas) is used as the hydrocarbon-based gas, an example of the modified gas composition is as follows (when 850 ° C. and CP value is 0.8).

(窒素): 約39.85体積%
(水素): 約36体積%
CO(一酸化炭素): 約24体積%
CO(二酸化炭素):約0.15体積%
前記低CO変成ガスは、前記変成炉で生成された変成ガスから、従来公知のCO吸着器を用いてCOを吸着分離することによって生成できる。したがって、前記低CO変成ガスは、COの割合が前記変成ガスよりも小さくなる。具体的には、COが0.15体積%未満、さらには0.1体積%以下、0.05体積%以下であることが好ましい。
N 2 (nitrogen): about 39.85% by volume
H 2 (hydrogen): about 36% by volume
CO (carbon monoxide): about 24% by volume
CO 2 (carbon dioxide): about 0.15% by volume
The low CO 2 converted gas from reformed gas generated in the reforming furnace can be generated by adsorptive separation of CO 2 using a conventionally known CO 2 adsorber. Therefore, the low CO 2 modified gas has a smaller CO 2 ratio than the modified gas. Specifically, CO 2 is preferably less than 0.15% by volume, more preferably 0.1% by volume or less, and 0.05% by volume or less.

本発明において低CO変成ガスの生成方法は前記方法には限定されず、N,H,CO,CO等の複数のガスを混合して前記低CO変成ガスと同様の組成のガスとしたものでも良く、便宜上これも低CO変成ガスと称する。 In the present invention, the method for producing the low CO 2 modified gas is not limited to the above method, and a mixture of a plurality of gases such as N 2 , H 2 , CO, CO 2 and the like has the same composition as the low CO 2 modified gas. It may be a gas, which is also referred to as a low CO 2 modified gas for convenience.

なお、本発明において、低CO変成ガスとは、COがゼロの場合も含む。 In the present invention, the low CO 2 modified gas includes a case where CO 2 is zero.

低CO変成ガスのCP(カーボンポテンシャル)は、前記変成ガスよりもCOが低減されたことで、前記変成ガスのCPよりも高くなり、これを浸炭雰囲気ガスとして用いることで浸炭力が高まる。また、変成ガスの浸炭力の弱さを補うために従来添加されていたエンリッチガスを使用する必要がなくなり、炭化水素系ガスの分解がなく、安定した浸炭雰囲気ガス中で浸炭が行われるので、浸炭むらやスーティングが生じにくい。この利点は、前記低CO変成ガスのみを雰囲気ガスとして浸炭を行う場合だけでなく、前記変成ガスと前記低CO変成ガスとの混合ガスを雰囲気ガスとして用いて浸炭を行う場合にも得られる。 The CP (carbon potential) of the low CO 2 shift gas is higher than the CP of the shift gas due to the reduction of CO 2 compared to the shift gas, and the carburizing power is increased by using this as the carburizing atmosphere gas. . In addition, it is no longer necessary to use the enriched gas that has been added in the past to compensate for the weak carburizing power of the metamorphic gas, there is no decomposition of hydrocarbon gases, and carburizing is performed in a stable carburizing atmosphere gas. Carburizing unevenness and sooting are less likely to occur. This advantage is obtained wherein only the low CO 2 converted gas not only when performing carburizing as the atmospheric gas, even when performing carburizing with a mixed gas of the low CO 2 converted gas and the reformed gas as the atmosphere gas It is done.

本発明の発明者等は、COとCOとHとNの4種のガスを混合して、変成ガスと、それよりCO濃度の小さい低CO変成ガスを生成し、SCr420の被処理体(ワーク)に対してガス浸炭処理を行った。試験炉はゴールドファーネス、浸炭実施時間は2時間である。その浸炭条件と浸炭雰囲気ガス組成を表1に、浸炭結果を表2及び表3に示す。

Figure 2012092424
Figure 2012092424
Figure 2012092424
The inventors of the present invention, a mixture of four gases CO and CO 2 and H 2 and N 2, and reformed gas, to produce more CO 2 concentration of small low CO 2 converted gas which, of SCr420 Gas carburizing treatment was performed on the workpiece (workpiece). The test furnace is gold furnace and the carburization time is 2 hours. Table 1 shows the carburizing conditions and carburizing atmosphere gas composition, and Tables 2 and 3 show the carburizing results.
Figure 2012092424
Figure 2012092424
Figure 2012092424

これらの表において、従来例1は、変成ガスで浸炭処理を行ったものであり、実施例2〜4が低CO変成ガスで浸炭処理を行ったものである。実施例の雰囲気ガス(低CO変成ガス)のCPは、CO濃度が小さい分だけ従来例の雰囲気ガス(変成ガス)のCPより高くなっている。 In these tables, Conventional Example 1 is obtained by carburizing with a modified gas, and Examples 2 to 4 are those obtained by carburizing with a low CO 2 modified gas. The CP of the atmospheric gas (low CO 2 modified gas) of the example is higher than the CP of the atmospheric gas (modified gas) of the conventional example by a small amount of CO 2 concentration.

表1において、CP値は、「(CO濃度)/(CO濃度)×Kp(平衡定数)×飽和炭素量(浸炭温度での鋼の飽和炭素量)」の計算式で求めた。 In Table 1, the CP value was determined by a calculation formula of “(CO concentration) 2 / (CO 2 concentration) × Kp (equilibrium constant) × saturated carbon amount (saturated carbon amount of steel at carburizing temperature)”.

表1において、CHは、反応により微量生成されたものと考えられる。 In Table 1, CH 4 is considered to be produced in a trace amount by the reaction.

表3に示すように、従来例、実施例ともに、表面組織に炭化物の析出はなく、良好な浸炭が行えた。また、表2に示すように、従来例に比べて実施例のものは、浸炭能力が高くワークの表面炭素濃度も高く、良好な結果が得られた。いずれの実施例でもスーティングの発生はなかった。   As shown in Table 3, in both the conventional examples and the examples, there was no precipitation of carbides in the surface structure, and good carburization could be performed. Further, as shown in Table 2, the examples had higher carburizing ability and higher surface carbon concentration of the workpiece than the conventional examples, and good results were obtained. There was no sooting in any of the examples.

なお、変成炉において950℃においてCPが1.2になるような変成ガスを生成すると、変成炉にスーティングが発生した。   When a shift gas having a CP of 1.2 at 950 ° C. was generated in the shift furnace, sooting occurred in the shift furnace.

前記試験により、変成ガスによるガス浸炭に対する低CO変成ガスによるガス浸炭の優位性が実証された。 By the test, the superiority of gas carburizing according to the low CO 2 converted gas to the gas carburizing according converted gas was demonstrated.

次に、本発明方法を実施するのに用いて好適なガス浸炭装置について説明する。   Next, a gas carburizing apparatus suitable for use in carrying out the method of the present invention will be described.

図1に示すように、本発明の実施の一形態に係るガス浸炭装置100は、昇温室(予熱室)1、浸炭室2、拡散室3、降温室4からなる一連の熱処理室を有する熱処理部5と、前記熱処理室1,2,3,4で使用する雰囲気ガスを生成する変成炉6と、低CO変成ガス生成装置7,7と、を備える。前記変成炉6と前記各熱処理室1,2,3,4は、変成ガス管路8で連結される。また、前記低CO変成ガス生成装置7,7の低CO変成ガス出口9,9と前記各熱理室1,2,3,4は、低CO変成ガス管路10で連結される。 As shown in FIG. 1, a gas carburizing apparatus 100 according to an embodiment of the present invention includes a heat treatment chamber having a series of heat treatment chambers including a heating chamber (preheating chamber) 1, a carburizing chamber 2, a diffusion chamber 3, and a descending chamber 4. The unit 5, a shift furnace 6 that generates an atmospheric gas used in the heat treatment chambers 1, 2, 3, and 4, and low CO 2 shift gas generators 7 and 7 are provided. The shift furnace 6 and the heat treatment chambers 1, 2, 3, 4 are connected by a shift gas pipe 8. Further, the low CO 2 shift gas outlets 9 and 9 of the low CO 2 shift gas generators 7 and 7 and the thermal chambers 1, 2, 3, and 4 are connected by a low CO 2 shift gas pipe 10. .

前記変成炉6は従来公知のものと同一であり、ニッケル触媒等の触媒(図示せず)を内蔵する。メタン、プロパン、ブタン、13A(都市ガス)等の炭化水素系ガスと空気が前記変成炉6に導入され、例えば1080℃に加熱された触媒層を通過する。この際の触媒反応(変成反応)により変成ガスが生成される。   The shift furnace 6 is the same as that conventionally known and incorporates a catalyst (not shown) such as a nickel catalyst. Hydrocarbon gas such as methane, propane, butane, 13A (city gas) and air are introduced into the shift furnace 6 and pass through a catalyst layer heated to, for example, 1080 ° C. The modified gas is generated by the catalytic reaction (metamorphic reaction) at this time.

前記変成炉6には、冷却装置11が付属している。生成された1080℃の変成ガスは、前記冷却装置11により常温まで冷却された後に、前記変成ガス管路8へと導出される。前記変成炉6に冷却装置11が付属していない場合には、前記変成炉6と前記低CO変成ガス生成装置7,7との間の前記変成ガス管路8上に冷却装置を配設しておけばよい。 A cooling device 11 is attached to the shift furnace 6. The generated metamorphic gas at 1080 ° C. is cooled to room temperature by the cooling device 11 and then led out to the metamorphic gas pipe 8. In the case where the cooling device 11 is not attached to the shift furnace 6, a cooling device is disposed on the shift gas pipe 8 between the shift furnace 6 and the low CO 2 shift gas generators 7, 7. You just have to.

前記低CO変成ガス生成装置7は、前記変成炉6で生成される変成ガスよりもCO濃度が小さい低CO変成ガスを生成する。前記低CO変成ガス生成装置7としては、従来公知のCO2吸着剤を充填したCO吸着器を用いることができる。この場合、前記変成炉6で生成される変成ガスを分岐管路12,12で前記CO吸着器7,7に導入し、CO吸着剤で変成ガス中のCOを吸着分離する。COが吸着分離されることで、前記変成ガスは前記低CO変成ガスとなる。該低CO変成ガスは、前記低CO変成ガス管路10を通って前記昇温室1、浸炭室2、拡散室3及び降温室4の方向へと導出される。なお、前記CO吸着器7を用いることにより、COと同時に変成ガス中の水分(HO)も効率的に除去され、変成ガスより高CPの低CO変成ガスを得ることができる。 The low CO 2 converted gas generator device 7 generates a low CO 2 converted gas CO 2 concentration is less than reformed gas produced in the reforming furnace 6. As the low CO 2 modified gas generating device 7, a conventionally known CO 2 adsorber filled with a CO 2 adsorbent can be used. In this case, said reformed gas generated in the reforming furnace 6 is introduced into the CO 2 adsorber 7,7 in branch conduit 12, 12, the CO 2 of the shift gas with CO 2 adsorbent to adsorption separation. As the CO 2 is adsorbed and separated, the modified gas becomes the low CO 2 modified gas. The low CO 2 metamorphic gas is led through the low CO 2 metamorphic gas line 10 toward the heating chamber 1, the carburizing chamber 2, the diffusion chamber 3, and the descending greenhouse 4. By using the CO 2 adsorber 7, moisture (H 2 O) in the shift gas is also efficiently removed simultaneously with CO 2 , and a low CO 2 shift gas having a higher CP than the shift gas can be obtained. .

前記低CO変成ガス生成装置7の他の例として、前記変成ガスを利用することなく、N,H,CO,CO等の複数のガスを混合して低CO変成ガスを生成する、図示しないガス混合装置を採用することもできる。 As another example of the low CO 2 modified gas generating device 7, a low CO 2 modified gas is generated by mixing a plurality of gases such as N 2 , H 2 , CO, and CO 2 without using the modified gas. It is also possible to employ a gas mixing device (not shown).

図1の例では、前記変成ガス管路8に対して二つのCO吸着器7,7が切換え可能に接続されている。これは、COの吸着とCOの脱着とを二つのCO吸着器7,7間で交互に行わせ、連続運転を支障なく行わせるためである。分離されたCOは、排出管路13を通してCO2吸着器7,7から外部へ排出される。 In the example of FIG. 1, two CO 2 adsorbers 7 and 7 are connected to the shift gas pipe 8 so as to be switchable. This is because CO 2 adsorption and CO 2 desorption are alternately performed between the two CO 2 adsorbers 7 and 7 so that continuous operation can be performed without any problem. The separated CO 2 is discharged from the CO 2 adsorbers 7 and 7 to the outside through the discharge pipe 13.

前記排出管路13と前記低CO変成ガス管路10にはCO分析計14が配設され、両管路を流れるガス中のCO濃度が常時監視され測定される。 A CO 2 analyzer 14 is disposed in the exhaust line 13 and the low CO 2 metamorphic gas line 10, and the CO 2 concentration in the gas flowing through both lines is constantly monitored and measured.

前記変成ガス管路8及び前記低CO変成ガス管路10上には、多数のバルブ1a〜4a、1b〜4bが配設されている。これらのバルブは、前記一連の熱処理室1,2,3,4のそれぞれに、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスとの混合ガスのいずれを導入するかを切り替えるためのバルブである。前記各バルブの下流側にはガス混合部15が配設される。このガス混合部15において、前記変成ガス管路8を通して供給される変成ガスと、前記低CO変成ガス管路10を通して供給される低CO変成ガスとがミキシングされ所定の組成となる。 A large number of valves 1 a to 4 a and 1 b to 4 b are disposed on the shift gas pipe 8 and the low CO 2 shift gas pipe 10. These valves, in each of the series of heat treatment chamber 1, 2, 3, 4, the reformed gas, introducing one of a gas mixture of the low CO 2 converted gas, the reformed gas and the low CO 2 converted gas It is a valve for switching whether to do. A gas mixing unit 15 is disposed on the downstream side of each valve. In the gas mixing unit 15, and a reformed gas to be supplied through the reformed gas conduit 8, a low CO 2 converted gas supplied is a predetermined composition are mixed through the low CO 2 converted gas conduit 10.

前記バルブ1a〜4a、1b〜4bの操作により、昇温工程として、前記昇温室1には、前記変成ガスが単独で導入されるか、あるいは、前記混合ガスが導入される。前記浸炭室2には、浸炭工程として、前記低CO変成ガスが単独で導入されるか、あるいは、前記混合ガスが導入される。前記拡散室3には、拡散工程として、前記変成ガスが単独で導入されるか、あるいは、前記混合ガスが導入される。前記降温室4にも、降温工程として、前記変成ガスが単独で導入されるか、あるいは、前記混合ガスが導入される。前記各熱処理室1,2,3,4の雰囲気ガスは、前記低CO変成ガスの割合が大きいほど浸炭力が大きくなる。 By the operation of the valves 1a to 4a and 1b to 4b, the modified gas is introduced alone or the mixed gas is introduced into the temperature raising chamber 1 as a temperature raising step. In the carburizing chamber 2, as the carburizing step, the low-CO 2 modified gas is introduced alone or the mixed gas is introduced. In the diffusion chamber 3, the modified gas is introduced alone or the mixed gas is introduced as a diffusion step. In the temperature drop room 4, the modified gas is introduced alone or the mixed gas is introduced as a temperature lowering step. The atmospheric gas in each of the heat treatment chambers 1, 2, 3 and 4 has a higher carburizing power as the proportion of the low CO 2 metamorphic gas increases.

前記各工程で前記各熱処理室にどのガスをどれだけ導入するかは、処理品に要求される品質に応じて適宜に決定する。但し、浸炭室2に変成ガスを単独供給することはない。変成ガス単独ではCP値が低くて所望の浸炭が得られないからである。   Which gas is introduced into each heat treatment chamber in each process and how much gas is appropriately determined according to the quality required for the processed product. However, the metamorphic gas is not supplied to the carburizing chamber 2 alone. This is because the modified gas alone has a low CP value and a desired carburization cannot be obtained.

また、昇温室1、拡散室3、降温室4に低CO変成ガスが単独供給されることもない。昇温室1と降温室4に低CO変成ガスを単独供給すると、昇温途中及び降温途中の低温時にワーク表面に炭化物が析出するおそれがあるからである。拡散室3に低CO変成ガスを単独供給すると、ワークの表面炭素濃度が上がりすぎてしまい、その後の油焼入工程で残留オーステナイトの析出量が増えることが予想されるからである。 In addition, the low CO 2 metamorphic gas is not supplied alone to the heating chamber 1, the diffusion chamber 3, and the descending greenhouse 4. This is because if a low CO 2 metamorphic gas is supplied to the temperature raising chamber 1 and the temperature lowering chamber 4 alone, carbides may be deposited on the workpiece surface at low temperatures during temperature raising and temperature lowering. This is because if the low CO 2 metamorphic gas is supplied to the diffusion chamber 3 alone, the surface carbon concentration of the workpiece is excessively increased, and the amount of precipitated austenite is expected to increase in the subsequent oil quenching process.

好ましくは、降温室4に使用される変成ガスのCPを狙って変成炉で変成ガスを生成させ、この変成ガスを降温室4に単独供給し、浸炭室2には低CO変成ガスを単独供給し、昇温室7、拡散室3には変成ガスと低CO変成ガスの混合ガスを供給する。 Preferably, the shift gas is generated in a shift furnace aiming at the CP of the shift gas used in the descending greenhouse 4, and this shift gas is supplied to the descending chamber 4 alone, and the carburizing chamber 2 is supplied with a low CO 2 shift gas alone. Then, the mixed gas of the shift gas and the low CO 2 shift gas is supplied to the temperature raising chamber 7 and the diffusion chamber 3.

前記各熱処理室1,2,3,4で熱処理に関与した雰囲気ガスは、一部が排気管路16により排ガスとして燃焼・排出され、他の一部はCO脱着用管路17により前記CO吸着器7,7に向けて送られ、該CO吸着器7においてCO脱着時の加熱手段として用いられる。 A part of the atmospheric gas involved in the heat treatment in each of the heat treatment chambers 1, 2, 3, 4 is burned and discharged as exhaust gas through the exhaust pipe 16, and the other part is sent to the CO 2 through the CO 2 demounting pipe 17. The two adsorbers 7 and 7 are sent to the CO 2 adsorber 7 and used as heating means for CO 2 desorption.

前記ガス浸炭装置100によれば、前記バルブ1a〜4a、1b〜4bの操作により、前記各熱処理室1,2,3,4において常に最適な雰囲気ガスでワークに対して熱処理を行うことができる。従来の装置のように、設備費がかさむ問題もない。また、エンリッチガスを使う必要がないので、安定した雰囲気で処理ができ、処理品の品質も向上する利点がある。   According to the gas carburizing apparatus 100, it is possible to always perform heat treatment on the workpiece with the optimum atmospheric gas in each of the heat treatment chambers 1, 2, 3, and 4 by operating the valves 1a to 4a and 1b to 4b. . There is no problem that the equipment cost is increased as in the conventional apparatus. Further, since it is not necessary to use an enriched gas, there is an advantage that the processing can be performed in a stable atmosphere and the quality of the processed product is improved.

なお、図示例は、前記熱処理部5が、浸炭のための一連の処理を行う複数の熱処理室を備える例であるが、本発明に係るガス浸炭装置はこれには限定されず、浸炭のための一連の処理を単一の熱処理室において行う態様も含む。   The illustrated example is an example in which the heat treatment section 5 includes a plurality of heat treatment chambers for performing a series of processes for carburizing, but the gas carburizing apparatus according to the present invention is not limited to this, and for carburizing. Also included is a mode in which the series of processes is performed in a single heat treatment chamber.

さらに、本発明の発明者は、本発明の方法を実施する際の、浸炭雰囲気ガスの好ましい流速及び流量について探求した。   Furthermore, the inventors of the present invention have sought for preferred flow rates and flow rates of carburizing atmosphere gases when carrying out the method of the present invention.

まず、実験用の装置として、既存のゴールドファーネス炉に内管を取替え挿入できるものを作製し、該内管内を炉として用いる。前記内管として、様々な内径を有するものを準備し、前記内管を取り替えて管内径を変更することで、前記内管内を流れる浸炭雰囲気ガスの流速や流量が変わるようにする。   First, as an experimental apparatus, an apparatus capable of replacing and inserting an inner pipe into an existing gold furnace furnace is prepared, and the inside of the inner pipe is used as a furnace. As the inner pipe, pipes having various inner diameters are prepared, and the inner pipe is changed to change the inner diameter of the pipe so that the flow rate and flow rate of the carburizing atmosphere gas flowing in the inner pipe are changed.

図2は、この実験における処理工程図である。図2に示すように、まず、窒素ガスを炉内(内管内)に供給し、10分で950℃まで昇温した。昇温後10分間保持した後COガスを供給し、N+COの雰囲気でさらに5分間保持した。次に低CO変成ガス(ガス組成は表4参照)を炉内に供給し、雰囲気を安定させるために30分間保持した。その後、試験片TP(テストピース:SCr420)を炉内に挿入して70分間保持し、前記低CO変成ガスを連続的に供給しながら浸炭処理を実施した。浸炭処理後には、拡散処理14分、降温処理14分を実施し、その後焼入れ処理を実施した。様々な内径を有する内管(表5の管内径を参照)を用いることで、浸炭処理中における低CO変成ガスの流速と流量を様々な値に変えることができる。

Figure 2012092424
FIG. 2 is a process diagram in this experiment. As shown in FIG. 2, first, nitrogen gas was supplied into the furnace (inside the inner pipe), and the temperature was raised to 950 ° C. in 10 minutes. After raising the temperature and holding for 10 minutes, CO 2 gas was supplied, and the mixture was further kept for 5 minutes in an atmosphere of N 2 + CO 2 . Next, a low CO 2 gas (see Table 4 for the gas composition) was supplied into the furnace and held for 30 minutes to stabilize the atmosphere. Thereafter, a test piece TP (test piece: SCr420) was inserted into the furnace and held for 70 minutes, and carburizing was performed while continuously supplying the low CO 2 metamorphic gas. After the carburizing process, a diffusion process was performed for 14 minutes and a temperature lowering process was performed for 14 minutes, followed by a quenching process. By using the inner pipe having various inner diameters (see the pipe inner diameter in Table 5), the flow rate and flow rate of the low CO 2 metamorphic gas during the carburizing process can be changed to various values.
Figure 2012092424

前記実験の結果を表5に示す。

Figure 2012092424
The results of the experiment are shown in Table 5.
Figure 2012092424

表5のうち、上から三つの例、すなわち、比較例1と実施例1,2が、流速を変更した場合(流量一定)の実験結果である。それ以下の例、すなわち、実施例3と比較例2〜4が、流量を変更した場合(流速一定)の実験結果である。   In Table 5, three examples from the top, that is, Comparative Example 1 and Examples 1 and 2, are the experimental results when the flow velocity is changed (the flow rate is constant). The following examples, that is, Example 3 and Comparative Examples 2 to 4, are experimental results when the flow rate is changed (the flow rate is constant).

表5を参照して、浸炭雰囲気ガスの好ましい流速と流量について考察する。   With reference to Table 5, the preferred flow rate and flow rate of the carburizing atmosphere gas will be considered.

<流速について>
CP値の高い前記低CO変成ガスで浸炭しても、比較例1のように流速が小さいと本実験の目標としたカーボン濃度が0.3wt%である試験片表面からの深さ(位置)0.75mm以上に達しないことが分かる。これに対し、実施例1,2より、流速が3.04m/s、5.98m/sの場合には目標とする十分な浸炭深さを得られ、従来よりも早く浸炭できる。この試験結果を用いて流速とカーボン濃度が0.3wt%である試験片表面からの深さ(位置)との関係をグラフにしたものが図3である。図3より、目標とする深さ(0.75mm)を得るためには、浸炭雰囲気ガスの流速を1.5m/s以上にすればよいことが分かる。
<About flow velocity>
Even when carburizing with the low CO 2 gas having a high CP value, if the flow rate is small as in Comparative Example 1, the depth (position) from the specimen surface where the carbon concentration targeted in this experiment is 0.3 wt% It can be seen that it does not reach 0.75 mm or more. On the other hand, from Examples 1 and 2, when the flow velocity is 3.04 m / s and 5.98 m / s, a target sufficient carburization depth can be obtained, and carburization can be performed faster than before. FIG. 3 is a graph showing the relationship between the flow velocity and the depth (position) from the surface of the test piece having a carbon concentration of 0.3 wt% using this test result. FIG. 3 shows that the flow rate of the carburizing atmosphere gas should be 1.5 m / s or more in order to obtain the target depth (0.75 mm).

なお、浸炭炉の浸炭室或いは拡散室内のワーク設置範囲内において浸炭雰囲気ガスの流速を1.5m/s以上とするために、浸炭室或いは拡散室にガス攪拌用のファンを上下、左右に必要に応じて設置して流速のバラツキを抑制することが好ましく、これにより安定した浸炭処理を実現することができる。   In order to make the flow rate of the carburizing atmosphere gas 1.5 m / s or more within the work installation range of the carburizing furnace or diffusion chamber of the carburizing furnace, fans for gas agitation are required vertically and horizontally in the carburizing chamber or diffusion chamber. Therefore, it is preferable to suppress the variation in the flow rate, and a stable carburizing process can be realized.

ガス流速(風速)は風速計で測定することができる。また、流速を上げることで炭素移行係数(β値)が増加し、流速増加は流量(物質供給量)増加との関係はない。   The gas flow velocity (wind velocity) can be measured with an anemometer. In addition, increasing the flow rate increases the carbon transfer coefficient (β value), and the increase in flow rate is not related to the increase in flow rate (substance supply amount).

<流量について>
比較例2〜4より、浸炭雰囲気ガスの流量が小さい場合、すなわち、炉内ガス置換回数が1時間当たり5.1〜19回、流速約0.1m/sのときは、前記目標とする浸炭深さが得られないことが分かる。これに対し、実施例3のように流量が大きい場合は、目標とする浸炭深さが得られ、従来よりも早く浸炭できる。この試験結果を用いて流量とカーボン濃度が0.3wt%である試験片表面からの深さ(位置)との関係をグラフにしたものが図4である。図4より、目標とする深さ(0.75mm)を得るためには、浸炭雰囲気ガスの流量を炉内雰囲気置換回数29回/h以上となる流量にすればよいことが分かる。
<About flow rate>
From Comparative Examples 2 to 4, when the flow rate of the carburizing atmosphere gas is small, that is, when the number of gas replacements in the furnace is 5.1 to 19 times per hour and the flow rate is about 0.1 m / s, the target carburizing is performed. It can be seen that the depth cannot be obtained. On the other hand, when the flow rate is large as in Example 3, the target carburizing depth is obtained, and carburizing can be performed earlier than in the past. FIG. 4 is a graph showing the relationship between the flow rate and the depth (position) from the surface of the test piece having a carbon concentration of 0.3 wt% using this test result. FIG. 4 shows that in order to obtain the target depth (0.75 mm), the flow rate of the carburizing atmosphere gas may be set to a flow rate that is 29 times / h or more in the furnace atmosphere replacement.

なお、炉内雰囲気置換回数は、炉内に供給する1時間あたりのガス流量を炉内体積で割った値である。炉内雰囲気置換回数を大きくするために、炉内に連続的に新しいガスを供給しても良いが、炉内ガスを循環させて炉内に供給することがコスト面から好ましい。また、流量(置換回数)を増加させると炭素移行係数(β値)が低下することがわかり、浸炭効率を向上させるためにはガス流量よりもガス流速を増加させる方が好ましい。   The number of atmosphere replacements in the furnace is a value obtained by dividing the gas flow rate per hour supplied into the furnace by the furnace volume. In order to increase the number of times the atmosphere in the furnace is replaced, new gas may be continuously supplied into the furnace, but it is preferable from the viewpoint of cost that the furnace gas is circulated and supplied into the furnace. Moreover, it turns out that a carbon transfer coefficient ((beta value)) will fall when a flow rate (number of substitutions) is increased, and in order to improve carburizing efficiency, it is more preferable to increase a gas flow rate than a gas flow rate.

1 昇温室
2 浸炭室
3 拡散室
4 降温室
6 変成炉
7 低CO変成ガス生成装置
8 変成ガス管路
9 低CO変成ガス出口
10 低CO変成ガス管路
1a〜4a,1b〜4b バルブ
1 temperature raising chamber 2 the carburizing chamber 3 diffusion chamber 4 descending greenhouses 6 reforming furnace 7 low CO 2 converted gas generator 8 reformed gas pipe 9 low CO 2 converted gas outlet 10 low CO 2 converted gas conduit 1a to 4a, 1B to 4B valve

Claims (9)

炭化水素系ガスと空気と触媒とを用いて変成ガスを生成するとともに、この変成ガスより高いカーボンポテンシャルを有しCO濃度が小さい低CO変成ガスを生成し、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスの混合ガスのいずれかを、浸炭のための一連の熱処理工程で雰囲気ガスとして用いる、ガス浸炭方法。 To generate a reformed gas by using the hydrocarbon gas and air and a catalyst, to produce a CO 2 concentration is less low CO 2 reformed gas has a higher carbon potential than the converted gas, the reformed gas, the low CO A gas carburizing method in which any one of 2 metamorphic gas, a mixed gas of the metamorphic gas and the low CO 2 metamorphic gas is used as an atmosphere gas in a series of heat treatment steps for carburizing. 前記変成ガスを単独で雰囲気ガスとして用いるか、あるいは、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いる第1の熱処理工程と、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いるか、あるいは、前記低CO変成ガスを単独で雰囲気ガスとして用いる第2の熱処理工程と、を備える、請求項1に記載のガス浸炭方法。 A first heat treatment step in which the metamorphic gas is used alone as an atmospheric gas, or both the metamorphic gas and the low CO 2 metamorphic gas are used as an atmospheric gas, and both the metamorphic gas and the low CO 2 metamorphic gas The gas carburizing method according to claim 1, further comprising: a second heat treatment step using the low CO 2 modified gas alone as the atmospheric gas. 前記変成ガスを単独で雰囲気ガスとして用いるか、あるいは、前記変成ガスと前記低CO変成ガスの両方を雰囲気ガスとして用いる第3及び第4の熱処理工程を備える、請求項1又は2に記載のガス浸炭方法。 3. The method according to claim 1, further comprising third and fourth heat treatment steps in which the shift gas is used alone as an atmospheric gas, or both the shift gas and the low CO 2 shift gas are used as an atmospheric gas. Gas carburizing method. 前記第1の熱処理工程が昇温工程であり、前記第2の熱処理工程が浸炭工程であり、前記第3の熱処理工程が拡散工程であり、前記第4の熱処理工程が降温工程である、請求項3に記載のガス浸炭方法。   The first heat treatment step is a temperature raising step, the second heat treatment step is a carburizing step, the third heat treatment step is a diffusion step, and the fourth heat treatment step is a temperature lowering step. Item 4. The gas carburizing method according to Item 3. 前記低CO変成ガスは、前記変成ガスからその中に含まれるCOを分離することで生成される、請求項1乃至4のいずれかに記載のガス浸炭方法。 The gas carburizing method according to any one of claims 1 to 4, wherein the low CO 2 modified gas is generated by separating CO 2 contained therein from the modified gas. 前記一連の熱処理工程に含まれる浸炭工程において、前記雰囲気ガスの炉内流速が1.5m/s以上の流速である、請求項1乃至5のいずれか一項に記載のガス浸炭方法。   6. The gas carburizing method according to claim 1, wherein in the carburizing step included in the series of heat treatment steps, a flow rate in the furnace of the atmospheric gas is a flow rate of 1.5 m / s or more. 前記一連の熱処理工程に含まれる浸炭工程において、前記雰囲気ガスの炉内流量が炉内雰囲気置換回数29回/h以上となる流量である、請求項1乃至6のいずれか一項に記載のガス浸炭方法。   The gas according to any one of claims 1 to 6, wherein in the carburizing step included in the series of heat treatment steps, the flow rate of the atmospheric gas in the furnace is a flow rate at which the number of replacements in the furnace atmosphere is 29 times / h or more. Carburizing method. 炭化水素系ガスと空気と触媒とを用いて変成ガスを生成する変成炉と、該変成炉と浸炭のための一連の処理を行う熱処理室とを連結する変成ガス管路と、前記変成ガスより高いカーボンポテンシャルを有しCO濃度が小さい低CO変成ガスを生成する低CO変成ガス生成装置と、該低CO変成ガス生成装置の低CO変成ガス出口と前記熱処理室とを連結する低CO変成ガス管路と、前記変成ガス管路と前記低CO変成ガス管路上に配設され、前記熱処理室に、前記変成ガス、前記低CO変成ガス、前記変成ガスと前記低CO変成ガスとの混合ガスのいずれを導入するかを切り替えるバルブと、を備える、ガス浸炭装置。 A shift furnace that generates a shift gas using a hydrocarbon gas, air, and a catalyst; a shift gas pipe that connects the shift furnace and a heat treatment chamber that performs a series of processes for carburizing; and the shift gas coupled with low CO 2 converted gas generator, and a low CO 2 converted gas outlet of the low CO 2 converted gas generator the heat treatment chamber for generating a CO 2 concentration is less low CO 2 reformed gas has a high carbon potential A low CO 2 metamorphic gas line, disposed on the metamorphic gas line and the low CO 2 metamorphic gas line, and in the heat treatment chamber, the metamorphic gas, the low CO 2 metamorphic gas, the metamorphic gas and the A gas carburizing apparatus comprising: a valve that switches which of a mixed gas with a low CO 2 metamorphic gas is introduced. 前記低CO変成ガス生成装置が、前記変成ガスからその中に含まれるCOを吸着分離するCO吸着器である、請求項8に記載のガス浸炭装置。 The gas carburizing apparatus according to claim 8, wherein the low CO 2 shift gas generating apparatus is a CO 2 adsorber that adsorbs and separates CO 2 contained therein from the shift gas.
JP2011067639A 2010-09-30 2011-03-25 Gas carburizing method and gas carburizing apparatus Active JP5793803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067639A JP5793803B2 (en) 2010-09-30 2011-03-25 Gas carburizing method and gas carburizing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010222173 2010-09-30
JP2010222173 2010-09-30
JP2011067639A JP5793803B2 (en) 2010-09-30 2011-03-25 Gas carburizing method and gas carburizing apparatus

Publications (2)

Publication Number Publication Date
JP2012092424A true JP2012092424A (en) 2012-05-17
JP5793803B2 JP5793803B2 (en) 2015-10-14

Family

ID=46386097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067639A Active JP5793803B2 (en) 2010-09-30 2011-03-25 Gas carburizing method and gas carburizing apparatus

Country Status (1)

Country Link
JP (1) JP5793803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215033A (en) * 2013-04-24 2014-11-17 日本碍子株式会社 Heat treatment method and heat treatment apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050159A (en) * 1983-08-29 1985-03-19 Hitachi Constr Mach Co Ltd Gas carburization hardening method
JPS62170469A (en) * 1986-01-24 1987-07-27 Mitsubishi Heavy Ind Ltd Production of gas for hardening steel surface
JPH04268062A (en) * 1991-02-22 1992-09-24 Kanto Yakin Kogyo Kk Atomsphere carburization method for steel
JP2004010952A (en) * 2002-06-06 2004-01-15 Nippon Sanso Corp Apparatus and method for generating atmospheric gas for carburization
JP2006063389A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Continuous carburizing furnace and continuous carburizing method
JP2009091632A (en) * 2007-10-10 2009-04-30 Dowa Thermotech Kk Heat-treatment apparatus and heat-treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050159A (en) * 1983-08-29 1985-03-19 Hitachi Constr Mach Co Ltd Gas carburization hardening method
JPS62170469A (en) * 1986-01-24 1987-07-27 Mitsubishi Heavy Ind Ltd Production of gas for hardening steel surface
JPH04268062A (en) * 1991-02-22 1992-09-24 Kanto Yakin Kogyo Kk Atomsphere carburization method for steel
JP2004010952A (en) * 2002-06-06 2004-01-15 Nippon Sanso Corp Apparatus and method for generating atmospheric gas for carburization
JP2006063389A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Continuous carburizing furnace and continuous carburizing method
JP2009091632A (en) * 2007-10-10 2009-04-30 Dowa Thermotech Kk Heat-treatment apparatus and heat-treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215033A (en) * 2013-04-24 2014-11-17 日本碍子株式会社 Heat treatment method and heat treatment apparatus
TWI603045B (en) * 2013-04-24 2017-10-21 Ngk Insulators Ltd Heat treatment method and heat treatment device

Also Published As

Publication number Publication date
JP5793803B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
US9051526B2 (en) Method for modification of a methane-containing gas stream
KR100252709B1 (en) Process for producing heat treatment atmospheres
RU2650371C2 (en) Direct reduction process with improved product quality and process gas efficiency
CN100503878C (en) Carburizing process for reducing internal oxidation
JP2017172026A (en) Method for supplying hydrogen-containing reduction gas to blast furnace shaft part
JP5793803B2 (en) Gas carburizing method and gas carburizing apparatus
US2546013A (en) Means and method for producing special heat-treating gaseous atmospheres
TWI460128B (en) Apparatus and method for producing carbon monoxide gas and apparatus and method for producing atmosphere for carburizing atmosphere
JP2006241319A (en) Method and installation for removing co2 in mixture gas such as biogas
Cazaña et al. Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature
CN103562412A (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
JP2008267778A (en) Heat treatment system
US20060269468A1 (en) Apparatus and method for mass production of carbon nanotubes
JP4834490B2 (en) Carburizing atmosphere gas generator and generation method
JP5348938B2 (en) Carbon monoxide gas generator and method
CA2199099C (en) Apparatus and method for forming heat treating atmospheres
WO2018060196A1 (en) Method for producing hydrogen cyanide
Dunikov et al. Use of methane-hydrogen mixtures for energy accumulation
JPH06212251A (en) Formation of heat treatment atmosphere
JP5793802B2 (en) Gas carburizing method
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
JP2006510565A (en) Method for generation of synthesis gas by catalytic partial oxidation
WO2022201828A1 (en) Carburizing gas supply system and carburizing system
JPH01165715A (en) Heat-treating device for steel
JP7407495B2 (en) Heat treatment furnace and heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5793803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250