JP2012092380A - Vacuum arc deposition method - Google Patents

Vacuum arc deposition method Download PDF

Info

Publication number
JP2012092380A
JP2012092380A JP2010239397A JP2010239397A JP2012092380A JP 2012092380 A JP2012092380 A JP 2012092380A JP 2010239397 A JP2010239397 A JP 2010239397A JP 2010239397 A JP2010239397 A JP 2010239397A JP 2012092380 A JP2012092380 A JP 2012092380A
Authority
JP
Japan
Prior art keywords
cathode
evaporation surface
arc
arc discharge
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010239397A
Other languages
Japanese (ja)
Inventor
Tomohiro Daimaru
智弘 大丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2010239397A priority Critical patent/JP2012092380A/en
Publication of JP2012092380A publication Critical patent/JP2012092380A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum arc deposition method capable of assuring a position of a cathode spot to be in a front of an evaporation surface of a cathode material, and improving stability of vacuum arc discharge.SOLUTION: By an annular magnet arranged behind a back surface portion of the cathode and in the atmosphere, and having an inner diameter larger than an outer diameter of the cathode, lines of magnetic force are made to cross the evaporation surface of the cathode material so as to make an acute angle toward a center axis side of the cathode in an outer edge portion of the cathode material. Herein, a value A expressed by A=IBsin2θ is set to 70,000 or more, where θ (degrees) is a crossing angle made by the lines of magnetic force and the evaporation surface in the outer edge portion of the cathode, B (Gauss) is a magnetic flux density, and I(A) is an arc discharge current.

Description

本発明は機械部品、工具、金型などへの耐摩耗性向上皮膜形成に専ら用いられる真空アーク蒸着法に関する。   The present invention relates to a vacuum arc vapor deposition method used exclusively for forming a wear-resistant coating on machine parts, tools, dies and the like.

真空アーク蒸着法は、陽極と陰極の間にアーク放電を生じさせ、陰極材料を蒸発させて基材に蒸着するという薄膜形成方法であり、機械部品や工具などへの耐摩耗性皮膜の被覆法としてよく利用されている。   The vacuum arc deposition method is a thin film formation method in which arc discharge is generated between the anode and the cathode, and the cathode material is evaporated and deposited on the substrate. It is often used as.

しかし、陰極材料の陰極スポットから、直径が数μm〜数百μmにもなる大きな塊りの粗大粒子(これはドロップレットとも呼ばれる。)が飛散し、この粗大粒子が基材に付着して被膜特性が劣化することが知られている。   However, a large lump of coarse particles (also called droplets) having a diameter of several μm to several hundreds of μm are scattered from the cathode spot of the cathode material, and the coarse particles adhere to the substrate and are coated. It is known that the characteristics deteriorate.

また、陰極スポットが陰極物質中央部や外縁部に停滞したりして陰極物質の均一な消耗を妨げ、陰極物質の利用効率が悪くなったり、陰極物質蒸発面以外の側面に移行して、アーク放電が失弧したりする問題もある。   In addition, the cathode spot stagnates in the central part or outer edge of the cathode material, preventing the uniform consumption of the cathode material, the utilization efficiency of the cathode material is deteriorated, or the cathode material moves to a side other than the evaporation surface of the cathode material, There is also a problem that the discharge may be lost.

以上の問題点に対処するための真空アーク蒸着法に用いられる蒸発源が特開平11−142073号で開示されている。
この蒸発源では、陰極の蒸発物質の外周部にリング状の磁性体及び磁場発生源を配置しており、陰極物質の外周部において、蒸発面に対して内側に鋭角となるように交差した磁力線を持つ磁場を形成している。
Japanese Patent Laid-Open No. 11-142073 discloses an evaporation source used in a vacuum arc deposition method for dealing with the above problems.
In this evaporation source, a ring-shaped magnetic body and a magnetic field generation source are arranged on the outer peripheral portion of the cathode evaporating material, and the magnetic field lines intersecting the outer peripheral portion of the cathode material so as to have an acute angle inward with respect to the evaporation surface. Form a magnetic field with

また、陰極の蒸発物質の後方中央部に、磁場発生源と逆向きの極性を持つ磁力線変更手段を配置することで、蒸発物質の蒸発面中央部付近において、蒸発面に対して外側に鋭角となるように交差した磁力線を持つ磁場を形成している。   In addition, by arranging magnetic field line changing means having a polarity opposite to that of the magnetic field generation source in the rear central portion of the cathode evaporating substance, an acute angle is formed outwardly with respect to the evaporating surface in the vicinity of the evaporating substance central portion. A magnetic field having crossed magnetic field lines is formed.

特開平11−142073号公報Japanese Patent Laid-Open No. 11-142073

真空アーク放電の陰極スポットは、陰極物質の蒸発面において磁力線が鋭角に傾いている方向に移動しやすいことが知られている。この現象はアーク放電の電流と磁場によるローレンツ力に起因すると考えられ、陰極スポットの移動の程度はアーク電流及び磁場の磁束密度の両方に影響すると考えられる。   It is known that the cathode spot of the vacuum arc discharge easily moves in the direction in which the lines of magnetic force are inclined at an acute angle on the evaporation surface of the cathode material. This phenomenon is considered to be caused by the Lorentz force due to the arc discharge current and the magnetic field, and the degree of movement of the cathode spot is considered to affect both the arc current and the magnetic flux density of the magnetic field.

真空アーク蒸着法による皮膜の成膜において、成膜速度等を調整するため、アーク電流を変化させた場合、陰極スポットの移動の程度も変化するため、陰極スポットを陰極物質の適正な位置に維持するために必要な磁束密度はアーク電流の大小によって異なると考えられる。
しかし、これらの点については、前記引用文献において述べられていない。
In film formation by vacuum arc deposition, when the arc current is changed to adjust the film formation speed, etc., the degree of cathode spot movement also changes, so the cathode spot is maintained at the proper position of the cathode material. It is considered that the magnetic flux density required to do this varies depending on the magnitude of the arc current.
However, these points are not described in the cited document.

そこで本発明は、陰極スポットを陰極物質の蒸発面に維持できる安定アーク放電領域を求めるために、アーク電流を変化させて、アーク放電電流と磁束密度から導き出せる値を定量的に定め、アーク蒸発源の使用において陰極スポットの陰極側面等への移動を防ぎ、陰極蒸発面で安定したアーク放電が持続できる真空アーク蒸着法を提供することを課題とする。   Therefore, in order to obtain a stable arc discharge region in which the cathode spot can be maintained on the evaporation surface of the cathode material, the present invention quantitatively determines a value that can be derived from the arc discharge current and the magnetic flux density by changing the arc current. It is an object of the present invention to provide a vacuum arc vapor deposition method that prevents movement of the cathode spot to the cathode side surface or the like in use, and can maintain stable arc discharge on the cathode evaporation surface.

本発明は前記課題を解決するため、アーク放電によって陰極を溶解させて陰極物質を蒸発させる真空アーク蒸着法であって、前記陰極の背面部の後方であって大気中に配置され、その内径が前記陰極の外径より大きい環状磁石により、前記陰極物質の外縁部における磁力線を前記陰極物質の蒸発面に対して前記陰極の中心軸側に鋭角になるように交差させ、前記陰極の外周端における前記磁力線と蒸発面の交差角度をθ(度)、磁束密度をB(Gauss)とし、アーク放電電流をI(A)とすると、A=IBsin2θで示されるAの値の絶対値を70000以上とすることを特徴としている。 In order to solve the above-mentioned problems, the present invention provides a vacuum arc vapor deposition method in which a cathode is dissolved by arc discharge to evaporate a cathode material, which is disposed in the atmosphere behind the back surface of the cathode and has an inner diameter of By means of an annular magnet larger than the outer diameter of the cathode, the magnetic lines of force at the outer edge of the cathode material are crossed so as to be at an acute angle to the central axis side of the cathode material with respect to the evaporation surface of the cathode material, Assuming that the intersection angle between the magnetic field lines and the evaporation surface is θ (degrees), the magnetic flux density is B (Gauss), and the arc discharge current is I (A), the absolute value of A indicated by A = IB 2 sin2θ is 70000. It is characterized by the above.

本発明によると、アーク蒸発源を用いる際、陰極スポットの位置を陰極物質の蒸発面の前面に保つことができ、真空アーク放電の安定性を高める真空アーク蒸着法を提供できる。   According to the present invention, when an arc evaporation source is used, the position of the cathode spot can be kept in front of the evaporation surface of the cathode material, and a vacuum arc deposition method that improves the stability of the vacuum arc discharge can be provided.

本発明の方法を実現する真空アーク蒸着装置の1例を概略的に示す図である。It is a figure which shows roughly an example of the vacuum arc vapor deposition apparatus which implement | achieves the method of this invention. 第1図の真空アーク蒸着装置のアーク蒸発源における磁場の状態の概略を模式的に示す図である。FIG. 2 is a diagram schematically showing an outline of a magnetic field state in an arc evaporation source of the vacuum arc vapor deposition apparatus in FIG. 1. 本発明の実施に係る陰極及び磁力線の配置を示したものである。2 shows an arrangement of cathodes and lines of magnetic force according to an embodiment of the present invention.

以下、本発明の実施の形態について、添付図面を参照して説明する。
図1は本発明を実施するためのアーク蒸着装置の一例である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an example of an arc vapor deposition apparatus for carrying out the present invention.

図1に示す真空蒸着装置101は、膜形成を行うための真空容器1、容器1の外側壁11に設けられたアーク蒸発源2、容器1内の、蒸発源2に臨む位置に配置された膜形成対象物品Wのホルダ3及び真空容器1内を所望の膜形成のための減圧雰囲気に設定する排気装置EX等を含んでいる。   A vacuum deposition apparatus 101 shown in FIG. 1 is arranged at a position facing the evaporation source 2 in the vacuum vessel 1 for film formation, an arc evaporation source 2 provided on the outer wall 11 of the vessel 1, and the vessel 1. It includes an exhaust device EX for setting the inside of the holder 3 of the film formation target article W and the vacuum vessel 1 to a reduced pressure atmosphere for forming a desired film.

ホルダ3は支持部4に回転可能に支持され、回転駆動部5により回転させることができる。ホルダ3に支持される膜形成対象物品Wには、後述するイオン化された陰極材料をひきつけて円滑な膜形成を行えるように、ホルダ3を介してバイアス電源6からバイアス電圧を印加できる。物品ホルダ3には膜形成にあたり物品を加熱するヒータを設けてあってもよい。   The holder 3 is rotatably supported by the support unit 4 and can be rotated by the rotation drive unit 5. A bias voltage can be applied from the bias power source 6 to the film formation target article W supported by the holder 3 via the holder 3 so that an ionized cathode material, which will be described later, can be attracted to form a smooth film. The article holder 3 may be provided with a heater for heating the article in forming the film.

排気装置EXは、容器1内を排気減圧できるものであればよく、例えば、ターボ分子ポンプ、ディフュージョンポンプ、クライオンポンプ等の排気ポンプを含む装置を使用できる。   The exhaust device EX may be any device that can exhaust and decompress the inside of the container 1. For example, a device including an exhaust pump such as a turbo molecular pump, a diffusion pump, or a claion pump can be used.

真空容器1には、必要に応じて予め定めたガスを導入するためのガス導入部7が設けられている。このガス導入部7は、例えば蒸発源陰極材料がクロムで窒化クロム膜を形成するときに容器1内へ窒素ガスを導入する部分として、また、例えば被成膜物品Wを膜形成に先立ってグロー放電等による清浄化前処理等の前処理を施すためのガスの導入部として利用できる。   The vacuum vessel 1 is provided with a gas introduction part 7 for introducing a predetermined gas as required. The gas introduction part 7 is used as a part for introducing nitrogen gas into the container 1 when, for example, the evaporation source cathode material is chromium and a chromium nitride film is formed. It can be used as a gas introduction part for performing pretreatment such as cleaning pretreatment by electric discharge or the like.

アーク蒸発源2は、陰極20、トリガー電極25、アーク放電用電源24等を備えている。陰極20は導電性の陰極ホルダ21に支持されて容器1内に位置し、物品ホルダ3の方に向けられている。   The arc evaporation source 2 includes a cathode 20, a trigger electrode 25, an arc discharge power source 24, and the like. The cathode 20 is supported by a conductive cathode holder 21, is located in the container 1, and is directed toward the article holder 3.

図示例では、陰極ホルダ21は電気絶縁部材22を介して容器1の外壁11に外側からあてがわれ、保持部材23にて外壁11の方へ押しつけられるようにして外壁11に取り付けられている。陰極ホルダ21のカソード20背面に臨む部分には空間211が形成されている。ここには、所望とあれば、図示省略の水循環装置にて冷却水を通すことができる。   In the illustrated example, the cathode holder 21 is attached to the outer wall 11 of the container 1 from the outside via the electrical insulating member 22 and is attached to the outer wall 11 so as to be pressed toward the outer wall 11 by the holding member 23. A space 211 is formed in a portion of the cathode holder 21 facing the back surface of the cathode 20. If desired, cooling water can be passed through a water circulation device (not shown) if desired.

陰極20は、それとは限定されないが、ここでは短円柱形状を呈しており、形成しようとする膜に応じて選択した材料で形成される。
この陰極に対する陽極はここでは接地された容器1がこれを兼ねている。
なお、陽極については、例えば陰極20端部を囲むアノードを別途設ける等してもよい。
Although not limited thereto, the cathode 20 has a short cylindrical shape here, and is formed of a material selected according to a film to be formed.
In this case, the grounded container 1 serves as the anode for the cathode.
As for the anode, for example, an anode surrounding the end portion of the cathode 20 may be separately provided.

トリガー電極25は陰極20の物品ホルダ3に向けられた端面(陰極蒸発面)20Sに臨んでおり、図示を省略した往復駆動装置により陰極蒸発面20Sに対し接触離反可能である。図1においては、トリガー電極25は陰極20を貫通しているかの如く示されているが、陰極20を貫通しているのではなく、陰極周囲の壁体に往復動可能に通されている(図示省略)。   The trigger electrode 25 faces the end face (cathode evaporation surface) 20S of the cathode 20 facing the article holder 3, and can be brought into contact with and separated from the cathode evaporation surface 20S by a reciprocating drive device (not shown). In FIG. 1, the trigger electrode 25 is shown as if it penetrates the cathode 20, but instead of passing through the cathode 20, it passes through the wall around the cathode so as to be able to reciprocate ( (Not shown).

アーク放電用電源24は陰極20と陽極との間にアーク放電用電圧を印加できるように、また、陰極20と陽極間のアーク放電を誘発するために陰極20とトリガー電極25との間にトリガー用電圧を印加できるように、陰極20等に配線接続されている。トリガー電極25はアーク電流が流れないように抵抗26を介して接地されている。   The arc discharge power supply 24 can apply an arc discharge voltage between the cathode 20 and the anode, and trigger between the cathode 20 and the trigger electrode 25 to induce arc discharge between the cathode 20 and the anode. Wiring connection is made to the cathode 20 or the like so that a working voltage can be applied. The trigger electrode 25 is grounded via a resistor 26 so that no arc current flows.

このアーク蒸発源2は次の点に特徴がある。
すなわち、真空容器1の外壁11の外側において大気中に配置されて該外壁に取り付けられた磁場形成用磁石を備えている点である。この磁場形成用磁石11は、陰極蒸発面20Sでの真空アーク放電による陰極スポットの位置制御のための、該蒸発面に交差する磁力線を発生させる磁石である。
This arc evaporation source 2 is characterized by the following points.
That is, it is provided with a magnetic field forming magnet that is disposed in the atmosphere outside the outer wall 11 of the vacuum vessel 1 and attached to the outer wall. The magnetic field forming magnet 11 is a magnet that generates magnetic field lines intersecting the evaporation surface for controlling the position of the cathode spot by vacuum arc discharge on the cathode evaporation surface 20S.

この磁場形成用磁石は、永久磁石でも、電磁石でも、それらを組み合わせた磁石でもよく、また、複数の磁石を組み合わせた磁石でもよいが、ここでは、環状の永久磁石Mである。磁石Mについてはさらに後述する。   The magnetic field forming magnet may be a permanent magnet, an electromagnet, a combination of them, or a combination of a plurality of magnets. Here, it is an annular permanent magnet M. The magnet M will be further described later.

以上説明した真空蒸着装置101によると、次のようにして膜形成対象物品W上に陰極20の構成材料元素を含む薄膜を形成することができる。
まず、図示省略の容器扉を開き、物品ホルダ3に膜形成対象物品Wを搭載し、該扉を気密に閉じる。次いで排気装置EXを運転して容器1から排気し、容器1内を膜形成圧力まで減圧する。
According to the vacuum evaporation apparatus 101 demonstrated above, the thin film containing the constituent material element of the cathode 20 can be formed on the film formation object W as follows.
First, the container door (not shown) is opened, the film formation target article W is mounted on the article holder 3, and the door is closed in an airtight manner. Next, the exhaust device EX is operated to exhaust from the container 1, and the inside of the container 1 is depressurized to the film forming pressure.

膜形成開始にあたっては、蒸発源2において、トリガー電極25をカソード20の蒸発面20Sに接触させ、ひき続き引き離す。これにより電極25と陰極20間に火花が発生し、これが引き金となって陽極(容器1)と陰極20との間に真空アーク放電が誘発される。このアーク放電により陰極材料が加熱され、陰極材料がα方向に蒸発し、さらに陰極20前方にイオン化陰極材料を含むプラズマが形成される。   In starting the film formation, in the evaporation source 2, the trigger electrode 25 is brought into contact with the evaporation surface 20S of the cathode 20 and is continuously pulled away. As a result, a spark is generated between the electrode 25 and the cathode 20, which triggers a vacuum arc discharge between the anode (container 1) and the cathode 20. The cathode material is heated by this arc discharge, the cathode material evaporates in the α direction, and plasma including the ionized cathode material is formed in front of the cathode 20.

本例では、膜形成中は、膜付着性を良好にする等のために膜形成用イオンを引き寄せるためのバイアス電圧を電源6からホルダ3に印加する。さらに、各物品への均一な膜形成のために、ホルダ3を駆動部5にて回転させる。
ホルダ3に図示省略のヒータを設けてあるときは、必要に応じ、該ヒータで物品を加熱することもできる。
In this example, during film formation, a bias voltage for attracting film-forming ions is applied from the power source 6 to the holder 3 in order to improve film adhesion. Further, the holder 3 is rotated by the drive unit 5 in order to form a uniform film on each article.
When a heater (not shown) is provided in the holder 3, the article can be heated with the heater as necessary.

かくして、物品Wに陰極材料の構成元素を含む膜が形成されるのであるが、アーク蒸発源2においては、前記磁場形成用の環状磁石Mが次のような利点をもたらす。
環状磁石Mは、内径が陰極20の外径より大きく、陰極20の蒸発面20Sに垂直な方向からみると陰極20に中心軸線を一致させて外嵌するように配置されている。そして、中心軸線方向において片側に(容器1に臨む側に)第1磁極Nを有しているとともに反対側に逆極性の第2磁極12Sを有している。
Thus, a film containing the constituent element of the cathode material is formed on the article W. However, in the arc evaporation source 2, the annular magnet M for forming the magnetic field provides the following advantages.
The annular magnet M is arranged so that its inner diameter is larger than the outer diameter of the cathode 20 and is fitted to the cathode 20 with its central axis aligned when viewed from a direction perpendicular to the evaporation surface 20S of the cathode 20. The first magnetic pole N is provided on one side (on the side facing the container 1) in the central axis direction, and the second magnetic pole 12S having a reverse polarity is provided on the opposite side.

図2はアーク蒸発源2における磁場の状態の概略を模式的に示している。
図2に示すように、磁場形成用磁石Mは、陰極20の蒸発面20Sの周縁部においては蒸発面20Sに対して蒸発面中央部へ鋭角θ1をなして傾く磁力線を発生させるとともに蒸発面中央部においては蒸発面20Sに対して蒸発面周縁部へ鋭角θ2をなして傾く磁力線を発生させる磁場を形成する。
FIG. 2 schematically shows the outline of the state of the magnetic field in the arc evaporation source 2.
As shown in FIG. 2, the magnetic field forming magnet M generates magnetic lines of force inclined at an acute angle θ <b> 1 to the central portion of the evaporation surface with respect to the evaporation surface 20 </ b> S at the peripheral portion of the evaporation surface 20 </ b> S of the cathode 20. In the part, a magnetic field is generated that generates magnetic lines of force inclined at an acute angle θ2 with respect to the evaporation surface peripheral portion with respect to the evaporation surface 20S.

アーク蒸発源2における陰極蒸発面20Sのアーク放電によるアークスポットは、陰極蒸発面20Sにおいて磁力線が傾く方向に移動し易い性質がある。
従って、図2に示すように上記磁力線により、陰極蒸発面20Sの周縁部においては陰極スポットを蒸発面中央部側へ移動させることができる。かくして、陰極スポットの陰極蒸発面20Sからの飛び出しや、陰極蒸発面20Sに続く陰極側面ssへの回り込みを抑制できる。
An arc spot due to arc discharge of the cathode evaporation surface 20S in the arc evaporation source 2 has a property that it easily moves in the direction in which the magnetic lines of force are inclined on the cathode evaporation surface 20S.
Therefore, as shown in FIG. 2, the cathode spot can be moved toward the center of the evaporation surface at the peripheral portion of the cathode evaporation surface 20S by the magnetic field lines. Thus, jumping out of the cathode spot from the cathode evaporation surface 20S and wraparound to the cathode side surface ss following the cathode evaporation surface 20S can be suppressed.

ここで、本蒸発源によれば、上述したように陰極スポットの陰極蒸発面20Sからの飛び出しを防止するが、陰極スポットを蒸発面に維持するための磁束密度はアーク電流の大きさによって異なると考えられるので、それらの関係について、さらに詳しく説明する。   Here, according to the present evaporation source, the cathode spot is prevented from jumping out from the cathode evaporation surface 20S as described above, but the magnetic flux density for maintaining the cathode spot on the evaporation surface varies depending on the magnitude of the arc current. Since they are considered, their relationship will be described in more detail.

図3は陰極20及び磁力線B等を模式的に表した図である。陰極20の蒸発面に角度θで磁力線が交わっている状態を考える。陰極スポットの熱によって蒸発・イオン化した金属イオンは、蒸発物質の陰極蒸発面20Sから拡散によって陰極前方に移動する。この時の金属イオンの移動方向はアーク電流の向きと逆方向になる。従って、周囲の磁場によるローレンツ力は、アーク電流から考えられる向きとは逆方向になる。   FIG. 3 is a diagram schematically showing the cathode 20, the magnetic field lines B, and the like. Consider a state in which magnetic field lines intersect the evaporation surface of the cathode 20 at an angle θ. The metal ions evaporated and ionized by the heat of the cathode spot move forward from the cathode evaporation surface 20S of the evaporated substance by diffusion. At this time, the moving direction of the metal ions is opposite to the direction of the arc current. Therefore, the Lorentz force due to the surrounding magnetic field is in a direction opposite to the direction considered from the arc current.

kをイオンの価数、eを電荷素量、イオンの拡散初速度をv、とすると、金属イオンの拡散によるローレンツ力F1は次式(1)のようになる。 When k is the valence of an ion, e is the elementary charge, and the initial diffusion velocity of the ion is v 0 , the Lorentz force F 1 due to the diffusion of the metal ion is expressed by the following equation (1).

Figure 2012092380
Figure 2012092380

ローレンツ力F1の向きは磁力線及びイオンの拡散方向のどちらとも直角となる。この場合、蒸発物質2の蒸発面と平行になる。この力によってイオンが加速され、その加速度は磁束密度の蒸発面に平行な成分(Bcosθ)及びイオン拡散速度v0によって決まると考えられる。ここでv0の絶対値は蒸発物質の蒸発速度、すなわちアーク電流Iに比例すると考えられる。
ここで接線方向に移動するイオンに対して、再び磁場によるローレンツ力F2が働く。ここで、アーク放電が発生する間隔Δtが一定であるとすれば、次式のイオンの接線成分の速度v1はローレンツ力F1に比例するため、ローレンツ力F2は次式(2)のようになる。
The direction of the Lorentz force F 1 becomes also perpendicular to the both of the diffusion direction of the magnetic lines of force and ions. In this case, the evaporation material 2 is parallel to the evaporation surface. Ions are accelerated by this force, and the acceleration is considered to be determined by the component (Bcos θ) parallel to the evaporation surface of the magnetic flux density and the ion diffusion velocity v 0 . Here, the absolute value of v 0 is considered to be proportional to the evaporation rate of the evaporated substance, that is, the arc current I.
Here, the Lorentz force F 2 due to the magnetic field acts again on the ions moving in the tangential direction. Here, if the interval Δt at which arc discharge occurs is constant, the velocity v 1 of the tangential component of ions in the following equation is proportional to the Lorentz force F 1 , so the Lorentz force F 2 is expressed by the following equation (2): It becomes like this.

Figure 2012092380
Figure 2012092380

この力F2は磁束Bに垂直な向きにかかるため、鋭角方向の成分が発生する。これにより蒸発物質2の蒸発面と磁束が鋭角に交わる方向に陰極スポットが移動すると考えられる。この陰極スポットの鋭角方向への移動効果の強度の値をAとすると、Aは次式(3)のようになる。 This force F 2 because according to a direction perpendicular to the magnetic flux B, acute direction component is generated. Thereby, it is considered that the cathode spot moves in a direction in which the evaporation surface of the evaporating substance 2 and the magnetic flux intersect at an acute angle. If the value of the intensity of the effect of moving the cathode spot in the acute angle direction is A, A is expressed by the following equation (3).

Figure 2012092380
Figure 2012092380

アーク蒸発源を用いる際、蒸発物質の外周端における磁力線の向きを前記陰極の蒸発面に対して内側に鋭角となるようにし、かつAの値を一定値以上にすることで、陰極スポットの位置を制御し、陰極スポットを陰極側面に移動することなしに蒸発物質前面に保つことができる。   When the arc evaporation source is used, the direction of the magnetic field lines at the outer peripheral edge of the evaporated substance is set to an acute angle inward with respect to the evaporation surface of the cathode, and the value of A is set to a certain value or more, whereby the position of the cathode spot And the cathode spot can be kept in front of the evaporant without moving to the cathode side.

以上の考えのもとに、図1、図2に示す蒸発源2を用いて、陰極スポットの陰極側面ssへ移動(横落ち)するかどうか、すなわちアーク蒸発面で安定して陰極スポットが保持されるか否かについて、陰極20に直径84mm、厚さ32mmのTiを、成膜プロセスガスにN2を用いてTiNの成膜を実施して、効果を確認した。 Based on the above thought, whether or not the evaporation source 2 shown in FIGS. 1 and 2 is used to move (fall down) to the cathode side surface ss of the cathode spot, that is, the cathode spot is stably held on the arc evaporation surface. As to whether or not the film was formed, TiN was formed using Ti with a diameter of 84 mm and a thickness of 32 mm for the cathode 20 and N 2 for the film forming process gas, and the effect was confirmed.

陰極蒸発面20Sの外周端における磁束密度の強度B[Gauss]、磁力線と蒸発面の成す角の角度をθ[deg.]、アーク電流の値をI[A]および前記式で示されたAの値の組合せ及び横落ちするか否かの結果を表1に示す。なお、横落ちするか否かはアーク放電を1時間継続するかどうかで判定した。   The magnetic flux density intensity B [Gauss] at the outer peripheral edge of the cathode evaporation surface 20S, the angle formed by the magnetic field lines and the evaporation surface is θ [deg.], The arc current value is I [A], and A is given by the above equation. Table 1 shows the combinations of the values of and the results of whether or not they fall. Whether or not it falls down was determined by whether or not arc discharge was continued for 1 hour.

Figure 2012092380
Figure 2012092380

Aの値が70000以上の条件で、陰極スポットが横落ち、すなわち陰極側面に移行することなくアーク放電が陰極蒸発面に維持でき、安定して成膜できことが明らかになった。   Under the condition that the value of A is 70000 or more, it has been clarified that the cathode spot falls sideways, that is, the arc discharge can be maintained on the cathode evaporation surface without moving to the cathode side surface, and the film can be stably formed.

本発明は陰極スポットの蒸発面以外への移動の防止、それによるアーク放電の失弧を防ぎ、安定して薄膜を形成することのできる真空アーク蒸着法による薄膜形成に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for forming a thin film by a vacuum arc vapor deposition method that can prevent a cathode spot from moving to other than the evaporation surface, thereby preventing arc discharge from being lost, and form a thin film stably.

101 真空蒸着装置
1 真空容器
11 容器外壁
2 アーク蒸発源
20 陰極
20S 陰極蒸発面
ss 陰極側面
21 陰極ホルダ
211 空間
22 絶縁部材
23 保持部材
24 アーク放電電源
25 トリガー電極
26 抵抗
3 物品ホルダ
W 膜形成対象物品(成膜物品)
4 支持部
5 駆動部
6 バイアス電源
7 ガス導入部
EX 排気装置
M 磁場形成用の環状磁石
m 磁力強化磁石
R 非磁性高融点金属リング
B 磁力線
F1 金属イオンの拡散によるローレンツ力
F2 F1によって金属イオン移動することによるローレンツ力
I アーク放電電流
θ、θ1、θ2 磁力線と陰極蒸発面の角度
DESCRIPTION OF SYMBOLS 101 Vacuum deposition apparatus 1 Vacuum vessel 11 Container outer wall 2 Arc evaporation source 20 Cathode 20S Cathode evaporation surface ss Cathode side surface 21 Cathode holder 211 Space 22 Insulating member 23 Holding member 24 Arc discharge power supply 25 Trigger electrode 26 Resistance 3 Article holder W Film formation object Article (film-forming article)
4 Supporting Unit 5 Driving Unit 6 Bias Power Supply 7 Gas Introducing Unit EX Exhaust Device M Ring Magnet for Magnetic Field Formation m Magnetic Strengthening Magnet R Nonmagnetic Refractory Metal Ring B Magnetic Field Line
Lorentz force due to diffusion of F 1 metal ions
Lorentz force by moving metal ions by F 2 F 1 I Arc discharge current θ, θ1, θ2 Magnetic field lines and angle of cathode evaporation surface

Claims (1)

アーク放電によって陰極を溶解させて陰極物質を蒸発させる真空アーク蒸着法であって、前記陰極の背面部の後方であって大気中に配置され、その内径が前記陰極の外径より大きい環状磁石により、前記陰極物質の外縁部における磁力線を前記陰極の蒸発面に対して前記陰極の中心軸側に鋭角になるように交差させ、前記陰極の外周端における前記磁力線と蒸発面の交差角度をθ(度)、磁束密度をB(Gauss)とし、アーク放電電流をI(A)とすると、A=IBsin2θで示されるAの値を70000以上とすることを特徴とする真空アーク蒸着法。 A vacuum arc vapor deposition method in which a cathode is melted by arc discharge to evaporate a cathode material, and is disposed in the atmosphere behind the back surface of the cathode, with an annular magnet having an inner diameter larger than the outer diameter of the cathode , The magnetic lines of force at the outer edge of the cathode material intersect with the evaporation surface of the cathode at an acute angle toward the central axis of the cathode, and the angle of intersection between the magnetic field lines and the evaporation surface at the outer peripheral edge of the cathode is θ ( Degree), the magnetic flux density is B (Gauss), and the arc discharge current is I (A), and the value of A indicated by A = IB 2 sin2θ is 70000 or more.
JP2010239397A 2010-10-26 2010-10-26 Vacuum arc deposition method Pending JP2012092380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239397A JP2012092380A (en) 2010-10-26 2010-10-26 Vacuum arc deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239397A JP2012092380A (en) 2010-10-26 2010-10-26 Vacuum arc deposition method

Publications (1)

Publication Number Publication Date
JP2012092380A true JP2012092380A (en) 2012-05-17

Family

ID=46386058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239397A Pending JP2012092380A (en) 2010-10-26 2010-10-26 Vacuum arc deposition method

Country Status (1)

Country Link
JP (1) JP2012092380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345928A (en) * 2020-10-16 2021-02-09 大连理工大学 Method for measuring current after arc based on tunnel magnetoresistive element
JP2022021740A (en) * 2020-07-22 2022-02-03 株式会社神戸製鋼所 Arc evaporation source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022021740A (en) * 2020-07-22 2022-02-03 株式会社神戸製鋼所 Arc evaporation source
JP7439357B2 (en) 2020-07-22 2024-02-28 株式会社神戸製鋼所 arc evaporation source
CN112345928A (en) * 2020-10-16 2021-02-09 大连理工大学 Method for measuring current after arc based on tunnel magnetoresistive element
CN112345928B (en) * 2020-10-16 2021-09-24 大连理工大学 Method for measuring current after arc based on tunnel magnetoresistive element

Similar Documents

Publication Publication Date Title
JP6200899B2 (en) Cathode arc deposition apparatus and method with filter
JP6101238B2 (en) Coating apparatus for coating a substrate and method for coating a substrate
JP5608176B2 (en) A modifiable magnetic array for arc evaporation sources
JP2007056347A (en) Evaporation source for arc-type ion plating apparatus
KR20130121078A (en) Arc deposition source having a defined electric field
JP6438657B2 (en) Cylindrical deposition source
JP2006510803A (en) Vacuum arc source with magnetic field generator
KR100530545B1 (en) Apparatus for driving the arc in a cathodic arc coater
JP2012092380A (en) Vacuum arc deposition method
JP2006169630A (en) Method and apparatus for cathodic arc deposition of materials on a substrate
JP5494663B2 (en) Arc evaporation source and vacuum evaporation system
US9153422B2 (en) Arc PVD plasma source and method of deposition of nanoimplanted coatings
JP2021528815A (en) Single beam plasma source
JP2017066483A (en) Film deposition apparatus and method using magnetron sputtering technique
JP2008280579A (en) Electron-beam sputtering device
JP4019457B2 (en) Arc type evaporation source
JP5652348B2 (en) Arc ion plating equipment
JP2017020056A (en) Alloy nitride film formation device and alloy nitride film formation method
JP2004353023A (en) Arc discharge type ion plating apparatus
CN110998784A (en) Improvements in and relating to coating processes
KR101005204B1 (en) Facing target type sputtering apparatus
KR100716264B1 (en) Ion plating apparatus
RU2574537C2 (en) Arc evaporator with preset electric field
KR20130106575A (en) Vacuum arc evaporation unit and arc ion plating apparatus including the same
JP2013108136A (en) Arc ion plating apparatus