JP2012091987A - Fiber suitable for improving explosion resistance of amorphous refractory, and amorphous refractory obtained by adding it - Google Patents

Fiber suitable for improving explosion resistance of amorphous refractory, and amorphous refractory obtained by adding it Download PDF

Info

Publication number
JP2012091987A
JP2012091987A JP2010242897A JP2010242897A JP2012091987A JP 2012091987 A JP2012091987 A JP 2012091987A JP 2010242897 A JP2010242897 A JP 2010242897A JP 2010242897 A JP2010242897 A JP 2010242897A JP 2012091987 A JP2012091987 A JP 2012091987A
Authority
JP
Japan
Prior art keywords
fiber
dtex
amorphous refractory
explosion
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010242897A
Other languages
Japanese (ja)
Other versions
JP5676207B2 (en
Inventor
Susumu Miyake
進 三宅
Shinya Inada
真也 稲田
Toshiaki Kobayashi
利章 小林
Masashi Nakajima
将史 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010242897A priority Critical patent/JP5676207B2/en
Publication of JP2012091987A publication Critical patent/JP2012091987A/en
Application granted granted Critical
Publication of JP5676207B2 publication Critical patent/JP5676207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber of which an organic fiber is melted or dissolved at the time of heated-air drying of an amorphous refractory and in which breathing holes for scattering water vapor are easily formed.SOLUTION: The organic fiber is added to the amorphous refractory and has a contraction stress being 0.1-2 cN/dtex. The amorphous refractory is obtained by adding the fiber.

Description

本発明は、不定形耐火物に添加することで、耐爆裂性を向上させることのできる収縮応力の高い有機繊維に関する。   The present invention relates to an organic fiber having a high shrinkage stress, which can improve explosion resistance by being added to an amorphous refractory.

製鉄産業における溶鋼取鍋、タンデッシュ、混銑車、高炉樋、真空脱ガス炉等の内張り材又はその補修材等に使用される不定形耐火物の施工方法として、例えば、流し込み施工方法や吹き付け施工方法等がある。それらの施工方法では、不定形耐火物に施工水が添加される。施工水を添加して施工された不定形耐火物は、ガスバーナ等により加熱し乾燥されてから使用される。この加熱乾燥時には施工水が水蒸気となるため、急激な加熱乾燥では、水蒸気の圧力で不定形耐火物が爆裂を生じることがある。特に近年、低セメント不定形耐火物に代表される緻密質の不定形耐火物が普及するにつれて、この問題は一層重要度を増している。そこで、加熱乾燥時における施工体の爆裂等を防止するために、不定形耐火物に有機繊維を添加することが開示されており、具体的にはポリオレフィン系繊維、ポリ塩化ビニル繊維、ポリビニルアルコール(以下、PVAと称す)繊維等が開示されている(例えば、特許文献1〜3参照。)。
そして、これら特許文献1〜3においては、不定形耐火物の加熱乾燥時に有機繊維が溶融または溶解して消失することにより、施工体の組織に微細な通気孔が形成され、この通気孔を介して水蒸気が容易に散逸するため、施工体の水蒸気爆裂等を防止できることが開示されている。
As a construction method for irregular refractories used for lining materials or repair materials for molten steel ladle, tundish, kneading car, blast furnace furnace, vacuum degassing furnace in the steel industry, for example, casting construction method and spraying construction method Etc. In these construction methods, construction water is added to the irregular refractory. The amorphous refractory constructed by adding construction water is used after being heated and dried by a gas burner or the like. Since the construction water becomes water vapor during this heat drying, the amorphous refractory may sometimes explode due to the pressure of the water vapor during rapid heat drying. Particularly in recent years, this problem has become more important as dense amorphous refractories represented by low-cement amorphous refractories have become widespread. Therefore, it has been disclosed to add an organic fiber to the amorphous refractory material in order to prevent the explosion of the construction body at the time of heating and drying. Specifically, polyolefin fiber, polyvinyl chloride fiber, polyvinyl alcohol ( Hereinafter, fibers and the like (referred to as PVA) are disclosed (for example, see Patent Documents 1 to 3).
And in these patent documents 1-3, when an organic fiber melts | dissolves or melt | dissolves and lose | disappears at the time of heat drying of an amorphous refractory material, a fine ventilation hole is formed in the structure | tissue of a construction body, This ventilation hole is passed through. Therefore, it is disclosed that the steam explosion of the construction body can be prevented because the water vapor is easily dissipated.

しかしながら、特許文献1〜3に記載の繊維では、不定形耐火物の加熱乾燥時に有機繊維が溶融または溶解するのみで水蒸気が散逸するための通気孔を形成させ難く、その結果、爆裂抑制効果が低いものであった。   However, in the fibers described in Patent Documents 1 to 3, it is difficult to form a vent hole for water vapor to be dissipated simply by melting or dissolving the organic fiber when the amorphous refractory is heated and dried. It was low.

特開昭59−190276号公報JP 59-190276 A 特開昭61−10079号公報JP-A-61-10079 特開平3−265572号公報JP-A-3-265572

したがって、本発明の目的は、不定形耐火物の加熱乾燥時に有機繊維が溶融または溶解するのみならず、水蒸気が散逸するための通気孔が形成しやすい繊維を提供することにある。   Accordingly, an object of the present invention is to provide a fiber that not only melts or dissolves an organic fiber during heating and drying of an amorphous refractory, but also easily forms a vent hole for dissipating water vapor.

本発明者等は上記課題を解決するために鋭意検討した結果、特定以上の収縮応力を有する有機繊維を不定形耐火物に添加することで、不定形耐火物中で拘束された状態下でも収縮して空隙が発生しやすく、該空隙を起点としてひび割れが発生して空隙間を伝播することで水蒸気の散逸に充分な通気孔が形成され、その結果、爆裂抑制が達成されることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have added organic fibers having a contraction stress of a specific level or more to the amorphous refractory, so that the contraction can be achieved even in a state of being restrained in the amorphous refractory. Then, voids are easily generated, cracks are generated starting from the voids, and air holes sufficient to dissipate water vapor are formed by propagating through the gaps, and as a result, it is found that explosion suppression is achieved, The present invention has been completed.

すなわち、本発明は不定形耐火物に添加する繊維であって、収縮応力が0.1〜2cN/dtexである有機繊維であり、好ましくは繊維強度が7cN/dtex以上である上記の有機繊維であり、さらに好ましくは、PVA系繊維、エチレンービニルアルコール共重合体繊維、またはポリプロピレン繊維である上記の有機繊維であり、繊維繊度が0.1〜5dtexである上記の有機繊維である。
そして、本発明は上記の有機繊維が0.005〜0.5質量%添加された不定形耐火物である。
なお、本明細書において、「〜」の記号は、両端点を含む意味で用いるものとする。
That is, the present invention is a fiber added to an amorphous refractory, and is an organic fiber having a shrinkage stress of 0.1 to 2 cN / dtex, preferably the above-mentioned organic fiber having a fiber strength of 7 cN / dtex or more. And more preferably, the organic fiber is a PVA fiber, an ethylene-vinyl alcohol copolymer fiber, or a polypropylene fiber, and the organic fiber has a fiber fineness of 0.1 to 5 dtex.
And this invention is an amorphous refractory to which said organic fiber was added 0.005-0.5 mass%.
In this specification, the symbol “to” is used to include both end points.

本発明の有機繊維を不定形耐火物に添加することにより、不定形耐火物の爆裂抑制性能が向上し、安全性が向上するばかりか、施工後の乾燥速度を早くすることができるようになるため、作業性向上にも繋がる。特に、これまで爆裂抑制が困難であった緻密質の不定形耐火物に対しても、効果的に爆裂抑制できる。   By adding the organic fiber of the present invention to the amorphous refractory, the explosion suppression performance of the amorphous refractory is improved, and not only the safety is improved, but also the drying speed after construction can be increased. Therefore, it leads to improvement in workability. In particular, explosion suppression can be effectively performed even for dense amorphous refractories that have been difficult to suppress.

以下、本発明について詳細に説明する。
[有機繊維の種類]
本発明での有機繊維は、PVA系繊維、エチレンービニルアルコール共重合体繊維、ポリアミド系繊維、ポリエステル系繊維、ポリプロピレン系繊維、アクリル系繊維、ポリウレタン系繊維等の合成繊維や、セルロース系繊維等の半合成繊維等が挙げられる。
これらの中で特に好適な有機繊維としては、低温で溶融ないしは水に溶解する点より、PVA系繊維、エチレンービニルアルコール共重合体繊維、またはポリプロピレン系繊維が特に好ましい。
Hereinafter, the present invention will be described in detail.
[Types of organic fibers]
The organic fiber in the present invention is a synthetic fiber such as PVA fiber, ethylene-vinyl alcohol copolymer fiber, polyamide fiber, polyester fiber, polypropylene fiber, acrylic fiber, polyurethane fiber, cellulose fiber, etc. And semi-synthetic fibers.
Among these, particularly preferable organic fibers are PVA fibers, ethylene-vinyl alcohol copolymer fibers, or polypropylene fibers, from the viewpoint of melting at low temperature or dissolving in water.

PVA系繊維を構成するPVA系樹脂としては特に限定されないが、実用的な機械的性能の点から粘度平均重合度1000以上、特に1500以上とするのが好ましく、紡糸性、コストの点から5000以下とするのが好ましい。また同理由からケン化度は50モル%以上であるのが好ましく、65モル%以上であるのがより好ましく、80モル%以上とするのが更に好ましい。
またPVA系樹脂には他のモノマーが共重合されていてもよく、共重合成分としてはカルボン酸含有ポリマーが吸液性向上に効果あり、たとえば、アクリル酸、メタアクリル酸、イタコン酸、マレイン酸、クロトン酸、フマル酸、あるいはこれら不飽和ニ塩基酸の無水物たとえば無水マレイン酸、無水イタコン酸等が上げられる。またエチレン、酢酸ビニル、ビニルアミン、アクリルアミド、ピバリン酸ビニル、スルホン酸含有ビニル化合物なども使用できる。実用的な機械的性能の点からはビニルアルコールユニットを全構成ユニットの70モル%以上有するポリマーとするのが好ましい。
Although it does not specifically limit as PVA-type resin which comprises PVA-type fiber, It is preferable to set it as a viscosity average polymerization degree 1000 or more from the point of practical mechanical performance, especially 1500 or more, and 5000 or less from the point of spinnability and cost. Is preferable. For the same reason, the saponification degree is preferably 50 mol% or more, more preferably 65 mol% or more, and further preferably 80 mol% or more.
In addition, other monomers may be copolymerized in the PVA-based resin, and a carboxylic acid-containing polymer is effective as a copolymerization component for improving the liquid absorption. , Crotonic acid, fumaric acid, or anhydrides of these unsaturated dibasic acids such as maleic anhydride and itaconic anhydride. Also usable are ethylene, vinyl acetate, vinylamine, acrylamide, vinyl pivalate, sulfonic acid-containing vinyl compounds, and the like. From the viewpoint of practical mechanical performance, it is preferable to use a polymer having a vinyl alcohol unit of 70 mol% or more of all the constituent units.

一方、エチレンービニルアルコール共重合体繊維を構成するエチレンービニルアルコール共重合体は、エチレン−酢酸ビニル系共重合体物を鹸化することにより得られる。該共重合体に含有されるエチレンの量は25〜70モル%であることが好ましい。該共重合体のエチレン含有量が25モル%未満のときには耐熱性が低下し、繊維化するときに該共重合体がゲル化したり、曳糸性や延伸性が低下する。また該共重合体のエチレン含有量が70モル%を越える場合には水酸基が少なくなり、目的とする親水性等が得られなくなる。ケン化度は95モル%以上であることが好ましい。ケン化度が低すぎると該共重合体の結晶性が低下し強度等の繊維物性が低下するので好ましくない。   On the other hand, the ethylene-vinyl alcohol copolymer constituting the ethylene-vinyl alcohol copolymer fiber can be obtained by saponifying an ethylene-vinyl acetate copolymer. The amount of ethylene contained in the copolymer is preferably 25 to 70 mol%. When the ethylene content of the copolymer is less than 25 mol%, the heat resistance decreases, and when the fiber is formed, the copolymer gels, and the spinnability and stretchability decrease. On the other hand, when the ethylene content of the copolymer exceeds 70 mol%, the number of hydroxyl groups decreases, and the desired hydrophilicity and the like cannot be obtained. The saponification degree is preferably 95 mol% or more. If the degree of saponification is too low, the crystallinity of the copolymer is lowered, and fiber physical properties such as strength are lowered.

また、ポリプロピレン系繊維を構成するポリプロピレン樹脂としては、アイソタクチックペンタッド分率(IPF)(以下単に「IPF」ということがある)が94%以上、特に95〜99%のポリプロピレンからなっていることが好ましく、IPFが96〜99%のポリプロピレンからなることがより好ましい。ポリプロピレンのIPFが94%未満であると、ポリプロピレン繊維に均一な結晶構造を形成されにくくなって、十分な強度および耐熱性を有する、本発明の耐火物に用いるポリプロピレン繊維が得られなくなる。一方、IPFが99%を超えるポリプロピレンは工業的には量産が困難であるため、コスト面などから実用性が低い。   The polypropylene resin constituting the polypropylene fiber is made of polypropylene having an isotactic pentad fraction (IPF) (hereinafter sometimes simply referred to as “IPF”) of 94% or more, particularly 95 to 99%. It is preferable that the IPF is made of polypropylene having a content of 96 to 99%. When the IPF of polypropylene is less than 94%, it becomes difficult to form a uniform crystal structure on the polypropylene fiber, and the polypropylene fiber used in the refractory of the present invention having sufficient strength and heat resistance cannot be obtained. On the other hand, polypropylene having an IPF of over 99% is difficult to industrially mass-produce, and therefore has low practicality in terms of cost.

[繊維の形態(繊度、繊維長)]
繊維の繊度は0.1〜5dtexのものが好ましい。5dtexを超えると、同一重量での構成本数が少ないため、通気孔の形成確率が格段に低下して爆裂抑制効果が低減するため好ましくない。また一方で、0.1dtex未満では不定形耐火物の流動性が非常に悪化し、施工性の点で問題となるため好ましくない。好ましくは0.2〜4.5dtex、更に好ましくは0.3〜4dtexである。
また、繊維長は、2〜10mmのものが好ましい。繊維長が10mmを超えると不定形耐火物混練時にファイバーボールになり易いばかりか、流動性も極端に悪くなるため好ましくない。また一方で、2mm未満では通気孔の形成確率が低下するため爆裂抑制効果が低減するだけでなく、所定の繊維長にカットする場合のカット効率が非常に低下し、生産性にも欠けるため好ましくない。好ましくは2.5〜9mmであり、更に好ましくは3〜8mmである。
[Fiber morphology (fineness, fiber length)]
The fineness of the fiber is preferably 0.1 to 5 dtex. If it exceeds 5 dtex, the number of components with the same weight is small, so the formation probability of the air holes is remarkably lowered and the explosion suppressing effect is reduced, which is not preferable. On the other hand, if it is less than 0.1 dtex, the fluidity of the amorphous refractory material is extremely deteriorated, which causes a problem in terms of workability. Preferably it is 0.2-4.5 dtex, More preferably, it is 0.3-4 dtex.
The fiber length is preferably 2 to 10 mm. When the fiber length exceeds 10 mm, it is not preferable because it tends to become a fiber ball when kneading the irregular refractory, and the fluidity is extremely deteriorated. On the other hand, if it is less than 2 mm, the formation probability of the air hole is reduced, so that not only the explosion suppression effect is reduced, but also the cutting efficiency when cutting to a predetermined fiber length is greatly reduced, and productivity is also lacking, which is preferable. Absent. Preferably it is 2.5-9 mm, More preferably, it is 3-8 mm.

[繊維強度]
繊維強度は、高い方が好ましく、具体的には7cN/dtex以上の強度が好ましい。繊維強度が高いと、不定形耐火物の拘束力を増すことになるため、内部蒸気圧が上昇して爆裂しようとするのを阻止する方向に働くので好ましい。繊維強度が7cN/dtex未満では、そのような拘束力が期待できない。より好ましくは8cN/dtex以上、更には9cN/dtex以上が好ましい。一方で20cN/dtexを越えるような非常に安定な繊維は、爆裂を発生する温度でも安定であり爆裂抑制効果が得られないため、好ましくない。
[Fiber strength]
The fiber strength is preferably higher, and specifically, a strength of 7 cN / dtex or more is preferable. A high fiber strength is preferable because it increases the restraining force of the irregular refractory and thus acts to prevent the internal vapor pressure from rising and attempting to explode. If the fiber strength is less than 7 cN / dtex, such binding force cannot be expected. More preferably, it is 8 cN / dtex or more, and further preferably 9 cN / dtex or more. On the other hand, a very stable fiber exceeding 20 cN / dtex is not preferable because it is stable even at a temperature at which explosion occurs and the effect of suppressing explosion cannot be obtained.

[収縮応力]
本発明における繊維は、収縮応力が0.1〜2cN/dtexでなければならない。このことが、本発明で最も重要な性能である。
不定形耐火物は、温度上昇に伴い内部蒸気圧が増加して爆裂しようとする力が働き、耐火物の圧縮強度よりも内部蒸気圧が勝った場合に爆裂することとなる。これを防止するため、従来の技術では、不定形耐火物の加熱乾燥時に繊維が溶解・溶融・分解することで施工体の組織に微細な通気孔が形成され、この通気孔を介して水蒸気が容易に散逸させて施工体の水蒸気爆裂等を防止することを目的に、水溶性PVA系繊維やポリプロピレン系繊維が用いられてきた。
しかしながら、近年の不定形耐火物の耐久性向上の流れの中、セメント分をできるだけ減少させるために空隙の少ない緻密な構造を持つ不定形耐火物が増えてきている。そのような緻密な耐火物においては、水溶性PVA系繊維あるいはポリプロピレン系繊維は、溶解或いは溶融してもそのままの状態で耐火物内で閉じ込められるだけであり、繊維空隙が形成されにくいため、爆裂しやすい状況にあった。
これに対し、本発明の収縮応力が0.1cN/dtex以上の繊維を不定形耐火物に添加した場合は、該繊維の融点付近から急激に収縮応力が発現するため、緻密な構造の不定形耐火物においても空隙が形成されやすくなる。そのため、該空隙を起点として蒸気が散逸しようとして微小なひび割れが形成され、そのひび割れが別の空隙に伝播、あるいは別の空隙由来のひび割れと合流することで、耐火物全体にひび割れが伝播し、結果として水蒸気が散逸しやすくなるため爆裂が抑制されるものと思われる。
従って、収縮応力は0.1cN/dtex以上であることが重要である。収縮応力が0.1cN/dtex未満であると、上記の通り空隙が形成されない。好ましくは、0.15cN/dtex以上、更には0.2cN/dtex以上が好ましい。
一方、繊維の収縮応力が2cN/dtexよりも高い場合は、繊維構造的には極めて不安定であり、温度や湿度等の環境変化で容易に収縮するため、製品としての安定性に欠ける。好ましくは1.9cN/dtex以下、更には1.8cN/dtex以下が好ましい。
なお、収縮応力は後述する方法により測定することで得られる。
[Shrinkage stress]
The fibers in the present invention must have a shrinkage stress of 0.1 to 2 cN / dtex. This is the most important performance in the present invention.
The amorphous refractory increases the internal vapor pressure as the temperature rises, and the force to explode works, and when the internal vapor pressure exceeds the compressive strength of the refractory, it will explode. In order to prevent this, in the conventional technology, when the amorphous refractory is heated and dried, fibers are dissolved, melted, and decomposed to form fine ventilation holes in the structure of the construction body. Water-soluble PVA fibers and polypropylene fibers have been used for the purpose of easily dissipating and preventing steam explosion etc. of the construction body.
However, in the recent trend of improving the durability of irregular refractories, irregular refractories having a dense structure with few voids are increasing in order to reduce the cement content as much as possible. In such a dense refractory, the water-soluble PVA fiber or polypropylene fiber is only confined in the refractory as it is even if it is melted or melted. It was easy to do.
On the other hand, when a fiber having a shrinkage stress of 0.1 cN / dtex or more of the present invention is added to an amorphous refractory, the shrinkage stress suddenly develops from near the melting point of the fiber, so that the amorphous structure has a dense structure. Even in the refractory, voids are easily formed. Therefore, a minute crack is formed as the steam starts to dissipate from the void, and the crack propagates to another void, or merges with a crack derived from another void, and the crack propagates to the entire refractory, As a result, it seems that the explosion is suppressed because water vapor is easily dissipated.
Therefore, it is important that the shrinkage stress is 0.1 cN / dtex or more. When the shrinkage stress is less than 0.1 cN / dtex, voids are not formed as described above. Preferably, 0.15 cN / dtex or more, more preferably 0.2 cN / dtex or more.
On the other hand, when the shrinkage stress of the fiber is higher than 2 cN / dtex, the fiber structure is extremely unstable and easily contracts due to environmental changes such as temperature and humidity, so that the stability as a product is lacking. It is preferably 1.9 cN / dtex or less, more preferably 1.8 cN / dtex or less.
The shrinkage stress can be obtained by measuring by the method described later.

[繊維添加量]
繊維添加量については、0.005〜0.5質量%が好ましい。繊維添加量が0.5質量%よりも多いと、爆裂抑制効果は高いが、耐火物の強度や混練時の流動性が低下するため好ましくない。また一方で、0.005質量%未満では、爆裂抑制効果に乏しいため好ましくない。0.008〜0.45質量%であることが好ましく、更には0.01〜0.4質量%であることが好ましい。
[Fiber addition amount]
About fiber addition amount, 0.005-0.5 mass% is preferable. When the amount of added fiber is more than 0.5% by mass, the explosion suppressing effect is high, but the strength of the refractory and the fluidity at the time of kneading are unfavorable. On the other hand, if it is less than 0.005% by mass, it is not preferable because the explosion suppressing effect is poor. The content is preferably 0.008 to 0.45 mass%, more preferably 0.01 to 0.4 mass%.

[通気率]
上記したように、不定形耐火物は急激な加熱乾燥時には蒸気圧の上昇が著しく爆裂を起こしやすいが、本発明の繊維を添加すると、収縮して得られる空隙を起点としてひび割れが発生することで水蒸気の散逸に充分な通気孔が形成され、高い爆裂抑制効果が達成される。ここで水蒸気の散逸性としては、JIS−R2115に規定されている通気率によって表すことができる。物質の通気率とは、圧力差の下で物質がガスを通過させる特性であり、通気率(μ)は、一定時間中に物質を通過するガス容量によって与えられる下記式(1)から計算することにより得られる。
V/t=μ*(1/η)*(A/δ)*(p−p)*(p+p)/2P・・(1)
ここで、 V:物質を通過した圧力pにおけるガス量(m
t:ガス量(V)が物質を通過するのに要した時間(s)
μ:物質の通気率(m
η:試験温度におけるガスの粘度(Pa・s)
A:ガスが通過する物質の断面積(m
δ:ガスが通過する物質の厚み(m)
P:ガス容量測定時のガスの絶対圧(Pa)
:物質へのガス侵入絶対圧(Pa)
:物質からのガス離脱絶対圧(Pa)
上記式(1)において、物質の通気率μが高い場合は、内部の空隙も多いと推察できるので、蒸気散逸の良好性を示す指標であると考えることができる。即ち通気率は、爆裂抑制効果を反映する重要な指標と言える。
通気率は、不定形耐火物の種類等により最適値が変化するが、本発明での環境では、0.6×10−15〜9.9×10−14が好ましい。9.9×10−14を超えると不定形耐火物の構造が非常にポーラスな状態にあり、機械的強度が欠けるため好ましくない。一方、0.6×10−15未満では通気率が非常に低く、水蒸気を十分散逸させることができないため爆裂抑制効果が低くなる。好ましくは、0.7×10−15〜9.5×10−14であり、更には0.8×10−15〜9.0×10−14が好ましい。
[Air permeability]
As described above, the irregular refractory has a significant increase in vapor pressure during rapid heating and drying, and is prone to explosion.However, when the fiber of the present invention is added, cracks are generated starting from the voids obtained by shrinkage. A ventilation hole sufficient for dissipation of water vapor is formed, and a high explosion suppressing effect is achieved. Here, the dissipating property of water vapor can be expressed by the air permeability defined in JIS-R2115. The air permeability of a substance is a characteristic that allows a substance to pass through a gas under a pressure difference, and the air permeability (μ) is calculated from the following formula (1) given by the gas volume passing through the substance during a certain time. Can be obtained.
V / t = μ * (1 / η) * (A / δ) * (p 1 −p 2 ) * (p 1 + p 2 ) / 2P (1)
Here, V: gas amount at pressure p 1 that has passed through the substance (m 3 )
t: Time required for gas amount (V) to pass through the substance (s)
μ: Air permeability of material (m 2 )
η: Gas viscosity at the test temperature (Pa · s)
A: Cross-sectional area of the substance through which gas passes (m 2 )
δ: thickness of material through which gas passes (m)
P: Absolute gas pressure (Pa) when measuring gas volume
p 1 : absolute pressure of gas penetration into the substance (Pa)
p 2 : Absolute pressure of gas detachment from the substance (Pa)
In the above formula (1), when the air permeability μ of the substance is high, it can be inferred that there are also many internal voids, so it can be considered as an index showing good vapor dissipation. That is, the air permeability can be said to be an important index reflecting the explosion suppressing effect.
The optimum value of the air permeability varies depending on the type of the irregular refractory, but is preferably 0.6 × 10 −15 to 9.9 × 10 −14 m 2 in the environment of the present invention. If it exceeds 9.9 × 10 −14 m 2 , the structure of the amorphous refractory is in a very porous state, and the mechanical strength is lacking. On the other hand, if it is less than 0.6 × 10 −15 m 2 , the air permeability is very low, and water vapor cannot be sufficiently dissipated. Preferably, a 0.7 × 10 -15 ~9.5 × 10 -14 m 2, and more preferably 0.8 × 10 -15 ~9.0 × 10 -14 m 2.

[有機繊維の製造方法]
次に有機繊維の製造方法について説明する。
本発明に用いられる有機繊維の製造は、一般的な溶融紡糸法、湿式紡糸法、乾式紡糸法、乾湿式紡糸法等の紡糸によるものであり、特には限定されない。さらに延伸等の工程を経てもよい。
ただし、本発明の高い収縮応力を有する有機繊維を得るには、高い配向結晶化を進めることが重要である為、高延伸化を進めることが好ましい。特に好ましくは、延伸性を確保した状態でできるだけ高張力下で延伸することが、高い収縮応力を得る上で重要な条件であり、そのためには低温で延伸する等、各繊維において高張力が得られる条件を適宜設定すればよい。延伸張力としては、1cN/dtex以上、好ましくは1.1cN/dtex以上、更に好ましくは1.2cN/dtex以上が、高収縮応力糸を得る上で好ましい。またそのような延伸張力を得るためには、延伸温度については、少なくとも原料ポリマーの融点以下、好ましくは融点−5℃以下、更に好ましくは融点−10℃以下が好ましい。 上記したような条件下で、工程性の許す限りできるだけ高倍率で延伸することが、高収縮応力糸を得るうえで重要な点である。PVA系繊維については総延伸倍率が7倍以上、好ましくは10倍以上、更に好ましくは12倍以上である。またエチレンービニルアルコール共重合体繊維については、紡糸巻取り後からの延伸倍率が2倍以上、好ましくは2.3倍以上、更には2.6倍以上が好ましい。更には、ポリプロピレン系繊維についても、紡糸巻取り後からの延伸倍率が4倍以上、好ましくは5倍以上、更には6倍以上が好ましい。
[Method for producing organic fiber]
Next, the manufacturing method of an organic fiber is demonstrated.
The production of the organic fiber used in the present invention is based on spinning such as a general melt spinning method, wet spinning method, dry spinning method, and dry and wet spinning method, and is not particularly limited. Furthermore, you may pass processes, such as extending | stretching.
However, in order to obtain the organic fiber having high shrinkage stress of the present invention, it is important to advance high orientation crystallization, and therefore, it is preferable to advance high stretching. Particularly preferably, stretching under high tension as much as possible while securing stretchability is an important condition for obtaining high shrinkage stress. For that purpose, high tension is obtained in each fiber such as stretching at low temperature. The conditions to be set may be set as appropriate. The drawing tension is preferably 1 cN / dtex or more, preferably 1.1 cN / dtex or more, and more preferably 1.2 cN / dtex or more for obtaining a high shrinkage stress yarn. In order to obtain such stretching tension, the stretching temperature is preferably at least the melting point of the starting polymer, preferably the melting point is -5 ° C or less, more preferably the melting point is -10 ° C or less. Under the conditions as described above, it is an important point to obtain a high shrinkage stress yarn that the film is stretched at a high magnification as much as possible as long as the processability permits. For the PVA fibers, the total draw ratio is 7 times or more, preferably 10 times or more, more preferably 12 times or more. For the ethylene-vinyl alcohol copolymer fiber, the draw ratio after spinning is preferably 2 times or more, preferably 2.3 times or more, and more preferably 2.6 times or more. Furthermore, for the polypropylene fibers, the draw ratio after spinning and winding is preferably 4 times or more, preferably 5 times or more, and more preferably 6 times or more.

[不定形耐火物]
次に本発明の不定形耐火物について説明する。
不定形耐火物とは、粉粒体または練り土状の耐火物で、一般的な耐火耐熱水硬性複合物である。通常、使用目的によって構造用と補修用に大別され、構造用としてキャスタブル耐火物・プラスチック耐火物・ラミング耐火物・築造用耐火モルタルに分類され、補修用として吹付耐火物・パッチング耐火物・コーティング耐火物・圧入耐火物・補修用耐火モルタルに分類される。また、上記の不定形耐火物は、使用目的によって断熱用と緻密質耐火物に分類される。近年の高度成長以後伸びているのはキャスタブルと吹付け材、並びにコーティング材である。
この中で本発明での不定形耐火物は、種類について特に限定するものではないが、施工後、加熱乾燥する際に水蒸気爆裂が発生する可能性のある不定形耐火物に対し特に好適に使用される。
[Unshaped refractory]
Next, the amorphous refractory of the present invention will be described.
The amorphous refractory is a powder or kneaded refractory, and is a general fire-resistant heat-resistant hydraulic composite. Generally, structural and repair are roughly classified according to the purpose of use, and are classified into castable refractories, plastic refractories, ramming refractories, and building refractory mortars for structural use, and spray refractories, patching refractories, and coatings for repair. Classified as refractory, press-fit refractory, and repair refractory mortar. In addition, the above-mentioned amorphous refractories are classified into heat insulation and dense refractories according to the purpose of use. Since the recent high growth, castables, spray materials, and coating materials have been growing.
Among them, the amorphous refractory in the present invention is not particularly limited in terms of the type, but it is particularly preferably used for an amorphous refractory that may cause a steam explosion when heated and dried after construction. Is done.

本発明において、耐火材料としては、電融アルミナ、焼結アルミナ、合成ムライト、ボ−キサイト、シリマナイト、アンダリュサイト、ばん土頁岩、珪石、珪砂、ろう石、シャモット、電融スピネル、焼結スピネル、クロム鉱、電融マグネシア、焼結マグネシア、マグクロクリンカ−、ジルコン、ジルコニア、炭化珪素、黒鉛、炭素など一般に耐火物原料として使用されるものを使用することができる。上記耐火材料の種類と乾燥爆裂との間に相関がないので、本発明では、この耐火材料について、特に限定されるものではない。
また、耐火性原料には、分散剤をさらに添加してもよい。分散剤としては、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ等の無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリメタリン酸塩、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタレンスルホン酸、カルボキシル基含有ポリエーテル等が挙げられる。分散剤を添加する場合は、その添加量は、耐火性原料100質量%に対して外掛けで0.01〜0.3質量%であることが好ましい。
また、本発明の不定形耐火物に用いられる結合剤としては、アルミナセメント、リン酸塩、珪酸塩、塩化物、硫化物、シリカゾル、アルミナゾル、ρ−アルミナなどの無機結合剤や各種樹脂、有機糊剤等の有機結合剤が使用できる。このうち例えばアルミナセメントの場合、分散している超微粉を凝集させる凝集剤としての働きもある。アルミナセメントの場合、添加量は1〜15質量%が望ましい。1質量%未満では十分な結合強度が得られず、一方、15質量%を超えると耐食性の低下が大きくなるので好ましくない。
なお、本発明の不定形耐火物には、硬化時間を調整するため、消石灰等のカルシウム化合物、珪酸ソ−ダ等の珪酸アルカリ塩、炭酸リチウムや炭酸ソ−ダ等の炭酸塩、クエン酸や酒石酸等のカルボン酸、硼砂、硼酸アルカリ塩などの硬化調整剤を少量添加することができる。また、本発明の不定形耐火物は、流し込み施工、吹付け施工、スタンプ施工、圧入施工、パッチング施工、振動施工等の各種施工方法に適した性状に調整して使用することができる。
In the present invention, as the refractory material, fused alumina, sintered alumina, synthetic mullite, bauxite, sillimanite, andalusite, porphyry shale, quartzite, quartz sand, wax, chamotte, fused spinel, sintered spinel Those generally used as refractory materials such as chromium ore, fused magnesia, sintered magnesia, magcroclinker, zircon, zirconia, silicon carbide, graphite, and carbon can be used. Since there is no correlation between the kind of the refractory material and the dry explosion, the refractory material is not particularly limited in the present invention.
Further, a dispersant may be further added to the refractory raw material. As a dispersant, inorganic salts such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, sodium citrate, sodium tartrate, sodium polyacrylate, sodium sulfonate, Examples include polymetaphosphates, polycarboxylates, β-naphthalene sulfonates, naphthalene sulfonic acid, and carboxyl group-containing polyethers. When adding a dispersing agent, it is preferable that the addition amount is 0.01-0.3 mass% on the exterior with respect to 100 mass% of refractory raw materials.
The binder used in the amorphous refractory of the present invention includes inorganic binders such as alumina cement, phosphate, silicate, chloride, sulfide, silica sol, alumina sol, and ρ-alumina, various resins, organic Organic binders such as glue can be used. Of these, for example, alumina cement also serves as an aggregating agent for aggregating the dispersed ultrafine powder. In the case of alumina cement, the addition amount is desirably 1 to 15% by mass. If it is less than 1% by mass, sufficient bond strength cannot be obtained. On the other hand, if it exceeds 15% by mass, the corrosion resistance is greatly lowered.
In order to adjust the curing time, the amorphous refractory of the present invention includes a calcium compound such as slaked lime, an alkali silicate salt such as silicate soda, a carbonate such as lithium carbonate and soda, citric acid, A small amount of a curing regulator such as carboxylic acid such as tartaric acid, borax or alkali borate can be added. Moreover, the irregular refractory material of this invention can be adjusted and used for the property suitable for various construction methods, such as pouring construction, spray construction, stamp construction, press-fit construction, patching construction, and vibration construction.

[不定形耐火物の製造方法]
本発明における不定形耐火物は、施工水を添加して施工される。施工水の添加量は、施工方法等に応じて決定される。例えば、流し込み施工においては、施工水の添加量は、不定形耐火物100質量%に対して、外掛けで例えば3〜10質量%程度である。また、吹き付け施工においては、施工水の添加量は、不定形耐火物100質量%に対して、外掛けで例えば5〜15質量%程度である。
本発明の不定形耐火物は、その効果を損なわない範囲において、金属Si粉、セラミック繊維、塩基性乳酸アルミニウム、酸化防止剤、硬化剤、硬化遅延剤等を含んでもよい。また、本発明の不定形耐火物の施工方法は、特に流し込み施工又は吹き付け施工に限られず、圧入施工等の他の施工方法によって施工されてもよい。
[Method of manufacturing amorphous refractory]
The amorphous refractory in the present invention is constructed by adding construction water. The amount of construction water added is determined according to the construction method and the like. For example, in casting construction, the amount of construction water added is, for example, about 3 to 10% by mass with respect to 100% by mass of the amorphous refractory. Moreover, in spraying construction, the addition amount of construction water is about 5 to 15% by mass, for example, with respect to 100% by mass of the irregular refractory.
The amorphous refractory of the present invention may contain metal Si powder, ceramic fiber, basic aluminum lactate, antioxidant, curing agent, curing retarder and the like as long as the effect is not impaired. Moreover, the construction method of the irregular refractory according to the present invention is not limited to casting construction or spray construction, and may be constructed by other construction methods such as press-fitting construction.

以下に実施例により詳細に説明するが、本発明は実施例により何等限定されるものではない。なお本発明における各繊維の物性および耐爆裂性の評価は以下の方法により測定されたものを意味する。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. In addition, the physical property and explosion resistance evaluation of each fiber in the present invention mean those measured by the following methods.

[繊維繊度 dtex]
JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて評価した。
[Fiber fineness dtex]
Evaluation was made according to JIS L1015 “Testing method for chemical fiber staples (8.5.1)”.

[繊維強度 cN/dtex]
JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて評価した。
[Fiber strength cN / dtex]
Evaluation was made according to JIS L1015 “Testing method for chemical fiber staples (8.5.1)”.

[収縮応力 cN/dtex]
フィラメント状繊維試料を、熱収縮・応力測定装置(機器名:大栄科学精器製作所製テストライト)の測定部に0.01g/dtex荷重下でセットし、その状態で所定の温度(各繊維の融点又は軟化点又は分解温度+20℃)に調整された高温雰囲気室内に挿入し、この時の最大収縮応力(cN)を測定し、繊度からdtex当りの収縮応力(cN/dtex)を計算した。
[Shrinkage stress cN / dtex]
A filamentous fiber sample is set under a load of 0.01 g / dtex on a measurement part of a heat shrink / stress measuring device (device name: test light manufactured by Daiei Kagaku Seiki Seisakusho), and in that state, a predetermined temperature (for each fiber) is set. The maximum shrinkage stress (cN) at this time was measured and the contraction stress per dtex (cN / dtex) was calculated from the fineness.

[耐爆裂性の評価及び爆裂限界温度]
繊維と不定形耐火物材料、混練水を加えてミキサーで混練後、φ50mm×高さ50mmの型枠に流し込み、20℃で24時間養生を実施した後、脱型し供試体を作成した。
この供試体を所定の温度に保持した電気炉(丸祥電気株式会社製、炉床昇降式電気炉「型式SPB2022−16」)に投入し、加熱することで爆裂発生の有無を評価した。
なお、爆裂温度とは爆裂が発生した設定電気炉温度とし、また爆裂限界温度とは爆裂温度から50℃低い温度として規定する。
[Evaluation of explosion resistance and critical temperature for explosion]
Fibers, an irregular refractory material, and kneaded water were added, kneaded with a mixer, poured into a mold having a diameter of 50 mm and a height of 50 mm, cured at 20 ° C. for 24 hours, and then demolded to prepare a specimen.
This specimen was put into an electric furnace (manufactured by Marusho Denki Co., Ltd., hearth raising / lowering electric furnace “model SPB2022-16”) and heated to evaluate whether or not explosion occurred.
The explosion temperature is defined as the set electric furnace temperature at which explosion occurred, and the explosion limit temperature is defined as a temperature lower by 50 ° C. than the explosion temperature.

[通気率の評価]
あらかじめ爆裂温度がわかっている供試体に対し、爆裂限界温度に設定された電気炉で25分間加熱処理を施し、その後デシケーター中で20℃×24時間静置冷却後、JIS R2115「定形及び不定形耐火物の通気率の測定」に記載の装置に準拠した測定装置(セリオ株式会社製 通気率測定装置「型式S−1000」)を用いて装置にセットし、上記JIS R2115に準じて測定し、計算により通気率を求め評価した。
[Evaluation of air permeability]
A specimen whose explosion temperature is known in advance is subjected to a heat treatment for 25 minutes in an electric furnace set at the explosion limit temperature, and then allowed to cool in a desiccator at 20 ° C. for 24 hours, and then JIS R2115 “Standard and Amorphous Set in the apparatus using a measuring apparatus (Beriometric rate measuring apparatus "model S-1000" manufactured by Serio Co., Ltd.) conforming to the apparatus described in "Measurement of air permeability of refractory", measured according to the above JIS R2115, The air permeability was calculated and evaluated.

[実施例1]
(1)ポリマー重合度1750、ケン化度99.9モル%のPVAを用い、PVA濃度が16.5質量%となるように溶解し棚酸を添加して水溶液とし、苛性ソーダ11.0g/lと芒硝350g/lの混合水溶液を固化浴に用いて湿式紡糸にて紡糸した。さらに湿延伸、中和、湿熱延伸、水洗、乾燥後、高延伸(延伸温度230℃、総延伸倍率20倍、延伸張力1.6cN/dtex)を実施した後、切断してPVA繊維(以下、PVA繊維1と称す)を得た。
得られたPVA繊維1の物性は、単繊維繊度0.5dtex、カット長6mm、強度14.0cN/dtex、収縮応力0.51cN/dtexであった。
(2)不定形耐火物材料については、次の配合のものを使用した。

アルミナセメント(電気化学工業社製「ハイアルミナセメント」) :5質量%
アルミナ:市販品A1203純度99%以上、5−3mm :18質量%
アルミナ:市販品A1203純度99%以上、1−3mm :25質量%
アルミナ:市販品A1203純度99%以上、0−1mm :20質量%
アルミナ:市販品A1203純度99%以上、0−0.075mm :25質量%
シリカフューム(エルケム社製「940U」) :7質量%

この不定形耐火物材料に上記PVA繊維1を0.01質量%添加し、丸菱科学機械製作所製MKSモルタルミキサー「型式MS−120」に添加し、Dry状態で60秒混練した後、混練水6.0質量%添加後さらに60秒混練し、底部をゴムヘラでかき混ぜた後、さらに120秒ミキサーで混練を実施した。
次にφ50mm×高さ50mmの型枠内に流し込み、20℃×24時間養生を実施して、供試体を作成した。この供試体の耐爆裂性の評価結果を表1に示す。
表1に示すとおり、1000℃の温度でも爆裂せず非常に耐爆裂性の高いものであった。また、通気率も2.79×10−15と高く、蒸気散逸がスムーズに行われたため、高い耐爆裂性が得られたものと推察される。
[Example 1]
(1) Using PVA having a polymer polymerization degree of 1750 and a saponification degree of 99.9 mol%, dissolving the PVA concentration to 16.5% by mass, adding shelf acid to make an aqueous solution, and caustic soda 11.0 g / l And a mixed aqueous solution of 350 g / l of mirabilite used as a solidification bath and spun by wet spinning. Further, after wet stretching, neutralization, wet heat stretching, washing with water, drying, high stretching (stretching temperature 230 ° C., total stretching ratio 20 times, stretching tension 1.6 cN / dtex) was performed, and then cut to PVA fibers (hereinafter referred to as “the stretching”). (Referred to as PVA fiber 1).
The physical properties of the obtained PVA fiber 1 were a single fiber fineness of 0.5 dtex, a cut length of 6 mm, a strength of 14.0 cN / dtex, and a shrinkage stress of 0.51 cN / dtex.
(2) About the amorphous refractory material, the thing of the following mixing | blending was used.

Alumina cement (“High Alumina Cement” manufactured by Denki Kagaku Kogyo Co., Ltd.): 5% by mass
Alumina: Commercial product A1203 purity 99% or more, 5-3 mm: 18% by mass
Alumina: Commercial product A1203 purity 99% or more, 1-3 mm: 25% by mass
Alumina: Commercial product A1203 purity 99% or more, 0-1 mm: 20% by mass
Alumina: Commercial product A1203 purity 99% or more, 0-0.075 mm: 25% by mass
Silica fume ("940U" manufactured by Elchem Co.): 7% by mass

0.01% by mass of the above PVA fiber 1 is added to the amorphous refractory material, added to an MKS mortar mixer “Model MS-120” manufactured by Maruhishi Kagaku Seisakusho, kneaded in a dry state for 60 seconds, and then mixed with water. After the addition of 6.0% by mass, the mixture was further kneaded for 60 seconds, the bottom was stirred with a rubber spatula, and further kneaded with a mixer for 120 seconds.
Next, it was poured into a mold having a diameter of 50 mm and a height of 50 mm, followed by curing at 20 ° C. for 24 hours to prepare a specimen. The evaluation results of the explosion resistance of this specimen are shown in Table 1.
As shown in Table 1, it did not explode even at a temperature of 1000 ° C. and was very high in explosion resistance. Moreover, since the air permeability was as high as 2.79 × 10 −15 m 2 and the steam dissipation was performed smoothly, it is presumed that high explosion resistance was obtained.

[実施例2]
繊維の単繊度を2.0dtexに変更した他は、実施例1と同様に作成してPVA繊維(以下、PVA繊維2と称す)を得た。この得られたPVA繊維2の物性は、単繊維繊度2.0dtex、カット長6mm、強度14.3cN/dtex、収縮応力0.36cN/dtexであった。
さらに、このPVA繊維2を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、爆裂温度が1000℃であり、耐爆裂性の高いものであった。また、通気率も2.07×10−15と高く、蒸気散逸がスムーズに行われたため、高い耐爆裂性が得られたものと推察される。
[Example 2]
A PVA fiber (hereinafter referred to as PVA fiber 2) was obtained in the same manner as in Example 1 except that the single fineness of the fiber was changed to 2.0 dtex. The physical properties of the obtained PVA fiber 2 were a single fiber fineness of 2.0 dtex, a cut length of 6 mm, a strength of 14.3 cN / dtex, and a shrinkage stress of 0.36 cN / dtex.
Further, a specimen was prepared in the same manner as in Example 1 except that this PVA fiber 2 was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, the explosion temperature was 1000 ° C., and the explosion resistance was high. Moreover, since the air permeability was as high as 2.07 × 10 −15 m 2 and the steam dissipation was performed smoothly, it is presumed that high explosion resistance was obtained.

[実施例3]
繊維の単繊度を2.0dtexに変更し、さらに乾燥後に一旦巻取った後、非直結で延伸・熱処理した以外は実施例1と同様に作成して、PVA繊維(以下、PVA繊維3と称す)を得た。この得られたPVA繊維3の物性は、単繊維繊度2.0dtex、カット長6mm、強度13.2cN/dtex、収縮応力0.61cN/dtexであった。
さらに、このPVA繊維3を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、1000℃の温度でも爆裂せず耐爆裂性の非常に高いものであった。また、通気率も2.52×10−15と高く、蒸気散逸がスムーズに行われたため、高い耐爆裂性が得られたものと推察される。
[Example 3]
The single fiber fineness was changed to 2.0 dtex, and after winding, it was wound up once, and then prepared in the same manner as in Example 1 except that it was stretched and heat-treated non-directly, and PVA fiber (hereinafter referred to as PVA fiber 3) ) The physical properties of the obtained PVA fiber 3 were a single fiber fineness of 2.0 dtex, a cut length of 6 mm, a strength of 13.2 cN / dtex, and a shrinkage stress of 0.61 cN / dtex.
Furthermore, a specimen was prepared in the same manner as in Example 1 except that this PVA fiber 3 was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, it did not explode even at a temperature of 1000 ° C. and was very high in explosion resistance. Moreover, since the air permeability was as high as 2.52 × 10 −15 m 2 and the steam dissipation was performed smoothly, it is presumed that high explosion resistance was obtained.

[実施例4]
ポリプロピレン樹脂(プライムポリマー社製「Y2000GV」)を溶融紡糸装置の押出機に投入して溶融混練し、紡糸ヘッドに取り付けた紡糸口金から吐出させた後、延伸(延伸温度160℃、総延伸倍率8倍、延伸張力1.0cN/dtex)してポリプロピレン繊維(以下、PP繊維1と称す)を製造し、切断した。
この得られたPP繊維1の物性は、単繊度1.1dtex、カット長6mm、強度9.0cN/dtex、収縮応力0.34cN/dtexであった。
さらにこのPP繊維1を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、爆裂温度が950℃であり、耐爆裂性の高いものであった。また、通気率も1.14×10−15と高く、蒸気散逸がスムーズに行われたため、高い耐爆裂性が得られたものと推察される。
[Example 4]
A polypropylene resin (“Y2000GV” manufactured by Prime Polymer Co., Ltd.) is put into an extruder of a melt spinning apparatus, melted and kneaded, discharged from a spinneret attached to a spinning head, and stretched (stretching temperature 160 ° C., total stretching ratio 8). The polypropylene fiber (hereinafter referred to as PP fiber 1) was produced by cutting twice and the drawing tension was 1.0 cN / dtex, and was cut.
The physical properties of the obtained PP fiber 1 were a single fineness of 1.1 dtex, a cut length of 6 mm, a strength of 9.0 cN / dtex, and a shrinkage stress of 0.34 cN / dtex.
Further, a specimen was prepared in the same manner as in Example 1 except that this PP fiber 1 was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, the explosion temperature was 950 ° C., and the explosion resistance was high. Moreover, since the air permeability was as high as 1.14 × 10 −15 m 2 and the steam dissipation was performed smoothly, it is presumed that high explosion resistance was obtained.

[実施例5]
エチレン含有量47モル%、ケン化度99モル%、メルトインデックス6.4g/10minのエチレンービニルアルコール共重合体(株式会社クラレ製「G156」)を押出機により押し出し、口金温度250℃の条件でノズルより吐出し、紡糸を行った。その後65℃の熱ローラー及び120℃の熱プレートに接触させ、延伸(延伸倍率4倍、延伸張力0.9cN/dtex)を行い、エチレンービニルアルコール共重合体繊維(以下、EVOH繊維と称す)を製造し切断を実施した。
得られたEVOH繊維の物性は、単繊度3.0dtex、カット長6mm、強度7.0cN/dtex、収縮応力0.20cN/dtexであった。
さらにこのEVOH繊維を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、爆裂温度が900℃と、耐爆裂性の高いものであった。また、通気率も1.08×10−15と高く、蒸気散逸がスムーズに行われたため、高い耐爆裂性が得られたものと推察される。
[Example 5]
An ethylene-vinyl alcohol copolymer (“K156” manufactured by Kuraray Co., Ltd.) having an ethylene content of 47 mol%, a saponification degree of 99 mol%, and a melt index of 6.4 g / 10 min was extruded using an extruder, and the die temperature was 250 ° C. And discharged from the nozzle to perform spinning. Thereafter, it is brought into contact with a 65 ° C. heat roller and a 120 ° C. heat plate, and stretched (stretching ratio 4 times, stretching tension 0.9 cN / dtex), and ethylene-vinyl alcohol copolymer fiber (hereinafter referred to as EVOH fiber). Was manufactured and cut.
The physical properties of the obtained EVOH fiber were a single fineness of 3.0 dtex, a cut length of 6 mm, a strength of 7.0 cN / dtex, and a shrinkage stress of 0.20 cN / dtex.
Further, a specimen was prepared in the same manner as in Example 1 except that this EVOH fiber was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, the explosion temperature was 900 ° C., which was high in explosion resistance. Moreover, since the air permeability was as high as 1.08 × 10 −15 m 2 and the steam dissipation was performed smoothly, it is presumed that high explosion resistance was obtained.

[比較例1]
繊維を添加しない以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、800℃の温度で爆裂が起こり、耐爆裂性の低いものであった。また、通気率は0.40×10−15と低く、蒸気散逸が悪かったものと推測される。
[Comparative Example 1]
A specimen was prepared in the same manner as in Example 1 except that no fiber was added, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, explosion occurred at a temperature of 800 ° C., and the explosion resistance was low. In addition, the air permeability is as low as 0.40 × 10 −15 m 2, and it is estimated that the vapor dissipation was bad.

[比較例2]
ポリマー重合度1750、ケン化度98.2モル%のPVAを用い、PVA濃度が15.8質量%となるように溶解して水溶液とし、飽和芒硝水溶液を固化浴に用いて湿式紡糸で紡糸し、乾燥処理した後に切断し、PVA繊維(以下、PVA繊維4と称す)を得た。
この得られたPVA繊維4の物性は、単繊度1.5dtex、カット長6mm、強度2.7cN/dtex、収縮応力0.04cN/dtexであった。
さらにこのPVA繊維4を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、850℃の温度で爆裂が起こり、耐爆裂性の低いものであった。また、通気率も0.51×10−15と低く、蒸気散逸が悪かったものと推測される。
[Comparative Example 2]
Using PVA having a polymer polymerization degree of 1750 and a saponification degree of 98.2 mol%, the PVA concentration was dissolved to be 15.8% by mass to form an aqueous solution, and a saturated sodium sulfate aqueous solution was used as a solidification bath to spin by wet spinning. The PVA fiber (hereinafter referred to as PVA fiber 4) was obtained by cutting after drying.
The physical properties of the obtained PVA fiber 4 were a single fineness of 1.5 dtex, a cut length of 6 mm, a strength of 2.7 cN / dtex, and a shrinkage stress of 0.04 cN / dtex.
Further, a specimen was prepared in the same manner as in Example 1 except that this PVA fiber 4 was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, explosion occurred at a temperature of 850 ° C., and the explosion resistance was low. In addition, the air permeability is as low as 0.51 × 10 −15 m 2, and it is estimated that the vapor dissipation was bad.

[比較例3]
延伸を施さない以外は実施例4と同様にしてポリプロピレン繊維(以下PP繊維2と称す)を得た。この得られたPP繊維2は、単繊度6.3dtex、カット長6mm、強度4.5cN/dtex、収縮応力0.06cN/dtexの物性であった。
このPP繊維2を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。評価結果を表1に示す。
表1に示すとおり、850℃の温度で爆裂が起こり、耐爆裂性の低いものであった。また、通気率も0.59×10−15と低く、蒸気散逸が悪かったものと推測される。
[Comparative Example 3]
A polypropylene fiber (hereinafter referred to as PP fiber 2) was obtained in the same manner as in Example 4 except that the drawing was not performed. The obtained PP fiber 2 had physical properties of a single fineness of 6.3 dtex, a cut length of 6 mm, a strength of 4.5 cN / dtex, and a shrinkage stress of 0.06 cN / dtex.
A specimen was prepared in the same manner as in Example 1 except that this PP fiber 2 was used, and the explosion resistance was evaluated. The evaluation results are shown in Table 1.
As shown in Table 1, explosion occurred at a temperature of 850 ° C., and the explosion resistance was low. In addition, the air permeability is as low as 0.59 × 10 −15 m 2, and it is estimated that the vapor dissipation was bad.

[比較例4]
単繊度1.7dtex、カット長6mm、強度20.0cN/dtex、収縮応力0.04cN/dtexの物性を有するアラミド繊維(東レ・デュポン株式会社製「ケブラー29(登録商標)」)を使用する以外は実施例1と同様の方法で供試体を作成し、耐爆裂性の評価を実施した。
評価結果を表1に示す。表1に示すとおり、800℃の温度で爆裂が起こり、耐爆裂性の低いものであった。また、通気率も0.45×10−15と低く、蒸気散逸が悪かったものと推測される。
[Comparative Example 4]
Other than using an aramid fiber (“Kevlar 29 (registered trademark)” manufactured by Toray DuPont Co., Ltd.) having physical properties of a single fineness of 1.7 dtex, a cut length of 6 mm, a strength of 20.0 cN / dtex, and a shrinkage stress of 0.04 cN / dtex Prepared a specimen by the same method as in Example 1 and evaluated the explosion resistance.
The evaluation results are shown in Table 1. As shown in Table 1, explosion occurred at a temperature of 800 ° C., and the explosion resistance was low. In addition, the air permeability is as low as 0.45 × 10 −15 m 2, and it is estimated that the vapor dissipation was bad.

Figure 2012091987
Figure 2012091987

本発明の有機繊維を不定形耐火物に添加することにより、不定形耐火物の爆裂抑制性能が向上し、安全性が向上するばかりか、施工後の乾燥速度を早くすることができるようになるため、作業性向上にも繋がる。特に、これまで爆裂抑制が困難であった緻密質の不定形耐火物に対しても、効果的に爆裂抑制できる。
本発明の不定形耐火物の被施工部位としては、例えば各種の溶融金属容器、溶融金属樋、溶融金属処理装置、高温炉、煙道、セメントロータリーキルン、ごみ焼却炉、ごみ焼却灰・飛灰溶融炉、産業廃棄物処理炉、電気炉(炉蓋)、タンディシュ、ランスパイプ等が挙げられる。
By adding the organic fiber of the present invention to the amorphous refractory, the explosion suppression performance of the amorphous refractory is improved, and not only the safety is improved, but also the drying speed after construction can be increased. Therefore, it leads to improvement in workability. In particular, explosion suppression can be effectively performed even for dense amorphous refractories that have been difficult to suppress.
Examples of the construction site of the amorphous refractory of the present invention include various molten metal containers, molten metal dredging, molten metal processing equipment, high-temperature furnaces, flues, cement rotary kilns, waste incinerators, waste incineration ash and fly ash melting Furnace, industrial waste treatment furnace, electric furnace (furnace lid), tundish, lance pipe and the like.

Claims (5)

不定形耐火物に添加する繊維であって、収縮応力が0.1〜2cN/dtexである有機繊維。   An organic fiber that is added to an amorphous refractory and has a shrinkage stress of 0.1 to 2 cN / dtex. 繊維強度が7cN/dtex以上である請求項1記載の有機繊維。   The organic fiber according to claim 1, wherein the fiber strength is 7 cN / dtex or more. ポリビニルアルコール系繊維、エチレンービニルアルコール共重合体繊維、またはポリプロピレン繊維である請求項1または2記載の有機繊維。   The organic fiber according to claim 1 or 2, which is a polyvinyl alcohol fiber, an ethylene-vinyl alcohol copolymer fiber, or a polypropylene fiber. 繊維繊度が0.1〜5dtexである請求項1〜3のいずれかに記載の有機繊維。   The organic fiber according to any one of claims 1 to 3, wherein the fiber fineness is 0.1 to 5 dtex. 請求項1〜4のいずれかに記載の有機繊維が0.005〜0.5質量%添加された不定形耐火物。   An amorphous refractory to which 0.005 to 0.5 mass% of the organic fiber according to any one of claims 1 to 4 is added.
JP2010242897A 2010-10-29 2010-10-29 Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them Active JP5676207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242897A JP5676207B2 (en) 2010-10-29 2010-10-29 Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242897A JP5676207B2 (en) 2010-10-29 2010-10-29 Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them

Publications (2)

Publication Number Publication Date
JP2012091987A true JP2012091987A (en) 2012-05-17
JP5676207B2 JP5676207B2 (en) 2015-02-25

Family

ID=46385807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242897A Active JP5676207B2 (en) 2010-10-29 2010-10-29 Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them

Country Status (1)

Country Link
JP (1) JP5676207B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068704A1 (en) 2013-11-05 2015-05-14 株式会社クラレ Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same
CN111116215A (en) * 2020-01-10 2020-05-08 长兴南冶冶金材料有限公司 High-temperature ceramic wear-resistant self-flow castable for hot blast stove
JP2021066620A (en) * 2019-10-18 2021-04-30 日本製鉄株式会社 Method for producing castable refractory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190276A (en) * 1983-04-08 1984-10-29 日本碍子株式会社 Formless refractories
JPH01229805A (en) * 1987-06-12 1989-09-13 Toray Ind Inc High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JPH0442867A (en) * 1990-06-06 1992-02-13 Yootai:Kk Low cement castable refractories
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190276A (en) * 1983-04-08 1984-10-29 日本碍子株式会社 Formless refractories
JPH01229805A (en) * 1987-06-12 1989-09-13 Toray Ind Inc High-strength water-soluble polyvinyl alcohol-based fiber and production thereof
JPH0442867A (en) * 1990-06-06 1992-02-13 Yootai:Kk Low cement castable refractories
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068704A1 (en) 2013-11-05 2015-05-14 株式会社クラレ Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same
US10093577B2 (en) 2013-11-05 2018-10-09 Kuraray Co., Ltd. Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same
JP2021066620A (en) * 2019-10-18 2021-04-30 日本製鉄株式会社 Method for producing castable refractory
JP7277773B2 (en) 2019-10-18 2023-05-19 日本製鉄株式会社 Manufacturing method of castable refractories
CN111116215A (en) * 2020-01-10 2020-05-08 长兴南冶冶金材料有限公司 High-temperature ceramic wear-resistant self-flow castable for hot blast stove

Also Published As

Publication number Publication date
JP5676207B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN104003740B (en) Gas-permeable brick of steel ladle for special steel smelting and preparation method of brick
JP5376097B2 (en) Inorganic fiber molded body
CN103979992A (en) Ladle porous brick and preparation method thereof
CN110563451B (en) Ceramic ladle castable and preparation method thereof
JP5676207B2 (en) Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them
US20100093513A1 (en) Refractory composition, formed refractory article, and sintered refractory article
JP5110540B2 (en) FeO resistant coating material
JP5110539B2 (en) FeO resistant coating material
CN113603368A (en) Preparation method of modified basalt fiber for anti-cracking waterproof agent of expanded fiber
JP3155638B2 (en) Fly ash fiber
JP5676343B2 (en) Explosion-resistant hydraulic hardened body
KR102393132B1 (en) Fire-resistance coating material containing low bio-persistence fibers and method for preparing same
JP5162584B2 (en) Inorganic fiber
CN107190363A (en) A kind of aluminosilicate refractory fiber of high intensity
RU2424213C1 (en) Fire-resistant gun mixture
JP5324092B2 (en) High resistance refractory composition
JP2008189531A (en) Refractory
JP6432869B2 (en) Refractory brick manufacturing method
JP2021084115A (en) Tundish coating material
JP6036726B2 (en) Production method of magnesia carbon brick
JP4772749B2 (en) Method for producing molded article of amorphous refractory
JP2013249226A (en) Air permeability improver for monolithic refractory
CN112341214B (en) Lightweight bauxite-based castable and preparation method thereof
JP2023114109A (en) Monolithic refractory for trowel application
JPH0748179A (en) Monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150