JP2012091968A - Method of recovering germanium from germanium-containing intermediate - Google Patents

Method of recovering germanium from germanium-containing intermediate Download PDF

Info

Publication number
JP2012091968A
JP2012091968A JP2010241359A JP2010241359A JP2012091968A JP 2012091968 A JP2012091968 A JP 2012091968A JP 2010241359 A JP2010241359 A JP 2010241359A JP 2010241359 A JP2010241359 A JP 2010241359A JP 2012091968 A JP2012091968 A JP 2012091968A
Authority
JP
Japan
Prior art keywords
germanium
recovering
chloride
hydrogen peroxide
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010241359A
Other languages
Japanese (ja)
Other versions
JP5676206B2 (en
Inventor
Nobuaki Kita
宣明 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2010241359A priority Critical patent/JP5676206B2/en
Publication of JP2012091968A publication Critical patent/JP2012091968A/en
Application granted granted Critical
Publication of JP5676206B2 publication Critical patent/JP5676206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of recovering high-quality germanium from a germanium-containing intermediate efficiently and inexpensively at a high yield.SOLUTION: The method of recovering the germanium includes a germanium chloride recovering process of recovering the germanium as chloride using hydrochloric acid and hydrogen peroxide together from the germanium-containing intermediate in a metal recovering process. It is preferable that the intermediate is an intermediate product in zinc refinement, and further the addition of the hydrogen peroxide is 2-mol equivalent to the germanium or more.

Description

本発明は、ゲルマニウムを含有する中間物からゲルマニウムを回収する方法に関する。   The present invention relates to a method for recovering germanium from an intermediate containing germanium.

ゲルマニウム(Ge)は、光ファイバーや太陽電池等のいわゆるハイテク産業用の材料開発、ポリエチレンテレフタレート樹脂の重合促進触媒、更には、有機ゲルマニウム化合物(例えば、ポリ−トランス−[(2−カルボキシエチル)ゲルマセスキオキサン])の製造のための原料などとして、様々な分野における不可欠な元素である。
特に最近は、磁気ディスク材料等のエレクトロニクス材料としてのゲルマニウムの利用が増加しており、砒素及び非鉄金属の含有量が少ない、高品位のゲルマニウムの需要が高まっている。
Germanium (Ge) is a material for high-tech industries such as optical fibers and solar cells, a polymerization accelerating catalyst for polyethylene terephthalate resin, and an organic germanium compound (for example, poly-trans-[(2-carboxyethyl) germaseski). Oxane]) is an indispensable element in various fields as a raw material for production.
Particularly recently, the use of germanium as an electronic material such as a magnetic disk material has increased, and the demand for high-quality germanium with a low content of arsenic and non-ferrous metals has increased.

しかし、近年、ゲルマニウムの供給がその需要に追いつかず、需要−供給がアンバランスな状態が続くために問題視されている。そこで、主に亜鉛製錬の副産物として製錬されている高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に回収することができれば、需要−供給のバランスが改善されると共に、資源の節約の観点からも好ましい。   However, in recent years, the supply of germanium has not been able to keep up with the demand, and it has been regarded as a problem because the demand-supply balance continues to be unbalanced. Therefore, if high-quality germanium, which is mainly smelted as a byproduct of zinc smelting, can be recovered efficiently and inexpensively at a high recovery rate, the balance between demand and supply will be improved. It is also preferable from the viewpoint of saving.

従来、亜鉛精鉱に含まれるゲルマニウムの回収方法としては、亜鉛精鉱を焙焼し、酸で浸出した後の浸出残渣を乾燥し、加熱した後に塩酸により塩化したゲルマニウムを回収する方法(Eagle−Picher法)が知られている(非特許文献1参照)。
しかしながら、この文献による方法には、亜鉛精鉱からのゲルマニウムの回収率が低い上に、安定して回収できないという問題がある。
Conventionally, as a method for recovering germanium contained in zinc concentrate, zinc concentrate is roasted, the leaching residue after leaching with acid is dried, heated, and then germanium salified with hydrochloric acid is recovered (Eagle- (Picher method) is known (see Non-Patent Document 1).
However, the method according to this document has a problem that the recovery rate of germanium from the zinc concentrate is low and it cannot be stably recovered.

一方、ポリエチレンテレフタレート、光ファイバー、半導体などの製造過程において、大量のゲルマニウム含有物が使用されているが、その大部分が廃棄されていることに注目し、ゲルマニウム含有廃棄物から、ゲルマニウムを回収する方法が提案されている。
例えば、ポリエチレンテレフタレート及びこれを主体とするポリエステルの製造する際には、ゲルマニウムが重合促進剤(触媒)として使用されており、その廃液からゲルマニウムを回収する方法が提案されている(特許文献1参照)。しかしながら、この提案では、前記廃液を焼却して得られた灰を塩酸を用いて蒸留し、四塩化ゲルマニウムを回収する方法であり、前記Eagle−Picher法と同様、ゲルマニウムの回収率が低い上に、安定して回収できないという問題がある。
また、光ファイバーのような光導波路材料の製造において用いられる改良化学気相成長法(MCVD)では、大量の高純度四塩化ゲルマニウムが使用されるおり、MCVD加工廃棄物からゲルマニウムを回収する方法が提案されている(特許文献2参照)。この提案によれば、MCVD加工廃棄物から、塩化水素ガスとMCVD廃棄物(フィルターケーキ)との直接反応により、ゲルマニウム塩の迅速で完全な塩素化が行われ、四塩化ゲルマニウムが生成され、回収される。しかしながら、この提案では、ゲルマニウム以外の不要物も同時に回収されるため、最終的に得られたゲルマニウムにおける不純物の含有率が高いという問題がある。
On the other hand, in the manufacturing process of polyethylene terephthalate, optical fiber, semiconductor, etc., a large amount of germanium-containing material is used, but paying attention to the fact that most of it is discarded, a method for recovering germanium from germanium-containing material Has been proposed.
For example, germanium is used as a polymerization accelerator (catalyst) in the production of polyethylene terephthalate and polyester mainly composed thereof, and a method for recovering germanium from the waste liquid has been proposed (see Patent Document 1). ). However, in this proposal, the ash obtained by incineration of the waste liquid is distilled using hydrochloric acid, and germanium tetrachloride is recovered. Like the Eagle-Picher method, the recovery rate of germanium is low. There is a problem that it cannot be recovered stably.
In the improved chemical vapor deposition method (MCVD) used in the production of optical waveguide materials such as optical fibers, a large amount of high-purity germanium tetrachloride is used, and a method for recovering germanium from MCVD processing waste is proposed. (See Patent Document 2). According to this proposal, germanium salt is rapidly and completely chlorinated from MCVD processing waste by direct reaction of hydrogen chloride gas with MCVD waste (filter cake) to produce and recover germanium tetrachloride. Is done. However, this proposal has a problem in that the content of impurities in the finally obtained germanium is high because unnecessary substances other than germanium are also recovered at the same time.

したがって、高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に、ゲルマニウムを含有する中間物から回収する方法は、未だ提供されておらず、その速やかな提供が強く求められているのが現状である。   Therefore, a method for recovering high-grade germanium from an intermediate containing germanium at a high recovery rate, efficiently and inexpensively has not yet been provided, and its prompt provision is strongly demanded. Currently.

レアメタルハンドブック2008、金属時評Rare Metal Handbook 2008, metal review

特開平9−328315号公報JP 9-328315 A 特許3725765号公報Japanese Patent No. 3725765

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に、ゲルマニウムを含有する中間物から回収する方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a method for recovering high-quality germanium from an intermediate containing germanium efficiently and inexpensively at a high recovery rate.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 金属回収工程における、ゲルマニウムを含有する中間物から、塩酸と過酸化水素とを併用して、ゲルマニウムを塩化物として回収するゲルマニウム塩化物回収工程を含むことを特徴とするゲルマニウムの回収方法である。
<2> 過酸化水素の添加量が、ゲルマニウムに対して2モル当量以上である前記<1>に記載のゲルマニウムの回収方法である。
<3> ゲルマニウム塩化物回収工程で回収したゲルマニウム塩化物を加水分解して、ゲルマニウムを酸化物として回収するゲルマニウム酸化物回収工程を含む前記<1>から<2>のいずれかに記載のゲルマニウムの回収方法である。
<4> 中間物が亜鉛製錬の中間産物である前記<1>から<3>のいずれかに記載のゲルマニウムの回収方法である。
Means for solving the problems are as follows. That is,
<1> A method for recovering germanium, comprising a germanium chloride recovery step of recovering germanium as chloride from a germanium-containing intermediate in a metal recovery step by using hydrochloric acid and hydrogen peroxide in combination. It is.
<2> The method for recovering germanium according to <1>, wherein the addition amount of hydrogen peroxide is 2 molar equivalents or more with respect to germanium.
<3> The germanium chloride according to any one of <1> to <2>, further including a germanium oxide recovery step of hydrolyzing the germanium chloride recovered in the germanium chloride recovery step and recovering germanium as an oxide. It is a collection method.
<4> The method for recovering germanium according to any one of <1> to <3>, wherein the intermediate is an intermediate product of zinc smelting.

本発明によると、従来の諸問題を解決することができ、高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に、ゲルマニウムを含有する中間物から回収する方法を提供することができる。   According to the present invention, conventional problems can be solved, and a method for recovering high-quality germanium from an intermediate containing germanium at a high recovery rate, efficiently and inexpensively can be provided.

本発明のゲルマニウムの回収方法は、公知の金属回収工程(処理)において得られるゲルマニウムを含有する中間物から、塩酸と過酸化水素とを併用して、ゲルマニウムを塩化物として回収するゲルマニウム塩化物回収工程を含んでなり、更に必要に応じてその他の工程を含む。   The germanium recovery method of the present invention is a germanium chloride recovery in which germanium is recovered as a chloride from a germanium-containing intermediate obtained in a known metal recovery step (treatment) using hydrochloric acid and hydrogen peroxide in combination. It includes a process, and further includes other processes as necessary.

本発明のゲルマニウムを回収する方法については、従来から一般的に知られているEagle−Pitcher法(レアメタルハンドブック2008、金属時評、p.164参照)において、塩酸と過酸化水素とを併用してゲルマニウムを塩化物として回収するゲルマニウム塩化物回収工程を例に説明する。
亜鉛製錬においては、一般的に、硫化物精鉱を焙焼し、酸による浸出及び中和処理などにより各種金属を残渣や液に分離する。このような亜鉛製錬プロセスからゲルマニウムが濃縮された残渣を発生させることが可能である。特に、亜鉛製錬プロセスから派生したインジウム回収プロセスにおいて生ずる中間産物である残渣中にゲルマニウムが比較的高濃度に含まれており、これを本発明の原料として利用することが可能である。
As for the method for recovering germanium of the present invention, germanium is used in combination with hydrochloric acid and hydrogen peroxide in the conventionally known Eagle-Pitcher method (see rare metal handbook 2008, metal reviews, p.164). An example of a germanium chloride recovery process for recovering as a chloride will be described.
In zinc smelting, sulfide concentrate is generally roasted and various metals are separated into residues and liquids by leaching with acid and neutralization treatment. It is possible to generate a germanium enriched residue from such a zinc smelting process. In particular, germanium is contained at a relatively high concentration in the residue that is an intermediate product generated in the indium recovery process derived from the zinc smelting process, and this can be used as a raw material of the present invention.

なお、前記原料は、本願発明に利用できる中間物の一例を示したものにすぎず、これに限定されるものではない。本発明の原料として利用できる中間物としては、金属回収工程(処理)において得られるものであって、ゲルマニウムを含有している限り、特に制限はなく、公知のものの中から適宜選択することができ、例えば、前述した亜鉛鉱石などのゲルマニウム含有鉱石を酸化、酸浸出するなどの製錬工程により発生する残渣等の非鉄製錬中間産物、ポリエチレンテレフタレート及びこれを主体とするポリエステルを製造する際の廃液を焼却して得られた灰、MCVD加工廃棄物、半導体材料として用いられた後のその材料乃至その製造において発生する廃棄物等のレアメタル回収等の中間産物などが挙げられる。前記中間物の形態としては、塩酸と反応できる形態であれば、特に制限はなく、例えば、金属化合物の形態であってもよいし、無機物以外の有機物も含む複雑化合物の形態でもよい。   In addition, the said raw material is only what showed an example of the intermediate body which can be utilized for this invention, and is not limited to this. The intermediate that can be used as the raw material of the present invention is not particularly limited as long as it is obtained in the metal recovery step (treatment) and contains germanium, and can be appropriately selected from known ones. For example, non-ferrous smelting intermediate products such as residues generated by smelting processes such as oxidation and acid leaching of germanium-containing ores such as zinc ore described above, waste liquid when producing polyethylene terephthalate and polyester mainly composed thereof Ash obtained by incineration, MCVD processing waste, intermediate materials such as recovery of rare metals such as the material after being used as a semiconductor material or waste generated in the production thereof. The form of the intermediate is not particularly limited as long as it can react with hydrochloric acid, and may be, for example, a form of a metal compound or a form of a complex compound including an organic substance other than an inorganic substance.

前記Eagle−Pitcher法においては、先ず、ゲルマニウムを含有する亜鉛精鉱(ゲルマニウムの含有比率は、通常、0.01質量%〜0.015質量%)を酸化焙焼し、得られた焼鉱に塩及び石炭を混ぜて、焼結させる。焼結させた残滓は亜鉛製錬の原料となるが、焼結の際に生じる揮発物(煙灰)には、ゲルマニウム、カドミウム、銅及び鉛などが含まれる。
次に、前記揮発物を硫酸で浸出し、ろ過することで、硫化鉛を除去し、得られたろ液に亜鉛粉末を添加する。これにより、ゲルマニウム及び銅が亜鉛と置換されるため、カドミウムを溶液に残したまま、ゲルマニウム及び銅を凝集させて、沈殿させる。
更に、得られた沈殿物に硫酸と亜鉛粉末を加えることで、銅を溶液に残し、ゲルマニウムを凝集させて、沈殿させる。この沈殿物をろ過して回収した後、該ろ過物を乾燥及び加熱させ、得られたものを前記ゲルマニウム塩化物回収工程の原料とする。以上は、前記Eagle−Pitcher法における通常の工程である。
In the Eagle-Pitcher method, first, zinc concentrate containing germanium (the content ratio of germanium is usually 0.01% by mass to 0.015% by mass) is oxidized and roasted. Mix salt and coal and sinter. The sintered residue becomes a raw material for zinc smelting, but volatiles (smoke ash) generated during sintering include germanium, cadmium, copper, lead, and the like.
Next, the volatiles are leached with sulfuric acid and filtered to remove lead sulfide, and zinc powder is added to the obtained filtrate. Thereby, since germanium and copper are substituted with zinc, germanium and copper are aggregated and precipitated while cadmium remains in the solution.
Furthermore, by adding sulfuric acid and zinc powder to the obtained precipitate, copper is left in the solution, and germanium is aggregated and precipitated. After the precipitate is collected by filtration, the filtrate is dried and heated, and the resultant is used as a raw material for the germanium chloride collecting step. The above is a normal process in the Eagle-Pitcher method.

本発明のゲルマニウムを回収する方法では、前記ゲルマニウム塩化物回収工程において、前記原料に塩酸を混合して混合液を調整し、該混合液に更に過酸化水素を添加して、これを蒸留装置により蒸留することで、塩化物としてゲルマニウム(四塩化ゲルマニウム)を回収する。
前記ゲルマニウム塩化物回収工程において、塩酸と過酸化水素とを併用することにより、ゲルマニウムの回収率を大幅に改善することができる。塩酸と過酸化水素の併用は、特に添加順序に制限はなく、また、これらの酸の効果を促進するのであれば別の薬剤を更に添加してもよい。
In the method for recovering germanium according to the present invention, in the germanium chloride recovery step, hydrochloric acid is mixed with the raw material to prepare a mixed solution, hydrogen peroxide is further added to the mixed solution, and this is added to a distillation apparatus. By distillation, germanium (germanium tetrachloride) is recovered as chloride.
In the germanium chloride recovery step, the recovery rate of germanium can be greatly improved by using hydrochloric acid and hydrogen peroxide in combination. In the combined use of hydrochloric acid and hydrogen peroxide, the order of addition is not particularly limited, and another agent may be further added as long as the effect of these acids is promoted.

前記混合液の塩酸濃度(規定度)としては、四塩化ゲルマニウムの溶解性の安定の点で、6N〜12Nが好ましく、8N〜10Nがより好ましい。また、前記混合液において塩酸の量としては、四塩化ゲルマニウムの溶解性の点で、ゲルマニウム(4価)に対して1モル当量〜100モル当量が好ましく、4モル当量〜10モル当量がより好ましい。
前記過酸化水素の添加量としては、四塩化ゲルマニウムの回収率の点で、ゲルマニウムに対して2モル当量以上が好ましく、2モル当量〜3モル当量がより好ましい。前記添加量が、ゲルマニウムに対して2モル当量未満であると、四塩化ゲルマニウムの回収率が低下することがある。
The hydrochloric acid concentration (normality) of the mixed solution is preferably 6N to 12N, more preferably 8N to 10N in terms of stable solubility of germanium tetrachloride. The amount of hydrochloric acid in the mixed solution is preferably 1 to 100 molar equivalents, more preferably 4 to 10 molar equivalents with respect to germanium (tetravalent), from the viewpoint of germanium tetrachloride solubility. .
The addition amount of the hydrogen peroxide is preferably 2 molar equivalents or more, more preferably 2 molar equivalents to 3 molar equivalents with respect to germanium in terms of the recovery rate of germanium tetrachloride. When the addition amount is less than 2 molar equivalents with respect to germanium, the recovery rate of germanium tetrachloride may be reduced.

前記蒸留装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エバポレーター、ジムロート冷却器、アリーン冷却器などを使用することができる。該蒸留装置の市販品としては、例えば、石英ガラス製の蒸留器が挙げられる。
前記蒸留としては、精留効率の良さの点で、蒸留温度が95℃〜120℃であり、蒸留時間が0.5時間〜12時間が好ましく、蒸留温度が100℃〜120℃であり、蒸留時間が1時間〜6時間がより好ましい。
There is no restriction | limiting in particular as said distillation apparatus, According to the objective, it can select suitably, For example, an evaporator, a Dimroth cooler, an Allen cooler etc. can be used. As a commercial item of this distillation apparatus, the distiller made from quartz glass is mentioned, for example.
As the distillation, the distillation temperature is 95 ° C. to 120 ° C., the distillation time is preferably 0.5 hours to 12 hours, the distillation temperature is 100 ° C. to 120 ° C. The time is more preferably 1 to 6 hours.

前記Eagle−Pitcher法における通常の工程であるゲルマニウム酸化物回収工程では、前記回収された四塩化ゲルマニウムに水を加えて、加水分解することにより、酸化物としてゲルマニウム(二酸化ゲルマニウム)を回収する。
前記加水分解において、四塩化ゲルマニウムに対する水の量は、反応を十分に行わせる観点から、2倍質量〜100倍質量が好ましく、2倍質量〜5倍質量がより好ましい。また、前記加水分解は、10℃〜30℃で行うことが好ましい。
In the germanium oxide recovery step, which is a normal step in the Eagle-Pitcher method, water is added to the recovered germanium tetrachloride and hydrolyzed to recover germanium (germanium dioxide) as an oxide.
In the hydrolysis, the amount of water with respect to germanium tetrachloride is preferably 2 to 100 times, more preferably 2 to 5 times, from the viewpoint of sufficiently performing the reaction. Moreover, it is preferable to perform the said hydrolysis at 10 to 30 degreeC.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<原料>
前記ゲルマニウムを回収する原料としては、海外輸入により入手した亜鉛精鉱(該亜鉛精鉱に含まれるゲルマニウムの含有量は0.01質量%〜0.015質量%程度)を酸化焙焼し、酸により亜鉛を浸出させた後の残渣に処理を行い、得られたものを用いた。これは、従来技術と同様に、該残渣を酸浸出及び中和処理することによりカドミニウム等を除去した後、亜鉛粉末によりゲルマニウムを凝集沈殿させ、回収した沈殿残渣を塩酸浸出してできた金属ゲルマニウム含有物である。
前記原料の成分を表1に示す。前記成分は、乾燥時の質量%で示す。なお、前記成分のそれぞれの含有量はICP発光分光分析を用いて測定した。
Example 1
<Raw material>
As the raw material for recovering germanium, zinc concentrate obtained by importing overseas (germanium content in the zinc concentrate is about 0.01% to 0.015% by mass) is oxidized and roasted, and then acidified. The residue after leaching zinc was processed by using the obtained one. This is the same as in the prior art, in which the residue is acid leached and neutralized to remove cadmium and the like, then coagulate and precipitate germanium with zinc powder, and the recovered precipitation residue is leached with hydrochloric acid. Inclusions.
The ingredients of the raw material are shown in Table 1. The said component is shown by the mass% at the time of drying. In addition, each content of the said component was measured using ICP emission spectral analysis.

Figure 2012091968
(*)その他の成分に含まれる成分としては、ケイ素とその酸化化合物が殆どである。
Figure 2012091968
(*) Most of the components contained in other components are silicon and its oxidized compounds.

<塩酸浸出及び蒸留条件>
前記原料290g(乾燥重量)、水100mL、35質量%塩酸450mLの混合溶液(塩酸規定度9.8N)を調製し、該混合液の温度を70℃まで上昇させた。その後、30質量%過酸化水素水を少量ずつ添加し、合計100mL(ゲルマニウムに対して2.1モル当量)添加し、蒸留温度105度(液温)で30分間保持し、合計2時間の蒸留をした。なお、過酸化水素水の添加量(ゲルマニウムに対するモル当量)は、下記化学式を前提とし、ゲルマニウム1molに対し、2molの過酸化水素を使用するものと想定した。
〔化1〕
Ge+2H→GeO+2H
<Hydrochloric acid leaching and distillation conditions>
A mixed solution (hydrochloric acid normality 9.8 N) of 290 g (dry weight) of the raw material, 100 mL of water and 450 mL of 35 mass% hydrochloric acid was prepared, and the temperature of the mixed solution was raised to 70 ° C. Thereafter, 30% by mass of hydrogen peroxide solution was added little by little, and a total of 100 mL (2.1 molar equivalents with respect to germanium) was added and kept at a distillation temperature of 105 ° C. (liquid temperature) for 30 minutes. Did. The amount of hydrogen peroxide added (molar equivalent with respect to germanium) was based on the following chemical formula, and it was assumed that 2 mol of hydrogen peroxide was used per 1 mol of germanium.
[Chemical formula 1]
Ge + 2H 2 O 2 → GeO 2 + 2H 2 O

前記蒸留に用いた装置としては、容積が1,000mLであり、蒸留経路に冷却管を備えた市販の蒸留器(ガラス製ジムロート冷却器)を用いた。該蒸留器により蒸発した四塩化ゲルマニウムを冷却し、捕集容器にて回収した。これにより得られた四塩化ゲルマニウムの回収率を表2に示す。なお、四塩化ゲルマニウムの回収率は、下記数式により求めた。
〔式1〕
四塩化ゲルマニウムの回収率(質量%)=回収後の四塩化ゲルマニウム溶液中のゲルマニウム質量/原料中のゲルマニウム質量×100
As the apparatus used for the distillation, a commercially available distiller (glass Dimroth cooler) having a volume of 1,000 mL and equipped with a cooling pipe in the distillation path was used. The germanium tetrachloride evaporated by the distiller was cooled and recovered in a collection container. Table 2 shows the recovery rate of germanium tetrachloride thus obtained. In addition, the recovery rate of germanium tetrachloride was calculated | required by the following numerical formula.
[Formula 1]
Recovery rate (mass%) of germanium tetrachloride = mass of germanium in germanium tetrachloride solution after recovery / mass of germanium in raw material × 100

なお、本塩酸浸出においては、新たに化合された不溶解残物が発生することはなく、また、前記原料を前記塩酸に溶解させた際に容器内壁へゲルマニウムが飛散して付着することもなかった。したがって、本塩酸浸出においては、ゲルマニウムが浸出液に確実に溶解し、前記原料中に溶残りとしてある以外のロスが全くないと考えられる。   In this hydrochloric acid leaching, a newly combined insoluble residue is not generated, and germanium is not scattered and attached to the inner wall of the container when the raw material is dissolved in the hydrochloric acid. It was. Therefore, in the hydrochloric acid leaching, germanium is surely dissolved in the leaching solution, and it is considered that there is no loss other than that which remains as a dissolved residue in the raw material.

<加水分解>
前記回収された四塩化ゲルマニウムを水1,000mLに加え、撹拌して加水分解し、二酸化ゲルマニウムを精製した。該二酸化ゲルマニウムの品位を表2に示す。
<Hydrolysis>
The recovered germanium tetrachloride was added to 1,000 mL of water, stirred and hydrolyzed to purify germanium dioxide. Table 2 shows the quality of the germanium dioxide.

(実施例2)
実施例1において、過酸化水素水の添加量を100mL(ゲルマニウムに対して2.1モル当量)から91mL(ゲルマニウムに対して1.9モル当量)に変更した以外は、実施例1と同じ方法を用いて、ゲルマニウムの回収を行った。結果を表2に示す。
(Example 2)
In Example 1, the same method as in Example 1 except that the amount of hydrogen peroxide added was changed from 100 mL (2.1 molar equivalents to germanium) to 91 mL (1.9 molar equivalents to germanium). Was used to recover germanium. The results are shown in Table 2.

(比較例1)
実施例1において、過酸化水素水を添加しなかった以外は、前記実施例1と同じ方法を用いて、ゲルマニウムの回収を行った。結果を表2に示す。
(Comparative Example 1)
In Example 1, germanium was recovered using the same method as in Example 1 except that no hydrogen peroxide solution was added. The results are shown in Table 2.

Figure 2012091968
Figure 2012091968

<蒸留結果>
実施例1では、前記蒸留により、四塩化ゲルマニウムと揮発した塩酸溶液を100mL回収でき、うち四塩化ゲルマニウム溶液としては45mL得た。前記蒸留により回収されたゲルマニウムの重量は、四塩化ゲルマニウム量で84g、ゲルマニウム量で29gであった。前記四塩化ゲルマニウムとしての回収率は、82%であった。
また、前記四塩化ゲルマニウム溶液の加水分解により得られた二酸化ゲルマニウムは、99.9質量%以上の品位であり、忌避される不純物である砒素は確実に除去されていた。
実施例2では、前記蒸留により回収されたゲルマニウムの重量は、四塩化ゲルマニウム量で71g、ゲルマニウム量で24gであった。前記四塩化ゲルマニウムとしての回収率は、75%であり、前記二酸化ゲルマニウムは、99.9質量%以上の品位であった。
他方、塩酸に過酸化水素水を添加しない従来の方法を用いた比較例1では、四塩化ゲルマニウム量で10g、ゲルマニウム量で3gであった。前記四塩化ゲルマニウムとしての回収率は、10%であり、四塩化ゲルマニウムを殆ど回収できなかった。
<Distillation results>
In Example 1, 100 mL of germanium tetrachloride and volatilized hydrochloric acid solution could be recovered by the distillation, and 45 mL of germanium tetrachloride solution was obtained. The weight of germanium recovered by the distillation was 84 g in terms of germanium tetrachloride and 29 g in terms of germanium. The recovery rate as germanium tetrachloride was 82%.
Further, germanium dioxide obtained by hydrolysis of the germanium tetrachloride solution has a quality of 99.9% by mass or more, and arsenic, which is an impurity to be avoided, has been reliably removed.
In Example 2, the weight of germanium recovered by the distillation was 71 g in terms of germanium tetrachloride and 24 g in terms of germanium. The recovery rate as germanium tetrachloride was 75%, and the germanium dioxide had a quality of 99.9% by mass or more.
On the other hand, in Comparative Example 1 using a conventional method in which hydrogen peroxide was not added to hydrochloric acid, the amount of germanium tetrachloride was 10 g and the amount of germanium was 3 g. The recovery rate as germanium tetrachloride was 10%, and germanium tetrachloride was hardly recovered.

前記実施例1の結果から、本発明の亜鉛精鉱からゲルマニウムを回収する方法は、高品位のゲルマニウムを高い回収率で、効率よく且つ安価に回収できることがわかった。   From the results of Example 1, it was found that the method for recovering germanium from the zinc concentrate of the present invention can recover high-grade germanium efficiently and inexpensively with a high recovery rate.

本発明の亜鉛精鉱からゲルマニウムを回収する方法は、高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に回収できるので、光ファイバーや太陽電池等のいわゆるハイテク産業用の材料開発、ポリエチレンテレフタレート樹脂の重合促進触媒、ダイオード及びトランジスター等の半導体素子、相変化磁気ディスク材料等のエレクトロニクス材料、触媒、その他の加工用原料などに使用可能なゲルマニウムを回収する方法として好適に用いられる。   The method of recovering germanium from the zinc concentrate according to the present invention can recover high-quality germanium at a high recovery rate efficiently and inexpensively, so that development of materials for so-called high-tech industries such as optical fibers and solar cells, polyethylene terephthalate It is suitably used as a method for recovering germanium that can be used as a resin polymerization promotion catalyst, semiconductor elements such as diodes and transistors, electronic materials such as phase change magnetic disk materials, catalysts, and other processing raw materials.

Claims (4)

金属回収工程における、ゲルマニウムを含有する中間物から、塩酸と過酸化水素とを併用して、ゲルマニウムを塩化物として回収するゲルマニウム塩化物回収工程を含むことを特徴とするゲルマニウムの回収方法。   A germanium recovery method comprising a germanium chloride recovery step of recovering germanium as chloride from a germanium-containing intermediate in a metal recovery step using hydrochloric acid and hydrogen peroxide in combination. 過酸化水素の添加量が、ゲルマニウムに対して2モル当量以上である請求項1に記載のゲルマニウムの回収方法。   The method for recovering germanium according to claim 1, wherein the amount of hydrogen peroxide added is 2 molar equivalents or more with respect to germanium. ゲルマニウム塩化物回収工程で回収したゲルマニウム塩化物を加水分解して、ゲルマニウムを酸化物として回収するゲルマニウム酸化物回収工程を含む請求項1から2のいずれかに記載のゲルマニウムの回収方法。   The method for recovering germanium according to claim 1, comprising a germanium oxide recovery step of hydrolyzing the germanium chloride recovered in the germanium chloride recovery step and recovering germanium as an oxide. 中間物が亜鉛製錬における中間産物である請求項1から3のいずれかに記載のゲルマニウムの回収方法。
The method for recovering germanium according to any one of claims 1 to 3, wherein the intermediate is an intermediate product in zinc smelting.
JP2010241359A 2010-10-27 2010-10-27 Method for recovering germanium tetrachloride Active JP5676206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241359A JP5676206B2 (en) 2010-10-27 2010-10-27 Method for recovering germanium tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241359A JP5676206B2 (en) 2010-10-27 2010-10-27 Method for recovering germanium tetrachloride

Publications (2)

Publication Number Publication Date
JP2012091968A true JP2012091968A (en) 2012-05-17
JP5676206B2 JP5676206B2 (en) 2015-02-25

Family

ID=46385789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241359A Active JP5676206B2 (en) 2010-10-27 2010-10-27 Method for recovering germanium tetrachloride

Country Status (1)

Country Link
JP (1) JP5676206B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162648A (en) * 2013-02-21 2014-09-08 Dowa Metals & Mining Co Ltd Method for producing germanium oxide
CN104073636A (en) * 2014-06-23 2014-10-01 贵州顶效开发区宏达金属综合回收有限公司 Method for extracting germanium concentrate from germanium-containing reverse extraction alkaline liquor
JP2015048525A (en) * 2013-09-04 2015-03-16 Dowaメタルマイン株式会社 Recovery method of germanium
JP2015105226A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Method for producing germanium oxide
CN111484069A (en) * 2020-04-20 2020-08-04 湖北联合贵稀资源再生科技有限公司 Preparation method of germanium dioxide powder
CN116640928A (en) * 2023-07-27 2023-08-25 昆明理工大学 Method for co-treatment of germanium chloride distillation residues and lead-zinc smelting acid wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105369038B (en) * 2015-11-05 2017-09-12 昆明理工大学 A kind of hybrid oxidant and its method using hybrid oxidant Ti recovery in phase analysis from hard zinc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529000A (en) * 1975-07-08 1977-01-24 Penarroya Miniere Metall Process for recovering and purifying germanium vale and germanium value obtained therefrom
JP2003247029A (en) * 2001-11-21 2003-09-05 Shipley Co Llc Method for recovering catalytic metal using porous metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529000A (en) * 1975-07-08 1977-01-24 Penarroya Miniere Metall Process for recovering and purifying germanium vale and germanium value obtained therefrom
JP2003247029A (en) * 2001-11-21 2003-09-05 Shipley Co Llc Method for recovering catalytic metal using porous metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162648A (en) * 2013-02-21 2014-09-08 Dowa Metals & Mining Co Ltd Method for producing germanium oxide
JP2015048525A (en) * 2013-09-04 2015-03-16 Dowaメタルマイン株式会社 Recovery method of germanium
JP2015105226A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Method for producing germanium oxide
CN104073636A (en) * 2014-06-23 2014-10-01 贵州顶效开发区宏达金属综合回收有限公司 Method for extracting germanium concentrate from germanium-containing reverse extraction alkaline liquor
CN104073636B (en) * 2014-06-23 2016-05-25 贵州宏达环保科技有限公司 A kind of method of extracting germanium concentrate from germanic back extraction alkali lye
CN111484069A (en) * 2020-04-20 2020-08-04 湖北联合贵稀资源再生科技有限公司 Preparation method of germanium dioxide powder
CN111484069B (en) * 2020-04-20 2023-09-29 湖北联合贵稀资源再生科技有限公司 Preparation method of germanium dioxide powder
CN116640928A (en) * 2023-07-27 2023-08-25 昆明理工大学 Method for co-treatment of germanium chloride distillation residues and lead-zinc smelting acid wastewater
CN116640928B (en) * 2023-07-27 2023-10-20 昆明理工大学 Method for co-treatment of germanium chloride distillation residues and lead-zinc smelting acid wastewater

Also Published As

Publication number Publication date
JP5676206B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5676206B2 (en) Method for recovering germanium tetrachloride
CN102390819B (en) Method for preparing tellurium dioxide from tellurium slag
CN103449517B (en) Method for preparing white arsenic from arsenic-containing dust in evaporation-free manner
CN103397209B (en) Method for extracting vanadium from high-calcium and high-phosphorus vanadium slag
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
AU2005100939A4 (en) F - treatment of titanium materials
CN109368688A (en) A kind of production technology of high pure zinc oxide indirect method
JP6141651B2 (en) Method for producing germanium oxide
JP5146017B2 (en) Chlorine leaching method for lead anode slime
CN103014378B (en) Vanadium liquid purification method
CN106830077B (en) A kind of method of vanadic anhydride purification
CN106946290B (en) A kind of method of vanadic anhydride purification
CN103014377B (en) Vanadium liquid purification method
JP2010138490A (en) Method of recovering zinc
JP6163392B2 (en) Germanium recovery method
JP5571517B2 (en) Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic
KR101865262B1 (en) Method for refining carbon concentration using edta
JP2014129201A (en) Manufacturing method of perrhenic acid aqueous solution from rhenium sulfide
CN105803198A (en) Method of extracting high-purity V2O5 in dilute sulfuric acid leaching solution of stone coal vanadium ore calcine by adopting normal-temperature direct precipitation method
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
CN102325725B (en) The method preparing high pure zinc oxide with secondary dust
JP6835577B2 (en) How to collect valuables
CN103397187B (en) Method for vanadium extraction by activating high-calcium high-phosphorus vanadium slag with nitric acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250