JP2012089471A - Device and method for recovering battery capacity - Google Patents

Device and method for recovering battery capacity Download PDF

Info

Publication number
JP2012089471A
JP2012089471A JP2011144541A JP2011144541A JP2012089471A JP 2012089471 A JP2012089471 A JP 2012089471A JP 2011144541 A JP2011144541 A JP 2011144541A JP 2011144541 A JP2011144541 A JP 2011144541A JP 2012089471 A JP2012089471 A JP 2012089471A
Authority
JP
Japan
Prior art keywords
battery
lithium
electrolyte
capacity recovery
battery capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144541A
Other languages
Japanese (ja)
Other versions
JP5703996B2 (en
Inventor
Takami Saito
崇実 齋藤
Yasukazu Iwasaki
靖和 岩崎
Kazuyuki Sakamoto
和幸 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011144541A priority Critical patent/JP5703996B2/en
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to EP11806751.1A priority patent/EP2595235A1/en
Priority to PCT/JP2011/065817 priority patent/WO2012008421A1/en
Priority to US13/810,074 priority patent/US20130115486A1/en
Priority to KR1020137001011A priority patent/KR101445504B1/en
Priority to BR112013001135A priority patent/BR112013001135A2/en
Priority to CN201180034917.8A priority patent/CN103004008B/en
Priority to RU2013106907/07A priority patent/RU2538775C2/en
Priority to MX2013000637A priority patent/MX2013000637A/en
Priority to TW100124974A priority patent/TWI466355B/en
Publication of JP2012089471A publication Critical patent/JP2012089471A/en
Application granted granted Critical
Publication of JP5703996B2 publication Critical patent/JP5703996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and method for recovering battery capacities, capable of compensating for a reduction of movable lithium ions due to charge and discharge without complicating a battery structure.SOLUTION: The device for recovering battery capacities includes: a low potential member 21 having an oxidation-reduction potential lower than that of an active material of a positive electrode 221 or a negative electrode 222 of a battery 100 and having an ability to reduce the active material; and an injector 10 that is provided with a cylinder room 11a housing the low potential member 21 and capable of holding an electrolyte 20 filled therein and an injection nozzle 13 that is formed continuously to the cylinder room 11a, is electrically connected to the low potential member 21 and has conductivity.

Description

この発明は、電池容量を回復する装置及び方法に関する。   The present invention relates to an apparatus and method for recovering battery capacity.

リチウムイオン二次電池は、充放電が繰り返されると、劣化して電池容量が減少する。そこで特許文献1では、リチウムを含有する第3電極を電池内に配置する。そしてこの第3電極に対して外部回路から電力を供給する。すると第3電極からリチウムイオンが放出されて、充放電による可動リチウムイオンの減少を補うことができるとしている。   Lithium ion secondary batteries deteriorate and decrease battery capacity when charging and discharging are repeated. Therefore, in Patent Document 1, a third electrode containing lithium is arranged in the battery. Then, electric power is supplied from an external circuit to the third electrode. Then, lithium ions are released from the third electrode, and the decrease in movable lithium ions due to charge / discharge can be compensated.

特開平8−190934号公報JP-A-8-190934

しかしながら、前述の従来技術では、電池内に第3電極を配置しなければならない。したがって電池の構造が複雑になる。   However, in the above-described prior art, the third electrode must be disposed in the battery. Therefore, the structure of the battery becomes complicated.

本発明は、このような従来の問題点に着目してなされたものであり、電池の構造を複雑にすることなく、充放電による可動リチウムイオンの減少を補うことができる電池容量回復装置及び電池容量回復方法を提供することを目的とする。   The present invention has been made paying attention to such conventional problems, and a battery capacity recovery device and a battery that can compensate for the decrease in movable lithium ions due to charging and discharging without complicating the structure of the battery. The object is to provide a capacity recovery method.

本発明は以下のような解決手段によって前記課題を解決する。   The present invention solves the above problems by the following means.

本発明の電池容量回復装置は、電池の正極又は負極の活物質よりも酸化還元電位が低く、かつその活物質に対して還元能力がある低電位部材を有する。そして、その低電位部材を収納するとともに、充填された電解質を保持可能なシリンダー室と、そのシリンダー室に連続して形成されるとともに、前記低電位部材と電気的に接続されかつ導電性である注入ノズルと、を備えるインジェクターと、を有することを特徴とする。   The battery capacity recovery device of the present invention has a low-potential member that has a lower redox potential than the active material of the positive electrode or negative electrode of the battery and has a reducing ability for the active material. The low-potential member is accommodated, and a cylinder chamber capable of holding the filled electrolyte, and continuously formed in the cylinder chamber, electrically connected to the low-potential member and conductive. And an injector having an injection nozzle.

本発明によれば、電池内に第3電極を配置する必要がなく、したがって電池の構造が複雑化することなく、充放電による可動リチウムイオンの減少を補うことができる。   According to the present invention, it is not necessary to dispose the third electrode in the battery, and therefore the decrease in movable lithium ions due to charging / discharging can be compensated without complicating the structure of the battery.

リチウムイオン二次電池の構造を示す図である。It is a figure which shows the structure of a lithium ion secondary battery. 本発明による電池容量回復装置の第1実施形態を示す図である。1 is a diagram showing a first embodiment of a battery capacity recovery device according to the present invention. 本発明によるリチウムイオン二次電池の電池容量を回復する方法を説明する図である。It is a figure explaining the method to recover | restore the battery capacity of the lithium ion secondary battery by this invention. 本発明による電池容量回復装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the battery capacity recovery apparatus by this invention.

以下では図面等を参照して本発明を実施するための形態について、さらに詳しく説明する。   Hereinafter, embodiments for carrying out the present invention will be described in more detail with reference to the drawings.

最初に本発明による電池容量回復装置の理解を容易にするために、リチウムイオン二次電池の構造について説明する。   First, in order to facilitate understanding of the battery capacity recovery device according to the present invention, the structure of a lithium ion secondary battery will be described.

(リチウムイオン二次電池の構造)
図1は、リチウムイオン二次電池の構造を示す図であり、図1(A)はリチウムイオン二次電池の斜視図であり、図1(B)は図1(A)のB−B断面図である。
(Structure of lithium ion secondary battery)
FIG. 1 is a diagram showing the structure of a lithium ion secondary battery, FIG. 1 (A) is a perspective view of the lithium ion secondary battery, and FIG. 1 (B) is a cross section taken along line BB in FIG. 1 (A). FIG.

リチウムイオン二次電池100は、所定数積層されて電気的に並列接続された単電池200と、外装材300と、を含む。外装材300には、電解質(電解液)20が充填されている。   The lithium ion secondary battery 100 includes a unit cell 200 that is stacked in a predetermined number and is electrically connected in parallel, and an exterior material 300. The exterior material 300 is filled with an electrolyte (electrolytic solution) 20.

単電池200は、セパレーター210と、正極221と、負極222と、を含む。   The unit cell 200 includes a separator 210, a positive electrode 221, and a negative electrode 222.

セパレーター210は、流動性のある電解質(電解液)20を保持する電解質層である。なお電解質(電解液)20については後述する。セパレーター210は、ポリアミド不織布,ポリエチレン不織布,ポリプロピレン不織布,ポリイミド不織布,ポリエステル不織布,アラミド不織布などの不織布である。また、セパレーター210は、フィルムが延伸されて細孔が形成された微多孔膜フィルムでもよい。このようなフィルムは、既存のリチウムイオン電池用セパレーターとして使用される。またポリエチレン,ポリプロピレン,ポリイミドフィルムやあるいはこれらを積層したものであってもよい。セパレーター210の厚さは、特には限定されない。しかしながら、薄いほうが電池がコンパクトになる。そこでセパレーター210は、性能を確保できる範囲で、できるだけ薄いことが望ましい。一般的にはセパレーター210の厚さは10〜100μm程度である。ただし一定厚でなくてもよい。   The separator 210 is an electrolyte layer that holds a fluid electrolyte (electrolyte solution) 20. The electrolyte (electrolytic solution) 20 will be described later. The separator 210 is a nonwoven fabric such as a polyamide nonwoven fabric, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyimide nonwoven fabric, a polyester nonwoven fabric, or an aramid nonwoven fabric. Further, the separator 210 may be a microporous film in which pores are formed by stretching the film. Such a film is used as a separator for an existing lithium ion battery. Further, polyethylene, polypropylene, polyimide film, or a laminate of these may be used. The thickness of the separator 210 is not particularly limited. However, the thinner the battery, the more compact the battery. Therefore, it is desirable that the separator 210 be as thin as possible within a range in which performance can be ensured. Generally, the thickness of the separator 210 is about 10 to 100 μm. However, the thickness may not be constant.

正極221は、薄板の集電体22と、その両面に形成された正極層221aと、を有する。なお、最外層に配置される正極221は、集電体22の片面にのみ正極層221aが形成される。正極の集電体22は、ひとつに集合されて電気的に並列接続される。図1(B)では、各集電体22は、左側でひとつに集合する。この集合部分が正極集電部である。   The positive electrode 221 includes a thin plate current collector 22 and a positive electrode layer 221a formed on both surfaces thereof. The positive electrode 221 disposed on the outermost layer has the positive electrode layer 221 a formed only on one side of the current collector 22. The positive current collectors 22 are gathered together and electrically connected in parallel. In FIG. 1B, the current collectors 22 gather together on the left side. This assembly portion is a positive electrode current collector.

集電体22は、主成分である金属粉末に、バインダー(樹脂)及び溶剤を混ぜた金属ペーストが加熱されて成形される。金属粉末は、たとえば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金などである。これらの金属粉末は、1種が単独で用いられてもよいし、2種以上が混合されて用いられてもよい。また異なる金属粉末が多層に積層されてもよい。バインダーは、たとえば、エポキシ樹脂などの従来公知の樹脂バインダー材料である。またバインダーは、導電性高分子材料であってもよい。集電体22の厚さは、特に限定されないが、通常は1〜100μm程度である。   The current collector 22 is formed by heating a metal paste obtained by mixing a binder (resin) and a solvent with metal powder as a main component. Examples of the metal powder include aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof. One type of these metal powders may be used alone, or two or more types may be mixed and used. Different metal powders may be laminated in multiple layers. The binder is a conventionally known resin binder material such as an epoxy resin. The binder may be a conductive polymer material. Although the thickness of the electrical power collector 22 is not specifically limited, Usually, it is about 1-100 micrometers.

正極層221aは、正極活物質を含む。正極活物質は、特にリチウム−遷移金属複合酸化物が好ましい。具体的には、たとえば、スピネルLiMn24などのLi・Mn系複合酸化物,LiCoO2などのLi・Co系複合酸化物,LiNiO2などのLi・Ni系複合酸化物,LiFeO2などのLi・Fe系複合酸化物などである。また、LiFePO4などの遷移金属とリチウムのリン酸化合物や硫酸化合物でもよい。さらに、V25,MnO2,TiS2,MoS2,MoO3などの遷移金属酸化物や硫化物でもよい。また、PbO2,AgO,NiOOHなどでもよい。このような正極活物質は、電池容量、出力特性に優れた電池を構成できる。 The positive electrode layer 221a includes a positive electrode active material. The positive electrode active material is particularly preferably a lithium-transition metal composite oxide. Specifically, for example, a Li · Mn composite oxide such as spinel LiMn 2 O 4, a Li · Co composite oxide such as LiCoO 2 , a Li · Ni composite oxide such as LiNiO 2 , LiFeO 2, etc. Li / Fe-based composite oxide. Alternatively, a transition metal such as LiFePO 4 and a lithium phosphate compound or a sulfate compound may be used. Furthermore, transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 may be used. Further, PbO 2 , AgO, NiOOH or the like may be used. Such a positive electrode active material can constitute a battery having excellent battery capacity and output characteristics.

正極活物質の粒径は、正極材料をペースト化してスプレーコートなどによって製膜できる程度であればよいが、小さいほうが電極抵抗を低減できる。具体的には、正極活物質の平均粒径が0.1〜10μmであるとよい。   The particle size of the positive electrode active material may be such that the positive electrode material can be made into a paste and formed by spray coating or the like, but a smaller one can reduce the electrode resistance. Specifically, the average particle diameter of the positive electrode active material is preferably 0.1 to 10 μm.

正極活物質は、この他にもイオン伝導性を高めるために、電解質,リチウム塩,導電助剤などを含んでもよい。導電助剤は、一例を挙げれば、アセチレンブラック,カーボンブラック,グラファイトなどである。   In addition to this, the positive electrode active material may contain an electrolyte, a lithium salt, a conductive auxiliary agent, and the like in order to enhance ion conductivity. Examples of the conductive assistant include acetylene black, carbon black, and graphite.

正極活物質,電解質(好ましくは固体高分子電解質),リチウム塩,導電助剤の配合量は、電池の使用目的(出力重視,エネルギー重視など)、イオン伝導性が考慮されて設定される。たとえば、電解質、特に固体高分子電解質の配合量が過少であると、活物質層内でのイオン伝導抵抗やイオン拡散抵抗が大きくなり、電池性能が低下する。一方、電解質、特に固体高分子電解質の配合量が過多であると、電池のエネルギー密度が低下する。したがって、これらが考慮されて、具体的な配合量が設定される。   The compounding amount of the positive electrode active material, the electrolyte (preferably a solid polymer electrolyte), the lithium salt, and the conductive auxiliary agent is set in consideration of the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity. For example, if the amount of the electrolyte, particularly the solid polymer electrolyte, is too small, the ionic conduction resistance and the ionic diffusion resistance in the active material layer become large, and the battery performance deteriorates. On the other hand, when the amount of the electrolyte, particularly the solid polymer electrolyte is excessive, the energy density of the battery is lowered. Therefore, taking these into consideration, a specific blending amount is set.

正極層221aの厚さは、特には限定されない。電池の使用目的(出力重視,エネルギー重視など)、イオン伝導性などが考慮されて設定される。一般的な正極の厚さは1〜500μm程度である。   The thickness of the positive electrode layer 221a is not particularly limited. The battery is set in consideration of the purpose of use of the battery (emphasis on output, energy, etc.) and ion conductivity. A typical positive electrode has a thickness of about 1 to 500 μm.

負極222は、薄板の集電体22と、その両面に形成された負極層222aと、を有する。なお、最外層に配置される負極222は、集電体22の片面にのみ負極層222aが形成される。負極の集電体22は、ひとつに集合されて電気的に並列接続される。図1(B)では、各集電体22は、右側でひとつに集合する。この集合部分が負極集電部である。なお集電体22は、正極に用いるものと同じものを使用しても、別のものを使用してもよい。   The negative electrode 222 includes a thin plate current collector 22 and a negative electrode layer 222a formed on both surfaces thereof. Note that the negative electrode 222 disposed on the outermost layer has the negative electrode layer 222 a formed only on one side of the current collector 22. The negative electrode current collectors 22 are assembled together and electrically connected in parallel. In FIG. 1B, the current collectors 22 gather together on the right side. This aggregate portion is a negative electrode current collector. The current collector 22 may be the same as that used for the positive electrode or a different one.

負極層222aは、負極活物質を含む。負極層222aは、具体的には、金属酸化物,リチウム−金属複合酸化物金属,カーボン,チタン酸化物,リチウム−チタン複合酸化物などである。特に、カーボン,遷移金属酸化物,リチウム−遷移金属複合酸化物が好ましい。なかでもカーボン又はリチウム−遷移金属複合酸化物は、電池を高電池容量化、高出力化できる。これらが1種単独で用いられてもよいし、2種以上併用されて用いられてもよい。   The negative electrode layer 222a includes a negative electrode active material. Specifically, the negative electrode layer 222a is made of metal oxide, lithium-metal composite oxide metal, carbon, titanium oxide, lithium-titanium composite oxide, or the like. In particular, carbon, transition metal oxide, and lithium-transition metal composite oxide are preferable. Among these, carbon or lithium-transition metal composite oxide can increase the battery capacity and output of the battery. These may be used alone or in combination of two or more.

外装材300は、積層された単電池200を収容する。外装材300は、アルミニウム等の金属をポリプロピレンフィルム等の絶縁体で被覆した高分子−金属複合ラミネートフィルムのシート材で形成される。外装材300は、積層された単電池200を収容した状態で、周囲が熱融着される。外装材300は、単電池200の電力を外部に取り出すための正極タブ310及び負極タブ320を備える。   The packaging material 300 accommodates the stacked unit cells 200. The exterior material 300 is formed of a sheet material of a polymer-metal composite laminate film in which a metal such as aluminum is covered with an insulator such as a polypropylene film. The exterior material 300 is heat-sealed around the unit cell 200 in a state where it is accommodated. The packaging material 300 includes a positive electrode tab 310 and a negative electrode tab 320 for taking out the electric power of the unit cell 200 to the outside.

正極タブ310は、一端が外装材300の内部で正極集電部に接続され、他端が外装材300の外に出る。   One end of the positive electrode tab 310 is connected to the positive electrode current collector inside the exterior material 300, and the other end goes out of the exterior material 300.

負極タブ320は、一端が外装材300の内部で負極集電部に接続され、他端が外装材300の外に出る。   One end of the negative electrode tab 320 is connected to the negative electrode current collector inside the exterior material 300, and the other end goes out of the exterior material 300.

電解質(電解液)20は、たとえば、ポリマー骨格中に数重量%〜99重量%程度電解液を保持させたゲル電解質である。特に高分子ゲル電解質がよい。高分子ゲル電解質は、たとえば、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン電池で用いられる電解液を含んだものである。また、リチウムイオン導伝性を持たない高分子の骨格中に、通常リチウムイオン電池で用いられる電解液を保持させたものでもよい。   The electrolyte (electrolytic solution) 20 is, for example, a gel electrolyte in which an electrolytic solution is held in the polymer skeleton by about several to 99% by weight. A polymer gel electrolyte is particularly preferable. The polymer gel electrolyte includes, for example, a solid polymer electrolyte having ion conductivity and an electrolytic solution usually used in a lithium ion battery. Moreover, what hold | maintained the electrolyte solution normally used with a lithium ion battery in the polymeric frame | skeleton which does not have lithium ion conductivity may be used.

高分子ゲル電解質は、高分子電解質100%でできたもの以外のものであって、電解液をポリマー骨格に含ませたものであればよい。特に、電解液とポリマーとの比率(質量比)は、20:80〜98:2程度が好ましい。このような比率であれば、電解質による流動性と、電解質としての性能と、が両立される。   The polymer gel electrolyte may be anything other than that made of 100% polymer electrolyte and may contain an electrolyte solution in the polymer skeleton. In particular, the ratio (mass ratio) between the electrolytic solution and the polymer is preferably about 20:80 to 98: 2. If it is such a ratio, the fluidity | liquidity by an electrolyte and the performance as an electrolyte will be compatible.

ポリマー骨格は、熱硬化性ポリマー及び熱可塑性ポリマーのいずれでもよい。具体的には、たとえば、ポリエチレンオキシドを主鎖又は側鎖に持つ高分子(PEO),ポリアクリロニトリル(PAN),ポリメタクリル酸エステル,ポリフッ化ビニリデン(PVDF),ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP),ポリメチルメタクリレート(PMMA)などである。ただし、これらに限られない。   The polymer skeleton may be either a thermosetting polymer or a thermoplastic polymer. Specifically, for example, a polymer having polyethylene oxide in the main chain or side chain (PEO), polyacrylonitrile (PAN), polymethacrylic acid ester, polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene. Polymer (PVDF-HFP), polymethyl methacrylate (PMMA) and the like. However, it is not limited to these.

高分子ゲル電解質に含まれる電解液(電解質塩及び可塑剤)は、通常リチウムイオン電池で用いられるものである。たとえば、LiPF6,LiBF4,LiClO4,LiAsF6,LiTaF6,LiAlCl4,Li210Cl10等の無機酸陰イオン塩、LiCF3SO3,Li(CF3SO2)2N,Li(C25SO2)2N等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩(電解質塩)を含み、プロピレンカーボネート,エチレンカーボネート等の環状カーボネート類である。ジメチルカーボネート,メチルエチルカーボネート,ジエチルカーボネート等の鎖状カーボネート類でもよい。テトラヒドロフラン,2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジブトキシエタン等のエーテル類でもよい。γ−ブチロラクトン等のラクトン類でもよい。アセトニトリル等のニトリル類でもよい。プロピオン酸メチル等のエステル類でもよい。ジメチルホルムアミド等のアミド類でもよい。酢酸メチル及び蟻酸メチルの中から選ばれる少なくとも1種類以上を混合した非プロトン性溶媒等の有機溶媒(可塑剤)を用いたものでもよい。ただし、これらに限られない。 The electrolyte solution (electrolyte salt and plasticizer) contained in the polymer gel electrolyte is usually used in a lithium ion battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiTaF 6 , LiAlCl 4 , Li 2 B 10 Cl 10 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li Cyclic carbonates such as propylene carbonate and ethylene carbonate containing at least one lithium salt (electrolyte salt) selected from organic acid anion salts such as (C 2 F 5 SO 2 ) 2 N. Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate may be used. Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane may be used. Lactones such as γ-butyrolactone may be used. Nitriles such as acetonitrile may be used. Esters such as methyl propionate may be used. Amides such as dimethylformamide may be used. An organic solvent (plasticizer) such as an aprotic solvent in which at least one selected from methyl acetate and methyl formate is mixed may be used. However, it is not limited to these.

図2は、本発明による電池容量回復装置の第1実施形態を示す図である。   FIG. 2 is a diagram showing a first embodiment of a battery capacity recovery device according to the present invention.

電池容量回復装置1は、インジェクター10からなる。インジェクター10は、シリンダー11と、プランジャー12と、ノズル13と、を含む。   The battery capacity recovery device 1 includes an injector 10. The injector 10 includes a cylinder 11, a plunger 12, and a nozzle 13.

プランジャー12は、シリンダー11に挿入される。シリンダー11とプランジャー12とで形成される空間がシリンダー室11aである。このシリンダ室11aには、低電位部材21が格納されている。低電位部材21については、後述する。またシリンダ室11aには、電解質20が充填されている。   The plunger 12 is inserted into the cylinder 11. A space formed by the cylinder 11 and the plunger 12 is a cylinder chamber 11a. A low potential member 21 is stored in the cylinder chamber 11a. The low potential member 21 will be described later. The cylinder chamber 11a is filled with an electrolyte 20.

ノズル13は、シリンダー11のポート11bに接続されている。ノズル13は、針状である。ノズル13は、導電性である。   The nozzle 13 is connected to the port 11 b of the cylinder 11. The nozzle 13 has a needle shape. The nozzle 13 is conductive.

低電位部材21は、ノズル13と接触しており、電気的に接続されている。低電位部材21は、リチウムイオン二次電池100の正極221又は負極222の活物質よりも酸化還元電位が低く、かつその活物質に対して還元能力がある。また低電位部材21は、集電体22よりも酸化還元電位が低く、かつ集電体22に対して還元能力がある。換言すれば、集電体22は、低電位部材21よりも酸化還元電位が高い。低電位部材21は、たとえばリチウム金属又はリチウムを含有する化合物などである。   The low potential member 21 is in contact with the nozzle 13 and is electrically connected. The low potential member 21 has a lower oxidation-reduction potential than the active material of the positive electrode 221 or the negative electrode 222 of the lithium ion secondary battery 100 and has a reducing ability with respect to the active material. The low potential member 21 has a lower oxidation-reduction potential than the current collector 22 and has a reducing ability with respect to the current collector 22. In other words, the current collector 22 has a higher redox potential than the low potential member 21. The low potential member 21 is, for example, lithium metal or a lithium-containing compound.

(リチウムイオン二次電池の電池容量回復方法)
図3は、本発明によるリチウムイオン二次電池の電池容量を回復する方法を説明する図であり、図3(A)は回復のための具体的な方法を示し、図3(B)は回復のメカニズムを示す。
(Lithium ion secondary battery capacity recovery method)
FIG. 3 is a diagram for explaining a method for recovering the battery capacity of the lithium ion secondary battery according to the present invention. FIG. 3 (A) shows a specific method for recovery, and FIG. The mechanism of is shown.

リチウムイオン二次電池100の電池容量が小さくなったら、図3(A)に示すように、インジェクター10のノズル13をリチウムイオン二次電池100の外装材300に刺して貫通させ、インジェクター10のノズル13を集電体22に接触させる。これによって低電位部材21が集電体22に電気的に接続(短絡)される(短絡工程)。   When the battery capacity of the lithium ion secondary battery 100 becomes small, as shown in FIG. 3A, the nozzle 13 of the injector 10 is pierced through the exterior material 300 of the lithium ion secondary battery 100, and the nozzle of the injector 10 is inserted. 13 is brought into contact with the current collector 22. As a result, the low potential member 21 is electrically connected (short circuited) to the current collector 22 (short circuit process).

そしてプランジャー12を押圧する。すると図3(B)に示すように、ノズル13の先端から電解質20が射出される(電解質射出工程)。ここで電解質20がゲル状であれば、一筋の電解質20が正極の集電体22に到達する。   Then, the plunger 12 is pressed. Then, as shown in FIG. 3B, the electrolyte 20 is injected from the tip of the nozzle 13 (electrolyte injection process). Here, if the electrolyte 20 is in a gel form, a single line of electrolyte 20 reaches the positive electrode current collector 22.

このとき低電位部材21が、リチウム金属であれば、低電位部材(リチウム金属)21は、電極層(正極層221a)の活物質よりも酸化還元電位が低く、かつ電極層(正極層221a)の活物質に対して還元能力があるので、低電位部材由来の陽イオン(図3(B)ではリチウムイオンLi+)が電解質中に放出されるとともに、電子e-が集電体22に流れる。そして集電体22に形成された正極層221aに、もともと電解質中に存在する近辺の陽イオン(図3(B)ではリチウムイオンLi+)が取り込まれる。このように陽イオンが移動することで、充放電による可動イオンの減少を補うことができる。なお低電位部材21bは、集電体22よりも酸化還元電位が低く、かつ集電体22に対して還元能力がある。すなわち、集電体22は、低電位部材21よりも酸化還元電位が高いので、低電位部材21ではなく集電体22が溶けてしまうといった現象は生じない。 At this time, if the low potential member 21 is lithium metal, the low potential member (lithium metal) 21 has a lower redox potential than the active material of the electrode layer (positive electrode layer 221a) and the electrode layer (positive electrode layer 221a). Therefore, the cation derived from the low potential member (lithium ion Li + in FIG. 3B) is released into the electrolyte and the electron e flows to the current collector 22. . Then, a positive ion (lithium ion Li + in FIG. 3B) originally present in the electrolyte is taken into the positive electrode layer 221a formed on the current collector 22. Thus, the movement of positive ions can compensate for the decrease in mobile ions due to charge and discharge. The low potential member 21 b has a lower oxidation-reduction potential than the current collector 22 and has a reducing ability with respect to the current collector 22. That is, since the current collector 22 has a higher oxidation-reduction potential than the low potential member 21, the phenomenon that the current collector 22 is not melted, not the low potential member 21, does not occur.

理論的には、低電位部材21の酸化還元電位が、電極層の活物質の酸化還元電位よりも低く、かつ低電位部材21が活物質に対して還元能力があれば、低電位部材21が集電体22に短絡し、インジェクター10のシリンダ室11aの電解質20と外装材300に充填されている電解質(電解液)20とが液絡すれば、陽イオンが電解質中に放出されるので、可動イオンを補うことができる。しかしながら陽イオンによっては、電極に何らかの悪影響を与える可能性もある。そこで本実施形態では、低電位部材21として、特にリチウム金属を用いる。このようにすれば、低電位部材21が集電体22に短絡し、インジェクター10のシリンダ室11aの電解質20と外装材300に充填されている電解質(電解液)20とが液絡したときに、陽イオンとしてリチウムイオンLi+が電解質中に放出される。リチウムイオンLi+によって、充放電による可動リチウムイオンの減少を補うことができる。リチウムイオンLi+はもともと電解質中に存在するので、悪影響を与えることがない。またリチウム金属であれば、エネルギー密度にも優れるので望ましい。 Theoretically, if the redox potential of the low potential member 21 is lower than the redox potential of the active material of the electrode layer and the low potential member 21 has a reducing ability for the active material, the low potential member 21 is When the electrolyte 20 in the cylinder chamber 11a of the injector 10 and the electrolyte (electrolyte solution) 20 filled in the exterior material 300 are in liquid junction with the current collector 22, cations are released into the electrolyte. Mobile ions can be supplemented. However, some cations may have some adverse effects on the electrodes. Therefore, in this embodiment, lithium metal is particularly used as the low potential member 21. In this manner, when the low potential member 21 is short-circuited to the current collector 22, the electrolyte 20 in the cylinder chamber 11 a of the injector 10 and the electrolyte (electrolyte) 20 filled in the exterior material 300 are in liquid junction. Lithium ions Li + are released into the electrolyte as cations. Lithium ion Li + can compensate for the decrease in mobile lithium ions due to charge and discharge. Since lithium ion Li + is originally present in the electrolyte, it does not have an adverse effect. Lithium metal is desirable because it is excellent in energy density.

(第2実施形態)
図4は、本発明による電池容量回復装置の第2実施形態を示す図である。
(Second Embodiment)
FIG. 4 is a diagram showing a second embodiment of the battery capacity recovery device according to the present invention.

なお以下では前述と同様の機能を果たす部分には同一の符号を付して重複する説明を適宜省略する。   In the following description, parts having the same functions as those described above are denoted by the same reference numerals, and redundant description is omitted as appropriate.

本実施形態の電池容量回復装置1は、電池の正極又は負極の活物質に対してリチウムを供給可能なリチウム供給可能材21を使用する。そして、そのリチウム供給可能材21と負極の集電体22とを電気的に接続する電位差調整器をさらに有する。なお負極の集電体22は、上述のように負極タブ320に接続されているので、電位差調整器は、リチウム供給可能材21と負極タブ320とに接続されればよい。そして電池容量の減少度合、すなわち可動リチウムイオンの減少度合に応じて、リチウム供給可能材21と負極タブ320との電位差を調整する(調整工程)。このようにすれば、可動リチウムイオンを精緻かつ適切に調整できる。なお電池容量の減少度合は、電池の使用時間や使用履歴、電流値や電圧値などに基づいて推定すればよい。   The battery capacity recovery device 1 of the present embodiment uses a lithium-suppliable material 21 that can supply lithium to the positive electrode or negative electrode active material of the battery. Further, it further includes a potential difference adjuster that electrically connects the lithium supplyable material 21 and the negative electrode current collector 22. Since the negative electrode current collector 22 is connected to the negative electrode tab 320 as described above, the potential difference adjuster may be connected to the lithium supplyable material 21 and the negative electrode tab 320. Then, the potential difference between the lithium-suppliable material 21 and the negative electrode tab 320 is adjusted according to the reduction degree of the battery capacity, that is, the reduction degree of the movable lithium ions (adjustment process). If it does in this way, movable lithium ion can be adjusted precisely and appropriately. The degree of decrease in battery capacity may be estimated based on battery usage time, usage history, current value, voltage value, and the like.

また第1実施形態では、低電位部材21は、電極層の活物質に対して還元能力があり、かつ低電位部材21の酸化還元電位が電極層の活物質の酸化還元電位よりも低い必要があったが、本実施形態では、電位差調整器によって、リチウム供給可能材21及び電極層の活物質の酸化還元電位の差を調整できるので、様々な材料をリチウム供給可能材21として使用できる。たとえば、正極活物質を用いてもよい。   In the first embodiment, the low potential member 21 needs to have a reducing ability with respect to the active material of the electrode layer, and the redox potential of the low potential member 21 needs to be lower than the redox potential of the active material of the electrode layer. However, in this embodiment, since the difference in oxidation-reduction potential between the lithium-suppliable material 21 and the active material of the electrode layer can be adjusted by the potential difference adjuster, various materials can be used as the lithium-suppliable material 21. For example, a positive electrode active material may be used.

以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。   Without being limited to the embodiments described above, various modifications and changes are possible within the scope of the technical idea, and it is obvious that these are also included in the technical scope of the present invention.

たとえば、第1実施形態においても、第2実施形態のように電位差調整器を追加してもよい。   For example, in the first embodiment, a potential difference adjuster may be added as in the second embodiment.

また上記各実施形態では、インジェクター10にゲル状の電解質を充填してノズルから射出した。電解質がゲル状であれば、上述のように一筋の電解質20が集電体22に到達するが、液状の電解質(すなわち電解液)を使用しても、効果が得られる。   In each of the above embodiments, the injector 10 is filled with a gel electrolyte and injected from the nozzle. If the electrolyte is in a gel form, a single line of electrolyte 20 reaches the current collector 22 as described above, but the effect can be obtained even if a liquid electrolyte (that is, an electrolytic solution) is used.

1 電池容量回復装置
10 インジェクター
11 シリンダー
12 プランジャー
13 ノズル
20 電解質
21 低電位部材/リチウム供給可能材
100 リチウムイオン二次電池
200 単電池
22 集電体
221 正極
221a 正極層
222 負極
222a 負極層
300 外装材
DESCRIPTION OF SYMBOLS 1 Battery capacity recovery apparatus 10 Injector 11 Cylinder 12 Plunger 13 Nozzle 20 Electrolyte 21 Low-potential member / lithium supplyable material 100 Lithium ion secondary battery 200 Single battery 22 Current collector 221 Positive electrode 221a Positive electrode layer 222 Negative electrode 222a Negative electrode layer 300 Exterior Material

Claims (9)

電池の正極又は負極の活物質よりも酸化還元電位が低く、かつその活物質に対して還元能力がある低電位部材と、
前記低電位部材を収納するとともに、充填された電解質を保持可能なシリンダー室と、そのシリンダー室に連続して形成されるとともに、前記低電位部材と電気的に接続されかつ導電性である注入ノズルと、を備えるインジェクターと、
を有する電池容量回復装置。
A low-potential member having a lower redox potential than the active material of the positive electrode or negative electrode of the battery and having a reducing ability for the active material;
A cylinder chamber capable of holding the low potential member and holding the filled electrolyte, and an injection nozzle formed continuously in the cylinder chamber and electrically connected to the low potential member and conductive. An injector comprising:
A battery capacity recovery device.
請求項1に記載の電池容量回復装置において、
前記低電位部材と、前記電池の正極又は負極と、に接続され、両者の電位差を調整する電位差調整器をさらに有する、
ことを特徴とする電池容量回復装置。
The battery capacity recovery device according to claim 1,
A potential difference adjuster that is connected to the low potential member and the positive or negative electrode of the battery and adjusts the potential difference between the two,
A battery capacity recovery device.
電池の正極又は負極の活物質に対してリチウムを供給可能なリチウム供給可能材と、
前記リチウム供給可能材を収納するとともに充填された電解質を保持可能なシリンダー室と、そのシリンダー室に連続して形成されるとともに、前記リチウム供給可能材と電気的に接続され、かつ導電性である注入ノズルと、を備えるインジェクターと、
前記リチウム供給可能材と、前記電池の正極又は負極と、に接続され、両者の電位差を調整する電位差調整器と、
を有する電池容量回復装置。
A lithium-suppliable material capable of supplying lithium to the positive electrode or negative electrode active material of the battery;
A cylinder chamber capable of storing the lithium-suppliable material and holding the filled electrolyte, and continuously formed in the cylinder chamber, electrically connected to the lithium-suppliable material, and conductive. An injector comprising an injection nozzle;
A potential difference adjuster that is connected to the lithium-suppliable material and the positive electrode or negative electrode of the battery and adjusts the potential difference between the two,
A battery capacity recovery device.
請求項1から請求項3までのいずれか1項に記載の電池容量回復装置において、
前記インジェクターの注入ノズルは、電池の外装材を貫通して、電池の集電体に短絡可能でありシリンダー室の電解質を外装材の内部に注入可能である、
ことを特徴とする電池容量回復装置。
In the battery capacity recovery device according to any one of claims 1 to 3,
The injection nozzle of the injector penetrates the battery exterior material, can be short-circuited to the battery current collector, and can inject the electrolyte in the cylinder chamber into the exterior material.
A battery capacity recovery device.
請求項1から請求項4までのいずれか1項に記載の電池容量回復装置において、
前記低電位部材又は前記リチウム供給可能材は、リチウム金属又はリチウムを含有する化合物である、
ことを特徴とする電池容量回復装置。
In the battery capacity recovery device according to any one of claims 1 to 4,
The low-potential member or the lithium-suppliable material is a lithium metal or a lithium-containing compound.
A battery capacity recovery device.
請求項1から請求項5までのいずれか1項に記載の電池容量回復装置において、
前記電解質は、ゲル状である、
ことを特徴とする電池容量回復装置。
In the battery capacity recovery device according to any one of claims 1 to 5,
The electrolyte is in a gel form,
A battery capacity recovery device.
電池の正極又は負極の活物質よりも酸化還元電位が低く、かつその活物質に対して還元能力がある低電位部材と電気的に接続される導電性のインジェクターの注入ノズルを、電池の外装材に貫通させて、電池の集電体に短絡させる短絡工程と、
前記低電位部材とともにインジェクターのシリンダー室に保持されている電解質を、電池の外装材の内部に注入する電解質射出工程と、
を含む電池容量回復方法。
An injection nozzle of a conductive injector that is electrically connected to a low-potential member that has a lower redox potential than the active material of the positive electrode or negative electrode of the battery and that has a reducing ability with respect to the active material. A short-circuit process that penetrates the battery current collector and short-circuits the battery current collector,
An electrolyte injection step of injecting the electrolyte held in the cylinder chamber of the injector together with the low potential member into the interior of the battery exterior material;
A battery capacity recovery method including:
請求項7に記載の電池容量回復方法において、
前記低電位部材と、前記電池の正極又は負極と、に接続された電位差調整器を、電池の容量減少度合いに応じて調整する調整工程をさらに含む、
ことを特徴とする電池容量回復方法。
The battery capacity recovery method according to claim 7,
An adjustment step of adjusting a potential difference adjuster connected to the low potential member and the positive electrode or the negative electrode of the battery according to the degree of capacity decrease of the battery;
The battery capacity recovery method characterized by the above-mentioned.
電池の正極又は負極の活物質に対してリチウムを供給可能なリチウム供給可能材と電気的に接続される導電性のインジェクターの注入ノズルを、電池の外装材に貫通させて、電池の集電体に短絡させる短絡工程と、
前記リチウム供給可能材とともにインジェクターのシリンダー室に保持されている電解質を、電池の外装材の内部に注入する電解質射出工程と、
前記リチウム供給可能材と、前記電池の正極又は負極と、に接続された電位差調整器を、電池の容量減少度合いに応じて調整する調整工程と、
を含む電池容量回復方法。
The current collector of the battery is made by penetrating the battery injection material through an injection nozzle of a conductive injector that is electrically connected to a lithium-suppliable material capable of supplying lithium to the positive or negative electrode active material of the battery. A short-circuit process for short-circuiting,
An electrolyte injection step of injecting the electrolyte held in the cylinder chamber of the injector together with the lithium-suppliable material into the exterior of the battery,
An adjustment step of adjusting the potential difference adjuster connected to the lithium-suppliable material and the positive electrode or negative electrode of the battery according to the capacity reduction degree of the battery,
A battery capacity recovery method including:
JP2011144541A 2010-07-16 2011-06-29 Battery capacity recovery device and battery capacity recovery method Expired - Fee Related JP5703996B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011144541A JP5703996B2 (en) 2010-09-21 2011-06-29 Battery capacity recovery device and battery capacity recovery method
MX2013000637A MX2013000637A (en) 2010-07-16 2011-07-11 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity.
US13/810,074 US20130115486A1 (en) 2010-07-16 2011-07-11 Lithium ion secondary battery, battery capacity recovery apparatus, and battery capacity recovery method
KR1020137001011A KR101445504B1 (en) 2010-07-16 2011-07-11 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
BR112013001135A BR112013001135A2 (en) 2010-07-16 2011-07-11 secondary lithium ion battery, battery capacity restoration equipment, and battery capacity restoration method
CN201180034917.8A CN103004008B (en) 2010-07-16 2011-07-11 Lithium rechargeable battery, capacity resuming device and capacity resuming method
EP11806751.1A EP2595235A1 (en) 2010-07-16 2011-07-11 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
PCT/JP2011/065817 WO2012008421A1 (en) 2010-07-16 2011-07-11 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
RU2013106907/07A RU2538775C2 (en) 2010-07-16 2011-07-11 Lithium-ion battery, battery capacity recovery unit and battery capacity recovery method
TW100124974A TWI466355B (en) 2010-07-16 2011-07-14 A lithium ion secondary battery and a battery capacity recovery device, and a battery capacity recovery method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010210944 2010-09-21
JP2010210944 2010-09-21
JP2011144541A JP5703996B2 (en) 2010-09-21 2011-06-29 Battery capacity recovery device and battery capacity recovery method

Publications (2)

Publication Number Publication Date
JP2012089471A true JP2012089471A (en) 2012-05-10
JP5703996B2 JP5703996B2 (en) 2015-04-22

Family

ID=46260861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144541A Expired - Fee Related JP5703996B2 (en) 2010-07-16 2011-06-29 Battery capacity recovery device and battery capacity recovery method

Country Status (1)

Country Link
JP (1) JP5703996B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114517A1 (en) 2014-01-31 2015-08-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
WO2017092901A1 (en) 2015-12-02 2017-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regenerating the capacity of a metal-ion electrochemical battery, associated battery
CN106972210A (en) * 2017-05-27 2017-07-21 上海纳晓能源科技有限公司 Recoverable lithium battery device and its restorative procedure
CN107104222A (en) * 2016-02-19 2017-08-29 株式会社半导体能源研究所 Electrical storage device, accumulating system
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
WO2022139450A1 (en) * 2020-12-23 2022-06-30 주식회사 엘지에너지솔루션 Method for re-injecting electrolyte, and secondary battery enabling electrolyte re-injection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309568A (en) * 1989-05-24 1990-12-25 Brother Ind Ltd Lithium secondary battery
JPH08190934A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Nonaqueous secondary battery and power source system
JP2002324585A (en) * 2001-04-24 2002-11-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and capacity restoring method thereof
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2009543294A (en) * 2006-06-28 2009-12-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Lithium storage system and method for rechargeable lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309568A (en) * 1989-05-24 1990-12-25 Brother Ind Ltd Lithium secondary battery
JPH08190934A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Nonaqueous secondary battery and power source system
JP2002324585A (en) * 2001-04-24 2002-11-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and capacity restoring method thereof
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2009543294A (en) * 2006-06-28 2009-12-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Lithium storage system and method for rechargeable lithium ion batteries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114517A1 (en) 2014-01-31 2015-08-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
US11165103B2 (en) 2014-01-31 2021-11-02 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
WO2017092901A1 (en) 2015-12-02 2017-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for regenerating the capacity of a metal-ion electrochemical battery, associated battery
CN107104222A (en) * 2016-02-19 2017-08-29 株式会社半导体能源研究所 Electrical storage device, accumulating system
JP2017152377A (en) * 2016-02-19 2017-08-31 株式会社半導体エネルギー研究所 Power generation device and power generation system
JP2021039949A (en) * 2016-02-19 2021-03-11 株式会社半導体エネルギー研究所 Power storage device
CN107104222B (en) * 2016-02-19 2021-09-21 株式会社半导体能源研究所 Power storage device and power storage system
JP7011020B2 (en) 2016-02-19 2022-02-10 株式会社半導体エネルギー研究所 Power storage device
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
CN106972210A (en) * 2017-05-27 2017-07-21 上海纳晓能源科技有限公司 Recoverable lithium battery device and its restorative procedure
WO2022139450A1 (en) * 2020-12-23 2022-06-30 주식회사 엘지에너지솔루션 Method for re-injecting electrolyte, and secondary battery enabling electrolyte re-injection

Also Published As

Publication number Publication date
JP5703996B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
KR101445504B1 (en) Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
EP2819219B1 (en) Bipolar electrode and bipolar lithium-ion secondary battery using same
JP5573542B2 (en) Electric device, degassing apparatus for electric device, and degassing method of electric device
JP5703996B2 (en) Battery capacity recovery device and battery capacity recovery method
JP2014225326A (en) Nonaqueous electrolyte secondary battery
WO2019181278A1 (en) Lithium secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2006216305A (en) Secondary battery
JP2008305688A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2019164965A (en) Lithium ion secondary battery
JP2011249046A (en) Method of manufacturing lithium ion secondary battery
JP6406267B2 (en) Lithium ion battery system
JP7003775B2 (en) Lithium ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP4582684B2 (en) Non-aqueous secondary battery
CN114375518A (en) Lithium secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP5803342B2 (en) Lithium ion secondary battery and battery capacity recovery method for lithium ion secondary battery
JP2019175653A (en) Lithium ion secondary battery
US20230102390A1 (en) Non-aqueous electrolyte and lithium-ion secondary battery
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP5115104B2 (en) Secondary battery charging method, charging device and electronic device
EP3588658A1 (en) Nonaqueous electrolyte secondary battery and charging method
KR20120118721A (en) Electrode assembly and electrochemical device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

LAPS Cancellation because of no payment of annual fees