JP2012088157A - Control device of secondary battery - Google Patents

Control device of secondary battery Download PDF

Info

Publication number
JP2012088157A
JP2012088157A JP2010234654A JP2010234654A JP2012088157A JP 2012088157 A JP2012088157 A JP 2012088157A JP 2010234654 A JP2010234654 A JP 2010234654A JP 2010234654 A JP2010234654 A JP 2010234654A JP 2012088157 A JP2012088157 A JP 2012088157A
Authority
JP
Japan
Prior art keywords
soc
secondary battery
full charge
charge capacity
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234654A
Other languages
Japanese (ja)
Other versions
JP5641215B2 (en
Inventor
Katsuyoshi Muramatsu
克好 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010234654A priority Critical patent/JP5641215B2/en
Publication of JP2012088157A publication Critical patent/JP2012088157A/en
Application granted granted Critical
Publication of JP5641215B2 publication Critical patent/JP5641215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of a secondary battery for accurately grasping a full charge capacity.SOLUTION: A first SOC is calculated based on an accumulation value of a current, and a second SOC is calculated based on a voltage (S12 and S16). A difference of the first SOC and the second SOC is calculated as a SOC difference (S18). A point (correction point) is calculated by subjecting the SOC difference to an arithmetic operation with a prescribed conversion level according to the SOC difference (S20). The full charge capacity of the secondary battery is corrected based on the point (S26 and S30).

Description

本発明は、二次電池の制御装置に係り、特に二次電池の満充電容量を補正する技術に関する。   The present invention relates to a control device for a secondary battery, and more particularly to a technique for correcting a full charge capacity of a secondary battery.

電気自動車、内燃機関と電気モータとを搭載したハイブリッド型自動車等、電気を動力源として扱う車両において二次電池の満充電容量の経年変化(低下)を把握するのは重要な技術課題である。
二次電池の満充電容量を十分に把握できないていないと、電池容量が十分であるのに車両を停止させてしまったり、逆に電池容量が不足しているのに電池容量が十分であるものと誤認識して二次電池が過放電状態になったりするという問題が生じる。
It is an important technical problem to grasp the secular change (decrease) in the full charge capacity of a secondary battery in a vehicle that uses electricity as a power source, such as an electric vehicle, a hybrid vehicle equipped with an internal combustion engine and an electric motor.
If the full charge capacity of the secondary battery is not fully grasped, the vehicle will stop even though the battery capacity is sufficient, or conversely, the battery capacity is sufficient even though the battery capacity is insufficient This causes a problem that the secondary battery is over-discharged due to erroneous recognition.

近年では、特に車両用にリチウムイオン二次電池やリチウムポリマー二次電池が急速に利用されつつあるが、これらの二次電池では、その性質上、充放電を繰り返すたびに満充電容量が低下することが知られており、上記問題は顕著である。
そこで、満充電容量を把握するために、例えば、満充電容量に対する電池容量の比率であるSOC(State of Charge)と電流の積算値である電池容量(Ah)とに基づき、それぞれ二点間のSOCの差であるδSOCとδAhとに基づいて満充電容量を演算し判定する技術が知られている(特許文献1参照)。
In recent years, lithium ion secondary batteries and lithium polymer secondary batteries have been rapidly used especially for vehicles, but due to their nature, the full charge capacity of these secondary batteries decreases every time charging and discharging are repeated. It is known that the above problem is remarkable.
Therefore, in order to grasp the full charge capacity, for example, based on the SOC (State of Charge) which is the ratio of the battery capacity to the full charge capacity and the battery capacity (Ah) which is the integrated value of the current, A technique is known in which a full charge capacity is calculated and determined based on δSOC and δAh, which are differences in SOC (see Patent Document 1).

また、SOCを求める手法として、電流の積算値からSOCcを求める方法と開放電圧からSOCvを求める方法とが知られており(特許文献2参照)、上記特許文献1では、電流の積算値からSOCcを求めるようにしている。   Further, as a method for obtaining the SOC, there are known a method for obtaining the SOCc from the integrated value of the current and a method for obtaining the SOCv from the open circuit voltage (see Patent Document 2). In Patent Document 1, the SOCc is calculated from the integrated value of the current. Asking for.

特開2008−241358号公報JP 2008-241358 A 特開2005−201743号公報JP 2005-201743 A

しかしながら、上記特許文献1に記載の技術のように、車両における環境にて満充電容量をδSOCとδAhとに基づいて演算するようにする場合、δSOCとδAhを得るのに測定誤差が大きく含まれることから、満充電容量を正確に把握できないという問題がある。
このように満充電容量を正確に把握できないと、満充電容量を安全側に見積もらざるを得ず、二次電池の性能を十分に発揮できないこととなり、好ましいことではない。
However, when the full charge capacity is calculated based on δSOC and δAh in the environment of the vehicle as in the technique described in Patent Document 1, a measurement error is largely included in obtaining δSOC and δAh. Therefore, there is a problem that the full charge capacity cannot be accurately grasped.
If the full charge capacity cannot be accurately grasped in this way, the full charge capacity must be estimated on the safe side, and the performance of the secondary battery cannot be fully exhibited, which is not preferable.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、満充電容量を正確に把握可能な二次電池の制御装置を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a secondary battery control device capable of accurately grasping the full charge capacity.

上記目的を達成するため、請求項1の二次電池の制御装置は、二次電池の満充電容量を補正する二次電池の制御装置であって、前記二次電池の充放電電流を検出する電流検出手段と、前記二次電池の電圧を検出する電圧検出手段と、前記電流検出手段により検出された電流の積算値に基づき第1のSOCを求める第1のSOC演算手段と、前記電圧検出手段により検出された電圧に基づき第2のSOCを求める第2のSOC演算手段と、前記第1のSOCと前記第2のSOCとの差をSOC差として演算するSOC差演算手段と、前記SOC差を該SOC差に応じて所定の変換度合いで変換した点数として演算する点数演算手段と、前記点数に応じて前記二次電池の満充電容量を補正する補正手段とを備えたことを特徴とする。   In order to achieve the above object, the secondary battery control device according to claim 1 is a secondary battery control device that corrects a full charge capacity of the secondary battery, and detects a charge / discharge current of the secondary battery. A current detection unit; a voltage detection unit that detects a voltage of the secondary battery; a first SOC calculation unit that obtains a first SOC based on an integrated value of the current detected by the current detection unit; and the voltage detection unit. Second SOC calculating means for obtaining a second SOC based on the voltage detected by the means, SOC difference calculating means for calculating a difference between the first SOC and the second SOC as an SOC difference, and the SOC A point calculation means for calculating a difference as a score converted at a predetermined conversion degree according to the SOC difference, and a correction means for correcting the full charge capacity of the secondary battery according to the score. To do.

請求項2の二次電池の制御装置では、請求項1において、前記点数演算手段における所定の変換度合いは、前記SOC差の絶対値が大きいほど小さいことを特徴とする。
請求項3の二次電池の制御装置では、請求項1または2において、前記点数演算手段における所定の変換度合いは、前記SOC差が正であるか負であるかに応じて異なることを特徴とする。
The control apparatus for a secondary battery according to claim 2 is characterized in that, in claim 1, the predetermined degree of conversion in the score calculation means is smaller as the absolute value of the SOC difference is larger.
The control apparatus for a secondary battery according to claim 3 is characterized in that, in claim 1 or 2, the predetermined conversion degree in the score calculation means differs depending on whether the SOC difference is positive or negative. To do.

請求項4の二次電池の制御装置では、請求項1乃至3のいずれかにおいて、前記点数演算手段は、前記点数を所定の時間間隔で所定回数求め、これら所定回数求めた点数を合算して合算値を求めるものであって、前記補正手段は、前記合算値に応じて前記二次電池の満充電容量を補正することを特徴とする。
請求項5の二次電池の制御装置では、請求項4において、前記補正手段は、前記合算値が所定閾値を越えたとき、前記二次電池の満充電容量を補正することを特徴とする。
In a secondary battery control device according to a fourth aspect of the present invention, in any one of the first to third aspects, the score calculating means obtains the score a predetermined number of times at a predetermined time interval, and adds the scores obtained for the predetermined number of times. A sum value is obtained, and the correction means corrects a full charge capacity of the secondary battery according to the sum value.
The control device for a secondary battery according to claim 5 is characterized in that, in claim 4, the correction means corrects a full charge capacity of the secondary battery when the sum value exceeds a predetermined threshold value.

本発明の請求項1の二次電池の制御装置によれば、二次電池の満充電容量を補正するに際し、電流検出手段により検出された電流の積算値から求めた第1のSOCと電圧検出手段により検出された電圧から求めた第2のSOCとの差をSOC差として演算し、点数演算手段により当該SOC差に応じて所定の変換度合いで変換した点数を求め、当該点数に応じて二次電池の満充電容量を補正するようにしている。   According to the secondary battery control apparatus of the first aspect of the present invention, the first SOC and voltage detection obtained from the integrated value of the current detected by the current detection means when correcting the full charge capacity of the secondary battery. The difference from the second SOC obtained from the voltage detected by the means is calculated as the SOC difference, the score calculating means obtains a score converted with a predetermined conversion degree according to the SOC difference, and the difference is calculated according to the score. The full charge capacity of the secondary battery is corrected.

従って、SOC差を所定の変換度合いで変換した点数に一旦変換することにより、電流検出手段により検出された電流の積算値における測定誤差及び電圧検出手段により検出された電圧の測定誤差を良好に吸収でき、満充電容量を適正に補正して正確なものとすることができる。
請求項2の二次電池の制御装置によれば、所定の変換度合いをSOC差の絶対値が大きいほど小さくすることにより、満充電容量の補正感度を自在に可変し、誤検知による異常値と思われるような極端に大きなSOC差の影響を極力小さく抑えることができる。
Therefore, once the SOC difference is converted into the number of points converted at a predetermined conversion degree, the measurement error in the integrated value of the current detected by the current detection unit and the measurement error of the voltage detected by the voltage detection unit are absorbed well. The full charge capacity can be appropriately corrected to be accurate.
According to the control device for a secondary battery of claim 2, by reducing the predetermined conversion degree as the absolute value of the SOC difference is increased, the correction sensitivity of the full charge capacity can be freely changed, and an abnormal value caused by erroneous detection is detected. The influence of an extremely large SOC difference as expected can be suppressed as much as possible.

請求項3の二次電池の制御装置によれば、所定の変換度合いをSOC差が正であるか負であるかに応じて異ならせるようにするので、SOC差が正であるか負であるかに応じて満充電容量の補正感度を自在に可変し、例えば満充電容量を誤って実際の満充電容量よりも大きく見積もっている状況において、満充電容量を早期に適正にでき、二次電池が過放電状態になることを未然に防止することができる。   According to the secondary battery control device of the third aspect, the predetermined conversion degree is made different depending on whether the SOC difference is positive or negative, and therefore the SOC difference is positive or negative. Depending on the situation, the full charge capacity correction sensitivity can be changed freely.For example, in a situation where the full charge capacity is erroneously estimated to be larger than the actual full charge capacity, the full charge capacity can be made appropriate at an early stage. Can be prevented from becoming an overdischarged state.

請求項4の二次電池の制御装置によれば、点数の所定回数の合算値に応じて二次電池の満充電容量を補正することにより、電流検出手段により検出された電流の積算値における測定誤差をさらに良好に吸収でき、満充電容量をより一層正確なものとすることができる。
請求項5の二次電池の制御装置によれば、点数の所定回数の合算値が所定閾値を越えたときに二次電池の満充電容量を補正するので、誤検知による異常値と思われるようなSOC差の影響を良好に抑えることができる。
According to the control device for a secondary battery of claim 4, the measurement in the integrated value of the current detected by the current detection means is performed by correcting the full charge capacity of the secondary battery according to the sum of the predetermined number of points. Errors can be absorbed better, and the full charge capacity can be made even more accurate.
According to the control device for a secondary battery of claim 5, since the full charge capacity of the secondary battery is corrected when the sum of the predetermined number of points exceeds a predetermined threshold, it seems to be an abnormal value due to erroneous detection. It is possible to satisfactorily suppress the influence of the SOC difference.

本発明における二次電池の制御装置の全体構成図である。It is a whole block diagram of the control apparatus of the secondary battery in this invention. 基準満充電容量を示すマップである。It is a map which shows standard full charge capacity. 二次電池の満充電容量補正制御ルーチンを示すフローチャートである。It is a flowchart which shows the full charge capacity correction control routine of a secondary battery. 二次電池の開放電圧とSOC[電圧]との関係を示す図である。It is a figure which shows the relationship between the open circuit voltage of a secondary battery, and SOC [voltage]. δSOCと補正ポイントとの関係を示す図である。It is a figure which shows the relationship between (delta) SOC and a correction point.

以下、図面に基づき本発明の実施形態について説明する。
図1は本発明における二次電池の制御装置の全体構成図である。
この二次電池の制御装置は、例えばシリーズ式ハイブリッド型車両の駆動力源として搭載された走行モータ(図示せず)に電力を供給する二次電池の制御装置である。
図1に示すように、二次電池の制御装置は、二次電池10及び二次電池10から走行モータ或いは充電プラグへ延びる電力線11に電池管理制御ユニット20が接続されて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a control apparatus for a secondary battery according to the present invention.
The secondary battery control device is a secondary battery control device that supplies power to a travel motor (not shown) mounted as a driving force source of a series hybrid vehicle, for example.
As shown in FIG. 1, the secondary battery control device is configured by connecting a battery management control unit 20 to a secondary battery 10 and a power line 11 extending from the secondary battery 10 to a travel motor or a charging plug.

二次電池10は、例えばリチウムイオン二次電池であって、複数の電池モジュール14が直列に連結された電池パック12からなり、電池パック12毎に電池管理制御ユニット20が設けられている。
詳しくは、電池モジュール14毎に電圧を測定する電圧センサ(電圧検出手段)16と電池温度センサ17が設けられており、電池管理制御ユニット20に電気的に接続されている。また、電力線11に充放電電流を検出する電流センサ(電流検出手段)18が設けられており、電池管理制御ユニット20に電気的に接続されている。
The secondary battery 10 is, for example, a lithium ion secondary battery, and includes a battery pack 12 in which a plurality of battery modules 14 are connected in series. A battery management control unit 20 is provided for each battery pack 12.
Specifically, a voltage sensor (voltage detection means) 16 and a battery temperature sensor 17 for measuring a voltage are provided for each battery module 14 and are electrically connected to the battery management control unit 20. The power line 11 is provided with a current sensor (current detection means) 18 that detects a charge / discharge current, and is electrically connected to the battery management control unit 20.

電池管理制御ユニット20には、満充電容量に対する電池容量の比率であるSOC(State of Charge)を演算するSOC演算部(第1のSOC演算手段、第2のSOC演算手段)21が設けられており、当該SOC演算部21に、上記電圧センサ16により検出される各電圧、即ち電池パック12の電圧値が供給されるとともに、電流センサ18から電力線11を流れる充放電電流の電流値が供給される。具体的には、SOC演算部21では、電圧値に基づいてSOC[電圧]を算出し、電流の積算値に基づいてSOC[電流]が演算される。   The battery management control unit 20 is provided with an SOC calculation unit (first SOC calculation means, second SOC calculation means) 21 for calculating an SOC (State of Charge) which is a ratio of the battery capacity to the full charge capacity. In addition, each voltage detected by the voltage sensor 16, that is, the voltage value of the battery pack 12 is supplied to the SOC calculation unit 21, and the current value of the charge / discharge current flowing through the power line 11 is supplied from the current sensor 18. The Specifically, the SOC calculation unit 21 calculates SOC [voltage] based on the voltage value, and calculates SOC [current] based on the integrated value of the current.

SOC演算部21の入力部には、二次電池10の満充電容量を補正し演算するための満充電容量補正部(補正手段)22が接続されている。
一方、SOC演算部21の出力部には、満充電容量の補正量を演算するための補正演算部(SOC差演算手段、点数演算手段)23及び補正開始/実施判定部24が接続されている。
A full charge capacity correction section (correction means) 22 for correcting and calculating the full charge capacity of the secondary battery 10 is connected to the input section of the SOC calculation section 21.
On the other hand, a correction calculation section (SOC difference calculation means, score calculation means) 23 and a correction start / execution determination section 24 for calculating the correction amount of the full charge capacity are connected to the output section of the SOC calculation section 21. .

補正開始/実施判定部24はさらに電池温度センサ17及び補正演算部23に接続されており、補正演算部23の出力部は、記憶部25を介して上記満充電容量補正部22の入力部に接続されている。記憶部25には、図2に示すような、二次電池10の使用を開始してからの経過年月に対し減少する満充電容量の基準値、即ち基準満充電容量(Ahr)が実験等に基づきマップとして記憶されるとともに、更新された満充電容量の補正値、即ち満充電容量補正値が記憶されている。   The correction start / execution determination unit 24 is further connected to the battery temperature sensor 17 and the correction calculation unit 23, and the output unit of the correction calculation unit 23 is connected to the input unit of the full charge capacity correction unit 22 via the storage unit 25. It is connected. In the storage unit 25, as shown in FIG. 2, the reference value of the full charge capacity that decreases with the passage of time since the use of the secondary battery 10 is started, that is, the reference full charge capacity (Ahr) is an experiment or the like. Is stored as a map based on the above, and the updated full charge capacity correction value, that is, the full charge capacity correction value is stored.

電池管理制御ユニット20には、さらに車両の各種制御の他、SOCの表示等を行う車両制御装置30が接続されている。詳しくは、車両制御装置30の入力部は補正演算部23に接続され、出力部は補正開始/実施判定部24に接続されている。具体的には走行状態、充電状態等により補正開始や補正実施を判定している。
図3には、本発明に係る二次電池の充電中に二次電池の制御装置において実行される二次電池10の満充電容量補正制御ルーチンがフローチャートで示されており、以下、同フローチャートに基づき本発明に係る満充電容量の補正制御内容について説明する。
The battery management control unit 20 is further connected with a vehicle control device 30 for displaying the SOC in addition to various vehicle controls. Specifically, the input unit of the vehicle control device 30 is connected to the correction calculation unit 23, and the output unit is connected to the correction start / execution determination unit 24. Specifically, the start of correction and the execution of correction are determined based on the running state, the charging state, and the like.
FIG. 3 is a flowchart showing a full charge capacity correction control routine of the secondary battery 10 executed in the secondary battery control device during the charging of the secondary battery according to the present invention. The full charge capacity correction control content according to the present invention will be described below.

ステップS10では、補正開始/実施判定部24において補正制御の開始可否の判定を行う。具体的には、車両制御装置30が充電状態にあって、SOC演算部21において演算された現在のSOC[電圧]の値が例えば50%以下であり、且つ、電池温度センサ17により検出される各電池温度の最低温度が例えば10℃以上であるか否かを判別する。ここに、補正制御の開始可否要件を現在のSOC[電圧]の値が例えば50%以下とするのはSOC[電圧]が比較的安定しているからであり、各電池温度の最低温度が例えば10℃以上とするのは電池温度が例えば10℃未満であると二次電池10の性能が低下して正確な補正制御ができないためである。判別結果が偽(No)で、充電状態でなく現在のSOC[電圧]の値が例えば50%以下ではなく、或いは各電池温度の最低温度が例えば10℃未満であるような場合には、当該ルーチンを抜ける。   In step S10, the correction start / execution determination unit 24 determines whether correction control can be started. Specifically, the vehicle control device 30 is in a charged state, the current SOC [voltage] value calculated by the SOC calculation unit 21 is, for example, 50% or less, and is detected by the battery temperature sensor 17. It is determined whether or not the minimum temperature of each battery temperature is, for example, 10 ° C. or higher. Here, the reason why the current SOC [voltage] value is set to, for example, 50% or less as the requirement for whether or not to start correction control is that the SOC [voltage] is relatively stable, and the minimum temperature of each battery temperature is, for example, The reason why the temperature is set to 10 ° C. or higher is that when the battery temperature is lower than 10 ° C., for example, the performance of the secondary battery 10 is degraded and accurate correction control cannot be performed. If the determination result is false (No) and the current SOC [voltage] value is not 50% or less, or the battery temperature is not less than 10 ° C. Exit the routine.

一方、ステップS10の判別結果が真(Yes)で、充電状態であって現在のSOC[電圧]の値が例えば50%以下であり、且つ、電池温度センサ17により検出される各電池温度の最低温度が例えば10℃以上であると判定された場合には、満充電容量の補正制御を開始する。
ステップS12では、SOC演算部21においてSOC[電流]を演算する。具体的には、SOC[電流]は、電流センサ18により検出される充電電流の積算値を満充電容量補正部22において記憶部25に記憶された基準満充電容量と満充電容量補正値とに基づき演算された補正した満充電容量で除して求められる。
On the other hand, the determination result of step S10 is true (Yes), the battery is in a charged state, the current SOC [voltage] value is, for example, 50% or less, and the lowest battery temperature detected by the battery temperature sensor 17 is reached. When it is determined that the temperature is 10 ° C. or higher, for example, correction control of the full charge capacity is started.
In step S12, the SOC [current] is calculated in the SOC calculation unit 21. Specifically, the SOC [current] is obtained by converting the integrated value of the charging current detected by the current sensor 18 into a reference full charge capacity and a full charge capacity correction value stored in the storage unit 25 in the full charge capacity correction unit 22. It is obtained by dividing by the corrected full charge capacity calculated based on the above.

ステップS14では、補正開始/実施判定部24において補正制御の実施可否の判定を行う。具体的には、SOC[電流]が所定値に達し、且つ、充電電流を一旦停止してから所定時間(例えば、5〜15分)が経過したか否かを判別する。ここに、充電電流を一旦停止してから所定時間(例えば、5〜15分)が経過したことを待つのは、次のステップS16において二次電池10の開放電圧からSOC[電圧]を求めるためである。判別結果が偽(No)で、SOC[電流]が所定値に達しておらず、或いは充電電流を一旦停止してから所定時間が経過していないと判定された場合には、当該ルーチンを抜ける。   In step S14, the correction start / execution determination unit 24 determines whether or not correction control can be performed. Specifically, it is determined whether or not SOC [current] has reached a predetermined value and a predetermined time (for example, 5 to 15 minutes) has elapsed since the charging current was temporarily stopped. Here, the reason for waiting for the elapse of a predetermined time (for example, 5 to 15 minutes) after temporarily stopping the charging current is to obtain the SOC [voltage] from the open voltage of the secondary battery 10 in the next step S16. It is. If the determination result is false (No), and it is determined that the SOC [current] has not reached the predetermined value or that the predetermined time has not elapsed since the charging current was temporarily stopped, the routine is exited. .

一方、ステップS10の判別結果が真(Yes)で、SOC[電流]が所定値に達し、且つ、充電電流を一旦停止してから所定時間が経過したと判定された場合には、満充電容量の補正を実施する。
満充電容量の補正を実施するにあたり、ステップS16において、SOC演算部21においてSOC[電圧]を演算する。具体的には、SOC演算部21には、図4に示すような二次電池10の開放電圧とSOC[電圧]との関係が実験等によりマップとして記憶されており、当該マップからSOC[電圧]を読み出す。
On the other hand, if the determination result in step S10 is true (Yes), the SOC [current] reaches a predetermined value, and it is determined that the predetermined time has elapsed after the charging current is temporarily stopped, the full charge capacity Perform the correction.
In performing the correction of the full charge capacity, the SOC [voltage] is calculated in the SOC calculation unit 21 in step S16. Specifically, the SOC calculation unit 21 stores a relationship between the open circuit voltage of the secondary battery 10 and the SOC [voltage] as shown in FIG. 4 as a map through experiments or the like. ] Is read.

ステップS18では、補正演算部23において、上記のように演算したSOC[電流]とSOC[電圧]との差、即ちδSOC(SOC差)を演算する(δSOC=SOC[電流]−SOC[電圧])。
ステップS20では、上記の如く演算したδSOCの正または負の大きさに基づき、補正ポイント(点数)を演算する。具体的には、図5に示すようなδSOCと補正ポイントとの関係、即ち所定の変換度合いで変換する関係に基づいて補正ポイントを演算する。つまり、δSOCの大きさを一旦補正ポイントへ所定の変換度合いで変換する。
In step S18, the correction calculation unit 23 calculates a difference between the SOC [current] and the SOC [voltage] calculated as described above, that is, δSOC (SOC difference) (δSOC = SOC [current] −SOC [voltage]. ).
In step S20, a correction point (point) is calculated based on the positive or negative magnitude of δSOC calculated as described above. Specifically, the correction point is calculated based on the relationship between δSOC and the correction point as shown in FIG. That is, the magnitude of δSOC is once converted into a correction point with a predetermined conversion degree.

図5に示すように、δSOCと補正ポイントとの関係における所定の変換度合いについては、ここでは、δSOCの絶対値が大きくなるほど補正ポイントを段階的に大きく或いは小さくするとともに、さらにδSOCの大きさに応じて補正ポイントに重み付けするようにし、δSOCの絶対値が大きいほど補正ポイントの量の変化分を抑えるような変換度合いとしている。   As shown in FIG. 5, with regard to the predetermined conversion degree in the relationship between δSOC and the correction point, here, as the absolute value of δSOC increases, the correction point is increased or decreased stepwise, and further, the magnitude of δSOC is further increased. Accordingly, the correction points are weighted accordingly, and the degree of conversion is such that as the absolute value of δSOC increases, the amount of change in the correction points is suppressed.

そして、これらステップS18とステップS20の作業を所定の時間間隔でn回(所定回数、例えば、10回)繰り返し、これらn回の補正ポイントを合算する。
ステップS22では、このように合算したn回の補正ポイントの合算値を記憶部25に一時的に記憶しておく。
ステップS24では、満充電容量補正部22において、上記補正ポイントの合算値が所定の負の閾値(所定閾値)より小であるか否かを判別する。判別結果が真(Yes)で補正ポイントの合算値が所定の負の閾値より小であると判定された場合には、ステップS26に進み、満充電容量を一定量だけ減算補正する。即ち、補正ポイントの合算値が負の値であって所定の負の閾値より小であるような状況は、即ちδSOCが負でSOC[電流]がSOC[電圧]よりも小さいような状況であり、上記補正した満充電容量よりも実際の満充電容量は小さい、換言すれば、SOC[電流]を演算するための満充電容量を誤って実際の満充電容量よりも大きく見積もっている状況と考えられ、この場合には、満充電容量をδSOCが値0に向かうよう、即ちSOC[電流]とSOC[電圧]とが一致するように一定量だけ減算補正する。
Then, the operations of step S18 and step S20 are repeated n times (predetermined number of times, for example, 10 times) at a predetermined time interval, and the n correction points are added up.
In step S <b> 22, the total value of the n correction points added in this way is temporarily stored in the storage unit 25.
In step S24, the full charge capacity correction unit 22 determines whether or not the sum of the correction points is smaller than a predetermined negative threshold (predetermined threshold). When the determination result is true (Yes) and it is determined that the total value of the correction points is smaller than a predetermined negative threshold value, the process proceeds to step S26, and the full charge capacity is subtracted and corrected by a certain amount. That is, the situation where the sum of the correction points is a negative value and smaller than a predetermined negative threshold, that is, the situation where δSOC is negative and SOC [current] is smaller than SOC [voltage]. The actual full charge capacity is smaller than the corrected full charge capacity. In other words, the full charge capacity for calculating the SOC [current] is erroneously estimated to be larger than the actual full charge capacity. In this case, the full charge capacity is subtracted and corrected by a certain amount so that δSOC goes to a value of 0, that is, SOC [current] and SOC [voltage] match.

一方、ステップS24の判別結果が偽(No)で、補正ポイントの合算値が所定の負の閾値より小でない場合には、ステップS28に進み、補正ポイントの合算値が所定の正の閾値(所定閾値)より大であるか否かを判別する。判別結果が真(Yes)で補正ポイントの合算値が所定の正の閾値より大であると判定された場合には、ステップS30に進み、満充電容量補正部22において、満充電容量を一定量だけ加算補正する。即ち、補正ポイントの合算値が正の値であって所定の正の閾値より小であるような状況は、即ちδSOCが正でSOC[電流]がSOC[電圧]よりも大きいような状況であり、上記補正した満充電容量よりも実際の満充電容量は大きい、換言すれば、SOC[電流]を演算するための補正した満充電容量を誤って実際の満充電容量よりも小さく見積もっている状況と考えられ、この場合には、満充電容量をδSOCが値0に向かうよう、即ちSOC[電流]とSOC[電圧]とが一致するように一定量だけ加算補正する。   On the other hand, if the determination result in step S24 is false (No) and the sum value of the correction points is not smaller than a predetermined negative threshold value, the process proceeds to step S28, and the sum value of the correction points is a predetermined positive threshold value (predetermined value). It is determined whether or not it is larger than (threshold). When the determination result is true (Yes) and it is determined that the total value of the correction points is greater than a predetermined positive threshold value, the process proceeds to step S30, and the full charge capacity correction unit 22 sets the full charge capacity to a certain amount. Only add correction. That is, the situation where the sum of the correction points is a positive value and is smaller than a predetermined positive threshold, that is, the situation where δSOC is positive and SOC [current] is greater than SOC [voltage]. The actual full charge capacity is larger than the corrected full charge capacity, in other words, the corrected full charge capacity for calculating the SOC [current] is erroneously estimated to be smaller than the actual full charge capacity. In this case, the full charge capacity is added and corrected by a certain amount so that δSOC goes to a value of 0, that is, SOC [current] and SOC [voltage] match.

このように満充電容量を減算補正或いは加算補正したら、ステップS32に進み、上記ステップS22において記憶したn回の補正ポイントの合算値をリセットし、以降、SOC[電流]とSOC[電圧]とが一致するよう当該ルーチンの実行を繰り返す。
以上説明したように、本発明に係る二次電池の制御装置では、二次電池10の経年変化によりSOC[電流]とSOC[電圧]との間に差が生じることに着目し、二次電池10の充電中にSOC[電流]とSOC[電圧]とが一致するように二次電池10の満充電容量を補正制御するようにしている。そして、この際、SOC[電流]とSOC[電圧]との差、即ちδSOCを補正ポイントに変換するとともにδSOCが正側に大きいほど補正ポイントの量を正側に段階的に大きくし、或いはδSOCが負側に小さいほど補正ポイントの量を負側に段階的に大きくしてn回の補正ポイントの合算値を求め、この補正ポイントの合算値が所定の正の閾値より大または所定の負の閾値より小になったことをもって満充電容量を一定量ずつ減算補正或いは加算補正するようにしている。
After subtraction correction or addition correction of the full charge capacity in this way, the process proceeds to step S32, where the sum value of the n correction points stored in step S22 is reset, and thereafter, SOC [current] and SOC [voltage] are obtained. The routine is repeatedly executed so that they match.
As described above, in the secondary battery control device according to the present invention, paying attention to the difference between the SOC [current] and the SOC [voltage] due to the secular change of the secondary battery 10, the secondary battery The full charge capacity of the secondary battery 10 is corrected and controlled so that the SOC [current] and the SOC [voltage] coincide with each other while the battery 10 is being charged. At this time, the difference between the SOC [current] and the SOC [voltage], that is, δSOC is converted into a correction point, and as the δSOC increases to the positive side, the amount of the correction point increases stepwise to the positive side, or δSOC As the value is smaller on the negative side, the amount of correction points is gradually increased to the negative side to obtain a total value of n correction points, and the total value of the correction points is greater than a predetermined positive threshold or a predetermined negative value. When it becomes smaller than the threshold, the full charge capacity is subjected to subtraction correction or addition correction by a certain amount.

従って、例えばδSOCの瞬時値に基づいて、単純にそのδSOCの大きさに応じて満充電容量を補正するようにすると、特に電流センサ18の測定誤差の影響を受け易く、満充電容量を適正に補正することができないおそれがあるが、δSOCを補正ポイントに変換するとともにδSOCが正側に大きいほど補正ポイントの量を正側に段階的に大きくし、或いはδSOCが負側に小さいほど補正ポイントの量を負側に段階的に大きくしてn回の補正ポイントの合算値を求め、この補正ポイントの合算値に基づいて満充電容量を減算補正或いは加算補正することにより、たとえ電流センサ18に瞬間的に測定誤差が生じたとしても、δSOCの大きさの補正ポイントへの変換によって、さらには補正ポイントのn回の合算によって測定誤差を良好に吸収でき、満充電容量を適正に補正して正確なものとすることができる。   Therefore, for example, if the full charge capacity is simply corrected according to the magnitude of the δSOC based on the instantaneous value of δSOC, it is particularly susceptible to the measurement error of the current sensor 18, and the full charge capacity is appropriately set. Although there is a possibility that the correction cannot be performed, δSOC is converted into a correction point, and as δSOC is larger on the positive side, the amount of correction point is increased stepwise toward the positive side, or as δSOC is smaller on the negative side, The amount is gradually increased to the negative side to obtain a total value of n correction points, and the full charge capacity is subtracted or added based on the total value of the correction points. Even if a measurement error occurs, the measurement error can be improved by converting the magnitude of δSOC into a correction point and by adding the correction points n times. Absorption can can be made accurate to properly correct the full charge capacity.

特に、補正ポイントの合算値が所定の正の閾値より大または所定の負の閾値より小になったことをもって満充電容量を減算補正或いは加算補正することにより、電流センサ18の誤検知による異常値と思われるようなSOC差の影響を良好に抑えることができる。
そして、このようにδSOCの大きさを一旦補正ポイントへ変換する際、所定の変換度合いをδSOCの大きさに応じて補正ポイントに重み付けをするような変換度合いとすることにより、満充電容量の補正感度を自在に可変するようにできる。
In particular, an abnormal value due to erroneous detection of the current sensor 18 by correcting the full charge capacity by subtraction correction or addition correction when the total value of the correction points is greater than a predetermined positive threshold value or smaller than a predetermined negative threshold value. It is possible to satisfactorily suppress the influence of the SOC difference that seems to be.
When the magnitude of δSOC is once converted into a correction point in this way, a predetermined conversion degree is set to a conversion degree that weights the correction point according to the magnitude of δSOC, thereby correcting the full charge capacity. Sensitivity can be changed freely.

例えば、所定の変換度合いを図5に示すようなδSOCの絶対値が大きいほど補正ポイントの量の変化分を抑えるような変換度合いとすることにより、電流センサ18の誤検知による異常値と思われるような極端に大きなδSOCの影響を極力小さく抑えることができる。
また、例えば、δSOCが負側であるような場合には、SOC[電流]を演算するための補正した満充電容量を誤って実際の満充電容量よりも大きく見積もっている状況と考えられるが、この場合においてδSOCに対する補正ポイントの量をδSOCが正側である場合よりも全体的に大きくすることにより、満充電容量の減算補正を早期に行うようにできる。具体的には、図5において、δSOCが正側であるときにはδSOCが値0近傍で補正ポイントを付けないのに対し、δSOCが負側であるときにはδSOCが値0近傍であっても補正ポイントを付けるようにしている。これにより、特に満充電容量の減算補正の感度を上げるようにでき、速やかに満充電容量を適正なものとしてSOC[電流]とSOC[電圧]とを一致させるようにでき、図らずも電池容量が不足して二次電池10が過放電状態になり車両が走行途中で停止してしまうような事態を好適に防止することができる。
For example, it is considered that the predetermined conversion degree is an abnormal value due to erroneous detection of the current sensor 18 by setting the conversion degree such that the change amount of the correction point is suppressed as the absolute value of δSOC is large as shown in FIG. The influence of such an extremely large δSOC can be minimized.
Also, for example, when δSOC is negative, it is considered that the corrected full charge capacity for calculating the SOC [current] is erroneously estimated to be larger than the actual full charge capacity. In this case, by making the amount of correction points for δSOC larger as a whole than when δSOC is on the positive side, subtraction correction of the full charge capacity can be performed early. Specifically, in FIG. 5, when δSOC is on the positive side, no correction point is assigned when δSOC is near the value 0, whereas when δSOC is on the negative side, the correction point is set even when δSOC is near the value 0. I try to put it on. As a result, the sensitivity of the subtraction correction of the full charge capacity can be particularly increased, and the SOC [current] and the SOC [voltage] can be made to coincide with each other quickly with the proper full charge capacity. It is possible to suitably prevent a situation in which the secondary battery 10 is overdischarged and the vehicle stops in the middle of traveling.

以上で本発明に係る二次電池の制御装置の説明を終えるが、本発明は上記実施形態に限られるものではない。
例えば、上記実施形態では、ステップS24またはステップS28において補正ポイントの合算値が所定の負の閾値より小或いは所定の正の閾値より大であるか否かを判別し、ステップS26またはステップS30において満充電容量を一定量だけ加算補正或いは減算補正するようにしたが、所定の負の閾値及び所定の正の閾値をそれぞれ複数段階設けるようにし、補正量を一定量に限らず、複数の所定の負の閾値或いは所定の正の閾値毎に異ならせるようにしてもよい。
Although the description of the control apparatus for a secondary battery according to the present invention is finished as above, the present invention is not limited to the above embodiment.
For example, in the above embodiment, it is determined whether or not the sum of the correction points is smaller than a predetermined negative threshold or larger than a predetermined positive threshold in step S24 or step S28, and satisfied in step S26 or step S30. The charging capacity is added or subtracted by a fixed amount. However, a predetermined negative threshold and a predetermined positive threshold are provided in a plurality of stages, and the correction amount is not limited to a fixed amount. It may be made different for each threshold value or a predetermined positive threshold value.

また、上記実施形態では、二次電池10を例えばリチウムイオン二次電池としたが、二次電池であればよく、リチウムポリマー二次電池であってもよい。   Moreover, in the said embodiment, although the secondary battery 10 was used as the lithium ion secondary battery, for example, it may be a secondary battery and may be a lithium polymer secondary battery.

10 二次電池
12 電池パック
16 電圧センサ(電圧検出手段)
17 電池温度センサ
18 電流センサ(電流検出手段)
20 電池管理制御ユニット
21 SOC演算部(第1のSOC演算手段、第2のSOC演算手段)
22 満充電容量補正部(補正手段)
23 補正演算部(SOC差演算手段、点数演算手段)
24 補正開始/実施判定部
25 記憶部
30 車両制御装置
10 Secondary battery 12 Battery pack 16 Voltage sensor (voltage detection means)
17 Battery temperature sensor 18 Current sensor (current detection means)
20 battery management control unit 21 SOC calculation unit (first SOC calculation means, second SOC calculation means)
22 Full charge capacity correction unit (correction means)
23 Correction calculation section (SOC difference calculation means, point calculation means)
24 correction start / execution determination unit 25 storage unit 30 vehicle control device

Claims (5)

二次電池の満充電容量を補正する二次電池の制御装置であって、
前記二次電池の充放電電流を検出する電流検出手段と、
前記二次電池の電圧を検出する電圧検出手段と、
前記電流検出手段により検出された電流の積算値に基づき第1のSOCを求める第1のSOC演算手段と、
前記電圧検出手段により検出された電圧に基づき第2のSOCを求める第2のSOC演算手段と、
前記第1のSOCと前記第2のSOCとの差をSOC差として演算するSOC差演算手段と、
前記SOC差を該SOC差に応じて所定の変換度合いで変換した点数として演算する点数演算手段と、
前記点数に応じて前記二次電池の満充電容量を補正する補正手段と、
を備えたことを特徴とする二次電池の制御装置。
A control device for a secondary battery that corrects the full charge capacity of the secondary battery,
Current detection means for detecting a charge / discharge current of the secondary battery;
Voltage detection means for detecting the voltage of the secondary battery;
First SOC calculation means for obtaining a first SOC based on an integrated value of the current detected by the current detection means;
Second SOC calculating means for obtaining a second SOC based on the voltage detected by the voltage detecting means;
SOC difference calculating means for calculating a difference between the first SOC and the second SOC as an SOC difference;
Point calculation means for calculating the SOC difference as a point converted with a predetermined conversion degree according to the SOC difference;
Correction means for correcting the full charge capacity of the secondary battery according to the score;
A control apparatus for a secondary battery, comprising:
前記点数演算手段における所定の変換度合いは、前記SOC差の絶対値が大きいほど小さいことを特徴とする、請求項1記載の二次電池の制御装置。   The secondary battery control device according to claim 1, wherein the predetermined conversion degree in the point calculation means is smaller as the absolute value of the SOC difference is larger. 前記点数演算手段における所定の変換度合いは、前記SOC差が正であるか負であるかに応じて異なることを特徴とする、請求項1または2記載の二次電池の制御装置。   3. The secondary battery control device according to claim 1, wherein the predetermined degree of conversion in the point calculation means varies depending on whether the SOC difference is positive or negative. 4. 前記点数演算手段は、前記点数を所定の時間間隔で所定回数求め、これら所定回数求めた点数を合算して合算値を求めるものであって、
前記補正手段は、前記合算値に応じて前記二次電池の満充電容量を補正することを特徴とする、請求項1乃至3のいずれか記載の二次電池の制御装置。
The score calculation means calculates the score a predetermined number of times at a predetermined time interval, adds the scores determined for the predetermined number of times, and calculates a sum value.
4. The secondary battery control device according to claim 1, wherein the correction unit corrects a full charge capacity of the secondary battery according to the total value. 5.
前記補正手段は、前記合算値が所定閾値を越えたとき、前記二次電池の満充電容量を補正することを特徴とする、請求項4記載の二次電池の制御装置。   The secondary battery control device according to claim 4, wherein the correction unit corrects a full charge capacity of the secondary battery when the total value exceeds a predetermined threshold value.
JP2010234654A 2010-10-19 2010-10-19 Secondary battery control device Active JP5641215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234654A JP5641215B2 (en) 2010-10-19 2010-10-19 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234654A JP5641215B2 (en) 2010-10-19 2010-10-19 Secondary battery control device

Publications (2)

Publication Number Publication Date
JP2012088157A true JP2012088157A (en) 2012-05-10
JP5641215B2 JP5641215B2 (en) 2014-12-17

Family

ID=46259931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234654A Active JP5641215B2 (en) 2010-10-19 2010-10-19 Secondary battery control device

Country Status (1)

Country Link
JP (1) JP5641215B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
WO2015002334A1 (en) * 2013-07-04 2015-01-08 주식회사 엘지화학 Method and system for estimating soc of battery
EP2837943A1 (en) * 2013-08-12 2015-02-18 O2Micro, Inc. System and method for controlling a battery
CN106646268A (en) * 2017-03-07 2017-05-10 安徽江淮汽车集团股份有限公司 SOC compensation method for power battery
KR20170105078A (en) * 2015-02-19 2017-09-18 가부시끼가이샤 도시바 A storage system, a storage control method, and a storage medium storing a storage control program
US9983270B2 (en) 2013-04-03 2018-05-29 Gs Yuasa International Ltd. State of charge estimation device and method of estimating state of charge
JP2018148720A (en) * 2017-03-07 2018-09-20 三菱自動車エンジニアリング株式会社 Battery control device and program
JP2021081244A (en) * 2019-11-15 2021-05-27 トヨタ自動車株式会社 Estimation system and estimation method
CN113013507A (en) * 2019-12-19 2021-06-22 横河电机株式会社 Secondary battery management device and method, non-transitory recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111376793A (en) * 2018-12-29 2020-07-07 观致汽车有限公司 Method, apparatus and computer readable medium for managing battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
US9983270B2 (en) 2013-04-03 2018-05-29 Gs Yuasa International Ltd. State of charge estimation device and method of estimating state of charge
WO2015002334A1 (en) * 2013-07-04 2015-01-08 주식회사 엘지화학 Method and system for estimating soc of battery
CN105143898A (en) * 2013-07-04 2015-12-09 株式会社Lg化学 Method and system for estimating SOC of battery
US10073145B2 (en) 2013-07-04 2018-09-11 Lg Chem, Ltd. Method and system for estimating state of charge of battery
EP2837943A1 (en) * 2013-08-12 2015-02-18 O2Micro, Inc. System and method for controlling a battery
EP3264119A4 (en) * 2015-02-19 2019-01-02 Kabushiki Kaisha Toshiba, Inc. Electricity storage system, electricity storage control method, and electricity storage control program
KR20170105078A (en) * 2015-02-19 2017-09-18 가부시끼가이샤 도시바 A storage system, a storage control method, and a storage medium storing a storage control program
JPWO2016132514A1 (en) * 2015-02-19 2017-10-19 株式会社東芝 Power storage system, power storage control method, and power storage control program
KR101897555B1 (en) 2015-02-19 2018-09-12 가부시끼가이샤 도시바 A storage system, a storage control method, and a storage medium storing a storage control program
CN106646268A (en) * 2017-03-07 2017-05-10 安徽江淮汽车集团股份有限公司 SOC compensation method for power battery
JP2018148720A (en) * 2017-03-07 2018-09-20 三菱自動車エンジニアリング株式会社 Battery control device and program
CN106646268B (en) * 2017-03-07 2019-03-08 安徽江淮汽车集团股份有限公司 The SOC compensation method of power battery
JP2021081244A (en) * 2019-11-15 2021-05-27 トヨタ自動車株式会社 Estimation system and estimation method
CN113013507A (en) * 2019-12-19 2021-06-22 横河电机株式会社 Secondary battery management device and method, non-transitory recording medium
CN113013507B (en) * 2019-12-19 2024-04-09 横河电机株式会社 Secondary battery management system and secondary battery management method

Also Published As

Publication number Publication date
JP5641215B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5641215B2 (en) Secondary battery control device
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
EP2700966B1 (en) Apparatus and method for estimating battery state
JP5868499B2 (en) Battery control device
US9582468B2 (en) Capacity estimating apparatus for secondary battery
US9523740B2 (en) Method for determining remaining lifetime
US9018897B2 (en) Electric storage device condition determination device, electrically chargeable device, and method of determining electric storage device condition
US9400313B2 (en) Method and device for determining the actual capacity of a battery
JP4959511B2 (en) Charge control device for storage battery
CN110998344A (en) Degraded state calculating method and degraded state calculating device
WO2015133068A1 (en) Device for determining battery type and method for determining battery type
JP6171128B2 (en) Battery control system, vehicle control system
JP6500795B2 (en) Vehicle battery SOC management system
JP6011265B2 (en) Battery system
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP5886225B2 (en) Battery control device and battery control method
JP2009171789A (en) Electronic controller
JP7116205B2 (en) Battery control system
JP2016045025A (en) State-of-charge calculation apparatus
JP4872513B2 (en) Battery current-voltage characteristic detection device and internal resistance detection device using the same
JP2023047092A (en) Charging method for battery
US20150212163A1 (en) Device for detecting remaining battery capacity, battery system, method of detecting remaining battery capacity and program
WO2024127877A1 (en) Remaining capacity calculation device and program
JP2023092121A (en) Estimation device for estimating residual capacity of cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R151 Written notification of patent or utility model registration

Ref document number: 5641215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350