JP2012087989A - Steam supply apparatus and steam supply system using solar heat - Google Patents

Steam supply apparatus and steam supply system using solar heat Download PDF

Info

Publication number
JP2012087989A
JP2012087989A JP2010235354A JP2010235354A JP2012087989A JP 2012087989 A JP2012087989 A JP 2012087989A JP 2010235354 A JP2010235354 A JP 2010235354A JP 2010235354 A JP2010235354 A JP 2010235354A JP 2012087989 A JP2012087989 A JP 2012087989A
Authority
JP
Japan
Prior art keywords
steam
pressure
pipe
water
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010235354A
Other languages
Japanese (ja)
Other versions
JP5794772B2 (en
Inventor
Shuichi Ishii
秀一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2010235354A priority Critical patent/JP5794772B2/en
Publication of JP2012087989A publication Critical patent/JP2012087989A/en
Application granted granted Critical
Publication of JP5794772B2 publication Critical patent/JP5794772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Abstract

PROBLEM TO BE SOLVED: To provide a steam supply apparatus and a steam supply system capable of stably generating steam.SOLUTION: The apparatus for supplying steam to a heating apparatus 3 includes an accumulator 33 accumulating steam boiled by solar heat, a steam pipe 36 for supplying the steam accumulated in the accumulator 33 to the heating apparatus 3, and a vacuum pump 61 reducing the pressure in the steam pipe 36 to induce a boiling state. The vacuum pump 61 reduces the pressure in the steam pipe 36 only when a boiling point of steam is lower than a boiling point at atmospheric pressure. Thus, steam can be always stably supplied to the heating apparatus 3.

Description

本発明は、太陽熱を利用した蒸気供給装置と蒸気供給システムに関する。   The present invention relates to a steam supply device and a steam supply system using solar heat.

太陽熱の利用方法としては、太陽熱温水器で30〜80℃のお湯を作る方法が一般的に知られている。そのような太陽熱の利用方法は、戸建住宅や、プール・老健・病院などの給湯需要のある建物で古くから採用されている。しかし工場では、30〜80℃といった温度帯の温熱の需要が大量にあることは少なく、広い屋根面積を持つにもかかわらず太陽熱を利用しているケースは少ない。   As a method of utilizing solar heat, a method of making hot water of 30 to 80 ° C. with a solar water heater is generally known. Such use of solar heat has long been adopted in detached houses and buildings with hot water demand such as pools, old health, and hospitals. However, in factories, there is little demand for heat in the temperature range of 30 to 80 ° C., and there are few cases of using solar heat despite having a large roof area.

一方、食品工場(加熱、煮沸等)・化学工場(蒸留、分解、軟化成型等)・半導体工場(純水加温、空調再熱等)・病院(滅菌、加湿等)や、吸収式冷凍機・中央式暖房設備を有する建物等では、100〜150℃の温熱は、広く大量に需要がある。そこで、これらの建物では、ボイラを設置して低圧蒸気を供給することが一般に行われている。   On the other hand, food factories (heating, boiling, etc.), chemical factories (distillation, decomposition, softening molding, etc.), semiconductor factories (pure water heating, air conditioning reheating, etc.), hospitals (sterilization, humidification, etc.), absorption refrigerators -In buildings and the like having a central heating system, heat of 100 to 150 ° C. is in widespread demand. Therefore, in these buildings, it is common to install a boiler and supply low-pressure steam.

ところで、太陽熱で蒸気を製造する集熱器としては、回転放物面鏡や多数の平面鏡によって反射した太陽光を一点に集める方法(点集光型集熱装置)や、樋型放物面鏡で反射した太陽光をその焦点に設けた集熱管に集める方法(線集光型集熱装置)が知られている。いずれも、安定した蒸気製造のために蓄熱するのが一般的である。蓄熱媒体としては、沸点が水より高いオイルなどの顕熱や、多価アルコール類等の潜熱が提案されている。しかしこれらの方法は、システムが複雑で高価、廃棄時に蓄熱材の分別やリサイクルが困難といった欠点がある。一方、蓄熱媒体として水を用い、太陽熱で蒸気を発生させて熱収集を行うシステムもいくつか開示されている(特許文献1、2参照)   By the way, as a collector for producing steam by solar heat, a method of collecting sunlight reflected by a rotating parabolic mirror and a number of plane mirrors (a point concentrating type heat collecting device), a vertical parabolic mirror, or the like. There is known a method (line condensing type heat collecting device) for collecting sunlight reflected by a heat collecting tube provided at its focal point. In either case, heat is generally stored for stable steam production. As the heat storage medium, sensible heat such as oil having a boiling point higher than that of water and latent heat such as polyhydric alcohols have been proposed. However, these methods have drawbacks that the system is complicated and expensive, and it is difficult to separate and recycle the heat storage material at the time of disposal. On the other hand, some systems that collect water by using water as a heat storage medium and generating steam by solar heat are also disclosed (see Patent Documents 1 and 2).

特開2006−266631号公報JP 2006-266331 A 特開2008−170138号公報JP 2008-170138 A

しかしながら、太陽熱は不安定で、またそれだけで十分需要を賄えるものではない。   However, solar heat is unstable and it is not enough to meet demand.

本発明は、かかる点に鑑みてなされたものであり、不安定で不十分な太陽熱から高効率に安定して蒸気を発生させることができる蒸気供給装置と蒸気供給システムを提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the vapor | steam supply apparatus and vapor | steam supply system which can generate | occur | produce a vapor | steam stably with high efficiency from the unstable and insufficient solar heat. To do.

前記の目的を達成するため、本発明によれば、熱機器に蒸気を供給する装置であって、太陽熱で沸騰させられた蒸気を溜めるアキュムレータと、前記アキュムレータに溜められた蒸気を前記熱機器に供給する蒸気配管と、前記蒸気配管内を減圧させて沸騰状態を作る真空ポンプを備え、前記真空ポンプは、蒸気の沸点が大気圧での沸点よりも低い時のみ前記蒸気配管内を減圧させることを特徴とする、太陽熱を利用した蒸気供給装置が提供される。   In order to achieve the above object, according to the present invention, there is provided an apparatus for supplying steam to a thermal apparatus, the accumulator for storing steam boiled by solar heat, and the steam stored in the accumulator to the thermal apparatus. A steam pipe to be supplied and a vacuum pump that creates a boiling state by reducing the pressure inside the steam pipe, and the vacuum pump reduces the pressure inside the steam pipe only when the boiling point of the steam is lower than the boiling point at atmospheric pressure. A steam supply device using solar heat is provided.

この蒸気供給装置において、太陽熱で水を沸騰させて蒸気を作る集熱器を備え、前記集熱器で作られた蒸気が前記アキュムレータに供給され、前記アキュムレータには水が溜められており、集熱器で発生した蒸気がアキュムレータの水中に供給されても良い。   The steam supply device includes a heat collector that produces steam by boiling water with solar heat, steam generated by the heat collector is supplied to the accumulator, and water is stored in the accumulator. Steam generated in the heater may be supplied into the accumulator water.

また、本発明によれば、ボイラで作った蒸気を前記熱機器に供給する既設蒸気供給装置を備え、上記蒸気供給装置で作られた蒸気が前記熱機器に優先的に供給されることを特徴とする、蒸気供給システムが提供される。この蒸気供給システムにおいて、前記熱機器から前記ボイラに戻される還水の一部が、前記蒸気供給装置のアキュムレータに戻されても良い。   Further, according to the present invention, an existing steam supply device that supplies steam produced by a boiler to the thermal device is provided, and steam produced by the steam supply device is preferentially supplied to the thermal device. A steam supply system is provided. In this steam supply system, a part of the return water returned from the thermal device to the boiler may be returned to the accumulator of the steam supply device.

本発明によれば、蒸気配管内を真空ポンプで減圧することにより、集熱部において熱伝導率の高い沸騰状態を作り出し、高効率に太陽熱を集熱することができる。また太陽熱で製造した蒸気を、安価安全で廃棄の容易な水を使って蓄えることができ、不安定な太陽熱から安定して低圧蒸気を供給することができる。また、ボイラで作った蒸気を熱機器に供給する既設蒸気供給装置を備えた建物に本発明の蒸気供給装置を導入した場合、本発明の蒸気供給装置で作られた蒸気を熱機器に優先的に供給することにより、蒸気製造に要するボイラの燃料費やCO排出量を削減することができる。 According to the present invention, by depressurizing the inside of the steam pipe with a vacuum pump, a boiling state with high thermal conductivity can be created in the heat collecting section, and solar heat can be collected with high efficiency. Moreover, steam produced by solar heat can be stored using water that is cheap, safe and easy to dispose of, and low-pressure steam can be stably supplied from unstable solar heat. In addition, when the steam supply device of the present invention is introduced into a building equipped with an existing steam supply device that supplies steam produced by a boiler to the thermal equipment, the steam produced by the steam supply device of the present invention has priority over the thermal equipment. By supplying to the boiler, it is possible to reduce the fuel cost and CO 2 emission of the boiler required for steam production.

既設蒸気供給装置に本実施の形態にかかる蒸気供給装置を組み合わせた蒸気供給システムの概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the steam supply system which combined the steam supply apparatus concerning this Embodiment with the existing steam supply apparatus. 真空ポンプ類と減圧弁・安全弁を一体化して集熱部近傍に設置した実施の形態にかかる蒸気供給システムの概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the vapor | steam supply system concerning Embodiment which integrated the vacuum pumps, the pressure-reduction valve, and the safety valve, and installed in the heat collection part vicinity. 真空ポンプ類と減圧弁・安全弁・給水ポンプ類を一体化して集熱部近傍に設置した実施の形態にかかる蒸気供給システムの概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the vapor | steam supply system concerning Embodiment which integrated the vacuum pumps, the pressure-reduction valve, the safety valve, and the feed water pumps in the heat collecting part vicinity.

以下、本発明の実施の形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Embodiments of the present invention will be described below. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図1に示すように、建物1は、ボイラ2で作った蒸気を複数の熱機器3に供給する既設蒸気供給装置4を備えている。建物1は、例えば加熱、煮沸等を行う食品工場、蒸留、分解、軟化成型等を行う化学工場、純水加温、空調再熱等を行う半導体工場、滅菌、加湿等を行う病院、その他、吸収式冷凍機・中央式暖房設備を有する建物等である。熱機器3は、これらの建物1に設置された加熱装置、成型装置、滅菌装置、その他の各種熱機器である。これらの建物1では、熱機器3に供給するために100〜150℃の温熱(蒸気)の需要が広く大量にある。   As shown in FIG. 1, the building 1 includes an existing steam supply device 4 that supplies steam produced by the boiler 2 to a plurality of thermal devices 3. Building 1 is a food factory that performs heating, boiling, etc., a chemical factory that performs distillation, decomposition, softening molding, etc., a semiconductor factory that performs pure water heating, air conditioning reheating, etc., a hospital that performs sterilization, humidification, etc. For example, buildings with absorption refrigerators and central heating facilities. The thermal apparatus 3 is a heating apparatus, a molding apparatus, a sterilization apparatus, or other various thermal apparatuses installed in these buildings 1. In these buildings 1, there is a wide demand for warm heat (steam) at 100 to 150 ° C. to supply the thermal equipment 3.

この建物1には、既設蒸気供給装置4に加えて、本発明の実施の形態にかかる蒸気供給装置10を備えている。このように、既設蒸気供給装置4に蒸気供給装置10を組み合わせることにより、本発明の実施の形態にかかる蒸気供給システム5が構成される。この蒸気供給システム5では、後に詳しく説明するように、蒸気供給装置10で作られた蒸気が、既設蒸気供給装置4よりも優先的に、熱機器3に供給される。   This building 1 is provided with a steam supply device 10 according to an embodiment of the present invention in addition to the existing steam supply device 4. Thus, the steam supply system 5 according to the embodiment of the present invention is configured by combining the steam supply apparatus 10 with the existing steam supply apparatus 4. In this steam supply system 5, as will be described in detail later, the steam produced by the steam supply device 10 is supplied to the thermal equipment 3 with priority over the existing steam supply device 4.

先ず、既設蒸気供給装置4を説明する。既設蒸気供給装置4は、燃料を燃焼させて高圧蒸気を作るボイラ2を備えている。このボイラ2で作られた高圧蒸気が、主配管11を経て、高圧蒸気ヘッダ12に供給されている。高圧蒸気ヘッダ12には、高圧蒸気系統用配管9と既設高圧側配管13が接続されており、高圧蒸気系統用配管9は、建物1に既設の例えばタービンなどの高圧蒸気系統に接続され、それら高圧蒸気系統には、高圧蒸気ヘッダ12から高圧蒸気系統用配管9を介して高圧蒸気が供給される。   First, the existing steam supply device 4 will be described. The existing steam supply device 4 includes a boiler 2 that burns fuel to produce high-pressure steam. The high-pressure steam produced by the boiler 2 is supplied to the high-pressure steam header 12 through the main pipe 11. A high-pressure steam system pipe 9 and an existing high-pressure side pipe 13 are connected to the high-pressure steam header 12, and the high-pressure steam system pipe 9 is connected to a high-pressure steam system such as a turbine already installed in the building 1. High-pressure steam is supplied to the high-pressure steam system from the high-pressure steam header 12 through the high-pressure steam system pipe 9.

一方、既設高圧側配管13は減圧弁15より下流の既設低圧側配管14を経て、熱機器3に接続されている。高圧蒸気ヘッダ12から既設高圧側配管13に流入した高圧蒸気は、減圧弁15で減圧されて低圧蒸気となり、既設低圧側配管14を経て熱機器3に供給される。なお、高圧蒸気とは0.1[MPa(G)](約120℃)以上の蒸気であり、低圧蒸気とは0.1[MPa(G)]未満の蒸気である。工場などではボイラ2で高圧蒸気を製造し、特に高圧を要する器具以外では、その手前で必要圧力に減圧するのが一般的である。   On the other hand, the existing high-pressure side pipe 13 is connected to the thermal equipment 3 via the existing low-pressure side pipe 14 downstream from the pressure reducing valve 15. The high-pressure steam that has flowed from the high-pressure steam header 12 into the existing high-pressure side pipe 13 is decompressed by the pressure reducing valve 15 to become low-pressure steam, and is supplied to the thermal equipment 3 through the existing low-pressure side pipe 14. High-pressure steam is steam of 0.1 [MPa (G)] (about 120 ° C.) or higher, and low-pressure steam is steam of less than 0.1 [MPa (G)]. In factories and the like, it is common to produce high-pressure steam with the boiler 2 and to reduce the pressure to the required pressure before any equipment that requires high pressure.

既設高圧側配管13、既設低圧側配管14には、減圧弁15の前後にそれぞれ圧力センサ16、17が取り付けてある。圧力センサ16により、高圧蒸気ヘッダ12から既設高圧側配管13に流入される高圧蒸気の圧力P5が検出される。また、圧力センサ17により、減圧弁15で減圧された低圧蒸気の圧力P4が検出される。   Pressure sensors 16 and 17 are respectively attached to the existing high-pressure side pipe 13 and the existing low-pressure side pipe 14 before and after the pressure reducing valve 15. The pressure sensor 16 detects the pressure P5 of the high pressure steam flowing from the high pressure steam header 12 into the existing high pressure side pipe 13. Further, the pressure sensor 17 detects the pressure P4 of the low-pressure steam decompressed by the decompression valve 15.

熱機器3で加熱に使用されて凝縮した水は、既設還水配管20を経て還水槽21に戻される。還水槽21には、軟水器22で軟水にされた水(上水)も供給されている。還水槽21に溜められた水は、ボイラ補給水として、既設補給配管23を経てボイラ2に供給されている。そして、燃料の燃焼によってボイラ2で作られた高圧蒸気が、主配管11に供給されている。   The water used for heating in the heat device 3 and condensed is returned to the return water tank 21 through the existing return water pipe 20. The return water tank 21 is also supplied with water softened by the water softener 22 (clean water). The water stored in the return water tank 21 is supplied to the boiler 2 through the existing supply pipe 23 as boiler supply water. Then, high-pressure steam produced in the boiler 2 by fuel combustion is supplied to the main pipe 11.

次に、本発明の実施の形態にかかる蒸気供給装置10を説明する。蒸気供給装置10は、太陽熱を利用して集熱管31内に満たされた水を沸騰させて蒸気を作る複数の集熱器30を備えている。集熱器30は、集熱管31に集光することで高温が得られ、また太陽の追尾の必要がない線集光型が望ましい。集熱量を増やすため、集熱器30は南向き(北半球)、緯度と同じ程度の傾斜で設置する。また、従来の太陽熱温水器のサイズから考えて、集熱器30のサイズは2mL×1mWの大きさを1つのモジュールとすることが望ましい。 Next, the steam supply apparatus 10 concerning embodiment of this invention is demonstrated. The steam supply device 10 includes a plurality of heat collectors 30 that make steam by boiling the water filled in the heat collecting tubes 31 using solar heat. The heat collector 30 is preferably a line condensing type in which a high temperature is obtained by condensing the heat collecting tube 31 and the sun tracking is not required. In order to increase the amount of heat collected, the heat collector 30 is installed facing south (Northern Hemisphere) and at the same inclination as the latitude. Considering the size of the conventional solar water heater, it is desirable that the size of the heat collector 30 is 2 m L × 1 m W as one module.

集熱器30で沸騰して作られた蒸気は、蒸気配管32を経てアキュムレータ33に送られている。アキュムレータ33は各集熱器30の上部にそれぞれ設けられており、各集熱器30で生じた蒸気がそれぞれのアキュムレータ33に集まるようになっている。集熱管31は上がり下がりが無いようにし、中で生じた蒸気がスムーズにアキュムレータ33へ移動するようにする。   Steam produced by boiling in the heat collector 30 is sent to an accumulator 33 through a steam pipe 32. The accumulators 33 are provided in the upper portions of the respective heat collectors 30 so that the steam generated in the respective heat collectors 30 is collected in the respective accumulators 33. The heat collecting tube 31 is made so as not to rise and fall so that the steam generated therein moves smoothly to the accumulator 33.

アキュムレータ33は、2mL×1mWの集熱器30のサイズに対して、同様の幅で内径250mm程度の円筒容器とすることが望ましい。この形状は、日射条件が良い場合に約1時間分の蓄熱ができる容量であること、耐圧的に有利で集熱器30と一体化しやすいこと、法的規制の緩い小型圧力容器の適用範囲内である、という利点がある。また、放熱ロスを減らすために、外側を断熱することが望ましい。 The accumulator 33, 2m against L × 1 m W heat collector 30 the size of the same it is desirable to a cylindrical container having an inner diameter of about 250mm in width. This shape is a capacity that can store heat for about 1 hour when the solar radiation conditions are good, it is advantageous in terms of pressure resistance, is easy to integrate with the heat collector 30, and is within the application range of small pressure vessels with loose legal regulations. There is an advantage that it is. In order to reduce heat dissipation loss, it is desirable to insulate the outside.

アキュムレータ33の内部にはボールタップ34が設けてあり、水面高さL1の量に不足すると、還水配管35からアキュムレータ33に給水される。アキュムレータ33の下方には蒸気配管32が配置され、アキュムレータ33の長手方向に延びており、多数の小孔(不図示)が設けられている。集熱管31で沸騰して蒸気配管32を上昇してきた蒸気は、上記の小孔を経て微細な気泡となってアキュムレータ33の水中にまんべんなく広がり、水全体を均一に加熱する。アキュムレータ33の底部には還水管29が接続され、その他端は集熱管31の最下部と接続されており、集熱管31で蒸気が発生して上昇するのと入れ違いに、集熱管31に水を満たし、沸騰を継続させる。   A ball tap 34 is provided inside the accumulator 33, and when the water surface height L1 is insufficient, water is supplied to the accumulator 33 from the return water pipe 35. A steam pipe 32 is disposed below the accumulator 33, extends in the longitudinal direction of the accumulator 33, and is provided with a large number of small holes (not shown). The steam that has boiled in the heat collecting pipe 31 and has risen through the steam pipe 32 becomes fine bubbles through the small holes and spreads evenly in the water of the accumulator 33 to uniformly heat the entire water. A return water pipe 29 is connected to the bottom of the accumulator 33, and the other end is connected to the lowermost part of the heat collection pipe 31. When steam is generated and rises in the heat collection pipe 31, water is supplied to the heat collection pipe 31. Fill and continue boiling.

アキュムレータ33には、還水配管35の一端と、熱機器3に蒸気を供給する往管である低圧蒸気配管36の一端が接続されている。還水配管35の他端は、熱機器3と既設蒸気供給装置4の還水槽21とを結ぶ、既設還水配管20の途中に接続されている。すなわち還水配管35は、一部管路(既設還水配管20)を既設蒸気供給装置4と共有して、熱機器3と連通している。還水配管35には、ストレーナ37、給水ポンプ38、逆止弁39、圧力センサ40などが設けられている。圧力センサ40により、給水ポンプ38の稼動で還水配管35に送水される水の圧力P1が検出される。   The accumulator 33 is connected to one end of a return water pipe 35 and one end of a low-pressure steam pipe 36 that is an outgoing pipe that supplies steam to the thermal equipment 3. The other end of the return water pipe 35 is connected in the middle of the existing return water pipe 20 that connects the thermal device 3 and the return water tank 21 of the existing steam supply device 4. That is, the return water pipe 35 communicates with the thermal equipment 3 by sharing a part of the pipe line (the existing return water pipe 20) with the existing steam supply device 4. The return water pipe 35 is provided with a strainer 37, a water supply pump 38, a check valve 39, a pressure sensor 40, and the like. The pressure sensor 40 detects the pressure P1 of water fed to the return water pipe 35 by the operation of the water supply pump 38.

低圧蒸気配管36の他端は、既設蒸気供給装置4が備える既設低圧側配管14の途中に接続されている。低圧蒸気配管36には、温度センサ49、ストレーナ50、逆止弁51、減圧弁52、圧力センサ53などが設けられている。温度センサ49により、低圧蒸気配管36内の蒸気の温度Tが検出される。また、圧力センサ53により、減圧弁52によって減圧されて、低圧蒸気配管36から既設低圧側配管14に供給される蒸気の圧力P3が検出される。   The other end of the low-pressure steam pipe 36 is connected in the middle of the existing low-pressure side pipe 14 provided in the existing steam supply device 4. The low-pressure steam pipe 36 is provided with a temperature sensor 49, a strainer 50, a check valve 51, a pressure reducing valve 52, a pressure sensor 53, and the like. The temperature sensor 49 detects the temperature T of the steam in the low-pressure steam pipe 36. The pressure sensor 53 detects the pressure P3 of the steam that is decompressed by the pressure reducing valve 52 and is supplied from the low pressure steam pipe 36 to the existing low pressure side pipe 14.

低圧蒸気配管36には減圧配管55が接続され、減圧配管55には、圧力センサ60、真空ポンプ61、逆止弁62、電磁弁63などが取り付けられている。また、圧力センサ60により、低圧蒸気配管36内の圧力P2(減圧弁52によって減圧される前の低圧蒸気配管36内の圧力P2)が検出される。   A decompression pipe 55 is connected to the low-pressure steam pipe 36, and a pressure sensor 60, a vacuum pump 61, a check valve 62, an electromagnetic valve 63 and the like are attached to the decompression pipe 55. Further, the pressure sensor 60 detects the pressure P2 in the low-pressure steam pipe 36 (pressure P2 in the low-pressure steam pipe 36 before being decompressed by the pressure reducing valve 52).

給水ポンプ38は、圧力P1が圧力P3よりボールタップ最低作動圧力以上高くなるように稼働する。給水ポンプ38は、熱機器3と還水槽21とを結ぶ既設還水配管20中を流れる還水の一部を、還水配管35を経て吸い込み、アキュムレータ33に送水する。あるいは給水ポンプ38は、別途軟水処理された水(不図示)を吸い込み、アキュムレータ33に送水するようにしてもよい。こうしてアキュムレータ33の内部には、水面高さL1まで水が溜められる。   The feed water pump 38 operates so that the pressure P1 is higher than the pressure P3 by the minimum ball tap operating pressure. The water supply pump 38 sucks a part of the return water flowing in the existing return water pipe 20 connecting the thermal device 3 and the return water tank 21 through the return water pipe 35 and sends the water to the accumulator 33. Or you may make it the water supply pump 38 suck | inhale the water (not shown) by which the soft water process was carried out separately, and may send it to the accumulator 33. FIG. Thus, water is accumulated in the accumulator 33 up to the water surface height L1.

電磁弁63を開いて真空ポンプ61を稼動させることにより、減圧配管55を通じて低圧蒸気配管36内を強制排気して、低圧蒸気配管36内を減圧させることができる。真空ポンプ61は、必要到達圧力が10[kPa]程度であり、蒸気や水滴を含んだ気体を排気することから、水封式真空ポンプが望ましい。低圧蒸気配管36や集熱管31などの内部を一度減圧してしまえば、運転中の排気量はわずかであるので、排気速度や消費電力の小さな機種で十分である。   By opening the electromagnetic valve 63 and operating the vacuum pump 61, the inside of the low-pressure steam pipe 36 can be decompressed by forcibly exhausting the inside of the low-pressure steam pipe 36 through the decompression pipe 55. The vacuum pump 61 has a required ultimate pressure of about 10 [kPa], and exhausts a gas containing steam and water droplets. Therefore, a water-sealed vacuum pump is desirable. Once the inside of the low-pressure steam pipe 36 or the heat collecting pipe 31 is depressurized, the amount of exhaust during operation is small, so a model with low exhaust speed and low power consumption is sufficient.

水封式真空ポンプは補給水が必要なので、還水配管35に送水される水の一部、あるいは軟水処理された水を使用する。還水を使用する場合は、補給水槽45と、補給水槽45に還水配管35から送水するバイパス配管46と、補給水槽45から真空ポンプ61に水を補給する配管64を設けておくと良い。補給水槽45にはボールタップ47が設けてあり、水面高さL2の量に不足するとバイパス配管46から補給水槽45に給水されるようにボールタップ47が作動することにより、補給水槽45の内部には、水面高さL2まで、水が溜められている。   Since the water-sealed vacuum pump requires makeup water, a part of the water sent to the return water pipe 35 or water that has been subjected to soft water treatment is used. When using return water, it is preferable to provide a replenishment water tank 45, a bypass pipe 46 that supplies water to the replenishment water tank 45 from the return water pipe 35, and a pipe 64 that replenishes the vacuum pump 61 with water from the replenishment water tank 45. The replenishing water tank 45 is provided with a ball tap 47. When the water tap height L2 is insufficient, the ball tap 47 is operated so that water is supplied from the bypass pipe 46 to the replenishing water tank 45. Water is stored up to the water surface height L2.

また、低圧蒸気配管36の途中には、減圧配管55と、リーク配管56が接続してある。リーク配管56には、安全弁57が取り付けられており、低圧蒸気配管36内の蒸気の圧力が許容範囲を超えると、リーク配管56を経て外部に蒸気がリークされる。   Further, a decompression pipe 55 and a leak pipe 56 are connected in the middle of the low pressure steam pipe 36. A safety valve 57 is attached to the leak pipe 56, and when the pressure of the steam in the low-pressure steam pipe 36 exceeds an allowable range, the steam is leaked to the outside through the leak pipe 56.

真空ポンプ61の稼動および電磁弁63の開閉は、制御部65によって制御される。制御部65には、温度センサ49によって検出された低圧蒸気配管36内の蒸気の温度Tと、圧力センサ60によって検出された低圧蒸気配管36内の圧力P2(減圧弁52によって減圧される前の低圧蒸気配管36内の圧力P2)が入力され、それらの検出値T、P2に基づいて、真空ポンプ61の稼動および電磁弁63の開閉が制御される。   The operation of the vacuum pump 61 and the opening and closing of the electromagnetic valve 63 are controlled by the control unit 65. The controller 65 includes the temperature T of the steam in the low-pressure steam pipe 36 detected by the temperature sensor 49 and the pressure P2 in the low-pressure steam pipe 36 detected by the pressure sensor 60 (before the pressure is reduced by the pressure reducing valve 52). The pressure P2) in the low-pressure steam pipe 36 is input, and the operation of the vacuum pump 61 and the opening / closing of the electromagnetic valve 63 are controlled based on the detected values T and P2.

さて、この蒸気供給システム5の始動時には、低圧蒸気配管36内の圧力P2が一定以下になるまで、電磁弁63が開いて真空ポンプ61が稼動する。この動作により、減圧配管55を通じて低圧蒸気配管36内が強制排気され、既設蒸気供給装置4の系内(低圧蒸気配管36、アキュムレータ33、還水配管35、集熱管31、蒸気配管32)から空気が除去され、既設低圧側配管14への空気の混入が防止される。   When the steam supply system 5 is started, the electromagnetic valve 63 is opened and the vacuum pump 61 is operated until the pressure P2 in the low-pressure steam pipe 36 becomes equal to or lower than a certain level. By this operation, the inside of the low-pressure steam pipe 36 is forcibly exhausted through the decompression pipe 55, and the air from the system of the existing steam supply device 4 (low-pressure steam pipe 36, accumulator 33, return water pipe 35, heat collecting pipe 31, steam pipe 32). Is removed, and mixing of air into the existing low-pressure side pipe 14 is prevented.

蒸気供給システム5の始動後、低圧蒸気配管36内の蒸気の沸点が大気圧での沸点よりも低い場合は、減圧配管55を通じて低圧蒸気配管36内を強制排気して、低圧蒸気配管36内を飽和圧力程度まで減圧する。すなわち温度センサ49で検出される温度Tが100℃未満の場合は、制御部65は、電磁弁63を開け、圧力センサ60で検出される圧力P2が、温度Tの飽和圧力以下となるように、真空ポンプ61の運転を制御する。例えば、温度Tが45℃の時は圧力P2が10[kPa]前後となるように真空ポンプ61の運転を制御し、温度Tが60℃の時は圧力P2が20[kPa]前後となるように真空ポンプ61の運転を制御する。   After the start of the steam supply system 5, when the boiling point of the steam in the low-pressure steam pipe 36 is lower than the boiling point at atmospheric pressure, the inside of the low-pressure steam pipe 36 is forcibly exhausted through the decompression pipe 55. Reduce the pressure to about the saturation pressure. That is, when the temperature T detected by the temperature sensor 49 is less than 100 ° C., the control unit 65 opens the electromagnetic valve 63 so that the pressure P2 detected by the pressure sensor 60 is equal to or lower than the saturation pressure of the temperature T. The operation of the vacuum pump 61 is controlled. For example, when the temperature T is 45 ° C., the operation of the vacuum pump 61 is controlled so that the pressure P2 is about 10 [kPa], and when the temperature T is 60 ° C., the pressure P2 is about 20 [kPa]. The operation of the vacuum pump 61 is controlled.

アキュムレータ33内部の水温が集熱管31内部の水温より低い場合は、集熱管31で沸騰が起こって蒸気が蒸気配管32を経てアキュムレータ33に上昇し、アキュムレータ33内部の水温を高める。この際、集熱管内壁では気泡が連続的に生じて集熱管内部を強制的に撹拌するので、従来の太陽熱温水器集熱部における熱伝導と自然対流による熱伝達に比べて、熱伝達率が高い。逆にアキュムレータ33内部の水温が集熱管31内部の水温より高い場合は、集熱管31内部で沸騰は起こらず、またアキュムレータ33の方が集熱管31より上部にあって自然対流も起きない。よって、アキュムレータ33を適切に保温している場合は、ほとんど放熱しない。   When the water temperature inside the accumulator 33 is lower than the water temperature inside the heat collecting pipe 31, boiling occurs in the heat collecting pipe 31, and the steam rises to the accumulator 33 through the steam pipe 32, thereby increasing the water temperature inside the accumulator 33. At this time, air bubbles are continuously generated on the inner wall of the heat collecting tube, and the inside of the heat collecting tube is forcibly stirred. high. On the contrary, when the water temperature inside the accumulator 33 is higher than the water temperature inside the heat collecting tube 31, boiling does not occur inside the heat collecting tube 31, and the accumulator 33 is above the heat collecting tube 31 and natural convection does not occur. Therefore, when the accumulator 33 is appropriately kept warm, little heat is dissipated.

一方、低圧蒸気配管36内の蒸気の温度Tが大気圧での沸点(約100℃)よりも高い場合は、電磁弁63を閉じ真空ポンプ61を停止する。日射量の増加とともに集熱管31からの蒸気でアキュムレータ33内部の水温が上昇し、圧力センサ60で検出される低圧蒸気配管36内の圧力P2も上昇する。この間、アキュムレータ33方の蒸気は、アキュムレータ33内部に飽和水の状態で蓄えられる。   On the other hand, when the temperature T of the steam in the low-pressure steam pipe 36 is higher than the boiling point (about 100 ° C.) at atmospheric pressure, the electromagnetic valve 63 is closed and the vacuum pump 61 is stopped. As the amount of solar radiation increases, the temperature of the water in the accumulator 33 rises due to the steam from the heat collecting pipe 31, and the pressure P2 in the low-pressure steam pipe 36 detected by the pressure sensor 60 also rises. During this time, the vapor from the accumulator 33 is stored in the state of saturated water inside the accumulator 33.

一方、建物1に予め設置されている既設蒸気供給装置4においても、ボイラ2で作られた蒸気が、高圧蒸気ヘッダ12で分けられて減圧弁15で減圧され、低圧蒸気となって熱機器3に供給される。以上のように、熱機器3には、新しく組み込まれた蒸気供給システム5と、建物1に予め設置されている既設蒸気供給装置4の両方から低圧蒸気を供給することができる。   On the other hand, in the existing steam supply device 4 installed in advance in the building 1, the steam produced by the boiler 2 is divided by the high-pressure steam header 12 and decompressed by the decompression valve 15, and becomes low-pressure steam. To be supplied. As described above, the thermal equipment 3 can be supplied with low-pressure steam from both the newly installed steam supply system 5 and the existing steam supply device 4 installed in the building 1 in advance.

ここで、蒸気供給装置10は、既設蒸気供給装置4より優先して熱機器3に蒸気を供給するように設定されている。即ち、既設蒸気供給装置4の既設低圧側配管14に設けられている減圧弁15の設定と、蒸気供給システム5の低圧蒸気配管36に設けられている減圧弁52の設定は、既設低圧側配管14に供給される蒸気の圧力P3が、既設蒸気供給装置4の減圧弁15で減圧された圧力P4よりも僅かに大きくなる(P3>P4)ように定めておく。   Here, the steam supply device 10 is set to supply steam to the thermal equipment 3 with priority over the existing steam supply device 4. That is, the setting of the pressure reducing valve 15 provided in the existing low pressure side pipe 14 of the existing steam supply device 4 and the setting of the pressure reducing valve 52 provided in the low pressure steam pipe 36 of the steam supply system 5 are the same as the existing low pressure side pipe. 14 is determined such that the pressure P3 of the steam supplied to 14 is slightly larger than the pressure P4 decompressed by the pressure reducing valve 15 of the existing steam supply device 4 (P3> P4).

日射量が増加して、圧力P2が圧力P3の設定値を上回るようになると、アキュムレータ33の水面から蒸発した蒸気が、低圧蒸気配管36と減圧弁52を経て、熱機器3に供給され始める。日射量が減少しても、アキュムレータ33内部の水温が高くて圧力P2が圧力P3の設定値を上回っている間は、引き続き熱機器3に供給され続ける。このように日射量の変動がアキュムレータ33で吸収され、太陽熱で作られた一定圧力(圧力P3の設定値)の低圧蒸気が、長時間連続して蒸気供給装置10から熱機器3に供給される。   When the amount of solar radiation increases and the pressure P <b> 2 exceeds the set value of the pressure P <b> 3, the vapor evaporated from the water surface of the accumulator 33 starts to be supplied to the thermal equipment 3 through the low pressure steam pipe 36 and the pressure reducing valve 52. Even if the amount of solar radiation decreases, as long as the water temperature inside the accumulator 33 is high and the pressure P2 exceeds the set value of the pressure P3, it is continuously supplied to the thermal equipment 3. In this way, fluctuations in the amount of solar radiation are absorbed by the accumulator 33, and low-pressure steam having a constant pressure (set value of the pressure P3) created by solar heat is supplied from the steam supply device 10 to the thermal equipment 3 continuously for a long time. .

アキュムレータ33の水面における蒸気流速は小さいので、低圧蒸気配管36には水滴の同伴が少ない乾き度の高い良質な蒸気が供給される。なお、低圧蒸気配管36への水滴の同伴を防止するために、アキュムレータ33への水の補給は、アキュムレータ33の下部から行い水面をなるべく波立たせないようにすると良い。また、蒸気配管32からアキュムレータ33内の水中へ供給される蒸気が、前述のように微細な気泡となるように構成することで、水面を波立たせることを抑制している。   Since the steam flow velocity on the water surface of the accumulator 33 is small, the low-pressure steam pipe 36 is supplied with high-quality steam having a high dryness with little entrainment of water droplets. In order to prevent water droplets from accompanying the low-pressure steam pipe 36, it is preferable that the accumulator 33 is replenished with water from the bottom of the accumulator 33 so that the water surface is not rippled as much as possible. Further, the steam supplied from the steam pipe 32 to the water in the accumulator 33 is configured to be fine bubbles as described above, thereby suppressing the water surface from being rippled.

アキュムレータ33から熱機器3に蒸気が供給されるうちに、圧力P2が圧力P3の設定値を下回ってくると、減圧弁52が閉まって蒸気供給装置10からの蒸気供給が止まる。熱機器3における蒸気消費に伴って、既設低圧側配管14の圧力が圧力P4の設定値まで低下すると、今度は既設高圧側配管13から減圧弁15を経て、熱機器3に蒸気が供給され始める。この状態は、日射量が再び増加して、圧力P2が圧力P3の設定値を上回るようになるまで継続する。このように、日射量が不足する場合は、一定圧力(圧力P4の設定値)の低圧蒸気が、既設高圧側配管13から熱機器3に供給される。   If the pressure P2 falls below the set value of the pressure P3 while the steam is supplied from the accumulator 33 to the thermal equipment 3, the pressure reducing valve 52 is closed and the steam supply from the steam supply device 10 is stopped. When the pressure of the existing low-pressure side pipe 14 decreases to the set value of the pressure P4 as the steam is consumed in the heat equipment 3, steam starts to be supplied from the existing high-pressure side pipe 13 to the heat equipment 3 through the pressure reducing valve 15. . This state continues until the amount of solar radiation increases again and the pressure P2 exceeds the set value of the pressure P3. Thus, when the amount of solar radiation is insufficient, low-pressure steam having a constant pressure (set value of pressure P4) is supplied from the existing high-pressure side pipe 13 to the thermal equipment 3.

つまり、熱機器3には圧力P3の設定値を上限、圧力P4の設定値を加減とする圧力の低圧蒸気が、常時安定して供給される。また圧力P3の設定値が圧力P4の設定値より僅かに高いため、蒸気供給装置10が既設高圧側配管13より、優先して熱機器3に低圧蒸気を供給する。よって既設蒸気供給装置4の、燃料消費量やCO2排出量を削減することができる。   In other words, the low pressure steam having a pressure with the set value of the pressure P3 as the upper limit and the set value of the pressure P4 as the set value is constantly and stably supplied to the thermal equipment 3. Further, since the set value of the pressure P3 is slightly higher than the set value of the pressure P4, the steam supply device 10 preferentially supplies the low pressure steam to the thermal equipment 3 over the existing high pressure side pipe 13. Therefore, the fuel consumption and CO2 emission of the existing steam supply device 4 can be reduced.

ところで、リーク配管56には安全弁57が取り付けられている。集熱器30の集熱管31に集光される太陽熱が強すぎて、既設蒸気供給装置4の系内(低圧蒸気配管36、アキュムレータ33、還水配管35、集熱管31、蒸気配管32)の圧力が許容範囲を超えた場合は、リーク配管56に取り付けられた安全弁57が開き、リーク配管56を経て外部に蒸気がリークされる。これにより、例えば集熱器30の廻りの配管等からの蒸気漏れが防止される。   Incidentally, a safety valve 57 is attached to the leak pipe 56. The solar heat collected on the heat collecting pipe 31 of the heat collector 30 is too strong, and the system of the existing steam supply device 4 (low pressure steam pipe 36, accumulator 33, return water pipe 35, heat collecting pipe 31, steam pipe 32) When the pressure exceeds the allowable range, the safety valve 57 attached to the leak pipe 56 is opened, and steam is leaked to the outside through the leak pipe 56. Thereby, for example, steam leakage from piping around the heat collector 30 is prevented.

以上の結果をまとめると、第一に太陽熱によって既設蒸気供給装置4のボイラ2の燃料消費量を抑制できる。第二に、不安定な太陽熱を効果的に利用して、工場などでニーズの高い低圧蒸気を安定して製造することができる。第三に、既設蒸気供給装置4の系内に空気が混入する心配もなく、一定圧力でかつ乾き度の高い良質な蒸気を供給できる。第四に、蓄熱媒体として水を利用しているので、安価安全であり、廃棄も容易である。その他、蒸気供給システム5は、集熱部と蓄熱部の一体化したり、真空ポンプ類・減圧弁・安全弁・給水ポンプ類等を一体化したりすることが可能で、既設蒸気供給装置4への組み込みが容易である。   In summary, the fuel consumption of the boiler 2 of the existing steam supply device 4 can be suppressed by solar heat. Secondly, the unstable solar heat can be effectively used to stably produce low-pressure steam that is highly needed in factories and the like. Thirdly, it is possible to supply high-quality steam with a constant pressure and high dryness without worrying about air mixing into the system of the existing steam supply device 4. Fourth, since water is used as a heat storage medium, it is inexpensive and safe and can be easily discarded. In addition, the steam supply system 5 can be integrated with a heat collecting part and a heat storage part, or can be integrated with a vacuum pump, a pressure reducing valve, a safety valve, a water supply pump, and the like. Is easy.

以上、本発明の好適な実施の形態の一例を説明したが、本発明はここに示した形態に限定されない。建物1に予め設置されている既設蒸気供給装置4に、新しく蒸気供給装置10を組み込む場合、既設低圧側配管14の廻りに減圧弁52を設置するスペースが無い場合が考えられる。その場合は、図2に示すように、真空ポンプ類と減圧弁・安全弁を一体化し(ポンプユニットA)、これを集熱部近傍に設置する。また、建物1に予め設置されている既設蒸気供給装置4に、新しく蒸気供給装置10を組み込む場合、既設還水配管20の廻りに給水ポンプ類の設置スペースが無い場合が考えられる。その場合は、図3に示すように、真空ポンプ類と減圧弁・安全弁・給水ポンプ類を一体化し(ポンプユニットB)、これを集熱部近傍に設置する。また、既設蒸気供給装置を備えた建物に蒸気供給装置を導入する例を示したが、本発明は新築建物にも適用できる。本発明はボイラ等の既設蒸気供給装置を備えない場合に、熱機器に対して蒸気を供給する装置としても適用できる。   As mentioned above, although an example of the preferred embodiment of this invention was demonstrated, this invention is not limited to the form shown here. When the steam supply device 10 is newly incorporated in the existing steam supply device 4 installed in the building 1 in advance, there may be a case where there is no space for installing the pressure reducing valve 52 around the existing low-pressure side pipe 14. In that case, as shown in FIG. 2, the vacuum pumps, the pressure reducing valve and the safety valve are integrated (pump unit A) and installed near the heat collecting section. Further, when the steam supply device 10 is newly installed in the existing steam supply device 4 installed in the building 1 in advance, there may be a case where there is no installation space for the water supply pumps around the existing return water pipe 20. In that case, as shown in FIG. 3, the vacuum pumps, the pressure reducing valve, the safety valve, and the water supply pump are integrated (pump unit B) and installed near the heat collecting section. Moreover, although the example which introduce | transduces a steam supply apparatus into the building provided with the existing steam supply apparatus was shown, this invention is applicable also to a new building. The present invention can also be applied as an apparatus for supplying steam to a thermal apparatus when an existing steam supply apparatus such as a boiler is not provided.

本発明は、建物内に発生する蒸気需要に有用である。   The present invention is useful for the demand for steam generated in a building.

1 建物
2 ボイラ
3 熱機器
4 既設蒸気供給装置
5 蒸気供給システム
9 高圧蒸気系統用配管
10 蒸気供給装置
11 主配管
12 高圧蒸気ヘッダ
13 既設高圧側配管
14 既設低圧側配管
15 減圧弁
16、17 圧力センサ
20 既設還水配管
22 軟水器
29 還水管
30 集熱器
31 集熱管
32 蒸気配管
33 アキュムレータ
34 ボールタップ
35 還水配管
36 低圧蒸気配管
37 ストレーナ
38 給水ポンプ
39 逆止弁
40 圧力センサ
45 補給水槽
46 バイパス配管
47 ボールタップ
49 温度センサ
50 ストレーナ
51 逆止弁
52 減圧弁
53 圧力センサ
55 減圧配管
56 リーク配管
57 安全弁
60 圧力センサ
61 真空ポンプ
62 逆止弁
63 電磁弁
65 制御部
DESCRIPTION OF SYMBOLS 1 Building 2 Boiler 3 Thermal equipment 4 Existing steam supply device 5 Steam supply system 9 High pressure steam system piping 10 Steam supply device 11 Main piping 12 High pressure steam header 13 Existing high pressure side piping 14 Existing low pressure side piping 15 Pressure reducing valves 16, 17 Pressure Sensor 20 Existing return water pipe 22 Water softener 29 Return water pipe 30 Heat collector 31 Heat collection pipe 32 Steam pipe 33 Accumulator 34 Ball tap 35 Return water pipe 36 Low pressure steam pipe 37 Strainer 38 Water supply pump 39 Check valve 40 Pressure sensor 45 Supply water tank 46 Bypass piping 47 Ball tap 49 Temperature sensor 50 Strainer 51 Check valve 52 Pressure reducing valve 53 Pressure sensor 55 Pressure reducing piping 56 Leak piping 57 Safety valve 60 Pressure sensor 61 Vacuum pump 62 Check valve 63 Electromagnetic valve 65 Control unit

Claims (4)

熱機器に蒸気を供給する装置であって、
太陽熱で沸騰させられた蒸気を溜めるアキュムレータと、
前記アキュムレータに溜められた蒸気を前記熱機器に供給する蒸気配管と、
前記蒸気配管内を減圧させて沸騰状態を作る真空ポンプを備え、
前記真空ポンプは、蒸気の沸点が大気圧での沸点よりも低い時のみ前記蒸気配管内を減圧させることを特徴とする、太陽熱を利用した蒸気供給装置。
An apparatus for supplying steam to a thermal device,
An accumulator for storing steam boiled by solar heat,
A steam pipe for supplying steam stored in the accumulator to the thermal device;
A vacuum pump for reducing the pressure inside the steam pipe to create a boiling state;
The steam supply device using solar heat, wherein the vacuum pump depressurizes the inside of the steam pipe only when the boiling point of the steam is lower than the boiling point at atmospheric pressure.
太陽熱で水を沸騰させて蒸気を作る集熱器を備え、
前記集熱器で作られた蒸気が前記アキュムレータに供給され、
前記アキュムレータには水が溜められており、集熱器で発生した蒸気がアキュムレータの水中に供給されることを特徴とする、請求項1に記載の太陽熱を利用した蒸気供給装置。
It has a collector that makes steam by boiling water with solar heat,
Steam produced by the collector is supplied to the accumulator;
The steam supply device using solar heat according to claim 1, wherein water is stored in the accumulator, and steam generated by the heat collector is supplied into the water of the accumulator.
ボイラで作った蒸気を前記熱機器に供給する既設蒸気供給装置を備え、
請求項1または2に記載の蒸気供給装置で作られた蒸気が前記熱機器に優先的に供給されることを特徴とする、蒸気供給システム。
It has an existing steam supply device that supplies steam made by a boiler to the thermal equipment,
A steam supply system, wherein steam produced by the steam supply device according to claim 1 or 2 is preferentially supplied to the thermal equipment.
前記熱機器から前記ボイラに戻される還水の一部が、前記蒸気供給装置のアキュムレータに戻されることを特徴とする、請求項3に記載の蒸気供給システム。
The steam supply system according to claim 3, wherein a part of the return water returned from the thermal device to the boiler is returned to the accumulator of the steam supply device.
JP2010235354A 2010-10-20 2010-10-20 Steam supply device and steam supply system using solar heat Active JP5794772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235354A JP5794772B2 (en) 2010-10-20 2010-10-20 Steam supply device and steam supply system using solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235354A JP5794772B2 (en) 2010-10-20 2010-10-20 Steam supply device and steam supply system using solar heat

Publications (2)

Publication Number Publication Date
JP2012087989A true JP2012087989A (en) 2012-05-10
JP5794772B2 JP5794772B2 (en) 2015-10-14

Family

ID=46259790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235354A Active JP5794772B2 (en) 2010-10-20 2010-10-20 Steam supply device and steam supply system using solar heat

Country Status (1)

Country Link
JP (1) JP5794772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183211A (en) * 2022-08-25 2022-10-14 云南电网有限责任公司电力科学研究院 Steam supply system
JP7387188B2 (en) 2021-11-19 2023-11-28 株式会社ボイラエンジニアリング Steam piping system equipped with solenoid valves and pressure reducing valves

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE540410C (en) * 1923-11-23 1931-12-15 Gerschweiler Elek Sche Central Large water storage tank
JPS55111890A (en) * 1979-02-21 1980-08-28 Mitsubishi Heavy Ind Ltd Method for preparation of fresh water from sea water by utilizing solar energy
JPS5677644A (en) * 1979-11-27 1981-06-26 Sanyo Electric Co Ltd Hot water feeder utilizing solar heat
JPS5777644A (en) * 1980-10-31 1982-05-15 Seiko Epson Corp Liquid crystal ester compound
JPS57104050A (en) * 1980-12-19 1982-06-28 Toshiba Corp Solar heat collector
JPS57152556U (en) * 1981-03-19 1982-09-25
JPS5943909A (en) * 1982-09-03 1984-03-12 Nippon Kokan Kk <Nkk> Method for storing and taking out steam by vertical type steam accumulator
JPS6340242B2 (en) * 1982-11-30 1988-08-10 Taeko Uchiki
JPH04316903A (en) * 1991-04-15 1992-11-09 Tlv Co Ltd Steam heating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE540410C (en) * 1923-11-23 1931-12-15 Gerschweiler Elek Sche Central Large water storage tank
JPS55111890A (en) * 1979-02-21 1980-08-28 Mitsubishi Heavy Ind Ltd Method for preparation of fresh water from sea water by utilizing solar energy
JPS5677644A (en) * 1979-11-27 1981-06-26 Sanyo Electric Co Ltd Hot water feeder utilizing solar heat
JPS5777644A (en) * 1980-10-31 1982-05-15 Seiko Epson Corp Liquid crystal ester compound
JPS57104050A (en) * 1980-12-19 1982-06-28 Toshiba Corp Solar heat collector
JPS57152556U (en) * 1981-03-19 1982-09-25
JPS5943909A (en) * 1982-09-03 1984-03-12 Nippon Kokan Kk <Nkk> Method for storing and taking out steam by vertical type steam accumulator
JPS6340242B2 (en) * 1982-11-30 1988-08-10 Taeko Uchiki
JPH04316903A (en) * 1991-04-15 1992-11-09 Tlv Co Ltd Steam heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387188B2 (en) 2021-11-19 2023-11-28 株式会社ボイラエンジニアリング Steam piping system equipped with solenoid valves and pressure reducing valves
CN115183211A (en) * 2022-08-25 2022-10-14 云南电网有限责任公司电力科学研究院 Steam supply system

Also Published As

Publication number Publication date
JP5794772B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
KR101547007B1 (en) Energy system for dwelling support
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
KR101676589B1 (en) Method for operating an arrangement for storing thermal energy
JP5612096B2 (en) Self-supporting pump for heated liquid, and heat-driven liquid closed-loop automatic circulation system using the same
KR20190067207A (en) Sub-atmospheric heat and cold system
CN104713074B (en) A kind of direct current cooker starts the hydrophobic System and method for utilizing pressure flash vessel to reclaim
CN105431686B (en) Geothermal source is connect with the thermal technology of remote heating network
WO2011004866A1 (en) Vapor supply device
US9279601B2 (en) Solar energy system
EP2279334A1 (en) Thermal solar power plant
CN104628067A (en) Solar-powered seawater desalination device, stove combined device and using method thereof
US9297279B2 (en) Pumping device using vapor pressure for supplying water for power plant
CN102278285A (en) High-temperature heat-accumulating-type new energy utilizing system
JP5794772B2 (en) Steam supply device and steam supply system using solar heat
WO2001057453A1 (en) Solar heat harnessing system
CN107200372B (en) Seawater desalination system and method
WO2010070703A1 (en) Steam generator
RU2631057C1 (en) System of passive removal of heat of reactor installation
KR101358303B1 (en) Floating marine structure and electricity generation method using the same
CN205714612U (en) The anti-condensation structure of trough type solar power generation and solar parabolic through power generation system
CN201109723Y (en) Supply utilization apparatus for sea water desalination and power generation
CN108548443A (en) Heat chemistry adsorbs heat-storing device
CN104265586B (en) Power generation system comprising steam heat accumulator
CN202297191U (en) Natural condensation type solar pure water production and water heating device
CN108758586A (en) A kind of clean energy resource energy storage steam generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R150 Certificate of patent or registration of utility model

Ref document number: 5794772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150