JP2012086824A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2012086824A
JP2012086824A JP2010267087A JP2010267087A JP2012086824A JP 2012086824 A JP2012086824 A JP 2012086824A JP 2010267087 A JP2010267087 A JP 2010267087A JP 2010267087 A JP2010267087 A JP 2010267087A JP 2012086824 A JP2012086824 A JP 2012086824A
Authority
JP
Japan
Prior art keywords
groove
tire
lug
circumferential main
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010267087A
Other languages
Japanese (ja)
Other versions
JP5750873B2 (en
Inventor
Koji Nishio
好司 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010267087A priority Critical patent/JP5750873B2/en
Publication of JP2012086824A publication Critical patent/JP2012086824A/en
Application granted granted Critical
Publication of JP5750873B2 publication Critical patent/JP5750873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of enhancing foreign matter biting resistance.SOLUTION: In this pneumatic tire 1, lug grooves 31 and 32 are tilted at a tilting angle γ with respect to a groove depth direction in a cross-sectional view of the lug grooves 31 and 32 in a tire peripheral direction. Here, the tilting angle γ of the lug groove 31 in one land portion 41 and the tilting angle γ of the lug groove 31 (32) in the other land portion 41 (42) have opposite directions to each other, of the land portions 41, 41 (41, 42) adjacent to each other across a peripheral direction main groove 21 (22). A groove wall angle of the peripheral direction main groove 21 (22) changes toward the tire peripheral direction. Right and left groove walls of the peripheral direction main groove 21 (22) held between the land portions 41, 41 (41, 42) include an overlapping portion in a perspective chart in the tire peripheral direction.

Description

この発明は、空気入りタイヤに関し、さらに詳しくは、耐異物噛み込み性能を向上できる空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve the resistance to foreign matter biting.

重荷重車両に装着される空気入りタイヤでは、周方向主溝に石が噛み込んで抜けなくなり、この石噛みによりタイヤの耐久性能が低下するという課題がある。このような課題に関する従来の空気入りタイヤとして、特許文献1〜4に記載される技術が知られている。   In a pneumatic tire mounted on a heavy-duty vehicle, there is a problem that stones are caught in the circumferential main groove and cannot be removed, and the durability performance of the tire is lowered by this stone biting. As conventional pneumatic tires relating to such problems, techniques described in Patent Documents 1 to 4 are known.

特開平5−338413号公報JP-A-5-338413 特開2002−337514号公報JP 2002-337514 A 特開2008−087628号公報JP 2008-087628 A 特開2004−155382号公報JP 2004-155382 A

この発明は、耐異物噛み込み性能を向上できる空気入りタイヤを提供することを目的とする。   An object of the present invention is to provide a pneumatic tire capable of improving the resistance to foreign matter biting.

上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の周方向主溝と、タイヤ幅方向に延在する複数のラグ溝と、前記周方向主溝および前記ラグ溝に区画されて成る陸部とを備える空気入りタイヤであって、前記ラグ溝のタイヤ周方向の断面視にて、前記ラグ溝が溝深さ方向に対して傾斜角γにて傾斜すると共に、前記周方向主溝を挟んで隣り合う前記陸部のうち一方の前記陸部における前記ラグ溝の傾斜角γと、他方の前記陸部における前記ラグ溝の傾斜角γとが相互に逆方向となり、且つ、前記周方向主溝の溝壁角度がタイヤ周方向に向かうに連れて変化すると共に、前記周方向主溝の対向する溝壁がタイヤ周方向への投射図にて重複部を有することを特徴とする。   In order to achieve the above object, a pneumatic tire according to the present invention includes a plurality of circumferential main grooves extending in the tire circumferential direction, a plurality of lug grooves extending in the tire width direction, the circumferential main groove, and A pneumatic tire including a land portion partitioned by the lug groove, wherein the lug groove is inclined at an inclination angle γ with respect to the groove depth direction in a cross-sectional view in the tire circumferential direction of the lug groove. In addition, the inclination angle γ of the lug groove in one of the land portions adjacent to the circumferential main groove and the inclination angle γ of the lug groove in the other land portion are mutually The groove wall angle is reversed and the groove wall angle of the circumferential main groove changes as it goes in the tire circumferential direction, and the groove wall facing the circumferential main groove overlaps in the projection view in the tire circumferential direction. It is characterized by having.

この空気入りタイヤでは、タイヤ接地時にて、隣り合う陸部がタイヤ周方向に対して相互に逆方向に倒れ込むことにより、周方向主溝の溝壁が噛み込んだ異物を押し上げて周方向主溝の外部に排出させる。これにより、タイヤの耐異物噛み込み性能が向上する利点がある。   In this pneumatic tire, when the tire is in contact with the ground, adjacent land portions fall in opposite directions with respect to the circumferential direction of the tire, thereby pushing up the foreign matter caught in the groove wall of the circumferential main groove to raise the circumferential main groove. To the outside. Thereby, there exists an advantage which the foreign-material biting performance of a tire improves.

また、この発明にかかる空気入りタイヤは、前記周方向主溝の溝壁のタイヤ周方向への投射図にて、対向する前記溝壁の重複部の面積Saと総投射影面積SとがSa/S≧0.15である。   Further, in the pneumatic tire according to the present invention, in the projection view of the groove wall of the circumferential main groove in the tire circumferential direction, the area Sa of the overlapping portion of the opposed groove wall and the total projected shadow area S are Sa. /S≧0.15.

この空気入りタイヤでは、重複部の面積Saが適正化されるので、タイヤの耐異物噛み込み性能がさらに向上する利点がある。   In this pneumatic tire, since the area Sa of the overlapping portion is optimized, there is an advantage that the foreign matter biting performance of the tire is further improved.

また、この発明にかかる空気入りタイヤは、前記ラグ溝の傾斜角γが5[deg]≦|γ|≦45[deg]の範囲内にある。   In the pneumatic tire according to the present invention, the inclination angle γ of the lug groove is in the range of 5 [deg] ≦ | γ | ≦ 45 [deg].

この空気入りタイヤでは、傾斜角γの範囲が適正化されるので、タイヤ接地時にて、タイヤ周方向への陸部の動きが良好となる。これにより、タイヤの耐異物噛み込み性能がさらに向上する利点がある。   In this pneumatic tire, since the range of the inclination angle γ is optimized, the movement of the land portion in the tire circumferential direction becomes good at the time of tire contact. Thereby, there is an advantage that the foreign matter biting performance of the tire is further improved.

また、この発明にかかる空気入りタイヤは、一方の前記陸部における前記ラグ溝のタイヤ幅方向に対する傾斜角θと、他方の前記陸部における前記ラグ溝のタイヤ幅方向に対する傾斜角φとが|θ−φ|<20[deg]の関係を有する。   Further, in the pneumatic tire according to the present invention, the inclination angle θ with respect to the tire width direction of the lug groove in one of the land portions and the inclination angle φ with respect to the tire width direction of the lug groove in the other land portion are | θ−φ | <20 [deg].

この空気入りタイヤでは、ラグ溝のタイヤ幅方向に対する傾斜角θ、φの関係が適正化されるので、タイヤ接地時における隣り合う陸部の倒れ込み方向がほぼ逆方向となる。これにより、タイヤの耐異物噛み込み性能が効果的に向上する利点がある。   In this pneumatic tire, since the relationship between the inclination angles θ and φ of the lug groove with respect to the tire width direction is optimized, the falling direction of adjacent land portions at the time of tire contact is substantially reverse. Thereby, there exists an advantage which the anti-foreign material biting performance of a tire improves effectively.

また、この発明にかかる空気入りタイヤは、前記ラグ溝の溝深さhがh≧6[mm]の範囲にある。   In the pneumatic tire according to the present invention, the groove depth h of the lug groove is in a range of h ≧ 6 [mm].

この空気入りタイヤでは、ラグ溝の溝深さhが適正化されるので、タイヤ接地時における隣り合う陸部の倒れ込み作用が適正に得られる。これにより、タイヤの耐異物噛み込み性能が適正に向上する利点がある。   In this pneumatic tire, the groove depth h of the lug groove is optimized, so that the collapse action of the adjacent land portions at the time of tire contact is properly obtained. Thereby, there exists an advantage which the anti- foreign material biting performance of a tire improves appropriately.

また、この発明にかかる空気入りタイヤは、重荷重用ラジアルタイヤに適用される。   The pneumatic tire according to the present invention is applied to a heavy duty radial tire.

この発明にかかる空気入りタイヤでは、タイヤ接地時にて、隣り合う陸部がタイヤ周方向に対して相互に逆方向に倒れ込むことにより、周方向主溝の溝壁が噛み込んだ異物を押し上げて周方向主溝の外部に排出させる。これにより、タイヤの耐異物噛み込み性能が向上する利点がある。   In the pneumatic tire according to the present invention, when the tire is in contact with the ground, adjacent land portions fall in opposite directions with respect to the circumferential direction of the tire, thereby pushing up the foreign matter caught in the groove wall of the circumferential main groove. Drain outside the direction main groove. Thereby, there exists an advantage which the foreign-material biting performance of a tire improves.

図1は、この発明の実施の形態にかかる空気入りタイヤのトレッド面を示す平面図である。FIG. 1 is a plan view showing a tread surface of a pneumatic tire according to an embodiment of the present invention. 図2は、図1に記載した空気入りタイヤのラグ溝を示すA−A視断面図である。2 is a cross-sectional view taken along line AA showing the lug groove of the pneumatic tire depicted in FIG. 1. 図3は、図1に記載した空気入りタイヤのラグ溝を示すタイヤ周方向のB−B視断面図である。FIG. 3 is a cross-sectional view taken along the line B-B in the tire circumferential direction showing the lug groove of the pneumatic tire depicted in FIG. 1. 図4は、図1に記載した空気入りタイヤの周方向主溝の溝壁を示すC部斜視図である。FIG. 4 is a C-part perspective view illustrating a groove wall of a circumferential main groove of the pneumatic tire illustrated in FIG. 1. 図5は、図1に記載した空気入りタイヤの周方向主溝の溝壁を示す投射図である。FIG. 5 is a projection view showing the groove wall of the circumferential main groove of the pneumatic tire shown in FIG. 1. 図6は、図1に記載した空気入りタイヤの作用を示す説明図である。FIG. 6 is an explanatory view showing the operation of the pneumatic tire shown in FIG. 図7は、図1に記載した空気入りタイヤの作用を示す説明図である。FIG. 7 is an explanatory view showing the operation of the pneumatic tire shown in FIG. 図8は、図1に記載した空気入りタイヤのラグ溝の変形例を示す説明図である。FIG. 8 is an explanatory view showing a modification of the lug groove of the pneumatic tire shown in FIG. 1. 図9は、図1に記載した空気入りタイヤの変形例を示す説明図である。FIG. 9 is an explanatory view illustrating a modified example of the pneumatic tire depicted in FIG. 1. 図10は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す表である。FIG. 10 is a table showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.

[空気入りタイヤ]
図1は、この発明の実施の形態にかかる空気入りタイヤのトレッド面を示す平面図である。
[Pneumatic tire]
FIG. 1 is a plan view showing a tread surface of a pneumatic tire according to an embodiment of the present invention.

この空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、タイヤ幅方向に延在するラグ溝31、32と、これらの周方向主溝21、22およびラグ溝31、32に区画されて成る陸部41、42とをトレッド部に備える(図1参照)。例えば、この実施の形態では、タイヤ赤道線CL上の周方向主溝21を中心として、3本の周方向主溝21、22が形成されている。また、タイヤ幅方向に延在してこれらの周方向主溝21、22に開口する複数のラグ溝31、32が形成されている。そして、これらの周方向主溝21、22およびラグ溝31、32により4列の陸部(ブロック列)41、42が区画されている。また、タイヤ赤道線CLを中心とした左右対称なトレッドパターンが形成されている。   The pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, lug grooves 31 and 32 extending in the tire width direction, and the circumferential main grooves 21 and 22 and lugs. Land portions 41 and 42 defined by grooves 31 and 32 are provided in the tread portion (see FIG. 1). For example, in this embodiment, three circumferential main grooves 21 and 22 are formed around the circumferential main groove 21 on the tire equator line CL. Further, a plurality of lug grooves 31 and 32 extending in the tire width direction and opening in the circumferential main grooves 21 and 22 are formed. The circumferential main grooves 21 and 22 and the lug grooves 31 and 32 define four rows of land portions (block rows) 41 and 42. Further, a tread pattern that is symmetrical with respect to the tire equator line CL is formed.

なお、この実施の形態では、タイヤ幅方向の最も外側にある周方向主溝22、22を境界としてトレッド部のタイヤ幅方向内側にある陸部41をセンター陸部と呼び、タイヤ幅方向外側にある陸部42をショルダー陸部と呼ぶ。また、周方向主溝21、22とは、溝幅6[mm]以上かつ溝深さが最も深い位置で10[mm]以上となる周方向溝をいうものとする。   In this embodiment, the land portion 41 on the inner side in the tire width direction of the tread portion with the circumferential main grooves 22 and 22 located on the outermost side in the tire width direction as a boundary is referred to as a center land portion, and on the outer side in the tire width direction. A certain land portion 42 is called a shoulder land portion. The circumferential main grooves 21 and 22 are circumferential grooves having a groove width of 6 mm or more and a groove depth of 10 mm or more at the deepest position.

[石噛み抑制構造]
図2および図3は、図1に記載した空気入りタイヤのラグ溝を示すA−A視断面図(図2)およびB−B視断面図(図3)である。これらの図は、周方向主溝を挟んで隣り合う陸部のラグ溝をそれぞれ示している。図4は、図1に記載した空気入りタイヤの周方向主溝の溝壁を示すC部斜視図である。同図は、タイヤ周方向に変化する溝壁角度の単位周期あたりの様子を示している。図5は、図1に記載した空気入りタイヤの周方向主溝の溝壁を示す投射図である。
[Stone chewing control structure]
2 and 3 are an AA cross-sectional view (FIG. 2) and a BB cross-sectional view (FIG. 3) showing the lug groove of the pneumatic tire shown in FIG. These drawings respectively show the lug grooves in the land portion adjacent to each other with the circumferential main groove interposed therebetween. FIG. 4 is a C-part perspective view illustrating a groove wall of a circumferential main groove of the pneumatic tire illustrated in FIG. 1. The figure shows a state of the groove wall angle per unit period changing in the tire circumferential direction. FIG. 5 is a projection view showing the groove wall of the circumferential main groove of the pneumatic tire shown in FIG. 1.

この空気入りタイヤ1は、周方向主溝21、22における石噛みを抑制するために、以下の構造を備える(図1〜図5参照)。   The pneumatic tire 1 has the following structure in order to suppress stone biting in the circumferential main grooves 21 and 22 (see FIGS. 1 to 5).

まず、ラグ溝31、32のタイヤ周方向の断面視にて、ラグ溝31、32が溝深さ方向に対して傾斜角γにて傾斜する(図1〜図3参照)。また、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のうち、一方の陸部41におけるラグ溝31の傾斜角γと、他方の陸部41(42)におけるラグ溝31(32)の傾斜角γとが相互に逆方向(異符号)となる。また、この周方向主溝21(22)の溝壁角度がタイヤ周方向に向かうに連れて変化する(図1および図4参照)。また、これらの陸部41、41(41、42)に挟まれた周方向主溝21(22)の左右の溝壁が、タイヤ周方向への投射図にて重複部(面積Sa)を有する(図5参照)。   First, the lug grooves 31 and 32 are inclined at an inclination angle γ with respect to the groove depth direction in a sectional view of the lug grooves 31 and 32 in the tire circumferential direction (see FIGS. 1 to 3). Of the land portions 41, 41 (41, 42) adjacent to each other across the circumferential main groove 21 (22), the inclination angle γ of the lug groove 31 in one land portion 41 and the other land portion 41 (42). ) Of the lug groove 31 (32) in opposite directions (different signs). Further, the groove wall angle of the circumferential main groove 21 (22) changes as it goes in the tire circumferential direction (see FIGS. 1 and 4). Further, the left and right groove walls of the circumferential main groove 21 (22) sandwiched between the land portions 41, 41 (41, 42) have overlapping portions (area Sa) in a projection view in the tire circumferential direction. (See FIG. 5).

例えば、この実施の形態では、左右一対のセンター陸部41、41およびショルダー陸部42、42が、それぞれ複数のラグ溝31、32を有している(図1〜図3参照)。また、これらのラグ溝31、32がタイヤ周方向に対して所定の傾斜角にて傾斜しつつ各陸部41、42を横断している。また、図1の左側のショルダー陸部42および右側のセンター陸部41では、ラグ溝32、31が溝深さ方向に対してタイヤ周方向かつ一方向(図1の下側)に傾斜している。一方、図1の左側のセンター陸部41および右側のショルダー陸部42では、ラグ溝31、32が溝深さ方向に対してタイヤ周方向かつ他方向(図1の上側)に傾斜している。これにより、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のラグ溝31、31(31、32)が、相互に逆方向に傾斜している(周方向主溝21、22を跨ぐたびに傾斜角γの向きを反転させている)。   For example, in this embodiment, the pair of left and right center land portions 41 and 41 and shoulder land portions 42 and 42 have a plurality of lug grooves 31 and 32, respectively (see FIGS. 1 to 3). The lug grooves 31 and 32 traverse the land portions 41 and 42 while being inclined at a predetermined inclination angle with respect to the tire circumferential direction. Further, in the left shoulder land portion 42 and the right center land portion 41 in FIG. 1, the lug grooves 32 and 31 are inclined in the tire circumferential direction and in one direction (the lower side in FIG. 1) with respect to the groove depth direction. Yes. On the other hand, in the center land portion 41 on the left side and the shoulder land portion 42 on the right side in FIG. 1, the lug grooves 31 and 32 are inclined in the tire circumferential direction and the other direction (upper side in FIG. 1) with respect to the groove depth direction. . Thereby, the lug grooves 31 and 31 (31 and 32) of the land portions 41 and 41 (41 and 42) adjacent to each other with the circumferential main groove 21 (22) interposed therebetween are inclined in opposite directions (circumferential). The direction of the inclination angle γ is reversed each time the direction main grooves 21 and 22 are straddled).

また、周方向主溝21、22の溝底が、溝開口幅よりも狭い溝幅を有し、タイヤ周方向に向かってジグザグ状に延在している(図1および図4参照)。また、かかる立体的な溝壁面により、周方向主溝21、22の溝壁角度がタイヤ周方向に向かうに連れて変化している。また、一方の陸部41側にある周方向主溝21(22)の溝壁と、他方の陸部41(42)側にある周方向主溝21(22)の溝壁とが、タイヤ周方向への投射図にて、周方向主溝21(22)の最大溝深さ位置に重複部を有している(図5参照)。   Moreover, the groove bottoms of the circumferential main grooves 21 and 22 have a groove width narrower than the groove opening width and extend in a zigzag shape in the tire circumferential direction (see FIGS. 1 and 4). Further, due to the three-dimensional groove wall surface, the groove wall angle of the circumferential main grooves 21 and 22 changes as it goes in the tire circumferential direction. Further, the groove wall of the circumferential main groove 21 (22) on the one land portion 41 side and the groove wall of the circumferential main groove 21 (22) on the other land portion 41 (42) side are the tire circumference. In the projection view in the direction, there is an overlapping portion at the maximum groove depth position of the circumferential main groove 21 (22) (see FIG. 5).

また、この実施の形態では、周方向主溝21、22がストレート溝である(図1参照)。しかし、これに限らず、周方向主溝21、22がジグザグ溝であっても良い(図9参照)。   In this embodiment, the circumferential main grooves 21 and 22 are straight grooves (see FIG. 1). However, the present invention is not limited to this, and the circumferential main grooves 21 and 22 may be zigzag grooves (see FIG. 9).

なお、周方向主溝21、22の溝底における溝幅Dは、D>0[mm]である。これにより、溝底におけるクラックの発生が抑制される。   The groove width D at the groove bottoms of the circumferential main grooves 21 and 22 is D> 0 [mm]. Thereby, generation | occurrence | production of the crack in a groove bottom is suppressed.

なお、ラグ溝の傾斜角γとは、タイヤが規定リムに装着されて規定内圧を付与されると共に無負荷状態とされたときの、ラグ溝の溝深さ方向の進展角度であり、以下のように定義される(図2および図3参照)。まず、ラグ溝のタイヤ周方向の断面視にて、ラグ溝の溝開口幅の中点と、最大溝深さ位置(溝底幅の中点)とを結ぶ直線を引く。そして、この直線と、溝深さ方向(陸部の踏面に対する法線)とのなす角を傾斜角γとする。この傾斜角γは、ラグ溝の溝壁面が溝深さ方向に屈曲する構成(図8参照)においても、同様に定義される。また、ラグ溝の傾斜角γがラグ溝の溝長さ方向に向かうに連れて変化する構成(図示省略)では、傾斜角γがラグ溝の溝長さの全域における平均値として算出される。   In addition, the inclination angle γ of the lug groove is a progress angle in the groove depth direction of the lug groove when the tire is mounted on the specified rim and applied with the specified internal pressure and is in an unloaded state. (See FIG. 2 and FIG. 3). First, in a cross-sectional view of the lug groove in the tire circumferential direction, a straight line connecting the midpoint of the groove opening width of the lug groove and the maximum groove depth position (midpoint of the groove bottom width) is drawn. The angle formed by this straight line and the groove depth direction (normal to the tread of the land portion) is defined as an inclination angle γ. This inclination angle γ is similarly defined in the configuration in which the groove wall surface of the lug groove is bent in the groove depth direction (see FIG. 8). In the configuration in which the inclination angle γ of the lug groove changes as it goes in the groove length direction (not shown), the inclination angle γ is calculated as an average value over the entire groove length of the lug groove.

また、周方向主溝の溝壁角度とは、タイヤ子午線方向の断面視にて、周方向主溝の溝壁面と溝深さ方向とのなす角をいうものとする。また、タイヤ周方向への投射図における周方向主溝の溝壁の重複部の有無は、接地長あたりの投射図に基づいて判断される。ここで、タイヤの接地長とは、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面におけるタイヤ周方向の長さをいう。   Further, the groove wall angle of the circumferential main groove refers to an angle formed by the groove wall surface of the circumferential main groove and the groove depth direction in a sectional view in the tire meridian direction. Moreover, the presence or absence of the duplication part of the groove wall of the circumferential direction main groove in the projection figure to a tire circumferential direction is judged based on the projection figure per contact length. Here, the contact length of the tire means that when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and a load corresponding to the specified load is applied. It means the length in the tire circumferential direction at the contact surface between the tire and the flat plate.

なお、規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、ただし、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。   The specified rim refers to “applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO. The specified internal pressure is the “maximum air pressure” specified by JATMA. However, in the case of tires for passenger cars, the specified internal pressure is an air pressure of 180 kPa, and the specified load is 88% of the maximum load capacity. is there. The maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “INFLATION PRESSURES” defined in ETRTO. The specified load means “maximum load capacity” defined in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.

図6および図7は、図1に記載した空気入りタイヤの作用を示す説明図である。これらの図において、図6の矢印は、タイヤ接地時における陸部41、42の倒れ込み方向を示している。また、図7は、周方向主溝21(22)に噛み込んだ異物X(例えば、小石)が排出される様子を示している。   6 and 7 are explanatory views showing the operation of the pneumatic tire shown in FIG. In these figures, the arrows in FIG. 6 indicate the direction in which the land portions 41 and 42 fall when the tire is in contact with the ground. Further, FIG. 7 shows a state in which the foreign matter X (for example, pebbles) caught in the circumferential main groove 21 (22) is discharged.

この空気入りタイヤ1では、タイヤ転動時にて陸部41、42に接地圧が作用すると、隣り合う陸部41、41(41、42)のラグ溝31、31(31、32)が逆方向の傾斜角γを有するので、隣り合う陸部41、41(41、42)がタイヤ周方向に対して相互に逆方向に倒れ込む(図6参照)。すると、周方向主溝21(22)の溝壁が、この隣り合う陸部41、41(41、42)の動きに連動してタイヤ周方向かつ相互に逆方向に変位する。すると、周方向主溝21(22)がタイヤ周方向に向かうに連れて変化する溝壁角度を有するので、対向する溝壁が溝幅を溝底側から溝開口部側に向かって絞り込むように変位する(図7参照)。これにより、対向する溝壁が噛み込んだ異物Xを押し上げて、周方向主溝21(22)の外部に排出させる。   In this pneumatic tire 1, when the ground pressure acts on the land portions 41 and 42 during tire rolling, the lug grooves 31 and 31 (31 and 32) of the adjacent land portions 41 and 41 (41 and 42) are in the reverse direction. Therefore, the adjacent land portions 41 and 41 (41 and 42) fall in opposite directions with respect to the tire circumferential direction (see FIG. 6). Then, the groove wall of the circumferential main groove 21 (22) is displaced in the tire circumferential direction and opposite to each other in conjunction with the movement of the adjacent land portions 41, 41 (41, 42). Then, since the circumferential main groove 21 (22) has a groove wall angle that changes as it goes in the tire circumferential direction, the opposing groove wall narrows the groove width from the groove bottom side to the groove opening side. Displace (see FIG. 7). As a result, the foreign matter X bitten by the opposing groove wall is pushed up and discharged to the outside of the circumferential main groove 21 (22).

なお、この空気入りタイヤ1では、周方向主溝21(22)の溝壁のタイヤ周方向への投射図にて、対向する溝壁の重複部の面積Saと総投射影面積SとがSa/S≧0.15の関係を有することが好ましく、さらに、Sa/S≧0.25の関係を有することが好ましい(図5参照)。これにより、重複部の面積Saが適正化される。   In the pneumatic tire 1, in the projection view of the groove wall of the circumferential main groove 21 (22) in the tire circumferential direction, the area Sa of the overlapping portion of the opposed groove wall and the total projected shadow area S are Sa. It is preferable to have a relationship of /S≧0.15, and it is preferable to have a relationship of Sa / S ≧ 0.25 (see FIG. 5). Thereby, the area Sa of the overlapping part is optimized.

ここで、総投射影面積Sは、対向する陸部のエッジ部を結んだ直線(陸部の踏面の延長線)と、対向する陸部のエッジ部からそれぞれ引いた陸部の踏面に対する垂線と、溝底を通り陸部の踏面に平行な直線とに囲まれる領域の面積をいう(図5参照)。なお、重複部の面積Saおよび総投射影面積Sは、周方向主溝21、22がタイヤ周方向に屈曲あるいは湾曲しつつ延在する構成においても、同様に定義される(図9参照)。また、Sa/Sの上限値は、ストレート溝であれば、Sa/S=0.25であり、振幅の大きなジグザグ溝であれば、最大Sa/S=1.0となる。   Here, the total projected shadow area S is a straight line connecting the edge portions of the opposing land portions (extension line of the tread surface of the land portions), and a perpendicular to the tread surface of the land portion respectively drawn from the edge portions of the opposing land portions. The area of a region surrounded by a straight line passing through the bottom of the groove and parallel to the tread of the land portion (see FIG. 5). The overlapping portion area Sa and the total projected shadow area S are similarly defined even in the configuration in which the circumferential main grooves 21 and 22 extend while being bent or curved in the tire circumferential direction (see FIG. 9). Further, the upper limit value of Sa / S is Sa / S = 0.25 for a straight groove, and maximum Sa / S = 1.0 for a zigzag groove having a large amplitude.

また、この空気入りタイヤ1では、ラグ溝31、32の傾斜角γが5[deg]≦|γ|≦45[deg]の範囲内にあることが好ましく、さらに、15[deg]≦|γ|≦25[deg]の範囲内にあることが好ましい(図2および図3参照)。これにより、ラグ溝31、32の傾斜角γが適正化される。   In the pneumatic tire 1, the inclination angle γ of the lug grooves 31 and 32 is preferably in the range of 5 [deg] ≦ | γ | ≦ 45 [deg], and further 15 [deg] ≦ | γ. It is preferably within the range of | ≦ 25 [deg] (see FIGS. 2 and 3). Thereby, the inclination | tilt angle (gamma) of the lug grooves 31 and 32 is optimized.

また、この空気入りタイヤ1では、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のうち、一方の陸部41におけるラグ溝31のタイヤ幅方向に対する傾斜角θと、他方の陸部41(42)におけるラグ溝31(32)のタイヤ幅方向に対する傾斜角φとが|θ−φ|<20[deg]の関係を有することが好ましく、さらに、|θ−φ|=0[deg]であることがより好ましい。これにより、ラグ溝31、32のタイヤ幅方向に対する傾斜角θ、φが適正化される。   Moreover, in this pneumatic tire 1, the inclination with respect to the tire width direction of the lug groove 31 in one land part 41 among the land parts 41 and 41 (41, 42) adjacent on both sides of the circumferential main groove 21 (22). It is preferable that the angle θ and the inclination angle φ of the lug groove 31 (32) in the other land portion 41 (42) with respect to the tire width direction have a relationship of | θ−φ | <20 [deg]. It is more preferable that θ−φ | = 0 [deg]. Thereby, the inclination angles θ and φ of the lug grooves 31 and 32 with respect to the tire width direction are optimized.

また、この空気入りタイヤ1では、ラグ溝31、32の溝深さhがh≧6[mm]の範囲にあることが好ましく、さらに、h≧8[mm]の範囲にあることが好ましい(図2および図3参照)。これにより、ラグ溝31、32の溝深さhが適正化される。なお、溝深さhの上限は、トレッド部の溝下ゲージに依存する。   In the pneumatic tire 1, the groove depth h of the lug grooves 31 and 32 is preferably in the range of h ≧ 6 [mm], and more preferably in the range of h ≧ 8 [mm] ( 2 and 3). Thereby, the groove depth h of the lug grooves 31 and 32 is optimized. The upper limit of the groove depth h depends on the sub-groove gauge of the tread portion.

また、この実施の形態では、周方向主溝21、22がストレート溝であり、これらの周方向主溝21、22の溝壁角度がタイヤ周方向に向かうに連れて変化している(図1参照)。このとき、周方向主溝21、22の溝壁角度の変化の周期が、陸部41のブロック長さの整数倍(2倍以上)となることが好ましい。例えば、図1に示す構成では、周方向主溝21、22の溝壁角度の2周期と、陸部41のブロック長さとが一致するように構成されている。かかる構成では、周方向主溝21(22)を挟む陸部41、41(41、42)のラグ溝31、31(31、32)の開口部と、周方向主溝21、22の溝壁角度の変化の節とを容易に一致させ得る。これにより、ラグ溝31、31(31、32)の排水性を向上させ得る。なお、陸部41のブロック長さがタイヤ周方向に変化する構成では、この変化にあわせて、周方向主溝21、22の溝壁角度の変化の周期が変化しても良い。   Moreover, in this embodiment, the circumferential main grooves 21 and 22 are straight grooves, and the groove wall angles of these circumferential main grooves 21 and 22 change as they go in the tire circumferential direction (FIG. 1). reference). At this time, it is preferable that the period of the change of the groove wall angle of the circumferential main grooves 21 and 22 is an integral multiple (2 times or more) of the block length of the land portion 41. For example, in the configuration shown in FIG. 1, the two periods of the groove wall angles of the circumferential main grooves 21 and 22 are configured to match the block length of the land portion 41. In such a configuration, the openings of the lug grooves 31, 31 (31, 32) of the land portions 41, 41 (41, 42) sandwiching the circumferential main groove 21 (22), and the groove walls of the circumferential main grooves 21, 22 The angle change nodes can be easily matched. Thereby, the drainage of the lug grooves 31, 31 (31, 32) can be improved. In the configuration in which the block length of the land portion 41 changes in the tire circumferential direction, the period of change in the groove wall angle of the circumferential main grooves 21 and 22 may change in accordance with this change.

[効果]
以上説明したように、この空気入りタイヤ1では、ラグ溝31、32のタイヤ周方向の断面視にて、ラグ溝31、32が溝深さ方向に対して傾斜角γにて傾斜する(図1参照)。このとき、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のうち、一方の陸部41におけるラグ溝31の傾斜角γと、他方の陸部41(42)におけるラグ溝31(32)の傾斜角γとが相互に逆方向(異符号)となる(図2および図3参照)。また、この周方向主溝21(22)の溝壁角度がタイヤ周方向に向かうに連れて変化する(図1および図4参照)。また、これらの陸部41、41(41、42)に挟まれた周方向主溝21(22)の左右の溝壁が、タイヤ周方向への投射図にて重複部を有する(図5参照)。
[effect]
As described above, in the pneumatic tire 1, the lug grooves 31 and 32 are inclined at an inclination angle γ with respect to the groove depth direction in a sectional view of the lug grooves 31 and 32 in the tire circumferential direction (see FIG. 1). At this time, of the land portions 41, 41 (41, 42) adjacent to each other across the circumferential main groove 21 (22), the inclination angle γ of the lug groove 31 in one land portion 41 and the other land portion 41 ( 42) and the inclination angle γ of the lug groove 31 (32) are opposite to each other (different signs) (see FIGS. 2 and 3). Further, the groove wall angle of the circumferential main groove 21 (22) changes as it goes in the tire circumferential direction (see FIGS. 1 and 4). Further, the left and right groove walls of the circumferential main groove 21 (22) sandwiched between the land portions 41, 41 (41, 42) have overlapping portions in a projection view in the tire circumferential direction (see FIG. 5). ).

かかる構成では、タイヤ接地時にて、隣り合う陸部41、41(41、42)がタイヤ周方向に対して相互に逆方向に倒れ込むことにより、周方向主溝21(22)の溝壁が噛み込んだ異物Xを押し上げて周方向主溝21(22)の外部に排出させる(図6および図7参照)。これにより、タイヤの耐異物噛み込み性能が向上する利点がある。   In such a configuration, when the tire is in contact with the ground, the adjacent land portions 41 and 41 (41 and 42) fall in opposite directions with respect to the tire circumferential direction, whereby the groove wall of the circumferential main groove 21 (22) is engaged. The inserted foreign matter X is pushed up and discharged to the outside of the circumferential main groove 21 (22) (see FIGS. 6 and 7). Thereby, there exists an advantage which the foreign-material biting performance of a tire improves.

また、この空気入りタイヤ1では、周方向主溝21(22)の溝壁のタイヤ周方向への投射図にて、対向する溝壁の重複部の面積Saと総投射影面積SとがSa/S≧0.15の関係を有する(図5参照)。かかる構成では、重複部の面積Saが適正化されるので、タイヤの耐異物噛み込み性能がさらに向上する利点がある。例えば、Sa/S<0.15では、耐異物噛み込み性能が十分に得られないため、好ましくない。   Moreover, in this pneumatic tire 1, in the projection figure to the tire circumferential direction of the groove wall of the circumferential direction main groove 21 (22), the area Sa and the total projection shadow area S of the overlapping part of an opposing groove wall are Sa. /S≧0.15 (see FIG. 5). In such a configuration, since the area Sa of the overlapping portion is optimized, there is an advantage that the foreign matter biting performance of the tire is further improved. For example, Sa / S <0.15 is not preferred because the foreign matter biting performance cannot be sufficiently obtained.

また、この空気入りタイヤ1では、ラグ溝31、32の傾斜角γが5[deg]≦|γ|≦45[deg]の範囲内にある(図2および図3参照)。かかる構成では、傾斜角γの範囲が適正化されるので、タイヤ接地時にて、タイヤ周方向への陸部41、42の動きが良好となる。これにより、タイヤの耐異物噛み込み性能がさらに向上する利点がある。例えば、|γ|<5[deg]では、タイヤ接地時にて、タイヤ周方向への陸部の変動が小さくなり、耐異物噛み込み性能が十分に得られないため、好ましくない。また、45[deg]<|γ|では、陸部の変動が大きくなり偏摩耗(例えば、ヒールアンドトゥ摩耗)が発生するおそれがあり、好ましくない。   In the pneumatic tire 1, the inclination angle γ of the lug grooves 31 and 32 is in the range of 5 [deg] ≦ | γ | ≦ 45 [deg] (see FIGS. 2 and 3). In such a configuration, since the range of the inclination angle γ is optimized, the movement of the land portions 41 and 42 in the tire circumferential direction becomes good at the time of tire contact. Thereby, there is an advantage that the foreign matter biting performance of the tire is further improved. For example, | γ | <5 [deg] is not preferable because the variation in the land portion in the tire circumferential direction becomes small when the tire is in contact with the ground, and the foreign matter biting performance cannot be sufficiently obtained. Further, when 45 [deg] <| γ |, there is a possibility that the fluctuation of the land portion becomes large and uneven wear (for example, heel and toe wear) may occur.

なお、ラグ溝31、32の傾斜角γがラグ溝31、32の溝長さ方向に向かう途中で反転する構成(図示省略)では、ラグ溝31、32の溝長さの50%以上の領域にて、隣り合う陸部41、42のラグ溝31、32が上記した所定方向に傾斜することが好ましい。これにより、タイヤ接地時における隣り合う陸部41、42の倒れ込み方向が相互に逆方向となるので、タイヤの耐異物噛み込み性能が適正に向上する利点がある。   In the configuration in which the inclination angle γ of the lug grooves 31 and 32 is reversed in the middle of the lug grooves 31 and 32 in the groove length direction (not shown), the region is 50% or more of the groove length of the lug grooves 31 and 32. Therefore, it is preferable that the lug grooves 31 and 32 of the adjacent land portions 41 and 42 are inclined in the predetermined direction described above. Thereby, since the falling directions of the adjacent land portions 41 and 42 at the time of tire contact are opposite to each other, there is an advantage that the foreign matter biting performance of the tire is appropriately improved.

また、この空気入りタイヤ1では、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のうち、一方の陸部41におけるラグ溝31のタイヤ幅方向に対する傾斜角θと、他方の陸部41(42)におけるラグ溝31(32)のタイヤ幅方向に対する傾斜角φとが|θ−φ|<20[deg]の関係を有する。かかる構成では、ラグ溝31、32のタイヤ幅方向に対する傾斜角θ、φの関係が適正化されるので、タイヤ接地時における隣り合う陸部41、41(41、42)の倒れ込み方向がほぼ逆方向となる。これにより、タイヤの耐異物噛み込み性能が効果的に向上する利点がある。例えば、20[deg]≦|θ−φ|となると、タイヤ接地時における隣り合う陸部の倒れ込み方向が逆方向とならないため、周方向主溝の溝壁の動作が小さくなる。すると、耐異物噛み込み性能が十分に得られないため、好ましくない。   Moreover, in this pneumatic tire 1, the inclination with respect to the tire width direction of the lug groove 31 in one land part 41 among the land parts 41 and 41 (41, 42) adjacent on both sides of the circumferential main groove 21 (22). The angle θ and the inclination angle φ of the lug groove 31 (32) in the other land portion 41 (42) with respect to the tire width direction have a relationship of | θ−φ | <20 [deg]. In such a configuration, since the relationship between the inclination angles θ and φ of the lug grooves 31 and 32 with respect to the tire width direction is optimized, the inclining directions of the adjacent land portions 41 and 41 (41 and 42) at the time of tire contact are substantially reversed. Direction. Thereby, there exists an advantage which the anti-foreign material biting performance of a tire improves effectively. For example, when 20 [deg] ≦ | θ−φ |, since the falling direction of the adjacent land portion at the time of tire contact is not reversed, the operation of the groove wall of the circumferential main groove is reduced. Then, since the foreign matter biting performance cannot be sufficiently obtained, it is not preferable.

また、上記の構成では、ラグ溝31、32の傾斜角θ、φが10≦θ≦40、10≦φ≦40の範囲内にあることが好ましく、15≦θ≦30、15≦φ≦30の範囲内にあることがより好ましい。かかる構成では、ラグ溝31、32がタイヤ周方向に対して適正な傾斜角θ、φを有するので、タイヤ接地時にて陸部41、42が倒れ込んだときに、周方向主溝21(22)の対向する溝壁面が溝形状を捻り込むように変位する。すると、噛み込んだ異物が溝壁面に押し出されて排出され易くなる。これにより、タイヤの耐異物噛み込み性能が効果的に向上する利点がある。   In the above configuration, the inclination angles θ and φ of the lug grooves 31 and 32 are preferably in the range of 10 ≦ θ ≦ 40 and 10 ≦ φ ≦ 40, and 15 ≦ θ ≦ 30 and 15 ≦ φ ≦ 30. It is more preferable that it is in the range. In such a configuration, since the lug grooves 31 and 32 have appropriate inclination angles θ and φ with respect to the tire circumferential direction, the circumferential main grooves 21 (22) when the land portions 41 and 42 fall down at the time of tire contact. The groove wall surfaces facing each other are displaced so as to twist the groove shape. As a result, the bitten foreign matter is pushed out to the groove wall surface and easily discharged. Thereby, there exists an advantage which the anti-foreign material biting performance of a tire improves effectively.

また、この空気入りタイヤ1では、ラグ溝31、32の溝深さhがh≧6[mm]の範囲にある(図2および図3参照)。かかる構成では、ラグ溝31、32の溝深さhが適正化されるので、タイヤ接地時における隣り合う陸部41、42の倒れ込み作用が適正に得られる。これにより、タイヤの耐異物噛み込み性能が適正に向上する利点がある。例えば、h<6[mm]となると、タイヤ接地時における隣り合う陸部41、42の倒れ込み量が小さくなり、耐異物噛み込み性能が十分に得られないため、好ましくない。   Moreover, in this pneumatic tire 1, the groove depth h of the lug grooves 31 and 32 is in the range of h ≧ 6 [mm] (see FIGS. 2 and 3). In such a configuration, since the groove depth h of the lug grooves 31 and 32 is optimized, the falling action of the adjacent land portions 41 and 42 at the time of tire contact can be appropriately obtained. Thereby, there exists an advantage which the anti- foreign material biting performance of a tire improves appropriately. For example, h <6 [mm] is not preferable because the amount of collapse of the adjacent land portions 41 and 42 when the tire is in contact with the ground is small, and the foreign object biting performance cannot be sufficiently obtained.

[適用対象]
また、この空気入りタイヤ1は、重荷重用ラジアルタイヤを適用対象とすることが好ましい。重荷重用ラジアルタイヤでは、周方向主溝における異物の噛み込みが発生し易い傾向にある。したがって、重荷重用ラジアルタイヤを適用対象とすることにより、タイヤの耐異物噛み込み性能がより顕著に向上する利点がある。
[Applicable to]
The pneumatic tire 1 is preferably a heavy duty radial tire. In a heavy duty radial tire, foreign matter tends to be caught in the circumferential main groove. Therefore, by using the heavy duty radial tire as an application object, there is an advantage that the foreign matter biting performance of the tire is more remarkably improved.

[性能試験]
この実施の形態では、条件が異なる複数の空気入りタイヤについて、耐異物噛み込み性能に関する性能試験が行われた(図10参照)。この性能試験では、タイヤサイズ11/R22.5の空気入りタイヤがJATMA規定の適用リムに組み付けられ、この空気入りタイヤにJATMA規定の規定内圧および規定荷重が負荷される。また、8本の空気入りタイヤが2−DD方式の試験車両のドライブ軸に装着される。そして、試験車両が所定のテストコースを走行した後に、周方向主溝に噛み込んだ石の個数が測定される。そして、この測定結果に基づいて、従来例1を基準(100)とした指数評価が行われる。この指数評価は、数値が大きいほど好ましい。
[performance test]
In this embodiment, a performance test regarding the resistance to foreign matter biting was performed on a plurality of pneumatic tires having different conditions (see FIG. 10). In this performance test, a pneumatic tire having a tire size of 11 / R22.5 is assembled to an applicable rim defined by JATMA, and a specified internal pressure and a specified load specified by JATMA are applied to the pneumatic tire. Eight pneumatic tires are mounted on the drive shaft of a 2-DD test vehicle. Then, after the test vehicle travels on a predetermined test course, the number of stones caught in the circumferential main groove is measured. Then, based on the measurement result, index evaluation is performed with the conventional example 1 as a reference (100). This index evaluation is preferable as the numerical value increases.

従来例1は、周方向主溝がストレート溝であり、また、ラグ溝が溝深さ方向に対して傾斜していない(傾斜角γ=0)。また、周方向主溝の溝壁角度がタイヤ周方向全周に渡って一定である。このため、周方向主溝の左右の溝壁が、タイヤ周方向への投射図にて重複しない(Sa/S=0)。   In Conventional Example 1, the circumferential main groove is a straight groove, and the lug groove is not inclined with respect to the groove depth direction (inclination angle γ = 0). Further, the groove wall angle of the circumferential main groove is constant over the entire circumference in the tire circumferential direction. Therefore, the left and right groove walls of the circumferential main groove do not overlap in the projection view in the tire circumferential direction (Sa / S = 0).

従来例2は、周方向主溝がストレート溝であり、また、ラグ溝が溝深さ方向に対して傾斜していない(傾斜角γ=0)。また、周方向主溝の溝壁角度がタイヤ周方向に向かうに連れて変化している。このため、周方向主溝の左右の溝壁が、タイヤ周方向への投射図にて重複部を有している(Sa/S=0.20)。   In Conventional Example 2, the circumferential main groove is a straight groove, and the lug groove is not inclined with respect to the groove depth direction (inclination angle γ = 0). Further, the groove wall angle of the circumferential main groove changes as it goes in the tire circumferential direction. For this reason, the left and right groove walls of the circumferential main groove have overlapping portions in the projection view in the tire circumferential direction (Sa / S = 0.20).

比較例は、周方向主溝がストレート溝である。また、周方向主溝を挟んで隣り合う陸部のラグ溝がタイヤ周方向に対して相互に逆方向に傾斜している(傾斜角|γ|=20[deg])。また、周方向主溝の溝壁角度がタイヤ周方向全周に渡って一定である。このため、周方向主溝の左右の溝壁が、タイヤ周方向への投射図にて重複しない(Sa/S=0)。   In the comparative example, the circumferential main groove is a straight groove. Further, the lug grooves of the land portions adjacent to each other with the circumferential main groove interposed therebetween are inclined in directions opposite to each other with respect to the tire circumferential direction (inclination angle | γ | = 20 [deg]). Further, the groove wall angle of the circumferential main groove is constant over the entire circumference in the tire circumferential direction. Therefore, the left and right groove walls of the circumferential main groove do not overlap in the projection view in the tire circumferential direction (Sa / S = 0).

従来例3は、周方向主溝がジグザグ溝であり、また、ラグ溝が溝深さ方向に対して傾斜していない(傾斜角γ=0)。また、周方向主溝の溝壁角度がタイヤ周方向全周に渡って一定である。ただし、周方向主溝がジグザグ溝なので、周方向主溝の左右の溝壁が、タイヤ周方向への投射図にて重複部を有している(Sa/S=0.40)。   In Conventional Example 3, the circumferential main groove is a zigzag groove, and the lug groove is not inclined with respect to the groove depth direction (inclination angle γ = 0). Further, the groove wall angle of the circumferential main groove is constant over the entire circumference in the tire circumferential direction. However, since the circumferential main groove is a zigzag groove, the left and right groove walls of the circumferential main groove have overlapping portions in the projection view in the tire circumferential direction (Sa / S = 0.40).

実施例1〜実施例7は、図1に記載した空気入りタイヤ1であり、周方向主溝21、22がストレート溝である。これらの実施例1〜実施例7では、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)のラグ溝31、31(31、32)がタイヤ周方向に対して相互に逆方向かつ傾斜角γにてに傾斜している(図2および図3参照)。また、この周方向主溝21(22)の溝壁角度がタイヤ周方向に向かうに連れて変化している(図1および図4参照)。また、これらの陸部41、41(41、42)に挟まれた周方向主溝21(22)の左右の溝壁が、タイヤ周方向への投射図にて重複部(面積Sa)を有している(図5参照)。   Example 1-7 is the pneumatic tire 1 described in FIG. 1, and the circumferential main grooves 21 and 22 are straight grooves. In these Examples 1 to 7, the lug grooves 31 and 31 (31 and 32) of the land portions 41 and 41 (41 and 42) adjacent to each other across the circumferential main groove 21 (22) are in the tire circumferential direction. In contrast, they are inclined in opposite directions and at an inclination angle γ (see FIGS. 2 and 3). Further, the groove wall angle of the circumferential main groove 21 (22) changes as it goes in the tire circumferential direction (see FIGS. 1 and 4). In addition, the left and right groove walls of the circumferential main groove 21 (22) sandwiched between the land portions 41, 41 (41, 42) have overlapping portions (area Sa) in the projection view in the tire circumferential direction. (See FIG. 5).

また、実施例8は、図10に記載した空気入りタイヤ1であり、周方向主溝21、22がジグザグ溝である。この実施例8において、周方向主溝21、22およびラグ溝31、32の構成は、実施例1〜実施例7の空気入りタイヤ1と同じである。   Moreover, Example 8 is the pneumatic tire 1 described in FIG. 10, and the circumferential main grooves 21 and 22 are zigzag grooves. In Example 8, the configurations of the circumferential main grooves 21 and 22 and the lug grooves 31 and 32 are the same as those of the pneumatic tire 1 of Examples 1 to 7.

試験結果に示すように、実施例1と従来例1〜3とを比較すると、実施例1の空気入りタイヤ1では、タイヤの耐異物噛み込み性能が向上することが分かる。また、実施例1と従来例2および比較例とを比較すると、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)におけるラグ溝31、31(31、32)のタイヤ周方向に対する傾斜角γを逆方向とし、同時に、周方向主溝21、22の溝壁角度を変化させることにより、タイヤの耐異物噛み込み性能が飛躍的に向上することが分かる。   As shown in the test results, when Example 1 is compared with Conventional Examples 1 to 3, it can be seen that in the pneumatic tire 1 of Example 1, the foreign matter biting performance of the tire is improved. Moreover, when Example 1 is compared with the prior art example 2 and the comparative example, the lug grooves 31, 31 (31, 32) in the land portions 41, 41 (41, 42) adjacent to each other across the circumferential main groove 21 (22) are compared. ) In the tire circumferential direction is reversed, and at the same time, the groove wall angle of the circumferential main grooves 21 and 22 is changed.

また、実施例1、2を比較すると、重複部の面積Saを適正化することにより、タイヤの耐異物噛み込み性能がさらに向上することが分かる。また、実施例1、3、4を比較すると、傾斜角γの範囲を適正化することにより、タイヤの耐異物噛み込み性能がさらに向上することが分かる。また、実施例1、5、6を比較すると、ラグ溝31、32のタイヤ幅方向に対する傾斜角θ、φの関係が適正化されることにより、タイヤの耐異物噛み込み性能が効果的に向上することが分かる。また、実施例1、7を比較すると、ラグ溝31、32の溝深さhが適正化されることにより、タイヤの耐異物噛み込み性能が効果的に向上することが分かる。   In addition, when Examples 1 and 2 are compared, it can be seen that the foreign matter biting performance of the tire is further improved by optimizing the area Sa of the overlapping portion. Moreover, when Examples 1, 3, and 4 are compared, it can be seen that the resistance to biting of the tire by foreign matter is further improved by optimizing the range of the inclination angle γ. Further, when Examples 1, 5, and 6 are compared, the relationship between the inclination angles θ and φ of the lug grooves 31 and 32 with respect to the tire width direction is optimized, so that the foreign object biting performance of the tire is effectively improved. I understand that In addition, when Examples 1 and 7 are compared, it can be seen that the foreign matter biting performance of the tire is effectively improved by optimizing the groove depth h of the lug grooves 31 and 32.

また、実施例8と従来例3とを比較すると、周方向主溝21(22)がジグザグ溝である場合(図9参照)にも、周方向主溝21(22)を挟んで隣り合う陸部41、41(41、42)におけるラグ溝31、31(31、32)のタイヤ周方向に対する傾斜角γを逆方向とし、また、周方向主溝21(22)の溝壁角度を変化させることにより、タイヤの耐異物噛み込み性能が飛躍的に向上することが分かる。   Moreover, when Example 8 and Conventional Example 3 are compared, even when the circumferential main groove 21 (22) is a zigzag groove (see FIG. 9), the land adjacent to the circumferential main groove 21 (22) is sandwiched. The inclination angle γ of the lug grooves 31, 31 (31, 32) in the portions 41, 41 (41, 42) with respect to the tire circumferential direction is set in the opposite direction, and the groove wall angle of the circumferential main groove 21 (22) is changed. As a result, it can be seen that the foreign matter resistance performance of the tire is dramatically improved.

以上のように、この発明にかかる空気入りタイヤは、タイヤの耐異物噛み込み性能を向上できる点で有用である。   As described above, the pneumatic tire according to the present invention is useful in that it can improve the foreign matter biting performance of the tire.

1 空気入りタイヤ
21、22 周方向主溝
31、32 ラグ溝
41 センター陸部
42 ショルダー陸部
X 異物
1 Pneumatic tires 21, 22 Circumferential main grooves 31, 32 Lug grooves 41 Center land portion 42 Shoulder land portion X Foreign matter

Claims (6)

タイヤ周方向に延在する複数の周方向主溝と、タイヤ幅方向に延在する複数のラグ溝と、前記周方向主溝および前記ラグ溝に区画されて成る陸部とを備える空気入りタイヤであって、
前記ラグ溝のタイヤ周方向の断面視にて、前記ラグ溝が溝深さ方向に対して傾斜角γにて傾斜すると共に、前記周方向主溝を挟んで隣り合う前記陸部のうち一方の前記陸部における前記ラグ溝の傾斜角γと、他方の前記陸部における前記ラグ溝の傾斜角γとが相互に逆方向となり、且つ、
前記周方向主溝の溝壁角度がタイヤ周方向に向かうに連れて変化すると共に、前記周方向主溝の対向する溝壁がタイヤ周方向への投射図にて重複部を有することを特徴とする空気入りタイヤ。
A pneumatic tire comprising a plurality of circumferential main grooves extending in the tire circumferential direction, a plurality of lug grooves extending in the tire width direction, and a land portion defined by the circumferential main grooves and the lug grooves. Because
In the cross-sectional view of the tire circumferential direction of the lug groove, the lug groove is inclined at an inclination angle γ with respect to the groove depth direction, and one of the land portions adjacent to each other across the circumferential main groove An inclination angle γ of the lug groove in the land portion and an inclination angle γ of the lug groove in the other land portion are opposite to each other, and
The groove wall angle of the circumferential main groove changes as it goes in the tire circumferential direction, and the opposed groove walls of the circumferential main groove have overlapping portions in a projection view in the tire circumferential direction. Pneumatic tires.
前記周方向主溝の溝壁のタイヤ周方向への投射図にて、対向する前記溝壁の重複部の面積Saと総投射影面積SとがSa/S≧0.15である請求項1に記載の空気入りタイヤ。   2. In the projection view of the groove wall of the circumferential main groove in the tire circumferential direction, the area Sa and the total projected shadow area S of the overlapping portions of the opposed groove walls are Sa / S ≧ 0.15. Pneumatic tire described in 2. 前記ラグ溝の傾斜角γが5[deg]≦|γ|≦45[deg]の範囲内にある請求項1または2に記載の空気入りタイヤ。   3. The pneumatic tire according to claim 1, wherein an inclination angle γ of the lug groove is in a range of 5 [deg] ≦ | γ | ≦ 45 [deg]. 一方の前記陸部における前記ラグ溝のタイヤ幅方向に対する傾斜角θと、他方の前記陸部における前記ラグ溝のタイヤ幅方向に対する傾斜角φとが|θ−φ|<20[deg]の関係を有する請求項1〜3のいずれか一つに記載の空気入りタイヤ。   The inclination angle θ of one of the land portions with respect to the tire width direction of the lug groove and the inclination angle φ of the lug groove with respect to the tire width direction of the other land portion have a relationship of | θ−φ | <20 [deg]. The pneumatic tire according to any one of claims 1 to 3. 前記ラグ溝の溝深さhがh≧6[mm]の範囲にある請求項1〜4のいずれか一つに記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein a groove depth h of the lug groove is in a range of h ≧ 6 [mm]. 重荷重用ラジアルタイヤに適用される請求項1〜5のいずれか一つに記載の空気入りタイヤ。   The pneumatic tire according to claim 1, which is applied to a heavy duty radial tire.
JP2010267087A 2010-09-24 2010-11-30 Pneumatic tire Active JP5750873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267087A JP5750873B2 (en) 2010-09-24 2010-11-30 Pneumatic tire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010214185 2010-09-24
JP2010214185 2010-09-24
JP2010267087A JP5750873B2 (en) 2010-09-24 2010-11-30 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2012086824A true JP2012086824A (en) 2012-05-10
JP5750873B2 JP5750873B2 (en) 2015-07-22

Family

ID=46258904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267087A Active JP5750873B2 (en) 2010-09-24 2010-11-30 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5750873B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184358A (en) * 2015-03-26 2016-10-20 株式会社日立システムズ Data analysis system
WO2017018161A1 (en) * 2015-07-27 2017-02-02 横浜ゴム株式会社 Pneumatic tire
JP2018008586A (en) * 2016-07-12 2018-01-18 住友ゴム工業株式会社 tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233902U (en) * 1985-08-19 1987-02-28
JPH0781327A (en) * 1993-07-23 1995-03-28 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2000094907A (en) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2006051836A (en) * 2004-08-09 2006-02-23 Toyo Tire & Rubber Co Ltd Pneumatic tire
US20070151645A1 (en) * 2005-12-30 2007-07-05 Continental Ag Tire with tread pattern
JPWO2005058617A1 (en) * 2003-12-16 2007-08-23 株式会社ブリヂストン Pneumatic tire for heavy load

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233902U (en) * 1985-08-19 1987-02-28
JPH0781327A (en) * 1993-07-23 1995-03-28 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2000094907A (en) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JPWO2005058617A1 (en) * 2003-12-16 2007-08-23 株式会社ブリヂストン Pneumatic tire for heavy load
JP2006051836A (en) * 2004-08-09 2006-02-23 Toyo Tire & Rubber Co Ltd Pneumatic tire
US20070151645A1 (en) * 2005-12-30 2007-07-05 Continental Ag Tire with tread pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184358A (en) * 2015-03-26 2016-10-20 株式会社日立システムズ Data analysis system
WO2017018161A1 (en) * 2015-07-27 2017-02-02 横浜ゴム株式会社 Pneumatic tire
CN107709048A (en) * 2015-07-27 2018-02-16 横滨橡胶株式会社 Pneumatic tire
JP2018008586A (en) * 2016-07-12 2018-01-18 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JP5750873B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5476410B2 (en) Pneumatic tire
US10195907B2 (en) Heavy-duty tire
US9393840B2 (en) Pneumatic tire
US20100139827A1 (en) Pneumatic tire
US20150343848A1 (en) Heavy-duty pneumatic tire
CN107081993A (en) Pneumatic tire
JP6114723B2 (en) Heavy duty pneumatic tire
JP6114722B2 (en) Heavy duty pneumatic tire
JP2012051504A (en) Pneumatic tire
JP6371726B2 (en) Pneumatic tire
RU2468930C2 (en) Pneumatic tire
JP5750873B2 (en) Pneumatic tire
JP6163144B2 (en) Heavy duty pneumatic tire
JP2014162429A (en) Pneumatic tire
JP2017074846A (en) Pneumatic tire
US20170239999A1 (en) Pneumatic Tire
JP5722932B2 (en) Pneumatic tire
JP5562214B2 (en) Pneumatic tire
JP6082368B2 (en) Heavy duty pneumatic tire
JP5578051B2 (en) Pneumatic tire
JP7177201B2 (en) pneumatic tire
US9783004B2 (en) Layered tire tread design with bridged circumferential and transverse grooves
JP2018075880A (en) tire
US20170217255A1 (en) Heavy Duty Pneumatic Tire
JP7394613B2 (en) pneumatic tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5750873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350