JP2012084664A - Production method of radio wave absorber - Google Patents

Production method of radio wave absorber Download PDF

Info

Publication number
JP2012084664A
JP2012084664A JP2010228887A JP2010228887A JP2012084664A JP 2012084664 A JP2012084664 A JP 2012084664A JP 2010228887 A JP2010228887 A JP 2010228887A JP 2010228887 A JP2010228887 A JP 2010228887A JP 2012084664 A JP2012084664 A JP 2012084664A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
thermoplastic resin
beads
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010228887A
Other languages
Japanese (ja)
Inventor
Takeshi Miyamoto
健 宮本
Katsunobu Hosoya
勝宣 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2010228887A priority Critical patent/JP2012084664A/en
Publication of JP2012084664A publication Critical patent/JP2012084664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize exhibition of anisotropy in the radio wave absorption performance of a radio wave absorber produced by press molding.SOLUTION: In the production method of a radio wave absorber, a molding material M containing thermoplastic resin beads with a radio wave absorbing material adhering to the surface thereof is set in a molding die 10 and press molded into a predetermined shape. When the press conditions are set in the operation, radio wave absorption characteristics of the radio wave absorber can be controlled. Since the thermoplastic resin beads with a radio wave absorbing material adhering to the surface thereof is used as the molding material, orientation in one direction of the radio wave absorbing material is regulated, and anisotropy can be minimized.

Description

本発明は電波吸収体の製造方法に関する。   The present invention relates to a method for manufacturing a radio wave absorber.

電子機器間での電波干渉による通信障害や電子機器の誤作動といった問題を解消するための電波吸収体が実用化されている。   Radio wave absorbers have been put into practical use for solving problems such as communication failures due to radio wave interference between electronic devices and malfunctions of electronic devices.

例えば、特許文献1には、粉末状のポリマー及び電波吸収材料に、樹脂エマルジョン及び脱水ゲル化促進剤を配合し、それらを混練した後に加熱発泡させて電波吸収体を製造することが開示されている。   For example, Patent Document 1 discloses that a radio wave absorber is manufactured by blending a resin emulsion and a dehydration gelation accelerator with a powdered polymer and a radio wave absorbing material, kneading them and then heating and foaming. Yes.

特開平11−106538号公報JP-A-11-106538

ところで、電波吸収体の電波吸収特性を制御することは、種々の要因が相互に関連して影響を及ぼすため非常に困難である。   By the way, it is very difficult to control the radio wave absorption characteristics of the radio wave absorber because various factors influence each other.

本発明の課題は、電波吸収体の電波吸収特性の制御が可能な電波吸収体の製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the electromagnetic wave absorber which can control the electromagnetic wave absorption characteristic of an electromagnetic wave absorber.

本発明の電波吸収体の製造方法は、表面に電波吸収材が付着した熱可塑性樹脂ビーズで構成された成形材料を成形型にセットして所定形状にプレス成形するものである。   The method for manufacturing a radio wave absorber of the present invention is a method in which a molding material composed of thermoplastic resin beads having a radio wave absorber attached to the surface is set in a mold and press-molded into a predetermined shape.

本発明によれば、表面に電波吸収材が付着した熱可塑性樹脂ビーズを成形材料とし、それをプレス成形して電波吸収体を製造するが、そのプレス条件を設定操作することにより容易に製造する電波吸収体の電波吸収特性を制御することができる。   According to the present invention, a thermoplastic resin bead having a radio wave absorber attached on its surface is used as a molding material, and the radio wave absorber is manufactured by press molding it. However, it is easily manufactured by setting the press conditions. The radio wave absorption characteristics of the radio wave absorber can be controlled.

実施形態に係る電波吸収体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the electromagnetic wave absorber which concerns on embodiment. プレス成形圧力と複素誘電率との関係を示すグラフである。It is a graph which shows the relationship between press molding pressure and a complex dielectric constant. 周波数と反射減衰量との関係を示すグラフである。It is a graph which shows the relationship between a frequency and a return loss. 電波吸収特性測定装置の構成を示す正面図である。It is a front view which shows the structure of a radio wave absorption characteristic measuring apparatus. 電波吸収体サンプルのセット状態を示す平面図である。It is a top view which shows the set state of a radio wave absorber sample. 電波吸収体サンプルの変更したセット状態を示す平面図である。It is a top view which shows the set state which the radio wave absorber sample changed. 実施例の周波数と反射減衰量との関係を示すグラフである。It is a graph which shows the relationship between the frequency of an Example, and a return loss amount. 比較例の周波数と反射減衰量との関係を示すグラフである。It is a graph which shows the relationship between the frequency and return loss of a comparative example.

以下、実施形態について詳細に説明する。   Hereinafter, embodiments will be described in detail.

本実施形態に係る電波吸収体の製造方法は、表面に電波吸収材が付着した熱可塑性樹脂ビーズで構成された成形材料を成形型にセットして所定形状にプレス成形するものである。   The method for manufacturing a radio wave absorber according to the present embodiment is a method in which a molding material composed of thermoplastic resin beads having a radio wave absorber attached to the surface is set in a mold and press-molded into a predetermined shape.

電波吸収体の製造の電波吸収特性を制御することは、種々の要因が相互に関連して影響を及ぼすため非常に困難である。しかしながら、本実施形態に係る電波吸収体の製造方法によれば、表面に電波吸収材が付着した熱可塑性樹脂ビーズを成形材料とし、それをプレス成形するが、そのプレス条件を設定操作することにより容易に製造する電波吸収体の電波吸収特性を制御することができる。   It is very difficult to control the radio wave absorption characteristics of the production of the radio wave absorber because various factors influence each other. However, according to the manufacturing method of the radio wave absorber according to the present embodiment, the thermoplastic resin beads having the radio wave absorber attached to the surface are used as the molding material, and it is press-molded. It is possible to control the radio wave absorption characteristics of a radio wave absorber that is easily manufactured.

また、上面に下向きに貼り付けた状態、或いは、上から吊り下げた状態で設置される電波吸収体には、落下防止及び落下した場合の二次的被害を小さくする観点から、薄くて、しかも軽いことが求められる。これに対し、本実施形態に係る電波吸収体の製造方法によれば、プレス成形により電波吸収体を製造するので、電波吸収体を薄型化及び軽量化を図ることができる。   In addition, the radio wave absorber installed in a state where it is stuck downward on the top surface or hung from above is thin, in order to prevent falling and to reduce secondary damage when dropped. It is required to be light. On the other hand, according to the method for manufacturing a radio wave absorber according to the present embodiment, the radio wave absorber is manufactured by press molding, so that the radio wave absorber can be reduced in thickness and weight.

さらに、プレス成形で製造した電波吸収体では、電波吸収材が配向することにより電波吸収性能に異方性が発現することが考えられる。しかしながら、本実施形態に係る電波吸収体の製造方法によれば、電波吸収体をプレス成形で製造するための成形材料として、表面に電波吸収材が付着した熱可塑性樹脂ビーズを用いているので、熱可塑性樹脂ビーズに付着した電波吸収材の一方向への配向が規制され、従って、電波吸収性能の異方性の発現を抑制することができる。   Furthermore, in a radio wave absorber manufactured by press molding, it is considered that anisotropy appears in the radio wave absorption performance due to the orientation of the radio wave absorber. However, according to the method of manufacturing a radio wave absorber according to the present embodiment, as a molding material for manufacturing the radio wave absorber by press molding, because the thermoplastic resin beads having a radio wave absorber attached to the surface are used, The orientation of the radio wave absorber attached to the thermoplastic resin beads in one direction is restricted, and therefore, the anisotropy of the radio wave absorption performance can be suppressed.

本実施形態に係る電波吸収体の製造に用いる成形材料は、表面に電波吸収材が付着した熱可塑性樹脂ビーズを含む。   The molding material used for manufacturing the radio wave absorber according to this embodiment includes thermoplastic resin beads having a radio wave absorber attached to the surface.

熱可塑性樹脂ビーズは、樹脂基材をマトリクスとして配合剤が配合された樹脂組成物で構成されている。熱可塑性樹脂ビーズの粒子径は例えば0.3〜5.0mmである。   The thermoplastic resin beads are composed of a resin composition in which a compounding agent is blended using a resin base material as a matrix. The particle diameter of the thermoplastic resin beads is, for example, 0.3 to 5.0 mm.

熱可塑性樹脂ビーズの樹脂基材としては、例えば、ポリ塩化ビニル、塩化ビニリデン類、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・エチレン共重合体などのハロゲンを含有する難燃性樹脂;ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1などのポリオレフィン;ポリスチレン、スチレン・アクリロニトリル共重合体、ポリウレタンなどの非ハロゲン含有樹脂等が挙げられる。これらのうち、ポリスチレン及び塩化ビニリデン類が好ましい。特に塩化ビニリデン類は、難燃性、耐候性、及び成形性に優れており、その一例としては、塩化ビニリデンの単独重合体、塩化ビニリデンと例えば、塩化ビニル、各種アクリル酸エステル、アクリロニトリルとの共重合体等が挙げられる。樹脂基材は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。   Examples of the resin base material for thermoplastic resin beads include flame retardant containing halogen such as polyvinyl chloride, vinylidene chloride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / ethylene copolymer, etc. Resins; Polyolefins such as polyethylene, polypropylene, and poly-4-methylpentene-1; Non-halogen-containing resins such as polystyrene, styrene / acrylonitrile copolymer, and polyurethane. Of these, polystyrene and vinylidene chloride are preferred. In particular, vinylidene chlorides are excellent in flame retardancy, weather resistance, and moldability. For example, vinylidene chloride homopolymers, such as vinylidene chloride and vinyl chloride, various acrylic acid esters, and acrylonitrile. A polymer etc. are mentioned. The resin base material may be composed of a single species or a plurality of species.

熱可塑性樹脂ビーズは、汎用で入手容易であり、また、後述のプレス成形性の観点から、発泡剤が配合されて発泡した発泡ビーズであることが好ましい。熱可塑性樹脂ビーズに含まれる発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウムなどの無機発泡剤;アゾジカルボンアミド、ベンゼンスルホニルヒドラジッドなどの有機発泡剤等が挙げられる。発泡剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。発泡剤の含有量は例えば樹脂基材100質量部に対して0.5〜5.0質量部であり、好ましくは1.0〜3.0質量部である。   The thermoplastic resin beads are general-purpose and easily available, and from the viewpoint of press moldability described later, the foamed beads are preferably foamed with a foaming agent. Examples of the foaming agent contained in the thermoplastic resin beads include inorganic foaming agents such as sodium bicarbonate and ammonium carbonate; and organic foaming agents such as azodicarbonamide and benzenesulfonyl hydrazide. The foaming agent may be composed of a single species or a plurality of species. Content of a foaming agent is 0.5-5.0 mass parts with respect to 100 mass parts of resin base materials, for example, Preferably it is 1.0-3.0 mass parts.

また、熱可塑性樹脂ビーズが発泡ビーズである場合、熱可塑性樹脂ビーズは、後述のプレス成形性の観点から、10〜70倍に発泡膨張させたものであることが好ましく、20〜50倍に発泡膨張させたものであることがより好ましい。熱可塑性樹脂ビーズは、二次発泡によりさらなる発泡膨張が可能な一次発泡ビーズであってもよく、また、さらなる発泡膨張性能を有さない発泡済ビーズであってもよい。本実施形態に係る電波吸収体の製造ではプレス成形を行うことから発泡ビーズのさらなる発泡膨張は不要であり、また、二次発泡により電波吸収性能が影響されるのを防止する観点から、発泡ビーズである熱可塑性樹脂ビーズは、発泡済ビーズであることが好ましい。発泡ビーズの粒子径は例えば0.5〜5.0mmである。   When the thermoplastic resin beads are foam beads, the thermoplastic resin beads are preferably foamed and expanded 10 to 70 times from the viewpoint of press moldability described later, and foamed 20 to 50 times. More preferably, it is expanded. The thermoplastic resin beads may be primary expanded beads that can be further expanded by secondary expansion, or may be expanded beads that do not have additional expanded expansion performance. In the production of the radio wave absorber according to this embodiment, further foam expansion of the foam beads is unnecessary because press molding is performed, and from the viewpoint of preventing the radio wave absorption performance from being affected by secondary foam, It is preferable that the thermoplastic resin beads are foamed beads. The particle diameter of the expanded beads is, for example, 0.5 to 5.0 mm.

電波吸収材としては、例えば、導電性カーボンブラック、導電性グラファイト、金属粉等が挙げられる。プレス成形により製造される電波吸収体の異方性発現は配向性を有する電波吸収材を用いた場合に多く、かかる観点から本実施形態に係る電波吸収体の製造方法による異方性の発現抑制効果は、電波吸収材が針状磁性粉等の針状電波吸収材の場合に特に顕著となる。電波吸収材は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。電波吸収材の熱可塑性樹脂ビーズへの付着量は、電波吸収材の層平均厚さが0.5〜10μmとなる量であることが好ましく、1〜5μmとなる量であることがより好ましい。   Examples of the radio wave absorber include conductive carbon black, conductive graphite, and metal powder. Anisotropy of radio wave absorbers manufactured by press molding is often observed when a radio wave absorber having an orientation is used. From this point of view, anisotropy is suppressed by the radio wave absorber manufacturing method according to this embodiment. The effect is particularly remarkable when the electromagnetic wave absorbing material is an acicular electromagnetic wave absorbing material such as acicular magnetic powder. The radio wave absorber may be composed of a single species or a plurality of species. The amount of adhesion of the radio wave absorber to the thermoplastic resin beads is preferably such that the layer average thickness of the radio wave absorber is 0.5 to 10 μm, and more preferably 1 to 5 μm.

熱可塑性樹脂ビーズに電波吸収材を付着させる方法としては、例えば、樹脂バインダ塗料に電波吸収材を分散させた導電液を調整し、その導電液を熱可塑性樹脂ビーズ(発泡ビーズの場合、未発泡ビーズ又は一次発泡ビーズ)と共にミキサーに投入して攪拌することにより熱可塑性樹脂ビーズの表面に電波吸収材を付着させる方法、熱可塑性樹脂ビーズの表面に油や粘着剤を極く少量塗布して粘着性を付与する表面処理を行った後、その熱可塑性樹脂ビーズと電波吸収材とをミキサーに投入して攪拌することにより熱可塑性樹脂ビーズの表面に電波吸収材を付着させる方法、油や粘着剤を極く少量含ませるなどして粘着性を帯びさせた電波吸収材を熱可塑性樹脂ビーズとミキサーに投入して攪拌することにより熱可塑性樹脂ビーズの表面に電波吸収材同士が粘着し合った層を形成する方法等が挙げられる。なお、熱可塑性樹脂ビーズの表面に電波吸収材を付着させた後、電波吸収材の脱落を防止するために、その上にさらにオーバーコート層を設けてもよい。   As a method of attaching the radio wave absorber to the thermoplastic resin beads, for example, a conductive liquid in which the radio wave absorber is dispersed in a resin binder paint is prepared, and the conductive liquid is used as a thermoplastic resin bead (in the case of foam beads, unfoamed). Bead or primary foamed beads) in a mixer and stir to attach a radio wave absorber to the surface of the thermoplastic resin beads. Adhesion by applying a very small amount of oil or adhesive on the surface of the thermoplastic resin beads A method of attaching the radio wave absorber to the surface of the thermoplastic resin beads by adding the thermoplastic resin beads and the radio wave absorber to a mixer and stirring the surface treatment after imparting surface properties, oil or adhesive The electromagnetic wave absorbing material, which has been made sticky by adding a very small amount of water, etc., is charged into the thermoplastic resin beads and the mixer, and stirred to add electricity to the surface of the thermoplastic resin beads. Absorber each other and a method of forming a layer that had adhered. In addition, after making a radio wave absorber adhere to the surface of a thermoplastic resin bead, in order to prevent a fall of a radio wave absorber, you may provide an overcoat layer on it.

樹脂バインダ塗料に電波吸収材を分散させた導電液を用いた方法の場合、かかる樹脂バインダ塗料としては、例えば、熱可塑性有機高分子のラテックスのような非架橋硬化性の低粘度液体、紫外線硬化性樹脂塗料、熱硬化性エナメルワニスなどの架橋硬化性の低粘度液体等が挙げられる。樹脂バインダ塗料が非架橋硬化性の低粘度液体の場合、導電液を熱可塑性樹脂ビーズに塗布した後に乾燥させるのみでよい。樹脂バインダ塗料が架橋硬化性の低粘度液体の場合、溶剤を含有するものであれば、導電液を熱可塑性樹脂ビーズに塗布して乾燥させた後に架橋処理を施せばよく、一方、無溶剤のものであれば、導電液を熱可塑性樹脂ビーズに塗布した後に直ちに架橋処理を施してもよく、また、導電液の塗布と架橋処理とを並行させてもよい。   In the case of a method using a conductive liquid in which a radio wave absorber is dispersed in a resin binder paint, the resin binder paint may be, for example, a non-crosslinking curable low-viscosity liquid such as a latex of a thermoplastic organic polymer, an ultraviolet curing Cross-linking curable low-viscosity liquids such as curable resin paints and thermosetting enamel varnishes. When the resin binder coating is a non-crosslinking curable low-viscosity liquid, the conductive liquid need only be dried after being applied to the thermoplastic resin beads. When the resin binder paint is a low-viscosity liquid having a crosslinking curable property, if it contains a solvent, the conductive liquid may be applied to the thermoplastic resin beads and dried, followed by a crosslinking treatment. If it is a thing, after apply | coating a electrically conductive liquid to a thermoplastic resin bead, you may perform a crosslinking process immediately, and you may make application | coating liquid and a crosslinking process parallel.

表面に電波吸収材が付着した熱可塑性樹脂ビーズの表面には、さらに電波吸収材の脱落防止及びビーズ間接着のための熱可塑性接着剤が付着していてもよい。かかる熱可塑性接着剤としては、例えば、主成分がエチレン・酢酸ビニル共重合体であるもの、主成分が変成スチレン・ブタジエン共重合体であるもの等が挙げられる。熱可塑性接着剤の付着量は、表面に電波吸収材が付着した熱可塑性樹脂ビーズ100質量部に対して5〜30質量部である。熱可塑性接着剤を付着させるには、表面に電波吸収材が付着した熱可塑性樹脂ビーズ及び熱可塑性接着剤をミキサーに投入して攪拌すればよい。   A thermoplastic adhesive may be further attached to the surface of the thermoplastic resin bead having the radio wave absorber attached to the surface for preventing the radio wave absorber from falling off and bonding the beads. Examples of such thermoplastic adhesives include those whose main component is an ethylene / vinyl acetate copolymer and those whose main component is a modified styrene / butadiene copolymer. The adhesion amount of the thermoplastic adhesive is 5 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin beads having the radio wave absorber adhered to the surface. In order to attach the thermoplastic adhesive, the thermoplastic resin beads and the thermoplastic adhesive with the radio wave absorber attached to the surface may be put into a mixer and stirred.

成形材料は、その他に表面に電波吸収材が付着していない接着用の熱可塑性樹脂ビーズ、カラーリングビーズ等を含んでいてもよい。   The molding material may further include adhesive thermoplastic resin beads, coloring beads and the like that do not have a radio wave absorber attached to the surface.

成形材料は、表面に電波吸収材が付着した熱可塑性樹脂ビーズ及びその他の構成成分をミキサーに投入して攪拌することにより調整することができる。   The molding material can be adjusted by introducing the thermoplastic resin beads having the radio wave absorber adhering to the surface and other components into a mixer and stirring them.

本実施形態に係る電波吸収体の製造方法では、図1に示すように、上型11及び下形12からなる成形型10を所定の成形温度に加熱し、その成形型10の下型12に形成された凹部12aの表面に離型剤を塗布した後、その凹部12aに成形材料Mを敷き詰めるように投入し、その上から成型面に離型剤を塗布した上型11を下型12の凹部12aに嵌め入れ、そして、上型11で成形材料Mに所定のプレス成形圧力を負荷し、その状態を所定の成形時間保持することによりプレス成形を行う。このとき、成形材料Mに含まれる表面に電波吸収材が付着した熱可塑性樹脂ビーズが相互に融着して或いは熱可塑性接着剤を介して接着して所定形状の電波吸収体が形成される。また、熱可塑性樹脂ビーズが発泡ビーズ或いはそれを予備発泡させた一次発泡ビーズの場合、気泡により熱可塑性樹脂ビーズに弾性が付与されてビーズ充填性が高まり、成形性が優れることとなる。なお、発泡ビーズから放出されたガスは上型11及び下型12の型合わせ面等から排出される。ここで、成形条件は、例えば、成形温度が100〜200℃であり、プレス成形圧力が20〜60MPaであり、成形時間が5〜20分である。   In the method for manufacturing a radio wave absorber according to the present embodiment, as shown in FIG. 1, a mold 10 composed of an upper mold 11 and a lower mold 12 is heated to a predetermined molding temperature, and the lower mold 12 of the mold 10 is formed. After the mold release agent is applied to the surface of the formed recess 12a, the molding material M is put over the recess 12a, and the upper mold 11 with the mold release agent applied to the molding surface is used as the lower mold 12. Press molding is performed by fitting into the recess 12a and applying a predetermined press molding pressure to the molding material M with the upper mold 11 and holding the state for a predetermined molding time. At this time, the thermoplastic resin beads having the radio wave absorber attached to the surface included in the molding material M are fused to each other or bonded via a thermoplastic adhesive to form a radio wave absorber having a predetermined shape. Further, when the thermoplastic resin beads are expanded beads or primary expanded beads obtained by pre-expanding the beads, elasticity is imparted to the thermoplastic resin beads by the bubbles, the bead filling property is increased, and the moldability is excellent. The gas released from the foam beads is discharged from the mold matching surfaces of the upper mold 11 and the lower mold 12. Here, the molding conditions are, for example, a molding temperature of 100 to 200 ° C., a press molding pressure of 20 to 60 MPa, and a molding time of 5 to 20 minutes.

本実施形態に係る電波吸収体の製造方法によれば、プレス成形で製造されるので、板状のものであれば、厚さが3〜10mmで、密度が0.2〜1.0g/cmである薄くて軽いものを製造することができ、しかも上記の通り異方性の発現を抑制することができる。 According to the method for manufacturing a radio wave absorber according to the present embodiment, since it is manufactured by press molding, if it is plate-shaped, the thickness is 3 to 10 mm and the density is 0.2 to 1.0 g / cm. 3 can be produced, and the anisotropy can be suppressed as described above.

本実施形態で製造される電波吸収体は、例えば、電波暗室、無線LAN、RF・ID等に用いることができる。   The radio wave absorber manufactured in the present embodiment can be used, for example, in an anechoic chamber, a wireless LAN, and RF / ID.

[試験評価1]
(電波吸収体)
ミキサーに、20倍発泡白ビーズ(ポリスチレン樹脂)及び電波吸収材を、前者100gに対して後者100gの割合で投入し、それらを撹拌混合して乾燥させることにより、表面に電波吸収材が付着した熱可塑性樹脂ビーズである黒ビーズを得た。なお、上記電波吸収材として導電材(導電性カーボンブラック混合液)を用いた。
[Test Evaluation 1]
(Radio wave absorber)
20 times expanded white beads (polystyrene resin) and radio wave absorber were added to the mixer at a ratio of 100 g of the latter to 100 g of the former, and these were stirred, mixed, and dried, so that the radio wave absorber adhered to the surface. Black beads, which are thermoplastic resin beads, were obtained. A conductive material (conductive carbon black mixed solution) was used as the radio wave absorber.

ミキサーに、熱可塑性接着剤(EVA系エマルジョン系接着剤)を、上記で得た黒ビーズ100gに対して10gの割合で投入し、それらを撹拌混合して乾燥させた。   A thermoplastic adhesive (EVA-based emulsion-based adhesive) was added to the mixer at a ratio of 10 g with respect to 100 g of the black beads obtained above, and they were mixed with stirring and dried.

上記で得た接着剤付黒ビーズ100gを金型に投入し、プレス機にて、成形温度120℃、プレス成形圧力9.81MPa、及び成形時間10分の条件でプレス成形することにより、縦150mm、横150mm、及び厚さ6.3mmの電波吸収体1を作製した。   By putting 100 g of the black beads with adhesive obtained above into a mold and pressing with a press machine at a molding temperature of 120 ° C., a press molding pressure of 9.81 MPa, and a molding time of 10 minutes, a length of 150 mm A radio wave absorber 1 having a width of 150 mm and a thickness of 6.3 mm was produced.

同様に、プレス成形圧力のみを29.4MPaに変更して縦150mm、横150mm、及び厚さ5.3mmの電波吸収体2を作製した。また、プレス成形圧力のみを39.2MPaに変更して縦150mm、横150mm、及び厚さ5.1mmの電波吸収体3を作製した。   Similarly, the radio wave absorber 2 having a length of 150 mm, a width of 150 mm, and a thickness of 5.3 mm was manufactured by changing only the press molding pressure to 29.4 MPa. Moreover, only the press molding pressure was changed to 39.2 MPa, and the radio wave absorber 3 having a length of 150 mm, a width of 150 mm, and a thickness of 5.1 mm was produced.

(複素誘電率の測定)
電波吸収体1〜3のそれぞれについて、外径38.4mm及び内径16.5mmのドーナツ型の試験片を打ち抜き、ネットワークアナライザー(ヒューレッドパッカード社製 型番:HP8722ET)を用いて、Sパラメータ法により周波数と複素誘電率(実部及び虚部)との関係を求めた。なお、Sパラメータ法とは、試験片のSパラメータを測定し、その測定されたSパラメータから透磁率や誘電率を算出する方法である。
(Measurement of complex permittivity)
For each of the wave absorbers 1 to 3, a donut-shaped test piece having an outer diameter of 38.4 mm and an inner diameter of 16.5 mm was punched out, and the frequency was measured by the S-parameter method using a network analyzer (model number: HP8722ET manufactured by Hured Packard). And the complex dielectric constant (real part and imaginary part). The S parameter method is a method of measuring the S parameter of the test piece and calculating the magnetic permeability and the dielectric constant from the measured S parameter.

そして、その結果、吸収周波数950MHz(UHF帯)の場合、電波吸収体1では複素誘電率の実部が13.78及び虚部が4.25、電波吸収体2では複素誘電率の実部が14.31及び虚部が4.40、並びに電波吸収体3では複素誘電率の実部が15.59及び虚部が5.74であった。   As a result, when the absorption frequency is 950 MHz (UHF band), the real part of the complex dielectric constant is 13.78 and the imaginary part is 4.25 in the radio wave absorber 1, and the real part of the complex dielectric constant is in the radio wave absorber 2. 14.31 and the imaginary part were 4.40, and in the radio wave absorber 3, the real part of the complex dielectric constant was 15.59 and the imaginary part was 5.74.

これより、図2に示すようなプレス成形圧力と複素誘電率との関係が得られた。図2によれば、複素誘電率の実部及び虚部のいずれがプレス成形圧力に比例することが分かる。それぞれの近似式を求めると、
複素誘電率の実部=(5600×プレス成形圧力(MPa)/98067)+13.08
複素誘電率の虚部=(4400×プレス成形圧力(MPa)/98067)+ 3.63
となった。なお、この関係は、ビーズ表面への電波吸収材の付着量やビーズ径等により変化するものである。また、このような関係は他の吸収周波数についても同様に得ることができる。
From this, the relationship between the press molding pressure and the complex dielectric constant as shown in FIG. 2 was obtained. As can be seen from FIG. 2, either the real part or the imaginary part of the complex dielectric constant is proportional to the press molding pressure. When each approximate expression is found,
Real part of complex permittivity = (5600 x press molding pressure (MPa) / 98067) + 13.08
Imaginary part of complex dielectric constant = (4400 x press molding pressure (MPa) / 98067) + 3.63
It became. This relationship changes depending on the amount of the radio wave absorber attached to the bead surface, the bead diameter, and the like. Such a relationship can be similarly obtained for other absorption frequencies.

(シミュレーション)
「柏原一之ほか.ETC/DSRC用シートタイプ電波吸収体の開発 三菱電線工業時報.(99),2002,p69−77」に記載された伝送線路理論に基づいたシミュレーションを行った結果、プレス成形圧力を39.2MPaとした場合、そのときの複素誘電率の実部及び虚部の値から、周波数950MHzに電波吸収特性を有する電波吸収体を得るためには、その厚さを20mmとすればよいことが分かった。なお、複素誘電率の実部及び虚部の値として、上記近似式にプレス成形圧力39.2MPaを代入して複素誘電率の実部15.32及び虚部5.39を算出した。
(simulation)
As a result of the simulation based on the transmission line theory described in “Development of sheet type electromagnetic wave absorber for ETC / DSRC, Mitsubishi Electric Industrial Co., Ltd. (99), 2002, p69-77” When the pressure is 39.2 MPa, in order to obtain a radio wave absorber having radio wave absorption characteristics at a frequency of 950 MHz from the values of the real part and the imaginary part of the complex dielectric constant at that time, if the thickness is 20 mm I found it good. Note that the real part 15.32 and the imaginary part 5.39 of the complex dielectric constant were calculated by substituting the press forming pressure 39.2 MPa into the above approximate expression as the values of the real part and the imaginary part of the complex dielectric constant.

図3はシミュレーション結果に基づいた電波吸収体の周波数と反射減衰率との関係を示す。これによれば、周波数950MHzに大きな吸収があることが確認できる。   FIG. 3 shows the relationship between the frequency of the radio wave absorber and the return loss based on the simulation results. According to this, it can be confirmed that there is a large absorption at a frequency of 950 MHz.

以上のことから、表面に電波吸収材が付着した熱可塑性樹脂ビーズを成形材料とし、それをプレス成形して電波吸収体を製造するに際し、そのプレス成形圧力を指標として製造する電波吸収体の電波吸収特性を制御することができることが分かる。   From the above, when a radio wave absorber is manufactured by using a thermoplastic resin bead with a radio wave absorber attached to the surface as a molding material, and pressing it to produce a radio wave absorber, the radio wave of the radio wave absorber manufactured using the press molding pressure as an index It can be seen that the absorption characteristics can be controlled.

[試験評価2]
(電波吸収体)
<実施例>
ミキサーに、20倍発泡白ビーズ(ポリスチレン樹脂)及び電波吸収材を、前者100gに対して後者200gの割合で投入し、それらを撹拌混合して乾燥させることにより、表面に電波吸収材が付着した熱可塑性樹脂ビーズである黒ビーズを得た。なお、上記電波吸収材としては、導電材(導電性カーボンブラック混合液)とフェライト系磁性粉とを質量比1:1で混合した液を用いた。
[Test evaluation 2]
(Radio wave absorber)
<Example>
20 times expanded white beads (polystyrene resin) and radio wave absorber were added to the mixer at a ratio of 200 g of the latter to 100 g of the former, and these were stirred, mixed and dried, so that the radio wave absorber adhered to the surface. Black beads, which are thermoplastic resin beads, were obtained. As the radio wave absorber, a liquid in which a conductive material (conductive carbon black mixed liquid) and ferrite magnetic powder were mixed at a mass ratio of 1: 1 was used.

ミキサーに、熱可塑性接着剤(EVA系エマルジョン系接着剤)を、上記で得た黒ビーズ100gに対して10gの割合で投入し、それらを撹拌混合して乾燥させた。   A thermoplastic adhesive (EVA-based emulsion-based adhesive) was added to the mixer at a ratio of 10 g with respect to 100 g of the black beads obtained above, and they were mixed with stirring and dried.

上記で得た接着剤付黒ビーズ100gを金型に投入し、プレス機にて、成形温度120℃、プレス成形圧力30MPa、及び成形時間10分の条件でプレス成形することにより、縦300mm、横300mm、及び厚さ2mmの実施例の電波吸収体を作製した。なお、この実施例の電波吸収体は無線LAN用の2.45GHzの周波数を目標に作製したものである。   100 g of the black beads with adhesive obtained above are put into a mold and press molded under the conditions of a molding temperature of 120 ° C., a press molding pressure of 30 MPa, and a molding time of 10 minutes by a press machine. An electromagnetic wave absorber of an example having a thickness of 300 mm and a thickness of 2 mm was produced. In addition, the radio wave absorber of this embodiment is manufactured with a target of a frequency of 2.45 GHz for wireless LAN.

<比較例>
塩素化ポリエチレン樹脂粉末に実施例で用いたのと同じ電波吸収材を、前者100gに対して後者200gの割合で投入し、混練及び乾燥させることにより成形材料を得た。
<Comparative example>
The same radio wave absorber as that used in the examples was added to the chlorinated polyethylene resin powder at a ratio of 200 g of the latter to 100 g of the former, and kneaded and dried to obtain a molding material.

上記で得た成形材料をプレス機でシート状に成型して縦及び横がそれぞれ300mmのシート状の比較例の電波吸収体を作製した。なお、この比較例の電波吸収体も無線LAN用の2.45GHzの周波数を目標に作製したものである。   The molding material obtained above was molded into a sheet shape by a press machine to produce a sheet-like comparative wave absorber having a length and width of 300 mm each. In addition, the radio wave absorber of this comparative example is also produced with the target of a frequency of 2.45 GHz for wireless LAN.

(試験評価方法)
実施例及び比較例のそれぞれについて、電波吸収特性の異方性の有無をアーチ法(反射電力法)により試験評価した。
(Test evaluation method)
About each of an Example and a comparative example, the presence or absence of the anisotropy of a radio wave absorption characteristic was test-evaluated by the arch method (reflected power method).

図4は電波吸収特性測定装置(ネットワークアナライザー、ヒューレッドパッカード社製 型番:HP8722ET)20を示す。   FIG. 4 shows a radio wave absorption characteristic measuring apparatus (network analyzer, model number: HP8722ET, manufactured by Hured Packard) 20.

この電波吸収特性測定装置20は、水平なサンプル載置面を有する測定台21を有し、その中心の法線方向に対して、一方側に10°傾斜した方向に送信アンテナ22及び他方側に10°傾斜した方向に受信アンテナ23がそれぞれ設けられている。送信アンテナ22及び受信アンテナ23は、それらの後端が測定台の中心から半径R=2000mm上に位置付けられてように設けられている。また、送信アンテナ22は発振器24に及び受信アンテナ23は受信器25にそれぞれ接続されている。   This radio wave absorption characteristic measuring apparatus 20 has a measuring table 21 having a horizontal sample mounting surface, and is arranged on a transmitting antenna 22 in a direction inclined by 10 ° on one side with respect to the normal direction of the center and on the other side. Receiving antennas 23 are provided in directions inclined by 10 °. The transmitting antenna 22 and the receiving antenna 23 are provided such that their rear ends are positioned on a radius R = 2000 mm from the center of the measurement table. The transmitting antenna 22 is connected to the oscillator 24 and the receiving antenna 23 is connected to the receiver 25.

実施例及び比較例のそれぞれについて、平面視正方形の電波吸収体サンプルSの四隅の一つに目印mを付し、それを測定台21に載せた。このとき、図5に示すように、電波吸収体サンプルSを、目印mが右上に位置されるように配置した。そして、送信アンテナ22から電波吸収体サンプルSに対してTE波を発し、その反射波を受信アンテナ23で受信して反射減衰量の周波数依存性を測定した。このとき、測定周波数域を1〜8GHzとした。   For each of the example and the comparative example, a mark m is attached to one of the four corners of the radio wave absorber sample S having a square shape in plan view, and the mark m is placed on the measurement table 21. At this time, as shown in FIG. 5, the radio wave absorber sample S was arranged so that the mark m was located on the upper right. Then, a TE wave was emitted from the transmitting antenna 22 to the radio wave absorber sample S, the reflected wave was received by the receiving antenna 23, and the frequency dependence of the return loss was measured. At this time, the measurement frequency range was 1 to 8 GHz.

次に、図6に示すように、電波吸収体を、目印が右下に位置されるように配置を変更した。つまり、電波吸収体を平面視で時計回りに90°回転させた。そして、同様に反射減衰量の周波数依存性を測定した。   Next, as shown in FIG. 6, the arrangement of the radio wave absorber was changed so that the mark was located on the lower right. That is, the radio wave absorber was rotated 90 ° clockwise in plan view. Similarly, the frequency dependence of the return loss was measured.

(試験評価結果)
図7は実施例の及び図8は比較例の周波数と反射減衰量との関係をそれぞれ示す。
(Test evaluation results)
FIG. 7 shows the relationship between the frequency of the embodiment and FIG.

図7によれば、実施例では、反射減衰量の極値が90°回転させても変化が無く、従って電波吸収特性が等方性を有していることが分かる。一方、図8によれば、比較例は、反射減衰量の極値が90°回転させると周波数も反射減衰量も変化し、従って電波吸収特性が異方性を有していることが分かる。   According to FIG. 7, it can be seen that in the example, there is no change even if the extreme value of the return loss is rotated by 90 °, and therefore the radio wave absorption characteristic is isotropic. On the other hand, according to FIG. 8, it can be seen that in the comparative example, when the extreme value of the return loss is rotated by 90 °, both the frequency and return loss change, and thus the radio wave absorption characteristics are anisotropic.

本発明は電波吸収体の製造方法について有用である。   The present invention is useful for a method of manufacturing a radio wave absorber.

m 目印
M 成形材料
S 電波吸収体サンプル
10 成形型
11 上型
12 下型
12a 凹部
20 電波吸収特性測定装置
21 測定台
22 送信アンテナ
23 受信アンテナ
24 発振器
25 受信器
m Marking M Molding material S Radio wave absorber sample 10 Mold 11 Upper mold 12 Lower mold 12a Recess 20 Radio wave absorption characteristic measuring device 21 Measuring base 22 Transmitting antenna 23 Receiving antenna 24 Oscillator 25 Receiver

Claims (3)

表面に電波吸収材が付着した熱可塑性樹脂ビーズを含む成形材料を成形型にセットして所定形状にプレス成形する電波吸収体の製造方法。   A method for manufacturing a radio wave absorber, comprising setting a molding material including a thermoplastic resin bead having a radio wave absorber attached on a surface thereof to a mold and press-molding the molding material into a predetermined shape. 請求項1に記載された電波吸収体の製造方法において、
上記熱可塑性樹脂ビーズが発泡剤を含む発泡ビーズである電波吸収体の製造方法。
In the manufacturing method of the electromagnetic wave absorber described in claim 1,
A method for producing a radio wave absorber, wherein the thermoplastic resin beads are foam beads containing a foaming agent.
請求項2に記載された電波吸収体の製造方法において、
上記発泡ビーズが一次発泡ビーズである電波吸収体の製造方法。
In the manufacturing method of the electromagnetic wave absorber described in claim 2,
A method for producing a radio wave absorber, wherein the foam beads are primary foam beads.
JP2010228887A 2010-10-08 2010-10-08 Production method of radio wave absorber Pending JP2012084664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228887A JP2012084664A (en) 2010-10-08 2010-10-08 Production method of radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228887A JP2012084664A (en) 2010-10-08 2010-10-08 Production method of radio wave absorber

Publications (1)

Publication Number Publication Date
JP2012084664A true JP2012084664A (en) 2012-04-26

Family

ID=46243249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228887A Pending JP2012084664A (en) 2010-10-08 2010-10-08 Production method of radio wave absorber

Country Status (1)

Country Link
JP (1) JP2012084664A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892540A (en) * 1981-11-30 1983-06-01 Fujimori Kogyo Kk Conductive foam molding body and manufacture therefor
JP2002347054A (en) * 2001-05-24 2002-12-04 Sekisui Plastics Co Ltd Foamed resin molded article and molding method thereof
JP2010516834A (en) * 2007-01-23 2010-05-20 エルテセー・ベー・ベー Method for producing a flame retardant composite, composite and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892540A (en) * 1981-11-30 1983-06-01 Fujimori Kogyo Kk Conductive foam molding body and manufacture therefor
JP2002347054A (en) * 2001-05-24 2002-12-04 Sekisui Plastics Co Ltd Foamed resin molded article and molding method thereof
JP2010516834A (en) * 2007-01-23 2010-05-20 エルテセー・ベー・ベー Method for producing a flame retardant composite, composite and use thereof

Similar Documents

Publication Publication Date Title
US10597531B2 (en) Electrically conductive particle foams based on thermoplastic elastomers
CN107226922B (en) Foamed particle molded body
JP2018517273A5 (en)
JP2014504062A (en) Electromagnetic isolator
JP2003229694A (en) Electromagnetic wave absorbent and its manufacturing method
CN108045060A (en) A kind of explosion-proof broadband absorbing composite material and preparation method thereof
CN108092006B (en) Layered broadband radar wave absorbing plate and preparation method thereof
CN104312517A (en) Degradable magnetic-permeable hot-melt adhesive as well as degradable magnetic-permeable hot-melt adhesive membrane and preparation method of degradable magnetic-permeable hot-melt adhesive membrane
KR20010032034A (en) Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
JP2012084664A (en) Production method of radio wave absorber
CN108727778A (en) Absorbing material and preparation method thereof
RU2420549C2 (en) Varnish and paint composition
US5885692A (en) Wave absorber
KR101458830B1 (en) A slurry with micro powder and manufacturing method of it and manufacturing method of magnetic sheet using the slurry and a magnetic sheet thereof
JP2021145033A (en) Sheet member and millimeter wave absorber including the same
US6007905A (en) Wave absorber and method for production thereof
JP2884432B2 (en) Radio wave absorber
KR101394528B1 (en) Anti-static resin composition, method for produsing thereof
JP4983967B2 (en) Foamed resin composite structure and method for producing the same
JP2016108479A (en) Heat insulation improver-containing expandable particle and method for producing the same, and method for producing foamed material
AU778867B2 (en) Electric-wave absorber composition
JP2000244173A (en) Liquid state electromagnetic wave interference preventing composition
JPH04356543A (en) Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production
RU2606350C1 (en) Protective coating based on polymer composite radio material
KR20160093261A (en) Manufacturing apparatus for insulation and flame retardants of polystyrene foam

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819