JP2012084359A - Active material containing active carbon for power storage device, production method therefor, and power storage device having active material - Google Patents

Active material containing active carbon for power storage device, production method therefor, and power storage device having active material Download PDF

Info

Publication number
JP2012084359A
JP2012084359A JP2010228962A JP2010228962A JP2012084359A JP 2012084359 A JP2012084359 A JP 2012084359A JP 2010228962 A JP2010228962 A JP 2010228962A JP 2010228962 A JP2010228962 A JP 2010228962A JP 2012084359 A JP2012084359 A JP 2012084359A
Authority
JP
Japan
Prior art keywords
activated carbon
active material
storage device
power storage
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010228962A
Other languages
Japanese (ja)
Other versions
JP5531902B2 (en
Inventor
Hiroyuki Kai
裕之 甲斐
Kosuke Sumita
弘祐 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2010228962A priority Critical patent/JP5531902B2/en
Publication of JP2012084359A publication Critical patent/JP2012084359A/en
Application granted granted Critical
Publication of JP5531902B2 publication Critical patent/JP5531902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the capacity of an Li ion power storage device utilizing active carbon as a negative electrode material while enhancing the durability.SOLUTION: As an active material containing active carbon provided on the collector of a power storage device, active carbon where siloxane is carried on the surface and in the pores of spherical active carbon particles having an average particle size of 100-500 nm is employed.

Description

本発明は、蓄電装置用活性炭含有活物質、その製造方法、及び同活物質を有する蓄電装置に関する。   The present invention relates to an activated carbon-containing active material for a power storage device, a method for producing the same, and a power storage device having the active material.

自動車、携帯電話、パソコン等の電源バッテリとして、Liイオン電池の開発が活発に行われている。Liイオン電池は、セパレータを挟んで正極と負極とが配置されるとともにLi含有電解液を含んでいる。そして一般的に正極活物質にはLi含有金属複合酸化物(例えばLiNiO,LiCoO,LiMn等)が用いられ、一方、負極活物質にはLiイオンを吸蔵・放出可能な、換言すればLiイオンを層間にインターカレーション可能な黒鉛(グラファイト)が用いられる。 Li-ion batteries have been actively developed as power batteries for automobiles, mobile phones, personal computers and the like. The Li ion battery includes a positive electrode and a negative electrode with a separator interposed therebetween and includes a Li-containing electrolyte. In general, Li-containing metal composite oxides (for example, LiNiO 2 , LiCoO 2 , LiMn 2 O 4, etc.) are used as the positive electrode active material, while Li ions can be occluded / released in the negative electrode active material. In this case, graphite (graphite) capable of intercalating Li ions between layers is used.

しかし、負極のグラファイトにLiイオンがインターカレーションされる量には限界があり高容量化への妨げになっていることが知られている(特許文献1参照)。これを解決するために、当該特許文献1では負極活物質として活性炭を用いる一方、その活性炭の表面及び細孔内にLiイオンを吸蔵、放出可能な無機化合物を担持させることを提案している。具体的には、Liを吸蔵、放出可能な炭素以外の無機化合物として、アルミ化合物、スズ化合物、ケイ素化合物等のLiと合金化するものや、Li4 Ti5 12 等のLiイオンを構造内にインターカレーションするものが例示され、最も好ましいものはケイ素(Si)であるとされている。そして、ケイ素源として、Si(OC2 5 4 で表されるテトラエトキシシリコンを用い、これを活性炭に担持し加水分解してSi(OH)にした後、Ar中で1000℃の熱処理を行なうことにより、OH基を脱離させてSi単体を活性炭に担持させた状態にすることが記載されている。 However, it is known that the amount of Li ions intercalated into the graphite of the negative electrode is limited and hinders the increase in capacity (see Patent Document 1). In order to solve this, Patent Document 1 proposes that activated carbon is used as the negative electrode active material while an inorganic compound capable of inserting and extracting Li ions is supported on the surface and pores of the activated carbon. Specifically, as an inorganic compound other than carbon that can occlude and release Li, an alloy with Li such as an aluminum compound, a tin compound, or a silicon compound, or a Li ion such as Li 4 Ti 5 O 12 is included in the structure. Intercalation is exemplified, and silicon (Si) is most preferred. Then, tetraethoxy silicon represented by Si (OC 2 H 5 ) 4 is used as a silicon source, and this is supported on activated carbon, hydrolyzed to Si (OH) 4 , and then heat treated at 1000 ° C. in Ar. It is described that the OH group is eliminated to make the Si simple substance supported on activated carbon.

特開2003−100284号公報Japanese Patent Laid-Open No. 2003-1000028

しかし、上記特許文献のように、1000℃もの高温下で熱処理すると、活性炭表面上のケイ素は凝集してしまい、その比表面積はかなり低下しているものと考えられる。また、SiとLiイオンとは非常に結合性が高く、1個のSi原子に最大4.4個のLiイオンが結合する。このため、Liイオンの吸蔵・放出に伴うSiの膨張・収縮が甚だしいことから、活性炭からのSiの脱離、或いはSiを担持した活性炭の集電体からの剥離を招き易く、蓄電装置の耐久性の確保(サイクル特性の向上)が難しい。   However, when the heat treatment is performed at a high temperature of 1000 ° C. as in the above-mentioned patent document, silicon on the activated carbon surface aggregates, and the specific surface area is considered to be considerably reduced. Further, Si and Li ions have very high bonding properties, and a maximum of 4.4 Li ions are bonded to one Si atom. For this reason, since the expansion and contraction of Si accompanying the insertion / release of Li ions is significant, it is easy to cause the desorption of Si from the activated carbon or the separation of the activated carbon carrying Si from the current collector. It is difficult to ensure safety (improve cycle characteristics).

また、上記特許文献によれば、Siを担持する活性炭粒子の粒径は1μm〜100μmのものが好ましいとされ、実施例として10μmの粒径の活性炭が用いられている。しかし、10μm程度の大きさの活性炭を用いると、結着剤を用いているといえども集電体に対する密着力は比較的弱く、高容量化にも限界がある。また、様々な形状の活性炭粒子が含まれていると、それら粒子間を埋める結着剤の量も増えてしまうという問題も生じる。   Moreover, according to the said patent document, it is supposed that the particle size of the activated carbon particle which carries Si is 1 micrometer-100 micrometers, and activated carbon with a particle diameter of 10 micrometers is used as an Example. However, when activated carbon having a size of about 10 μm is used, even if a binder is used, the adhesion to the current collector is relatively weak, and there is a limit to increasing the capacity. In addition, when activated carbon particles having various shapes are included, there is a problem that the amount of the binder filling the space between the particles also increases.

そこで、本発明は、活性炭を活物質として利用する蓄電装置の高容量化及び耐久性向上を図ることを課題とする。   Thus, an object of the present invention is to increase the capacity and improve the durability of a power storage device that uses activated carbon as an active material.

本発明は、上記課題を解決するために、活物質に粒径が小さな球状活性炭粒子を用い、この活性炭粒子にSi系化合物を担持させるようにした。   In order to solve the above-mentioned problems, the present invention uses spherical activated carbon particles having a small particle size as the active material, and supports the Si-based compound on the activated carbon particles.

すなわち、ここに提示する蓄電装置の集電体上に設けられる活性炭含有活物質は、その活性炭が、平均粒子径が100nm以上500nm以下である球状の活性炭粒子よりなり、該活性炭粒子の表面及び細孔にSi系化合物が担持されていることを特徴とする。   That is, the activated carbon-containing active material provided on the current collector of the power storage device presented here is composed of spherical activated carbon particles having an average particle diameter of 100 nm or more and 500 nm or less. A Si-based compound is supported in the pores.

かかる活物質にあっては、活性炭粒子が球状であり且つ微細であることから、表面積の増大及び拡散経路の短縮により単位重量当たりの静電容量が大きくなり、また、高密度充填が可能になり、エネルギー密度の増大に有利になる。また、上記微細球状活性炭粒子の採用により、Si系化合物の高分散担持が可能になり、イオンの吸蔵・放出に有利になる。しかも、活性炭にSi単体を担持させるのではなく、Si系化合物を担持させているから、イオンの吸蔵・放出に伴う活物質の膨張・収縮もそれほど大きくならず、蓄電装置の耐久性確保に有利になる。   In such an active material, since the activated carbon particles are spherical and fine, the capacitance per unit weight is increased by increasing the surface area and shortening the diffusion path, and high density packing is possible. This is advantageous for increasing the energy density. Further, the adoption of the fine spherical activated carbon particles makes it possible to carry a highly dispersed Si-based compound, which is advantageous for occlusion and release of ions. Moreover, since the activated carbon does not support Si alone but supports Si compounds, the expansion and contraction of the active material accompanying the occlusion / release of ions is not so great, which is advantageous for ensuring the durability of the power storage device. become.

なお、上記「平均粒子径」は、SEM(走査型電子顕微鏡)観察で100個の粒子を選び、それらの直径を測定して平均値を算出した個数平均粒子径である。この点は以下に記述する平均粒子径も同じである。   The “average particle diameter” is a number average particle diameter obtained by selecting 100 particles by SEM (scanning electron microscope) observation and measuring the diameters to calculate an average value. This also applies to the average particle size described below.

上記活性炭における上記Si系化合物の担持量は7質量%以下であることが好ましい。その担持量が過剰になると、活性炭粒子の比表面積が小さくなる、つまり、該活性炭粒子によるイオンの吸蔵・放出がSi系化合物によって妨げられるという弊害が大きくなるためである。   The amount of the Si compound supported on the activated carbon is preferably 7% by mass or less. This is because when the amount of the catalyst is excessive, the specific surface area of the activated carbon particles is reduced, that is, the adverse effect that the absorption and release of ions by the activated carbon particles is hindered by the Si-based compound is increased.

上記Si系化合物としては、Si−O結合を有する化合物、特に、活性炭粒子の細孔に担持可能な低分子量のSi−O化合物が好ましい。そのようなSi系化合物としては、例えば、テトラメチルジシロキサン、ヘキサメチルジシロキサン等のシロキサンがあり、シロキサン単量体、又は分子量100000以下のシロキサンポリマーを採用することが好ましい。   As the Si-based compound, a compound having an Si—O bond, particularly a low molecular weight Si—O compound that can be supported in the pores of the activated carbon particles is preferable. Examples of such Si compounds include siloxanes such as tetramethyldisiloxane and hexamethyldisiloxane, and it is preferable to employ a siloxane monomer or a siloxane polymer having a molecular weight of 100,000 or less.

また、ここに提示する蓄電装置の集電体上に設けられる活性炭含有活物質の製造方法は、
平均粒子径が100nm以上500nm以下である球状の活性炭粒子よりなる活性炭を準備する工程と、
上記活性炭を有機溶媒及びシロキサンとを混合する工程と、
上記混合物を加熱して上記有機溶媒を蒸発させることにより、上記活性炭粒子の表面及び細孔に上記シロキサンを担持させることを特徴とする。
In addition, the method for producing the activated carbon-containing active material provided on the current collector of the power storage device presented here is:
Preparing an activated carbon composed of spherical activated carbon particles having an average particle diameter of 100 nm to 500 nm;
Mixing the activated carbon with an organic solvent and siloxane;
The mixture is heated to evaporate the organic solvent, whereby the siloxane is supported on the surfaces and pores of the activated carbon particles.

この製造方法の場合、有機溶媒は、活性炭とシロキサンとが均一に混ざるようにする、つまり、活性炭粒子に対するシロキサンの濡れ性を良くすることで、活性炭粒子の表面へのシロキサンの付着、細孔へのシロキサンの浸入を促す。そして、有機溶媒の加熱蒸発によって、シロキサンは活性炭粒子の表面及び細孔に担持された状態になる。この場合、活性炭粒子の表面及び細孔に担持されないシロキサンは、有機溶媒と共に共沸現象によって、或いは有機溶媒に続いて蒸発させることができる。これにより、活性炭粒子の表面及び細孔に充分シロキサンを担持することができる。   In the case of this production method, the organic solvent is mixed uniformly with activated carbon and siloxane, that is, by improving the wettability of siloxane to activated carbon particles, the adhesion of siloxane to the surface of activated carbon particles and the pores Accelerate the penetration of siloxane. The siloxane is supported on the surface and pores of the activated carbon particles by the heat evaporation of the organic solvent. In this case, the siloxane not supported on the surfaces and pores of the activated carbon particles can be evaporated together with the organic solvent by the azeotropic phenomenon or subsequently to the organic solvent. Thereby, siloxane can be fully supported on the surfaces and pores of the activated carbon particles.

以上のように、本発明に係る活性炭含有活物質及び該活物質を用いた蓄電装置によれば、平均粒子径が100nm以上500nm以下である球状の活性炭粒子の表面及び細孔にSi系化合物が担持されているから、蓄電装置の高容量化及び耐久性の向上に有利になる。また、本発明に係る製造方法によれば、微細な球状活性炭粒子の表面及び細孔にシロキサンが高分散に担持されてなる活性炭含有活物質を得ることができる。   As described above, according to the activated carbon-containing active material and the power storage device using the active material according to the present invention, Si-based compounds are present on the surfaces and pores of spherical activated carbon particles having an average particle diameter of 100 nm to 500 nm. Since it is carried, it is advantageous for increasing the capacity and improving the durability of the power storage device. Further, according to the production method of the present invention, an active carbon-containing active material in which siloxane is supported in a highly dispersed manner on the surface and pores of fine spherical activated carbon particles can be obtained.

本発明に係る球状フェノール樹脂の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the spherical phenol resin which concerns on this invention. 本発明に係る球状炭素材の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the spherical carbon material which concerns on this invention. 酸触媒のモル比と、球状フェノール樹脂及び球状炭素材各々の平均粒子径との関係を示すグラフ図である。It is a graph which shows the relationship between the molar ratio of an acid catalyst, and the average particle diameter of spherical phenol resin and a spherical carbon material. シロキサンを担持した活性炭のラマン散乱分光スペクトル図である。It is a Raman scattering spectroscopy spectrum diagram of activated carbon carrying siloxane. シロキサン添加量と放電容量との関係を示すグラフ図である。It is a graph which shows the relationship between siloxane addition amount and discharge capacity. シリコン担持量と放電容量との関係を示すグラフ図である。It is a graph which shows the relationship between silicon carrying amount and discharge capacity.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<蓄電装置用活性炭含有活物質の製法>
−球状フェノール樹脂の調製−
界面活性剤としてのCTAB(臭化セチルトリメチルアンモニウム)と、硬化剤としてのヘキサメチレンテトラミンとを水中で混合し、これに、フェノール、ホルムアルデヒド及び酸触媒としての塩酸を加えて混合した。この混合溶液を95℃の温度になるように加熱しながら24時間攪拌した(重合反応)。その後、反応溶液を遠心分離し、得られた生成物を水及びメタノールで洗浄することにより、球状活性炭粒子の前駆体である球状フェノール樹脂を得た。この球状フェノール樹脂をアルゴンガス雰囲気下で加熱して270℃の温度に2時間保持することによって硬化させた。
<Production method of active material containing activated carbon for power storage device>
-Preparation of spherical phenol resin-
CTAB (cetyltrimethylammonium bromide) as a surfactant and hexamethylenetetramine as a curing agent were mixed in water, and phenol, formaldehyde, and hydrochloric acid as an acid catalyst were added thereto and mixed. The mixed solution was stirred for 24 hours while being heated to a temperature of 95 ° C. (polymerization reaction). Thereafter, the reaction solution was centrifuged, and the resulting product was washed with water and methanol to obtain a spherical phenol resin which is a precursor of spherical activated carbon particles. The spherical phenol resin was cured by heating in an argon gas atmosphere and maintaining the temperature at 270 ° C. for 2 hours.

界面活性剤としては、CTABに限らず、他の陽イオン性界面活性剤又は陰イオン性界面活性剤を用いることができる。酸触媒としては、他のハロゲン化水素、硝酸、或いは硫酸を用いることもできる。フェノール類に対する酸触媒の添加割合はモル比で0.01以上0.15以下とすることが好ましい。   The surfactant is not limited to CTAB, and other cationic surfactants or anionic surfactants can be used. As the acid catalyst, other hydrogen halides, nitric acid, or sulfuric acid can also be used. The addition ratio of the acid catalyst to the phenol is preferably 0.01 or more and 0.15 or less in terms of molar ratio.

この場合、水相において界面活性剤のミセルが形成され、そのミセル内にフェノールが導入され、酸触媒の存在下、縮合重合反応が進行する。このミセル内での重合反応の進行により、球状フェノール樹脂粒子が得られる。また、酸触媒によって、界面活性剤の分散が図れ、その結果、ミセルサイズが小さくなるため、得られる球状フェノール樹脂粒子の粒子径が小さくなる。   In this case, surfactant micelles are formed in the aqueous phase, phenol is introduced into the micelles, and the condensation polymerization reaction proceeds in the presence of an acid catalyst. Spherical phenol resin particles are obtained by the progress of the polymerization reaction in the micelle. In addition, the surfactant can be dispersed by the acid catalyst, and as a result, the micelle size is reduced, so that the resulting spherical phenol resin particles have a reduced particle size.

すなわち、酸触媒の添加量の調整により、平均粒子径が300nm以上1000nm以下である球状フェノール樹脂粒子を得ることができる。表1は酸触媒(塩酸)の添加量が、得られる球状フェノール樹脂の粒径に与える影響を示す。原料添加割合は表1に示すとおりである。塩酸の添加量が多くなるほど、得られる球状フェノール樹脂の粒子径が小さくなっている。   That is, by adjusting the addition amount of the acid catalyst, spherical phenol resin particles having an average particle size of 300 nm or more and 1000 nm or less can be obtained. Table 1 shows the influence of the amount of acid catalyst (hydrochloric acid) added on the particle size of the resulting spherical phenol resin. The raw material addition ratio is as shown in Table 1. The larger the amount of hydrochloric acid added, the smaller the particle size of the resulting spherical phenol resin.

図1は表1のサンプル2に係る球状フェノール樹脂のSEM像である。上記調製法で得られる球状フェノール樹脂粒子は高い真球度を有することがわかる。その平均粒子径は0.82μmであった。   FIG. 1 is an SEM image of a spherical phenol resin according to sample 2 in Table 1. It turns out that the spherical phenol resin particle obtained by the said preparation method has high sphericity. The average particle diameter was 0.82 μm.

−球状活性炭の調製−
上述の硬化させた球状フェノール樹脂をアルゴンガス雰囲気下で加熱して800℃の温度に1時間保持した。これは球状フェノール樹脂の炭素化処理である。次いで当該炭素化物を飽和水蒸気を含む窒素ガス雰囲気下で加熱して900℃の温度に55分間保持した。これは水蒸気賦活処理である。
-Preparation of spherical activated carbon-
The above-described cured spherical phenol resin was heated under an argon gas atmosphere and maintained at a temperature of 800 ° C. for 1 hour. This is a carbonization treatment of a spherical phenol resin. Next, the carbonized product was heated in a nitrogen gas atmosphere containing saturated water vapor and held at a temperature of 900 ° C. for 55 minutes. This is a steam activation treatment.

図2は上記サンプル2の球状フェノール樹脂に上記炭素化処理及び水蒸気賦活処理を施して得た球状活性炭粒子のSEM像である。球状フェノール樹脂粒子の炭素化及び水蒸気賦活後も、その粒子の球形は保持されている。すなわち、個々の活性炭粒子は、互いに分離独立した球状になっている。炭素化・水蒸気賦活後の平均粒子径は0.33μm(330nm)である。球状フェノール樹脂粒子は、炭素化・水蒸気賦活によってその粒子径が小さな球状活性炭粒子になることがわかる。   FIG. 2 is an SEM image of spherical activated carbon particles obtained by subjecting the spherical phenol resin of Sample 2 to the carbonization treatment and the steam activation treatment. Even after the carbonization and steam activation of the spherical phenol resin particles, the spherical shape of the particles is maintained. That is, each activated carbon particle has a spherical shape that is separated and independent from each other. The average particle diameter after carbonization and steam activation is 0.33 μm (330 nm). It can be seen that the spherical phenol resin particles become spherical activated carbon particles having a small particle diameter by carbonization and steam activation.

図3はサンプル1〜5の球状フェノール樹脂粒子及びそれらを炭素化・水蒸気賦活してなる球状活性炭粒子の平均粒子径を示す。平均粒子径320nm〜930nmの球状フェノール樹脂粒子から平均粒子径100nm〜400nmの球状活性炭粒子が得られている。   FIG. 3 shows the average particle diameters of the spherical phenol resin particles of Samples 1 to 5 and the spherical activated carbon particles obtained by carbonizing and steam-activating them. Spherical activated carbon particles having an average particle size of 100 nm to 400 nm are obtained from spherical phenol resin particles having an average particle size of 320 nm to 930 nm.

−活性炭へのSi系化合物の担持−
上記球状活性炭粒子よりなる活性炭(粉末)と有機溶媒としてのヘキサンとSi系化合物としてのヘキサメチルジシロキサンとを混合し、該混合物を室温で30分間攪拌した。有機溶媒の使用により、活性炭とヘキサメチルジシロキサンとが均一に混ざり、つまり、活性炭粒子に対するヘキサメチルジシロキサンの濡れ性が良くなり、活性炭粒子の表面へのヘキサメチルジシロキサンの付着、細孔へのヘキサメチルジシロキサンの浸入が促進される。有機溶媒としては、ヘキサンに限る必要はないが、ベンゼン、ヘキサン、ジエチルエーテル、酢酸エチル等の無極性溶媒を採用することが好ましく、また、使用するシロキサンよりも沸点が低いものを使用する。
-Loading Si compounds on activated carbon-
Activated carbon (powder) composed of the above spherical activated carbon particles, hexane as an organic solvent, and hexamethyldisiloxane as an Si-based compound were mixed, and the mixture was stirred at room temperature for 30 minutes. By using an organic solvent, the activated carbon and the hexamethyldisiloxane are mixed uniformly, that is, the wettability of the hexamethyldisiloxane to the activated carbon particles is improved, and the adhesion of the hexamethyldisiloxane to the surface of the activated carbon particles, to the pores Penetration of hexamethyldisiloxane is promoted. The organic solvent is not necessarily limited to hexane, but a nonpolar solvent such as benzene, hexane, diethyl ether, ethyl acetate or the like is preferably used, and one having a lower boiling point than the siloxane used is used.

次いで上記攪拌した混合物を加熱してヘキサンを蒸発させた(蒸発乾固)。ヘキサンが蒸発していくことに伴って、ヘキサメチルジシロキサンも一部が共沸現象によって蒸発する。ヘキサンの蒸発によって、ヘキサメチルジシロキサンは活性炭粒子の表面及び細孔に担持された状態になる。この場合、活性炭粒子に担持されないヘキサメチルジシロキサンが上記共沸現象によって蒸発する。   The stirred mixture was then heated to evaporate hexane (evaporation to dryness). As hexane evaporates, hexamethyldisiloxane partially evaporates due to the azeotropic phenomenon. By evaporation of hexane, hexamethyldisiloxane is supported on the surfaces and pores of the activated carbon particles. In this case, hexamethyldisiloxane not supported on the activated carbon particles evaporates due to the azeotropic phenomenon.

以上により、平均粒子径が100nm以上500nm以下である球状の活性炭粒子の表面及び細孔にSi系化合物としてヘキサメチルジシロキサンが担持されてなる蓄電装置用活性炭含有活物質が得られる。   As described above, an active carbon-containing active material for a power storage device in which hexamethyldisiloxane is supported as a Si compound on the surface and pores of spherical activated carbon particles having an average particle diameter of 100 nm to 500 nm is obtained.

上記活性炭含有活物質のラマン散乱分光スペクトルの測定を行った。図4はその結果を示す。同図において、1500cm−1の前後2箇所のピークは活性炭特有のラマンシフトであり、3000cm−1近くの2箇所のピークはヘキサメチルジシロキサン特有のラマンシフトである。同図から、ヘキサメチルジシロキサンは熱分解することなく元の分子のまま活性炭に担持されていることがわかる。 The Raman scattering spectrum of the active carbon-containing active material was measured. FIG. 4 shows the result. In the figure, the peak of the front and rear two positions of 1500 cm -1 is activated carbon unique Raman shift, two peaks near 3000 cm -1 is hexamethyldisiloxane specific Raman shift. From the figure, it can be seen that hexamethyldisiloxane is supported on activated carbon in its original molecule without thermal decomposition.

<活性炭含有活物質の評価>
上述の製法によって、平均粒子径が100nmである球状活性炭粒子よりなる活性炭を調製し、これにヘキサメチルジシロキサンを相異なる添加量で担持させた5種類の活性炭含有活物質A〜E、並びにヘキサメチルジシロキサンを担持させていない活性炭(平均粒子径が100nmである球状活性炭粒子)活物質Fを準備した。A〜Eのシロキサン添加量(活性炭1g当たりの仕込量であり、実際に担持されている量ではない)は表2のとおりである。
<Evaluation of active material containing activated carbon>
By the above-mentioned production method, activated carbon comprising spherical activated carbon particles having an average particle diameter of 100 nm is prepared, and five types of activated carbon-containing active materials A to E in which hexamethyldisiloxane is supported in different addition amounts, and hexa An activated carbon F (spherical activated carbon particles having an average particle diameter of 100 nm) that does not carry methyldisiloxane was prepared. Table 2 shows the amount of siloxane added from A to E (the amount charged per gram of activated carbon, not the amount actually supported).

上記A〜Fの各活物質を負極活物質とするLiイオン型コイン電池(蓄電装置)を作成し、特性を比較した。正極はリチウム金属とし、負極は、負極活物質(A〜F)とアセチレンブラック(AB)とバインダとを90:5:5の質量比で混合した負極材を白金製集電体に塗布して構成した。電解液には、EC(エチレンカーボーネート)とDMC(ジメチルカーボネート)との混合溶媒(EC:DMC=1:2(質量比))に1M−LiPFを溶かしたものを採用した。そして、1mAの定電流、0.01〜3.0Vの電圧範囲で充放電サイクル試験(室温25℃)を行ない、初期放電容量及び10サイクル後の放電容量を測定した。結果を図5に示す。 Li ion type coin batteries (power storage devices) using the active materials A to F as negative electrode active materials were prepared, and the characteristics were compared. The positive electrode is made of lithium metal, and the negative electrode is applied to a platinum current collector by mixing a negative electrode active material (A to F), acetylene black (AB), and a binder in a mass ratio of 90: 5: 5. Configured. As the electrolytic solution, a solution obtained by dissolving 1M-LiPF 6 in a mixed solvent of EC (ethylene carbonate) and DMC (dimethyl carbonate) (EC: DMC = 1: 2 (mass ratio)) was employed. Then, a charge / discharge cycle test (room temperature 25 ° C.) was conducted in a constant current of 1 mA and a voltage range of 0.01 to 3.0 V, and an initial discharge capacity and a discharge capacity after 10 cycles were measured. The results are shown in FIG.

同図によれば、ヘキサメチルジシロキサンの添加量が多くなるに従って放電容量が大きくなること、特に負極活物質Cではヘキサメチルジシロキサン無添加のFに比べて10サイクル後の放電容量が約1.2倍になること、但し、ヘキサメチルジシロキサン添加量が過剰になると、放電容量が低下することがわかる。   According to the figure, the discharge capacity increases as the amount of hexamethyldisiloxane added increases. In particular, the negative electrode active material C has a discharge capacity after about 10 cycles as compared with F without hexamethyldisiloxane added. It can be seen that the discharge capacity decreases when the addition amount of hexamethyldisiloxane is excessive.

次に球状活性炭粒子の平均粒子径が300nm及び500nmである各活性炭、並びに市販活性炭(大阪ガスケミカル社製の商品名「白鷺TC」;不定形状,メジアン径=15μm)を準備した。そして、各々について、上記シロキサン添加量がゼロ(F)、31.0×10−3mol/g(C)及び62.0×10−3mol/g(D)のケースでの放電容量を先と同じ条件で測定した。また、それら活性炭活物質の実際のシリコン担持量、比表面積及び細孔容積についても測定した。それらの結果を、先の平均粒子径が100nmのものと併せて表3に示す。また、平均粒子径が異なる各活性炭のシリコン担持量と10サイクル後の放電容量との関係を図6に示す。 Next, each activated carbon in which the average particle diameter of spherical activated carbon particles is 300 nm and 500 nm, and commercially available activated carbon (trade name “Shirakaba TC” manufactured by Osaka Gas Chemical Co., Ltd .; irregular shape, median diameter = 15 μm) were prepared. For each case, the discharge capacity in the cases where the siloxane addition amount is zero (F), 31.0 × 10 −3 mol / g (C), and 62.0 × 10 −3 mol / g (D) is the first. Measured under the same conditions. In addition, the actual silicon loading, specific surface area and pore volume of these activated carbon active materials were also measured. The results are shown in Table 3 together with those having an average particle diameter of 100 nm. FIG. 6 shows the relationship between the amount of silicon supported by each activated carbon having a different average particle size and the discharge capacity after 10 cycles.

球状活性炭粒子の平均粒子径が100nm〜500nmの本発明例では、市販活性炭を用いた比較例よりも、初期放電容量及び10サイクル後の放電容量が大きくなっている。これから、活性炭粒子の粒子径を小さくすることが放電容量の増大に効果があることがわかる。また、本発明に係る活性炭と比較例に係る市販活性炭とは、シロキサンを担持しない状態での比表面積は大差ないが、同じシロキサン添加量でのシリコン担持量は、本発明例の方が比較例よりも格段に多い。これは、本発明に係る球状活性炭粒子は細孔容積が大きく、シロキサンが細孔に効率良く担持されるためと考えられる。また、図6によれば、シロキサンに係るシリコン担持量は7質量%以下にすることが好ましいということができる。   In the example of the present invention in which the average particle diameter of the spherical activated carbon particles is 100 nm to 500 nm, the initial discharge capacity and the discharge capacity after 10 cycles are larger than those of the comparative example using commercially available activated carbon. From this, it can be seen that reducing the particle size of the activated carbon particles is effective in increasing the discharge capacity. Further, the activated carbon according to the present invention and the commercial activated carbon according to the comparative example are not much different in specific surface area in a state where no siloxane is supported, but the amount of silicon supported at the same siloxane addition amount is the comparative example of the present invention example. Much more than. This is presumably because the spherical activated carbon particles according to the present invention have a large pore volume, and the siloxane is efficiently supported in the pores. Moreover, according to FIG. 6, it can be said that it is preferable that the amount of silicon supported by siloxane is 7% by mass or less.

なし     None

Claims (5)

蓄電装置の集電体上に設けられる活性炭含有活物質であって、
上記活性炭が、平均粒子径が100nm以上500nm以下である球状の活性炭粒子よりなり、該活性炭粒子の表面及び細孔にSi系化合物が担持されていることを特徴とする蓄電装置用活性炭含有活物質。
An active carbon-containing active material provided on a current collector of a power storage device,
An activated carbon-containing active material for a power storage device, wherein the activated carbon is composed of spherical activated carbon particles having an average particle diameter of 100 nm to 500 nm, and a Si-based compound is supported on the surfaces and pores of the activated carbon particles. .
請求項1において、
上記活性炭における上記Si系化合物の担持量が7質量%以下であることを特徴とする蓄電装置用活性炭含有活物質。
In claim 1,
The activated carbon-containing active material for a power storage device, wherein the supported amount of the Si compound in the activated carbon is 7% by mass or less.
請求項1又は請求項2において、
上記Si系化合物は、Si−O結合を有することを特徴とする蓄電装置用活性炭含有活物質。
In claim 1 or claim 2,
The activated carbon-containing active material for a power storage device, wherein the Si-based compound has a Si—O bond.
請求項1乃至請求項3のいずれか一に記載の活性炭含有活物質を有する蓄電装置。   The electrical storage apparatus which has the activated carbon containing active material as described in any one of Claims 1 thru | or 3. 蓄電装置の集電体上に設けられる活性炭含有活物質の製造方法であって、
平均粒子径が100nm以上500nm以下である球状の活性炭粒子よりなる活性炭を準備する工程と、
上記活性炭を有機溶媒及びシロキサンとを混合する工程と、
上記混合物を加熱して上記有機溶媒を蒸発させることにより、上記活性炭粒子の表面及び細孔に上記シロキサンを担持させることを特徴とする蓄電装置用活性炭含有活物質の製造方法。
A method for producing an activated carbon-containing active material provided on a current collector of a power storage device,
Preparing an activated carbon composed of spherical activated carbon particles having an average particle diameter of 100 nm to 500 nm;
Mixing the activated carbon with an organic solvent and siloxane;
A method for producing an activated carbon-containing active material for a power storage device, wherein the mixture is heated to evaporate the organic solvent, whereby the siloxane is supported on the surfaces and pores of the activated carbon particles.
JP2010228962A 2010-10-08 2010-10-08 Activated carbon-containing active material for power storage device, method for producing the same, and power storage device having the same active material Active JP5531902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228962A JP5531902B2 (en) 2010-10-08 2010-10-08 Activated carbon-containing active material for power storage device, method for producing the same, and power storage device having the same active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228962A JP5531902B2 (en) 2010-10-08 2010-10-08 Activated carbon-containing active material for power storage device, method for producing the same, and power storage device having the same active material

Publications (2)

Publication Number Publication Date
JP2012084359A true JP2012084359A (en) 2012-04-26
JP5531902B2 JP5531902B2 (en) 2014-06-25

Family

ID=46243024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228962A Active JP5531902B2 (en) 2010-10-08 2010-10-08 Activated carbon-containing active material for power storage device, method for producing the same, and power storage device having the same active material

Country Status (1)

Country Link
JP (1) JP5531902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009556A (en) * 2014-06-24 2016-01-18 日立造船株式会社 Secondary battery electrode
KR20160146754A (en) 2014-04-28 2016-12-21 구라레 케미칼 가부시키가이샤 Porous carbon material for electrode of energy storage device and method for manufacturing said material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214755A (en) * 1997-01-31 1998-08-11 Kyocera Corp Solid activated carbon, its manufacture and electric double layer capacitor using it
JP2000323362A (en) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc Electrical double layer capacitor and manufacture thereof
JP2003100284A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2007066669A (en) * 2005-08-30 2007-03-15 Lignyte Co Ltd Electrode material, electrode for secondary battery, carbon material for electric double layer capacitor polarizing electrode, and electric double layer capacitor polarizing electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214755A (en) * 1997-01-31 1998-08-11 Kyocera Corp Solid activated carbon, its manufacture and electric double layer capacitor using it
JP2000323362A (en) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc Electrical double layer capacitor and manufacture thereof
JP2003100284A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2007066669A (en) * 2005-08-30 2007-03-15 Lignyte Co Ltd Electrode material, electrode for secondary battery, carbon material for electric double layer capacitor polarizing electrode, and electric double layer capacitor polarizing electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146754A (en) 2014-04-28 2016-12-21 구라레 케미칼 가부시키가이샤 Porous carbon material for electrode of energy storage device and method for manufacturing said material
US10297398B2 (en) 2014-04-28 2019-05-21 Kuraray Co., Ltd. Porous carbon material for electrode of energy storage device and method for manufacturing said material
JP2016009556A (en) * 2014-06-24 2016-01-18 日立造船株式会社 Secondary battery electrode

Also Published As

Publication number Publication date
JP5531902B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
Li et al. Dense graphene monolith for high volumetric energy density Li–S batteries
Chen et al. Microcrystalline hybridization enhanced coal‐based carbon anode for advanced sodium‐ion batteries
Selvan et al. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries
Zheng et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene‐like nanosheets for Li‐S batteries
JP6297703B2 (en) Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
KR101458309B1 (en) Silicon-block copolymer core-shell nanoparticle to buffer the volumetric change and negative active material for lithium second battery using the same
Ma et al. Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode
Tang et al. Novel silicon nanoparticles with nitrogen-doped carbon shell dispersed in nitrogen-doped graphene and CNTs hybrid electrode for lithium ion battery
Tang et al. Porous CNT@ Li 4 Ti 5 O 12 coaxial nanocables as ultra high power and long life anode materials for lithium ion batteries
Yin et al. Silicon nanoparticle self-incorporated in hollow nitrogen-doped carbon microspheres for lithium-ion battery anodes
Yuan et al. A General Multi‐Interface Strategy toward Densified Carbon Materials with Enhanced Comprehensive Electrochemical Performance for Li/Na‐Ion Batteries
WO2017057146A1 (en) Carbonaceous material for sodium ion secondary battery negative electrode, and sodium ion secondary battery using carbonaceous material for sodium ion secondary battery negative electrode
Wu et al. N-Doped gel-structures for construction of long cycling Si anodes at high current densities for high performance lithium-ion batteries
JP2018098215A (en) Carbonaceous material for nonaqueous electrolyte secondary battery anode
Hou et al. Facile spray-drying/pyrolysis synthesis of intertwined SiO@ CNFs&G composites as superior anode materials for Li-ion batteries
JP2019145212A (en) Silicon oxide/carbon composite, nonaqueous electrolyte secondary battery negative electrode including the composite, and nonaqueous electrolyte secondary battery including the negative electrode
Dong et al. Design and performance improvement of SiNPs@ graphene@ C composite with a popcorn structure
JP2010282942A (en) Electrode material and manufacturing method of electrode material
Wang et al. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores
Li et al. Facile Spray‐Drying Synthesis of Dual‐Shell Structure Si@ SiOx@ Graphite/Graphene as Stable Anode for Li‐Ion Batteries
JP2017183080A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and method for manufacturing the same
JP2014132555A (en) Negative electrode material, negative electrode active material, negative electrode, and alkaline metal ion battery
JP5531902B2 (en) Activated carbon-containing active material for power storage device, method for producing the same, and power storage device having the same active material
JP5957793B2 (en) Carbon material manufacturing method
WO2017056991A1 (en) Sodium-ion secondary battery negative electrode carbonaceous material and sodium-ion secondary battery using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5531902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150