WO2017056991A1 - Sodium-ion secondary battery negative electrode carbonaceous material and sodium-ion secondary battery using thereof - Google Patents
Sodium-ion secondary battery negative electrode carbonaceous material and sodium-ion secondary battery using thereof Download PDFInfo
- Publication number
- WO2017056991A1 WO2017056991A1 PCT/JP2016/077100 JP2016077100W WO2017056991A1 WO 2017056991 A1 WO2017056991 A1 WO 2017056991A1 JP 2016077100 W JP2016077100 W JP 2016077100W WO 2017056991 A1 WO2017056991 A1 WO 2017056991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- ion secondary
- carbonaceous material
- sodium
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbonaceous material for a negative electrode of a sodium ion secondary battery and a sodium ion secondary battery using the same. According to the present invention, it is possible to provide a sodium ion secondary battery having a high discharge capacity and exhibiting excellent cycle characteristics and storage characteristics.
- lithium ion secondary batteries can be used as a power source for automobiles and a large power source for stationary use.
- rare metals such as cobalt, nickel, and lithium are used as materials, and there is concern about their supply.
- sodium ion secondary batteries using abundant sodium resources have been studied in order to eliminate concerns about material supply.
- the basic structure of a sodium ion secondary battery is similar to that of a lithium ion secondary battery, but differs in that sodium is used as a charge carrier instead of lithium. For this reason, the sodium ion secondary battery has different electrochemical characteristics from the lithium ion secondary battery.
- the battery In order for a sodium ion secondary battery to be used as a power source for automobiles or a large power source for stationary use, the battery must have a high discharge capacity and excellent cycle characteristics and storage characteristics. In order to have a high discharge capacity, a negative electrode material capable of electrically inserting (doping) and detaching (de-doping) a lot of sodium is required. Moreover, since it is a secondary battery, the negative electrode material excellent in cycling characteristics which can endure repeated dope and dedope is required. In stationary applications, the battery is held in a charged state in preparation for emergency power supply. Therefore, there is a need for a negative electrode material that can maintain the capacity after being fully charged with a high maintenance rate. In particular, storage characteristics at high temperatures are required.
- Carbonaceous materials are being studied as candidates for negative electrode materials for sodium ion secondary batteries. It is known that graphite generally used in lithium ion secondary batteries cannot electrochemically dope and dedope sodium. Therefore, an amorphous carbon material that can be doped and dedoped with sodium ions has been proposed as a carbonaceous material for a sodium ion secondary battery negative electrode.
- Patent Document 1 discloses a secondary battery using a non-graphitic carbonaceous material having d 002 of 0.377 nm or more and Lc of 1.29 nm or less as a negative electrode material. However, the initial discharge capacity density was as low as 234 mAh / g.
- Patent Document 2 a carbonaceous material prepared using a plant as a raw material is used as the negative electrode material. However, the initial discharge capacity was as small as 223 mAh / g.
- Patent Document 3 discloses a secondary battery using glassy carbon as a negative electrode material. However, the discharge capacity was as small as 265 mAh / g.
- Patent Document 4 discloses a secondary battery using a carbonaceous material having a ratio of ⁇ p / ⁇ H of less than 0.950 as a negative electrode material.
- the negative electrode capacity per unit weight was 230 mAh / g.
- the discharge capacity of sodium secondary batteries using non-graphitic carbonaceous materials reported so far is It is about 200 to 260 mAh / g, and it cannot be said that it has a sufficient capacity.
- an object of the present invention is to provide a sodium ion secondary battery having a high discharge capacity and excellent cycle characteristics and storage characteristics. Furthermore, the objective of this invention is providing the carbonaceous material for secondary battery negative electrodes used for the said battery.
- the present inventor has surprisingly found that hydrogen atoms and carbon atoms required by elemental analysis. It has been found that a sodium ion secondary battery exhibiting excellent battery characteristics can be obtained by using a carbonaceous material having a ratio H / C of 0.05 or less as a negative electrode material of a sodium ion secondary battery.
- the present invention is based on these findings.
- a carbonaceous material for a negative electrode of a sodium ion secondary battery wherein the ratio H / C of hydrogen atoms to carbon atoms determined by elemental analysis is 0.05 or less
- the carbonaceous material for a sodium ion secondary battery negative electrode according to [1] wherein the BET specific surface area is less than 20 m 2 / g
- a negative electrode for a sodium ion secondary battery comprising the carbonaceous material according to any one of [1] to [4], and a sodium ion secondary battery comprising the electrode according to any one of [1] to [4], and a sodium ion
- the sodium ion secondary battery using the carbonaceous material of the present invention has a large discharge capacity and exhibits excellent cycle characteristics and storage characteristics.
- excellent cycle characteristics can be exhibited.
- the BET specific surface area is less than 20 m 2 / g, the storage characteristics can be improved.
- the butanol true density is less than 1.53 g / cm 3 , a high discharge capacity can be exhibited.
- the sodium ion secondary battery using the carbonaceous material of the present invention has further excellent discharge capacity, cycle characteristics, And storage characteristics.
- Carbonaceous material for sodium ion secondary battery negative electrode has a hydrogen atom to carbon atom ratio H / C determined by elemental analysis of 0.05 or less.
- the BET specific surface area is preferably less than 20 m 2 / g.
- the true density determined by the butanol method is preferably less than 1.53 g / cm 3 .
- the carbon source of the carbonaceous material for the negative electrode of the sodium ion secondary battery of the present invention is not particularly limited.
- petroleum-based pitch or tar for example, petroleum-based pitch or tar, coal-based pitch or tar, thermoplastic resin (for example, ketone resin, polyvinyl Alcohol, polyester resin (eg, polyethylene terephthalate, polybutylene terephthalate, polyarylate), polyacetal resin, polyacrylonitrile, styrene / divinylbenzene copolymer, polyamide resin (nylon resin), polyimide resin, polycarbonate resin, modified polyphenylene ether, polysulfone Resin, polyphenylene sulfide resin, fluororesin, polyamideimide resin, aramid resin, or polyetheretherketone), thermosetting resin (eg, epoxy resin, urethane resin, A resin, diallyl phthalate resin, silicone resin, furan resin, phenol resin, melamine resin, an amino resin and amide resin).
- H / C Atomic ratio of hydrogen atom to carbon atom (H / C)
- H / C is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C tends to decrease. Therefore, H / C is effective as an index representing the degree of carbonization.
- H / C of the carbonaceous material of the present invention is 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less.
- H / C of hydrogen atoms to carbon atoms exceeds 0.05, there are many functional groups in the carbonaceous material, and sodium doped into the negative electrode carbon by reaction with sodium is not completely dedope, There is a problem that a large amount of sodium remains in the negative electrode carbon, and sodium which is an active material is wasted.
- the lower limit of H / C is not particularly limited, but H may be below the detection limit. In this case, H / C is substantially zero.
- the ratio H / C of hydrogen atoms to carbon atoms is within the above range, excellent cycle characteristics can be exhibited.
- the specific surface area can be obtained by an approximate expression derived from the BET expression by nitrogen adsorption.
- the specific surface area of the carbonaceous material of the present invention is not limited, but is preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less.
- the specific surface area exceeds 20 m 2 / g, the reaction with the electrolytic solution increases, leading to an increase in irreversible capacity, and thus battery performance may be reduced.
- the specific surface area is in the above range, the storage characteristics can be improved. That is, it is possible to prevent a decrease in capacity when stored at a high temperature with full charge.
- the specific surface area is 20 m 2 / g or less, pores that do not contribute to storage of sodium are reduced, and pores having a size that can store sodium are increased, and thus an excellent discharge capacity can be exhibited.
- the minimum of a specific surface area is not specifically limited, If a specific surface area is less than 0.5 m ⁇ 2 > / g, input-output characteristics may fall. Therefore, the lower limit of the specific surface area is preferably 0.5 m 2 / g or more.
- the butanol true density of the carbonaceous material of the present invention is not limited, but is preferably less than 1.53 g / cm 3 .
- the upper limit of butanol true density is more preferably 1.525g / cm 3 or less, further preferably 1.52 g / cm 3 or less, more preferably 1.515g / cm 3 or less.
- a carbonaceous material having a true density of more than 1.53 g / cm 3 has few pores of a size that can store sodium, and may have a small doping and dedoping capacity.
- the sodium ion secondary battery using the carbonaceous material of the present invention can exhibit a high discharge capacity.
- the lower limit of the butanol true density is not limited, but is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
- a carbonaceous material having a butanol true density of 1.48 g / cm 3 or less exhibits a further excellent discharge capacity. Accordingly, the butanol true density of the carbonaceous material of the present invention is most preferably 1.35 g / cm 3 to 1.45 g / cm 3 .
- the true helium density of the carbonaceous material of the present invention is not particularly limited, but is preferably less than 2.20 g / cm 3 .
- a carbonaceous material having a helium true density exceeding 2.20 g / cm 3 may have fewer pores capable of storing sodium, and the doping and dedoping capacity may be reduced.
- the lower limit of the helium true density is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
- the average particle diameter (D v50 ) of the carbonaceous material of the present invention is 1 to 50 ⁇ m.
- the lower limit of the average particle diameter is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
- the average particle diameter is less than 1 ⁇ m, the specific surface area is increased by increasing the fine powder. Therefore, the irreversible capacity, which is a capacity that does not discharge even when charged due to increased reactivity with the electrolytic solution, is increased, and the proportion of wasted capacity of the positive electrode is increased.
- the upper limit of the average particle diameter is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less.
- the average particle diameter exceeds 50 ⁇ m, the diffusion free path of sodium in the particles increases, so that rapid charge / discharge becomes difficult. Further, in the secondary battery, it is important to increase the electrode area in order to improve the input / output characteristics. For this reason, it is necessary to reduce the coating thickness of the active material on the current collector plate during electrode preparation. In order to reduce the coating thickness, it is necessary to reduce the particle diameter of the active material. From such a viewpoint, the upper limit of the average particle diameter is preferably 50 ⁇ m or less.
- the carbonaceous material for a sodium ion secondary battery negative electrode of the present invention is not limited, but a forming step of a porous molded body, an infusibilization step, an alkali deposition step, a pulverization step, a preliminary firing step, a main firing step, And a plurality of processes selected from the group consisting of a pyrolytic carbon coating process.
- the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not limited. For example, as shown in Examples 1 to 3, petroleum-based pitch or tar, coal-based pitch or tar is used as the carbon source.
- An infusibilization step (3) a preliminary firing step of firing at 400 ° C. or more and less than 800 ° C. in a non-oxidizing gas atmosphere, and (4) a main firing step of firing at 800 ° C. to 1500 ° C. in a non-oxidizing gas atmosphere, It can manufacture with the manufacturing method containing.
- pitch is described as an example, but it is possible to manufacture a carbonaceous material using tar in the same manner.
- the purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous.
- Such additives can be selected from one or a mixture of two or more such as naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl.
- the amount added to the pitch is preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pitch.
- the pitch and additive are mixed in a molten state by heating in order to achieve uniform mixing.
- the mixture of pitch and additive is preferably formed into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. Molding may be performed in a molten state, or may be performed by pulverizing the mixture after cooling.
- Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
- aliphatic hydrocarbons such as butane, pentane, hexane, or heptane
- mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene
- methanol methanol
- Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
- the oxygen crosslinking degree when the carbonaceous precursor is infusible by oxidation is not particularly limited as long as the effect of the present invention is obtained. That is, when the infusibilization treatment by oxygen crosslinking is not performed, the oxygen crosslinking degree may be 0% by weight, but the lower limit of the oxygen crosslinking degree is preferably 1% by weight or more, more preferably 2% by weight or more, More preferably, it is 3% by weight or more. If it is less than 1% by weight, the true density becomes large and the void for storing sodium becomes small, which is not preferable. In particular, in order to obtain an optimum butanol true density carbonaceous material, the oxygen content is preferably 10% by weight or more.
- the upper limit of the oxygen crosslinking degree is preferably 25% by weight or less, more preferably 20% by weight or less, and still more preferably 18% by weight or less. Exceeding 25% by weight is not preferable because the true density decreases and the charge / discharge capacity per volume may decrease.
- a carbonaceous material having an optimal pore structure can be obtained by performing alkali addition on the carbonaceous precursor and then performing a heat treatment such as preliminary firing.
- the carbonaceous precursor to be alkali-added is not limited, and examples thereof include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin.
- the alkali deposition step is a step of adding an alkali metal element-containing compound to the carbonaceous precursor and heat-treating it in a non-oxidizing gas atmosphere at 500 ° C. to 1000 ° C. to obtain an alkali-treated carbonaceous precursor.
- an alkali metal element such as lithium, sodium, or potassium can be used.
- the alkali metal element may be attached to the carbonaceous precursor in a metal state, but a compound containing an alkali metal element such as a hydroxide, carbonate, hydrogencarbonate, or halogen compound (hereinafter referred to as an alkali metal compound). May be attached).
- the alkali metal compound is not limited, but is preferably a hydroxide because it has high permeability and can be uniformly impregnated into the carbonaceous precursor.
- An alkali-added carbonaceous precursor can be obtained by adding an alkali metal element or an alkali metal compound to the carbonaceous precursor.
- the addition method of an alkali metal element or an alkali metal compound is not limited.
- a predetermined amount of an alkali metal element or an alkali metal compound may be mixed in a powder form with respect to the carbonaceous precursor.
- an alkali metal compound is dissolved in an appropriate solvent to prepare an alkali metal compound solution. After mixing the alkali metal compound solution with the carbonaceous precursor, the solvent may be volatilized to prepare a carbonaceous precursor to which the alkali metal compound is attached.
- the addition amount of the alkali metal compound attached to the carbonaceous precursor is not particularly limited, but the upper limit of the addition amount is preferably 70.0% by weight or less, more preferably 60.0% by weight or less. More preferably, it is 50.0% by weight or less.
- the amount of the alkali metal element or alkali metal compound added is too large, the alkali activation occurs excessively. For this reason, the specific surface area increases, which increases the irreversible capacity, which is not preferable.
- the lower limit of the addition amount is not particularly limited, but is preferably 5.0% by weight or more, more preferably 10.0% by weight or more, and further preferably 15.0% by weight or more. is there. If the amount of the alkali metal compound added is too small, it becomes difficult to form a pore structure for doping and dedoping, which is not preferable.
- the pre-baking step is a step of removing a volatile component such as CO 2 , CO, CH 4 , H 2, and the tar component by performing a heat treatment on the carbon precursor.
- the pre-baking temperature is preferably 400 ° C. or higher and lower than 800 ° C., more preferably 500 ° C. or higher and lower than 800 ° C.
- the pre-baking temperature is less than 400 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. If not, battery performance may be degraded.
- the pre-baking temperature is 800 ° C. or higher, the tar generation temperature region is exceeded, and the energy efficiency to be used may be reduced. Furthermore, the generated tar may cause a secondary decomposition reaction, which may adhere to the carbon precursor and cause a decrease in performance.
- the particle diameter of the carbonaceous material of the present invention can be reduced to 1 to 50 ⁇ m.
- the pulverizer used for pulverization is not particularly limited, and for example, a jet mill, a rod mill, a vibrating ball mill, or a hammer mill can be used. A jet mill equipped with a classifier is preferable.
- the alkali metal compound can be washed according to a usual method. Specifically, the alkali metal and the alkali compound can be washed in a gas phase or a liquid phase. In the case of a gas phase, it is performed by volatilizing an alkali metal element or an alkali metal compound at a high temperature.
- the main calcination in the production method of the present invention can be performed according to a normal main calcination procedure, and a carbonaceous material for a negative electrode of a sodium ion secondary battery can be obtained by performing the main calcination.
- the temperature of the main firing is not limited, but is, for example, 800 to 1500 ° C.
- the lower limit of the firing temperature of the present invention is preferably more than 1000 ° C, more preferably 1050 ° C or more, further preferably 1100 ° C or more, and particularly preferably 1150 ° C or more.
- the upper limit of the main firing temperature of the present invention is 1450 ° C. or lower.
- the main baking temperature exceeds 1450 ° C., voids formed as sodium storage sites may decrease, and the doping and dedoping capacity may decrease. That is, the selective orientation of the carbon hexagonal plane is increased and the discharge capacity may be reduced.
- the main firing is preferably performed in a non-oxidizing gas atmosphere.
- the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination.
- the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas.
- this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less.
- the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.3 to 8 hours, and more preferably 0.4 to 6 hours.
- the CVD method can be used for coating with pyrolytic carbon. Specifically, the fired product is brought into contact with a linear or cyclic hydrocarbon gas, and carbon purified by thermal decomposition is deposited on the fired product. This method is well known as a so-called chemical vapor deposition method (CVD method).
- the specific surface area of the obtained carbonaceous material can be controlled by the coating process with pyrolytic carbon.
- the pyrolytic carbon used in the present invention is not limited as long as it can be added as a hydrocarbon gas and can reduce the specific surface area of the carbonaceous material.
- the hydrocarbon gas is preferably mixed with a non-oxidizing gas and brought into contact with the carbonaceous material.
- the carbon source of the hydrocarbon gas is not limited, for example, methane, ethane, propane, butane, pentane, hexane, octane, nonane, decane, ethylene, propylene, butene, pentene, hexene, acetylene, cyclopentane, cyclohexane , Cycloheptane, cyclooctane, cyclononane, cyclopropene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, decalin, norbornene, methylcyclohexane, norbornadiene, benzene, toluene, xylene, mesitylene, cumene, butylbenzene or styrene. Further, as the carbon source of the hydrocarbon gas, it is possible to use a hydrocarbon gas generated by heating a gaseous organic material
- a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying.
- a conductive aid can be added.
- the conductive auxiliary agent acetylene black, ketjen black, carbon nanofiber, carbon nanotube, carbon fiber or the like can be used, and the addition amount varies depending on the type of conductive auxiliary agent used, but the added amount is small.
- the binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose).
- PVDF polyvinylidene fluoride
- SBR styrene-butadiene rubber
- CMC carbboxymethylcellulose
- the preferred addition amount of the binder varies depending on the type of binder used, but is preferably 3 to 13% by weight, more preferably 3 to 10% by weight for the PVDF-based binder.
- a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by weight. The amount is preferably 1 to 4% by weight.
- the electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collectors and separators are required. However, the wider the electrode area facing the counter electrode, the better the input / output characteristics. Too much is not preferable because the input / output characteristics deteriorate.
- the thickness of the active material layer (per one side) is not limited and is in the range of 10 ⁇ m to 1000 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 20 to 60 ⁇ m. is there.
- the negative electrode usually has a current collector.
- As the negative electrode current collector for example, SUS, copper, aluminum, nickel, or carbon can be used, and among these, copper or SUS is preferable.
- Sodium ion secondary battery When the negative electrode material of the present invention is used to form a negative electrode of a sodium ion secondary battery, other materials constituting the battery such as the positive electrode material, the separator, and the electrolyte are particularly limited. Without limitation, it is possible to use various materials conventionally used or proposed for sodium ion secondary batteries.
- the positive electrode includes a positive electrode active material, and may further include a conductive additive, a binder, or both.
- the mixing ratio of the positive electrode active material and other materials in the positive electrode active material layer is not limited as long as the effect of the present invention is obtained, and can be determined as appropriate.
- a positive electrode active material that can be doped and dedoped with sodium ions can be used without limitation.
- the positive electrode can further contain a conductive additive and / or a binder.
- a conductive support agent acetylene black, ketjen black, or carbon fiber can be mentioned, for example.
- the content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight.
- a binder fluorine-containing binders, such as PTFE or PVDF, can be mentioned, for example.
- the content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight.
- the thickness of the positive electrode active material layer is not limited, but is in the range of 10 ⁇ m to 1000 ⁇ m, for example.
- the positive electrode active material layer usually has a current collector.
- the negative electrode current collector for example, SUS, aluminum, nickel, iron, titanium, and carbon can be used, and among these, aluminum or SUS is preferable.
- the nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent.
- the electrolytic solution is not limited as long as the effect of the present invention is obtained, and for example, an ionic liquid may be used.
- the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. These can be used alone or in combination of two or more.
- NaClO 4 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3 SO 2 ) 2 , NaN (FSO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 , NaC (CF 3 SO 2) 3, NaAsF 6 , NaPF 6, NaB (C 6 H 5) 4, CH 3 SO 3 Na, CF 3 SO 3 Na, may be mentioned NaCl, or NaBr.
- the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution so that they face each other through a liquid-permeable separator made of a nonwoven fabric or other porous material as necessary. It is formed by.
- separator a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used.
- a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
- the bottle is put in a vacuum desiccator and gradually exhausted to 2.0 to 2.7 kPa. Keep at that pressure for 20 minutes or more, take out after bubble generation stops, fill with 1-butanol, plug and immerse in a constant temperature water bath (adjusted to 30 ⁇ 0.03 ° C) for 15 minutes or more. Adjust the liquid level of 1-butanol to the marked line. Next, this is taken out, the outside is well wiped off and cooled to room temperature, and then the mass (m 4 ) is accurately measured. Next, the same specific gravity bottle is filled with only 1-butanol, immersed in a constant temperature water bath in the same manner as described above, and after aligning the marked lines, the mass (m 3 ) is measured.
- distilled water excluding the gas that has been boiled and dissolved immediately before use is placed in a specific gravity bottle, immersed in a constant temperature water bath as before, and the mass (m 5 ) is measured after aligning the marked lines.
- the true density ( ⁇ Bt ) is calculated by the following formula. (Where d is the specific gravity of water at 30 ° C. (0.9946))
- ⁇ Average particle size Three drops of a dispersing agent (cationic surfactant “SN Wet 366” (manufactured by San Nopco)) are added to about 0.1 g of the sample, and the sample is made to conform to the dispersing agent. Next, after adding 30 mL of pure water and dispersing with an ultrasonic cleaner for about 3 minutes, particles having a particle size in the range of 0.02 to 2000 ⁇ m are measured with a particle size distribution measuring instrument (“Microtrac MT3300EXII” manufactured by Nikkiso Co., Ltd.). The diameter distribution was determined. From the obtained particle size distribution, the average particle size Dv50 ( ⁇ m) was defined as the particle size with a cumulative volume of 50%.
- a dispersing agent cationic surfactant “SN Wet 366” (manufactured by San Nopco)
- ⁇ Helium true density The measurement of the true density ⁇ He using helium as a substitution medium was performed after the sample was vacuum-dried at 200 ° C. for 12 hours using a multi-volume pycnometer (Accumic 1330) manufactured by Micromeritics. The ambient temperature during measurement was constant at 25 ° C. The pressures in this measurement method are all gauge pressures and are the pressures obtained by subtracting the ambient pressure from the absolute pressure.
- a multi-volume pycnometer manufactured by Micromerix, Inc. has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber. The sample chamber and the expansion chamber are connected by a connecting pipe having a valve.
- a helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas distribution pipe having a stop valve is connected to the expansion chamber.
- the measurement was performed as follows. The volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) were measured in advance using a standard sphere. A sample was put into the sample chamber, and helium gas was passed through the helium gas inlet tube, the connecting tube in the sample chamber, and the helium gas discharge tube in the expansion chamber for 2 hours to replace the inside of the apparatus with helium gas.
- the valve between the sample chamber and the expansion chamber and the valve of the helium gas discharge pipe from the expansion chamber are closed (helium gas having the same pressure as the ambient pressure remains in the expansion chamber), and helium is introduced from the helium gas introduction tube of the sample chamber.
- the stop valve of the helium gas introduction pipe was closed.
- the pressure (P 1 ) in the sample chamber was measured 5 minutes after closing the stop valve.
- the valve between the sample chamber and the expansion chamber was opened, and helium gas was transferred to the expansion chamber, and the pressure (P 2 ) at that time was measured.
- the volume of the sample (VSAMP) was calculated by the following formula.
- the equilibrium speed was set to 0.010 psig / min.
- the sample tube is filled with a carbon material, and the sample tube is cooled to ⁇ 196 ° C. while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, and nitrogen is adsorbed on the carbon material.
- the test tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
- the carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical.
- the scanning range was 8 ⁇ 2 ⁇ ⁇ 50 °, and the applied current / applied voltage was 45 kV / 40 mA.
- the wavelength of the CuK ⁇ ray was 0.15418 nm, and d 002 was calculated according to the Bragg formula.
- Lc (002) is calculated by substituting into the Scherrer equation.
- L K ⁇ / ( ⁇ ⁇ cos ⁇ ) (Scherrer equation)
- K Form factor (0.9)
- ⁇ Diffraction angle
- ⁇ Half width
- Example 1 A 70 kg petroleum pitch having a softening point of 205 ° C., an H / C atomic ratio of 0.65, and a quinoline insoluble content of 0.4%, and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle. The mixture was heated and melted. Thereafter, the heat-mixed petroleum pitch was cooled and pulverized, and the resulting pulverized product was poured into water at 90 to 100 ° C., stirred and dispersed, and cooled to obtain a spherical pitch molded body. After most of the water was removed by filtration, the spherical pitch molded body was extracted and removed with n-hexane.
- the porous spherical pitch obtained in this manner was heated and oxidized while passing heated air to obtain a porous spherical oxidized pitch that was infusible to heat.
- the oxygen crosslinking degree of the porous spherical oxide pitch was 17% by weight.
- it was heat-treated at 600 ° C. in a nitrogen atmosphere and pulverized with a pulverizer to obtain a carbonaceous precursor having an average particle size of 10 to 15 ⁇ m.
- the obtained powdered carbon precursor was heated to 1200 ° C. at a temperature rising rate of 250 ° C./h in a nitrogen atmosphere, held at 1200 ° C. for 1 hour, and subjected to main firing to obtain a carbonaceous material 1.
- the main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
- Example 2 A carbonaceous material 2 was obtained in the same manner as in Example 1 except that the main firing temperature was 1350 ° C.
- Example 3 A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the main firing temperature was 1450 ° C.
- Comparative Example 1 A carbonaceous material 5 was obtained in the same manner as in Example 1 except that the main firing temperature was 800 ° C.
- Comparative Example 2 A carbonaceous material 6 was obtained in the same manner as in Example 1 except that the main firing temperature was set to 1000 ° C.
- negative electrodes and sodium ion secondary batteries were produced as follows, and the electrode performance was evaluated.
- Electrode preparation NMP was added to 94 parts by weight of the carbon material and 6 parts by weight of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The amount of the carbon material in the electrode was adjusted to be about 10 mg.
- the carbon material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-de-doping) of the battery active material.
- a sodium secondary battery is constructed using the electrode obtained above with sodium metal having stable characteristics as the counter electrode, Characteristics were evaluated.
- the sodium electrode was prepared in a glove box in an Ar atmosphere. A 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal sodium sheet is punched into a 15 mm diameter disk shape.
- Electrode To be an electrode (counter electrode). A pair of electrodes produced in this manner was used.
- the electrolytic solution propylene carbonate added with NaPF 6 at a rate of 1.0 mol / L, a borosilicate glass fiber microporous membrane having a diameter of 19 mm was used.
- a separator As a separator, a 2016-size coin-type non-aqueous electrolyte sodium ion secondary battery was assembled in an Ar glove box using a polyethylene gasket.
- a value obtained by dividing the amount of electricity at this time by the mass of the carbon material of the electrode is defined as a discharge capacity (mAh / g) per unit weight of the carbon material.
- the irreversible capacity is then defined as the difference between the charge capacity and the discharge capacity.
- the value obtained by dividing the discharge capacity by the charge capacity was multiplied by 100 to obtain the efficiency (%).
- the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V.
- a repeated charge / discharge test was conducted. Specifically, constant current charging is performed at a current density of 0.2 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until 20 ⁇ A was reached.
- the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.2 mA / cm 2 and a final voltage of 1.5V.
- Such a charge / discharge test was repeated 50 times.
- the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle was calculated as the capacity retention rate.
- the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V.
- constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until the value reached 20 ⁇ A.
- the battery circuit is opened for 10 minutes, and constant current discharge is performed at a current density of 0.1 mA / cm 2. After the terminal voltage reaches 1.5 V, constant voltage discharge is performed at a terminal voltage of 1.5 V.
- the discharge was continued until the current value reached 20 ⁇ A. Thereafter, as a charge before storage, constant current charge is performed at a current density of 0.1 mA / cm 2 , the terminal voltage reaches 0 mV, then constant voltage charge is performed at a terminal voltage of 0 mV, and the current value reaches 20 ⁇ A. Until charged.
- the charged test battery was stored at 40 ° C. for 168 hours. After storage, constant current discharge is performed at a current density of 0.1 mA / cm 2 , terminal voltage reaches 1.5 V, constant voltage discharge is performed at terminal voltage 1.5 V, and discharge is performed until the current value reaches 20 ⁇ A. did.
- the carbonaceous materials having H / C of 0.05 or less obtained in Examples 1 to 3 showed excellent retention rate (%) and discharge amount (mAh / g) at 50 cycles (Table 1 and FIG. 1). That is, the sodium ion secondary battery using the carbonaceous material of the present invention exhibited excellent cycle characteristics. On the other hand, the secondary battery using the carbonaceous material with H / C of 0.1 and 0.06 obtained in Comparative Examples 1 and 2 was inferior in cycle characteristics. Furthermore, the sodium ion secondary battery using the carbonaceous material with a small specific surface area obtained in the example showed an excellent capacity retention rate (Table 1 and FIG. 2). In addition, the test battery which measured battery performance is a half cell using the carbon electrode containing sodium metal (counter electrode) and the carbonaceous material of this invention.
- test battery does not have the configuration of a real cell (full cell) described in the section “[3] Sodium ion secondary battery”.
- those skilled in the art can manufacture a full cell using the carbonaceous material of the present invention from the description of “[3] Sodium ion secondary battery”.
- the battery performance of the half cell obtained in this example correlates with the battery performance of the full cell.
- the sodium ion secondary battery using the carbonaceous material according to the present invention has improved discharge capacity.
- a sodium ion secondary battery using abundant sodium ions can be manufactured at low cost, and the present invention is industrially useful.
- the obtained sodium ion secondary battery can be effectively used for hybrid vehicles (HEV), plug-in hybrids (PHEV), and electric vehicles (EV).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Abstract
The purpose of the present invention is to provide a sodium-ion secondary battery having a high discharge capacity and having excellent cycling and preservation characteristics. The problems can be solved by a sodium-ion secondary battery negative electrode carbonaceous material characterized in that the ratio H/C of a hydrogen atom to a carbon atom determined by element analysis is 0.05 or less.
Description
本発明は、ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池に関する。本発明によれば、高い放電容量を有し、かつ、優れたサイクル特性及び保存特性を示すナトリウムイオン二次電池を提供することができる。
The present invention relates to a carbonaceous material for a negative electrode of a sodium ion secondary battery and a sodium ion secondary battery using the same. According to the present invention, it is possible to provide a sodium ion secondary battery having a high discharge capacity and exhibiting excellent cycle characteristics and storage characteristics.
近年、リチウムイオン二次電池は自動車用電源、定置用大型電源として使用可能であることから、その需要が拡大しつつある。しかしながら、材料にコバルト、ニッケル、リチウム等の希少金属が使用されており、これらの供給が懸念されている。これに対し、材料供給の懸念を解消するため、資源量の豊富なナトリウムを使用したナトリウムイオン二次電池が検討されている。
In recent years, lithium ion secondary batteries can be used as a power source for automobiles and a large power source for stationary use. However, rare metals such as cobalt, nickel, and lithium are used as materials, and there is concern about their supply. On the other hand, sodium ion secondary batteries using abundant sodium resources have been studied in order to eliminate concerns about material supply.
ナトリウムイオン二次電池の基本構成はリチウムイオン二次電池と類似しているが、電荷担体としてリチウムの代わりにナトリウムを用いる点で異なる。このため、ナトリウムイオン二次電池はリチウムイオン二次電池とは異なる電気化学的特徴を持つ。
The basic structure of a sodium ion secondary battery is similar to that of a lithium ion secondary battery, but differs in that sodium is used as a charge carrier instead of lithium. For this reason, the sodium ion secondary battery has different electrochemical characteristics from the lithium ion secondary battery.
ナトリウムイオン二次電池が、自動車用電源、又は定置用大型電源として使用されるためには、高い放電容量を有し、かつ、サイクル特性及び保存特性に優れた電池でなければならない。高い放電容量を有するためには、多くのナトリウムを電気的に挿入(ドープ)及び脱離(脱ドープ)することができる負極材が必要である。また二次電池であるため、繰り返しドープ及び脱ドープに耐えうる、サイクル特性に優れた負極材が必要である。また、定置用途では、非常時の電源供給に備え充電状態で電池を保持する。従って、満充電で保持した後の容量を、高い維持率で保つことができる負極材が必要である。特に、高温での保存特性が求められる。
In order for a sodium ion secondary battery to be used as a power source for automobiles or a large power source for stationary use, the battery must have a high discharge capacity and excellent cycle characteristics and storage characteristics. In order to have a high discharge capacity, a negative electrode material capable of electrically inserting (doping) and detaching (de-doping) a lot of sodium is required. Moreover, since it is a secondary battery, the negative electrode material excellent in cycling characteristics which can endure repeated dope and dedope is required. In stationary applications, the battery is held in a charged state in preparation for emergency power supply. Therefore, there is a need for a negative electrode material that can maintain the capacity after being fully charged with a high maintenance rate. In particular, storage characteristics at high temperatures are required.
ナトリウムイオン二次電池の負極材の候補として、炭素質材料が検討されている。リチウムイオン二次電池において一般的に使用されている黒鉛はナトリウムを電気化学的にドープかつ脱ドープすることができないことが知られている。そのため、ナトリウムイオン二次電池負極用炭素質材料として、ナトリウムイオンをドープかつ脱ドープできる非晶質炭素材料が提案されている。
Carbonaceous materials are being studied as candidates for negative electrode materials for sodium ion secondary batteries. It is known that graphite generally used in lithium ion secondary batteries cannot electrochemically dope and dedope sodium. Therefore, an amorphous carbon material that can be doped and dedoped with sodium ions has been proposed as a carbonaceous material for a sodium ion secondary battery negative electrode.
特許文献1においては、d002が0.377nm以上であり、Lcの大きさが1.29nm以下である非黒鉛質炭素質材料を負極材料として用いた二次電池が開示されている。しかし、初期放電容量密度は234mAh/gと小さかった。
特許文献2においては、負極材料として、植物を原料として調製した炭素質材料が用いられている。しかし、初回の放電容量は223mAh/gと小さかった。
特許文献3においては、ガラス状炭素を負極材料として用いた二次電池が開示されている。しかし、放電容量は265mAh/gと小さかった。
特許文献4においては、ρp/ρHの比が0.950未満である炭素質材料を負極材料として用いて二次電池が開示されている。しかし、単位重量あたりの負極容量は230mAh/gであった。
このように、黒鉛材料の代替負極材料として非黒鉛質の炭素質材料が研究されてはいるが、これまで報告されている非黒鉛質の炭素質材料を用いたナトリウム二次電池の放電容量は、200~260mAh/g程度であり、十分な容量を有しているとはいえない。
従って、本発明の目的は、高い放電容量を有し、かつ、サイクル特性と保存特性に優れるナトリウムイオン二次電池を提供することである。更に、本発明の目的は、前記の電池に使用する二次電池負極用炭素質材料を提供することである。 Patent Document 1 discloses a secondary battery using a non-graphitic carbonaceous material having d 002 of 0.377 nm or more and Lc of 1.29 nm or less as a negative electrode material. However, the initial discharge capacity density was as low as 234 mAh / g.
InPatent Document 2, a carbonaceous material prepared using a plant as a raw material is used as the negative electrode material. However, the initial discharge capacity was as small as 223 mAh / g.
Patent Document 3 discloses a secondary battery using glassy carbon as a negative electrode material. However, the discharge capacity was as small as 265 mAh / g.
Patent Document 4 discloses a secondary battery using a carbonaceous material having a ratio of ρp / ρH of less than 0.950 as a negative electrode material. However, the negative electrode capacity per unit weight was 230 mAh / g.
Thus, although non-graphitic carbonaceous materials have been studied as an alternative negative electrode material for graphite materials, the discharge capacity of sodium secondary batteries using non-graphitic carbonaceous materials reported so far is It is about 200 to 260 mAh / g, and it cannot be said that it has a sufficient capacity.
Accordingly, an object of the present invention is to provide a sodium ion secondary battery having a high discharge capacity and excellent cycle characteristics and storage characteristics. Furthermore, the objective of this invention is providing the carbonaceous material for secondary battery negative electrodes used for the said battery.
特許文献2においては、負極材料として、植物を原料として調製した炭素質材料が用いられている。しかし、初回の放電容量は223mAh/gと小さかった。
特許文献3においては、ガラス状炭素を負極材料として用いた二次電池が開示されている。しかし、放電容量は265mAh/gと小さかった。
特許文献4においては、ρp/ρHの比が0.950未満である炭素質材料を負極材料として用いて二次電池が開示されている。しかし、単位重量あたりの負極容量は230mAh/gであった。
このように、黒鉛材料の代替負極材料として非黒鉛質の炭素質材料が研究されてはいるが、これまで報告されている非黒鉛質の炭素質材料を用いたナトリウム二次電池の放電容量は、200~260mAh/g程度であり、十分な容量を有しているとはいえない。
従って、本発明の目的は、高い放電容量を有し、かつ、サイクル特性と保存特性に優れるナトリウムイオン二次電池を提供することである。更に、本発明の目的は、前記の電池に使用する二次電池負極用炭素質材料を提供することである。 Patent Document 1 discloses a secondary battery using a non-graphitic carbonaceous material having d 002 of 0.377 nm or more and Lc of 1.29 nm or less as a negative electrode material. However, the initial discharge capacity density was as low as 234 mAh / g.
In
Patent Document 3 discloses a secondary battery using glassy carbon as a negative electrode material. However, the discharge capacity was as small as 265 mAh / g.
Patent Document 4 discloses a secondary battery using a carbonaceous material having a ratio of ρp / ρH of less than 0.950 as a negative electrode material. However, the negative electrode capacity per unit weight was 230 mAh / g.
Thus, although non-graphitic carbonaceous materials have been studied as an alternative negative electrode material for graphite materials, the discharge capacity of sodium secondary batteries using non-graphitic carbonaceous materials reported so far is It is about 200 to 260 mAh / g, and it cannot be said that it has a sufficient capacity.
Accordingly, an object of the present invention is to provide a sodium ion secondary battery having a high discharge capacity and excellent cycle characteristics and storage characteristics. Furthermore, the objective of this invention is providing the carbonaceous material for secondary battery negative electrodes used for the said battery.
本発明者は、高い放電容量を有し、かつ、サイクル特性と保存特性に優れたナトリウムイオン二次電池について、鋭意研究した結果、驚くべきことに、元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下である炭素質材料をナトリウムイオン二次電池の負極材料として用いることにより、優れた電池特性を示すナトリウムイオン二次電池が得られることを見出した。
本発明は、こうした知見に基づくものである。
従って、本発明は、
[1]元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下であることを特徴とするナトリウムイオン二次電池負極用炭素質材料、
[2]BET比表面積が20m2/g未満である[1]に記載のナトリウムイオン二次電池負極用炭素質材料、
[3]ブタノール法によって求められる真密度が1.53g/cm3未満である[1]又は[2]に記載のナトリウムイオン二次電池負極用炭素質材料、
[4]石油ピッチ若しくはタール又は石炭ピッチ又はタールを炭素源とする、[1]~[3]のいずれかに記載のナトリウムイオン二次電池負極用炭素質材料、
[5][1]~[4]のいずれかに記載の炭素質材料を含むナトリウムイオン二次電池用負極電極、及び
[6][5]に記載の電極を含むナトリウムイオン二次電池、
に関する。 As a result of earnest research on a sodium ion secondary battery having a high discharge capacity and excellent cycle characteristics and storage characteristics, the present inventor has surprisingly found that hydrogen atoms and carbon atoms required by elemental analysis. It has been found that a sodium ion secondary battery exhibiting excellent battery characteristics can be obtained by using a carbonaceous material having a ratio H / C of 0.05 or less as a negative electrode material of a sodium ion secondary battery.
The present invention is based on these findings.
Therefore, the present invention
[1] A carbonaceous material for a negative electrode of a sodium ion secondary battery, wherein the ratio H / C of hydrogen atoms to carbon atoms determined by elemental analysis is 0.05 or less,
[2] The carbonaceous material for a sodium ion secondary battery negative electrode according to [1], wherein the BET specific surface area is less than 20 m 2 / g,
[3] The carbonaceous material for a sodium ion secondary battery negative electrode according to [1] or [2], wherein the true density determined by the butanol method is less than 1.53 g / cm 3 ;
[4] The carbonaceous material for a sodium ion secondary battery negative electrode according to any one of [1] to [3], wherein petroleum pitch or tar or coal pitch or tar is used as a carbon source.
[5] A negative electrode for a sodium ion secondary battery comprising the carbonaceous material according to any one of [1] to [4], and a sodium ion secondary battery comprising the electrode according to [6] [5],
About.
本発明は、こうした知見に基づくものである。
従って、本発明は、
[1]元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下であることを特徴とするナトリウムイオン二次電池負極用炭素質材料、
[2]BET比表面積が20m2/g未満である[1]に記載のナトリウムイオン二次電池負極用炭素質材料、
[3]ブタノール法によって求められる真密度が1.53g/cm3未満である[1]又は[2]に記載のナトリウムイオン二次電池負極用炭素質材料、
[4]石油ピッチ若しくはタール又は石炭ピッチ又はタールを炭素源とする、[1]~[3]のいずれかに記載のナトリウムイオン二次電池負極用炭素質材料、
[5][1]~[4]のいずれかに記載の炭素質材料を含むナトリウムイオン二次電池用負極電極、及び
[6][5]に記載の電極を含むナトリウムイオン二次電池、
に関する。 As a result of earnest research on a sodium ion secondary battery having a high discharge capacity and excellent cycle characteristics and storage characteristics, the present inventor has surprisingly found that hydrogen atoms and carbon atoms required by elemental analysis. It has been found that a sodium ion secondary battery exhibiting excellent battery characteristics can be obtained by using a carbonaceous material having a ratio H / C of 0.05 or less as a negative electrode material of a sodium ion secondary battery.
The present invention is based on these findings.
Therefore, the present invention
[1] A carbonaceous material for a negative electrode of a sodium ion secondary battery, wherein the ratio H / C of hydrogen atoms to carbon atoms determined by elemental analysis is 0.05 or less,
[2] The carbonaceous material for a sodium ion secondary battery negative electrode according to [1], wherein the BET specific surface area is less than 20 m 2 / g,
[3] The carbonaceous material for a sodium ion secondary battery negative electrode according to [1] or [2], wherein the true density determined by the butanol method is less than 1.53 g / cm 3 ;
[4] The carbonaceous material for a sodium ion secondary battery negative electrode according to any one of [1] to [3], wherein petroleum pitch or tar or coal pitch or tar is used as a carbon source.
[5] A negative electrode for a sodium ion secondary battery comprising the carbonaceous material according to any one of [1] to [4], and a sodium ion secondary battery comprising the electrode according to [6] [5],
About.
本発明の炭素質材料を用いたナトリウムイオン二次電池は、大きな放電容量を有し、かつ、優れたサイクル特性及び保存特性を示す。特に、水素原子と炭素原子の比H/Cが0.05以下であることにより、優れたサイクル特性を示すことができる。更に、BET比表面積が20m2/g未満であることによって、保存特性を向上させることができる。更に、ブタノール真密度が1.53g/cm3未満であることによって、高い放電容量を示すことができる。
また、前記範囲のH/C、BET比表面積、及びブタノール真密度の物性が組み合わされることによって、本発明の炭素質材料を用いたナトリウムイオン二次電池は、更に優れた放電容量、サイクル特性、及び保存特性を示すことができる。 The sodium ion secondary battery using the carbonaceous material of the present invention has a large discharge capacity and exhibits excellent cycle characteristics and storage characteristics. In particular, when the ratio H / C of hydrogen atoms to carbon atoms is 0.05 or less, excellent cycle characteristics can be exhibited. Furthermore, when the BET specific surface area is less than 20 m 2 / g, the storage characteristics can be improved. Furthermore, when the butanol true density is less than 1.53 g / cm 3 , a high discharge capacity can be exhibited.
Further, by combining the physical properties of H / C, BET specific surface area, and butanol true density in the above ranges, the sodium ion secondary battery using the carbonaceous material of the present invention has further excellent discharge capacity, cycle characteristics, And storage characteristics.
また、前記範囲のH/C、BET比表面積、及びブタノール真密度の物性が組み合わされることによって、本発明の炭素質材料を用いたナトリウムイオン二次電池は、更に優れた放電容量、サイクル特性、及び保存特性を示すことができる。 The sodium ion secondary battery using the carbonaceous material of the present invention has a large discharge capacity and exhibits excellent cycle characteristics and storage characteristics. In particular, when the ratio H / C of hydrogen atoms to carbon atoms is 0.05 or less, excellent cycle characteristics can be exhibited. Furthermore, when the BET specific surface area is less than 20 m 2 / g, the storage characteristics can be improved. Furthermore, when the butanol true density is less than 1.53 g / cm 3 , a high discharge capacity can be exhibited.
Further, by combining the physical properties of H / C, BET specific surface area, and butanol true density in the above ranges, the sodium ion secondary battery using the carbonaceous material of the present invention has further excellent discharge capacity, cycle characteristics, And storage characteristics.
[1]ナトリウムイオン二次電池負極用炭素質材料
本発明のナトリウムイオン二次電池負極用炭素質材料は、元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下である。また、好ましくはBET比表面積が20m2/g未満である。更に、好ましくはブタノール法によって求められる真密度が1.53g/cm3未満である。 [1] Carbonaceous material for sodium ion secondary battery negative electrode The carbonaceous material for a sodium ion secondary battery negative electrode of the present invention has a hydrogen atom to carbon atom ratio H / C determined by elemental analysis of 0.05 or less. . The BET specific surface area is preferably less than 20 m 2 / g. Furthermore, the true density determined by the butanol method is preferably less than 1.53 g / cm 3 .
本発明のナトリウムイオン二次電池負極用炭素質材料は、元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下である。また、好ましくはBET比表面積が20m2/g未満である。更に、好ましくはブタノール法によって求められる真密度が1.53g/cm3未満である。 [1] Carbonaceous material for sodium ion secondary battery negative electrode The carbonaceous material for a sodium ion secondary battery negative electrode of the present invention has a hydrogen atom to carbon atom ratio H / C determined by elemental analysis of 0.05 or less. . The BET specific surface area is preferably less than 20 m 2 / g. Furthermore, the true density determined by the butanol method is preferably less than 1.53 g / cm 3 .
《炭素源》
本発明のナトリウムイオン二次電池負極用炭素質材料の炭素源は、特に限定されるものではないが、例えば石油系ピッチ若しくはタール、石炭系ピッチ若しくはタール、熱可塑性樹脂(例えば、ケトン樹脂、ポリビニルアルコール、ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート)、ポリアセタール樹脂、ポリアクリロニトリル、スチレン/ジビニルベンゼン共重合体、ポリアミド樹脂(ナイロン樹脂)、ポリイミド樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂、ポリアミドイミド樹脂、アラミド樹脂、又はポリエーテルエーテルケトン)、熱硬化性樹脂(例えば、エポキシ樹脂、ウレタン樹脂、ユリア樹脂、ジアリルフタレート樹脂、シリコン樹脂、フラン樹脂、フェノール樹脂、メラミン樹脂、アミノ樹脂及びアミド樹脂)を挙げることができる。炭素源としては、好ましくは石油系ピッチ若しくはタール、石炭系ピッチ若しくはタールであり、特には不純物が少なく、安価であることから石油系ピッチが好ましい。 《Carbon source》
The carbon source of the carbonaceous material for the negative electrode of the sodium ion secondary battery of the present invention is not particularly limited. For example, petroleum-based pitch or tar, coal-based pitch or tar, thermoplastic resin (for example, ketone resin, polyvinyl Alcohol, polyester resin (eg, polyethylene terephthalate, polybutylene terephthalate, polyarylate), polyacetal resin, polyacrylonitrile, styrene / divinylbenzene copolymer, polyamide resin (nylon resin), polyimide resin, polycarbonate resin, modified polyphenylene ether, polysulfone Resin, polyphenylene sulfide resin, fluororesin, polyamideimide resin, aramid resin, or polyetheretherketone), thermosetting resin (eg, epoxy resin, urethane resin, A resin, diallyl phthalate resin, silicone resin, furan resin, phenol resin, melamine resin, an amino resin and amide resin). The carbon source is preferably petroleum-based pitch or tar, coal-based pitch or tar, and petroleum-based pitch is particularly preferable because it has few impurities and is inexpensive.
本発明のナトリウムイオン二次電池負極用炭素質材料の炭素源は、特に限定されるものではないが、例えば石油系ピッチ若しくはタール、石炭系ピッチ若しくはタール、熱可塑性樹脂(例えば、ケトン樹脂、ポリビニルアルコール、ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート)、ポリアセタール樹脂、ポリアクリロニトリル、スチレン/ジビニルベンゼン共重合体、ポリアミド樹脂(ナイロン樹脂)、ポリイミド樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂、ポリアミドイミド樹脂、アラミド樹脂、又はポリエーテルエーテルケトン)、熱硬化性樹脂(例えば、エポキシ樹脂、ウレタン樹脂、ユリア樹脂、ジアリルフタレート樹脂、シリコン樹脂、フラン樹脂、フェノール樹脂、メラミン樹脂、アミノ樹脂及びアミド樹脂)を挙げることができる。炭素源としては、好ましくは石油系ピッチ若しくはタール、石炭系ピッチ若しくはタールであり、特には不純物が少なく、安価であることから石油系ピッチが好ましい。 《Carbon source》
The carbon source of the carbonaceous material for the negative electrode of the sodium ion secondary battery of the present invention is not particularly limited. For example, petroleum-based pitch or tar, coal-based pitch or tar, thermoplastic resin (for example, ketone resin, polyvinyl Alcohol, polyester resin (eg, polyethylene terephthalate, polybutylene terephthalate, polyarylate), polyacetal resin, polyacrylonitrile, styrene / divinylbenzene copolymer, polyamide resin (nylon resin), polyimide resin, polycarbonate resin, modified polyphenylene ether, polysulfone Resin, polyphenylene sulfide resin, fluororesin, polyamideimide resin, aramid resin, or polyetheretherketone), thermosetting resin (eg, epoxy resin, urethane resin, A resin, diallyl phthalate resin, silicone resin, furan resin, phenol resin, melamine resin, an amino resin and amide resin). The carbon source is preferably petroleum-based pitch or tar, coal-based pitch or tar, and petroleum-based pitch is particularly preferable because it has few impurities and is inexpensive.
《水素原子と炭素原子の原子比(H/C)》
H/Cは、水素原子及び炭素原子を元素分析により測定されたものであり、炭素化度が高くなるほど炭素質材料の水素含有率が小さくなるため、H/Cが小さくなる傾向にある。従って、H/Cは、炭素化度を表す指標として有効である。本発明の炭素質材料のH/Cは0.05以下であり、より好ましくは0.04以下であり、更に好ましくは0.03以下である。水素原子と炭素原子の比H/Cが0.05を超えると、炭素質材料に官能基が多く存在し、ナトリウムとの反応により負極炭素にドープされたナトリウムが完全には脱ドープされず、多量のナトリウムが負極炭素中に残り、活物質であるナトリウムが無駄に消費されるという問題がある。H/Cの下限は特に限定されるものではないが、Hが検出限界以下の場合があり、この場合はH/Cは実質的に0である。特に、水素原子と炭素原子の比H/Cが前記の範囲であることにより、優れたサイクル特性を示すことができる。 << Atomic ratio of hydrogen atom to carbon atom (H / C) >>
H / C is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C tends to decrease. Therefore, H / C is effective as an index representing the degree of carbonization. H / C of the carbonaceous material of the present invention is 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less. When the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.05, there are many functional groups in the carbonaceous material, and sodium doped into the negative electrode carbon by reaction with sodium is not completely dedope, There is a problem that a large amount of sodium remains in the negative electrode carbon, and sodium which is an active material is wasted. The lower limit of H / C is not particularly limited, but H may be below the detection limit. In this case, H / C is substantially zero. In particular, when the ratio H / C of hydrogen atoms to carbon atoms is within the above range, excellent cycle characteristics can be exhibited.
H/Cは、水素原子及び炭素原子を元素分析により測定されたものであり、炭素化度が高くなるほど炭素質材料の水素含有率が小さくなるため、H/Cが小さくなる傾向にある。従って、H/Cは、炭素化度を表す指標として有効である。本発明の炭素質材料のH/Cは0.05以下であり、より好ましくは0.04以下であり、更に好ましくは0.03以下である。水素原子と炭素原子の比H/Cが0.05を超えると、炭素質材料に官能基が多く存在し、ナトリウムとの反応により負極炭素にドープされたナトリウムが完全には脱ドープされず、多量のナトリウムが負極炭素中に残り、活物質であるナトリウムが無駄に消費されるという問題がある。H/Cの下限は特に限定されるものではないが、Hが検出限界以下の場合があり、この場合はH/Cは実質的に0である。特に、水素原子と炭素原子の比H/Cが前記の範囲であることにより、優れたサイクル特性を示すことができる。 << Atomic ratio of hydrogen atom to carbon atom (H / C) >>
H / C is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C tends to decrease. Therefore, H / C is effective as an index representing the degree of carbonization. H / C of the carbonaceous material of the present invention is 0.05 or less, more preferably 0.04 or less, and still more preferably 0.03 or less. When the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.05, there are many functional groups in the carbonaceous material, and sodium doped into the negative electrode carbon by reaction with sodium is not completely dedope, There is a problem that a large amount of sodium remains in the negative electrode carbon, and sodium which is an active material is wasted. The lower limit of H / C is not particularly limited, but H may be below the detection limit. In this case, H / C is substantially zero. In particular, when the ratio H / C of hydrogen atoms to carbon atoms is within the above range, excellent cycle characteristics can be exhibited.
《比表面積》
比表面積は、窒素吸着によるBETの式から誘導された近似式で求めることができる。本発明の炭素質材料の比表面積は、限定されるものではないが、好ましくは20m2/g以下であり、より好ましくは15m2/g以下である。比表面積が20m2/gを超えると電解液との反応が増加し、不可逆容量の増加に繋がり、従って電池性能が低下する可能性がある。特に、比表面積が前記の範囲であることによって、保存特性を向上させることができる。すなわち、満充電で高温保存した際の容量減少を防ぐことができる。また、比表面積が20m2/g以下であると、ナトリウムの格納に寄与しない細孔が減少し、ナトリウムを格納できるサイズの細孔が増加するため、優れた放電容量を示すことができる。
比表面積の下限は、特に限定されないが、比表面積が0.5m2/g未満であると、入出力特性が低下する可能性がある。従って、比表面積の下限は、好ましくは0.5m2/g以上である。 "Specific surface area"
The specific surface area can be obtained by an approximate expression derived from the BET expression by nitrogen adsorption. The specific surface area of the carbonaceous material of the present invention is not limited, but is preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less. When the specific surface area exceeds 20 m 2 / g, the reaction with the electrolytic solution increases, leading to an increase in irreversible capacity, and thus battery performance may be reduced. In particular, when the specific surface area is in the above range, the storage characteristics can be improved. That is, it is possible to prevent a decrease in capacity when stored at a high temperature with full charge. Further, when the specific surface area is 20 m 2 / g or less, pores that do not contribute to storage of sodium are reduced, and pores having a size that can store sodium are increased, and thus an excellent discharge capacity can be exhibited.
Although the minimum of a specific surface area is not specifically limited, If a specific surface area is less than 0.5 m < 2 > / g, input-output characteristics may fall. Therefore, the lower limit of the specific surface area is preferably 0.5 m 2 / g or more.
比表面積は、窒素吸着によるBETの式から誘導された近似式で求めることができる。本発明の炭素質材料の比表面積は、限定されるものではないが、好ましくは20m2/g以下であり、より好ましくは15m2/g以下である。比表面積が20m2/gを超えると電解液との反応が増加し、不可逆容量の増加に繋がり、従って電池性能が低下する可能性がある。特に、比表面積が前記の範囲であることによって、保存特性を向上させることができる。すなわち、満充電で高温保存した際の容量減少を防ぐことができる。また、比表面積が20m2/g以下であると、ナトリウムの格納に寄与しない細孔が減少し、ナトリウムを格納できるサイズの細孔が増加するため、優れた放電容量を示すことができる。
比表面積の下限は、特に限定されないが、比表面積が0.5m2/g未満であると、入出力特性が低下する可能性がある。従って、比表面積の下限は、好ましくは0.5m2/g以上である。 "Specific surface area"
The specific surface area can be obtained by an approximate expression derived from the BET expression by nitrogen adsorption. The specific surface area of the carbonaceous material of the present invention is not limited, but is preferably 20 m 2 / g or less, more preferably 15 m 2 / g or less. When the specific surface area exceeds 20 m 2 / g, the reaction with the electrolytic solution increases, leading to an increase in irreversible capacity, and thus battery performance may be reduced. In particular, when the specific surface area is in the above range, the storage characteristics can be improved. That is, it is possible to prevent a decrease in capacity when stored at a high temperature with full charge. Further, when the specific surface area is 20 m 2 / g or less, pores that do not contribute to storage of sodium are reduced, and pores having a size that can store sodium are increased, and thus an excellent discharge capacity can be exhibited.
Although the minimum of a specific surface area is not specifically limited, If a specific surface area is less than 0.5 m < 2 > / g, input-output characteristics may fall. Therefore, the lower limit of the specific surface area is preferably 0.5 m 2 / g or more.
《ブタノール真密度》
本発明の炭素質材料のブタノール真密度は、限定されるものではないが、好ましくは1.53g/cm3未満である。ブタノール真密度の上限は、より好ましくは1.525g/cm3以下であり、更に好ましくは1.52g/cm3以下であり、更に好ましくは1.515g/cm3以下である。真密度が1.53g/cm3を超える炭素質材料は、ナトリウムを格納できるサイズの細孔が少なくドープ及び脱ドープ容量が小さくなることがある。特に、ブタノール真密度が前記の範囲であることによって、本発明の炭素質材料を用いたナトリウムイオン二次電池は、高い放電容量を示すことができる。なお、ブタノール真密度の下限は、限定されるものではないが、好ましくは1.35g/cm3以上であり、より好ましくは1.39g/cm3以上である。
また、ブタノール真密度が1.48g/cm3以下の炭素質材料は、更に優れた放電容量を示す。従って、本発明の炭素質材料のブタノール真密度は、最も好ましくは1.35g/cm3~1.45g/cm3である。 《Butanol true density》
The butanol true density of the carbonaceous material of the present invention is not limited, but is preferably less than 1.53 g / cm 3 . The upper limit of butanol true density is more preferably 1.525g / cm 3 or less, further preferably 1.52 g / cm 3 or less, more preferably 1.515g / cm 3 or less. A carbonaceous material having a true density of more than 1.53 g / cm 3 has few pores of a size that can store sodium, and may have a small doping and dedoping capacity. In particular, when the butanol true density is within the above range, the sodium ion secondary battery using the carbonaceous material of the present invention can exhibit a high discharge capacity. The lower limit of the butanol true density is not limited, but is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
A carbonaceous material having a butanol true density of 1.48 g / cm 3 or less exhibits a further excellent discharge capacity. Accordingly, the butanol true density of the carbonaceous material of the present invention is most preferably 1.35 g / cm 3 to 1.45 g / cm 3 .
本発明の炭素質材料のブタノール真密度は、限定されるものではないが、好ましくは1.53g/cm3未満である。ブタノール真密度の上限は、より好ましくは1.525g/cm3以下であり、更に好ましくは1.52g/cm3以下であり、更に好ましくは1.515g/cm3以下である。真密度が1.53g/cm3を超える炭素質材料は、ナトリウムを格納できるサイズの細孔が少なくドープ及び脱ドープ容量が小さくなることがある。特に、ブタノール真密度が前記の範囲であることによって、本発明の炭素質材料を用いたナトリウムイオン二次電池は、高い放電容量を示すことができる。なお、ブタノール真密度の下限は、限定されるものではないが、好ましくは1.35g/cm3以上であり、より好ましくは1.39g/cm3以上である。
また、ブタノール真密度が1.48g/cm3以下の炭素質材料は、更に優れた放電容量を示す。従って、本発明の炭素質材料のブタノール真密度は、最も好ましくは1.35g/cm3~1.45g/cm3である。 《Butanol true density》
The butanol true density of the carbonaceous material of the present invention is not limited, but is preferably less than 1.53 g / cm 3 . The upper limit of butanol true density is more preferably 1.525g / cm 3 or less, further preferably 1.52 g / cm 3 or less, more preferably 1.515g / cm 3 or less. A carbonaceous material having a true density of more than 1.53 g / cm 3 has few pores of a size that can store sodium, and may have a small doping and dedoping capacity. In particular, when the butanol true density is within the above range, the sodium ion secondary battery using the carbonaceous material of the present invention can exhibit a high discharge capacity. The lower limit of the butanol true density is not limited, but is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
A carbonaceous material having a butanol true density of 1.48 g / cm 3 or less exhibits a further excellent discharge capacity. Accordingly, the butanol true density of the carbonaceous material of the present invention is most preferably 1.35 g / cm 3 to 1.45 g / cm 3 .
《ヘリウム真密度》
本発明の炭素質材料のヘリウム真密度は、特に限定されるものではないが、好ましくは2.20g/cm3未満である。ヘリウム真密度が2.20g/cm3を超える炭素質材料はナトリウムを格納できる細孔が少なくなり、ドープ及び脱ドープ容量が低下することがある。ヘリウム真密度の下限は、好ましくは1.35g/cm3以上であり、より好ましくは1.39g/cm3以上である。 《Helium true density》
The true helium density of the carbonaceous material of the present invention is not particularly limited, but is preferably less than 2.20 g / cm 3 . A carbonaceous material having a helium true density exceeding 2.20 g / cm 3 may have fewer pores capable of storing sodium, and the doping and dedoping capacity may be reduced. The lower limit of the helium true density is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
本発明の炭素質材料のヘリウム真密度は、特に限定されるものではないが、好ましくは2.20g/cm3未満である。ヘリウム真密度が2.20g/cm3を超える炭素質材料はナトリウムを格納できる細孔が少なくなり、ドープ及び脱ドープ容量が低下することがある。ヘリウム真密度の下限は、好ましくは1.35g/cm3以上であり、より好ましくは1.39g/cm3以上である。 《Helium true density》
The true helium density of the carbonaceous material of the present invention is not particularly limited, but is preferably less than 2.20 g / cm 3 . A carbonaceous material having a helium true density exceeding 2.20 g / cm 3 may have fewer pores capable of storing sodium, and the doping and dedoping capacity may be reduced. The lower limit of the helium true density is preferably 1.35 g / cm 3 or more, more preferably 1.39 g / cm 3 or more.
《平均粒子径》
本発明の炭素質材料の平均粒子径(Dv50)は、1~50μmである。平均粒子径の下限は、好ましくは1μm以上であり、更に好ましくは1.5μm以上であり、特に好ましくは2.0μm以上である。平均粒子径が1μm未満の場合、微粉が増加することによって、比表面積が増加する。従って、電解液との反応性が高くなり充電しても放電しない容量である不可逆容量が増加し、正極の容量が無駄になる割合が増加するため好ましくない。平均粒子径の上限は、好ましくは40μm以下であり、更に好ましくは35μm以下である。平均粒子径が50μmを超えると、粒子内でのナトリウムの拡散自由行程が増加するため、急速な充放電が困難となる。更に、二次電池では、入出力特性の向上には電極面積を大きくすることが重要であり、そのため電極調製時に集電板への活物質の塗工厚みを薄くする必要がある。塗工厚みを薄くするには、活物質の粒子径を小さくする必要がある。このような観点から、平均粒子径の上限としては50μm以下が好ましい。 《Average particle size》
The average particle diameter (D v50 ) of the carbonaceous material of the present invention is 1 to 50 μm. The lower limit of the average particle diameter is preferably 1 μm or more, more preferably 1.5 μm or more, and particularly preferably 2.0 μm or more. When the average particle diameter is less than 1 μm, the specific surface area is increased by increasing the fine powder. Therefore, the irreversible capacity, which is a capacity that does not discharge even when charged due to increased reactivity with the electrolytic solution, is increased, and the proportion of wasted capacity of the positive electrode is increased. The upper limit of the average particle diameter is preferably 40 μm or less, more preferably 35 μm or less. When the average particle diameter exceeds 50 μm, the diffusion free path of sodium in the particles increases, so that rapid charge / discharge becomes difficult. Further, in the secondary battery, it is important to increase the electrode area in order to improve the input / output characteristics. For this reason, it is necessary to reduce the coating thickness of the active material on the current collector plate during electrode preparation. In order to reduce the coating thickness, it is necessary to reduce the particle diameter of the active material. From such a viewpoint, the upper limit of the average particle diameter is preferably 50 μm or less.
本発明の炭素質材料の平均粒子径(Dv50)は、1~50μmである。平均粒子径の下限は、好ましくは1μm以上であり、更に好ましくは1.5μm以上であり、特に好ましくは2.0μm以上である。平均粒子径が1μm未満の場合、微粉が増加することによって、比表面積が増加する。従って、電解液との反応性が高くなり充電しても放電しない容量である不可逆容量が増加し、正極の容量が無駄になる割合が増加するため好ましくない。平均粒子径の上限は、好ましくは40μm以下であり、更に好ましくは35μm以下である。平均粒子径が50μmを超えると、粒子内でのナトリウムの拡散自由行程が増加するため、急速な充放電が困難となる。更に、二次電池では、入出力特性の向上には電極面積を大きくすることが重要であり、そのため電極調製時に集電板への活物質の塗工厚みを薄くする必要がある。塗工厚みを薄くするには、活物質の粒子径を小さくする必要がある。このような観点から、平均粒子径の上限としては50μm以下が好ましい。 《Average particle size》
The average particle diameter (D v50 ) of the carbonaceous material of the present invention is 1 to 50 μm. The lower limit of the average particle diameter is preferably 1 μm or more, more preferably 1.5 μm or more, and particularly preferably 2.0 μm or more. When the average particle diameter is less than 1 μm, the specific surface area is increased by increasing the fine powder. Therefore, the irreversible capacity, which is a capacity that does not discharge even when charged due to increased reactivity with the electrolytic solution, is increased, and the proportion of wasted capacity of the positive electrode is increased. The upper limit of the average particle diameter is preferably 40 μm or less, more preferably 35 μm or less. When the average particle diameter exceeds 50 μm, the diffusion free path of sodium in the particles increases, so that rapid charge / discharge becomes difficult. Further, in the secondary battery, it is important to increase the electrode area in order to improve the input / output characteristics. For this reason, it is necessary to reduce the coating thickness of the active material on the current collector plate during electrode preparation. In order to reduce the coating thickness, it is necessary to reduce the particle diameter of the active material. From such a viewpoint, the upper limit of the average particle diameter is preferably 50 μm or less.
《ナトリウムイオン二次電池負極用炭素質材料の製造》
本発明のナトリウムイオン二次電池負極用炭素質材料は、限定されるものではないが、多孔性成形体の成形工程、不融化工程、アルカリ添着工程、粉砕工程、予備焼成工程、本焼成工程、及び熱分解炭素の被覆工程からなる群から選択される複数の工程を組み合わせることによって製造することができる。
本発明の非水電解質二次電池負極用炭素質材料は、限定されるものではないが、例えば実施例1~3に示すように、炭素源として石油系ピッチ若しくはタール、石炭系ピッチ若しくはタールを用いる場合は、(1)炭素源に添加剤を添加し、加熱及び成形することにより、多孔性ピッチ成形体を得る工程、及び(2)前記多孔性ピッチ成型体を、120~400℃で酸化する不融化工程、(3)非酸化性ガス雰囲気中において400℃以上800℃未満で焼成する予備焼成工程、(4)非酸化性ガス雰囲気中において800℃~1500℃で焼成する本焼成工程、を含む製造方法によって製造することができる。なお、以下の製造方法においては、ピッチを例として記載しているが、タールでも同様の方法によって、炭素質材料を製造することが可能である。 《Manufacture of carbonaceous material for negative electrode of sodium ion secondary battery》
The carbonaceous material for a sodium ion secondary battery negative electrode of the present invention is not limited, but a forming step of a porous molded body, an infusibilization step, an alkali deposition step, a pulverization step, a preliminary firing step, a main firing step, And a plurality of processes selected from the group consisting of a pyrolytic carbon coating process.
The carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not limited. For example, as shown in Examples 1 to 3, petroleum-based pitch or tar, coal-based pitch or tar is used as the carbon source. When used, (1) a step of obtaining a porous pitch molded body by adding an additive to a carbon source, heating and molding, and (2) oxidizing the porous pitch molded body at 120 to 400 ° C. An infusibilization step, (3) a preliminary firing step of firing at 400 ° C. or more and less than 800 ° C. in a non-oxidizing gas atmosphere, and (4) a main firing step of firing at 800 ° C. to 1500 ° C. in a non-oxidizing gas atmosphere, It can manufacture with the manufacturing method containing. In the following manufacturing method, pitch is described as an example, but it is possible to manufacture a carbonaceous material using tar in the same manner.
本発明のナトリウムイオン二次電池負極用炭素質材料は、限定されるものではないが、多孔性成形体の成形工程、不融化工程、アルカリ添着工程、粉砕工程、予備焼成工程、本焼成工程、及び熱分解炭素の被覆工程からなる群から選択される複数の工程を組み合わせることによって製造することができる。
本発明の非水電解質二次電池負極用炭素質材料は、限定されるものではないが、例えば実施例1~3に示すように、炭素源として石油系ピッチ若しくはタール、石炭系ピッチ若しくはタールを用いる場合は、(1)炭素源に添加剤を添加し、加熱及び成形することにより、多孔性ピッチ成形体を得る工程、及び(2)前記多孔性ピッチ成型体を、120~400℃で酸化する不融化工程、(3)非酸化性ガス雰囲気中において400℃以上800℃未満で焼成する予備焼成工程、(4)非酸化性ガス雰囲気中において800℃~1500℃で焼成する本焼成工程、を含む製造方法によって製造することができる。なお、以下の製造方法においては、ピッチを例として記載しているが、タールでも同様の方法によって、炭素質材料を製造することが可能である。 《Manufacture of carbonaceous material for negative electrode of sodium ion secondary battery》
The carbonaceous material for a sodium ion secondary battery negative electrode of the present invention is not limited, but a forming step of a porous molded body, an infusibilization step, an alkali deposition step, a pulverization step, a preliminary firing step, a main firing step, And a plurality of processes selected from the group consisting of a pyrolytic carbon coating process.
The carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not limited. For example, as shown in Examples 1 to 3, petroleum-based pitch or tar, coal-based pitch or tar is used as the carbon source. When used, (1) a step of obtaining a porous pitch molded body by adding an additive to a carbon source, heating and molding, and (2) oxidizing the porous pitch molded body at 120 to 400 ° C. An infusibilization step, (3) a preliminary firing step of firing at 400 ° C. or more and less than 800 ° C. in a non-oxidizing gas atmosphere, and (4) a main firing step of firing at 800 ° C. to 1500 ° C. in a non-oxidizing gas atmosphere, It can manufacture with the manufacturing method containing. In the following manufacturing method, pitch is described as an example, but it is possible to manufacture a carbonaceous material using tar in the same manner.
[多孔性ピッチ成型工程(1)]
石油系又は石炭系のピッチ等に対し、添加剤として沸点200℃以上の2乃至3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形しピッチ成形体を得る。次にピッチに対し低溶解度を有し、かつ添加剤に対して高溶解度を有する溶剤で、ピッチ成形体から添加剤を抽出除去し、多孔性ピッチを得る。前記の芳香族添加剤の目的は、成形後のピッチ成形体から前記添加剤を抽出除去して成形体を多孔質とし、酸化による架橋処理を容易にし、また炭素化後に得られる炭素質材料を多孔質にすることにある。このような添加剤は、例えばナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等の1種又は2種以上の混合物から選択することができる。ピッチに対する添加量は、ピッチ100重量部に対し、30~70重量部の範囲が好ましい。ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。ピッチと添加剤の混合物は、添加剤を混合物から容易に抽出できるようにするため、粒径1mm以下の粒子に成形することが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後粉砕することにより行ってもよい。ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類が好適である。このような溶剤でピッチと添加剤の混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。 [Porous pitch molding process (1)]
A 2- or 3-ring aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added to a petroleum-based or coal-based pitch or the like as an additive, mixed by heating, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to obtain a porous pitch. The purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous. Such additives can be selected from one or a mixture of two or more such as naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl. The amount added to the pitch is preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pitch. The pitch and additive are mixed in a molten state by heating in order to achieve uniform mixing. The mixture of pitch and additive is preferably formed into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. Molding may be performed in a molten state, or may be performed by pulverizing the mixture after cooling. Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred. By extracting the additive from the pitch and additive mixture molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that a through hole for the additive is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
石油系又は石炭系のピッチ等に対し、添加剤として沸点200℃以上の2乃至3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形しピッチ成形体を得る。次にピッチに対し低溶解度を有し、かつ添加剤に対して高溶解度を有する溶剤で、ピッチ成形体から添加剤を抽出除去し、多孔性ピッチを得る。前記の芳香族添加剤の目的は、成形後のピッチ成形体から前記添加剤を抽出除去して成形体を多孔質とし、酸化による架橋処理を容易にし、また炭素化後に得られる炭素質材料を多孔質にすることにある。このような添加剤は、例えばナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等の1種又は2種以上の混合物から選択することができる。ピッチに対する添加量は、ピッチ100重量部に対し、30~70重量部の範囲が好ましい。ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。ピッチと添加剤の混合物は、添加剤を混合物から容易に抽出できるようにするため、粒径1mm以下の粒子に成形することが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後粉砕することにより行ってもよい。ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類が好適である。このような溶剤でピッチと添加剤の混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。 [Porous pitch molding process (1)]
A 2- or 3-ring aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added to a petroleum-based or coal-based pitch or the like as an additive, mixed by heating, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to obtain a porous pitch. The purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous. Such additives can be selected from one or a mixture of two or more such as naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl. The amount added to the pitch is preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pitch. The pitch and additive are mixed in a molten state by heating in order to achieve uniform mixing. The mixture of pitch and additive is preferably formed into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. Molding may be performed in a molten state, or may be performed by pulverizing the mixture after cooling. Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred. By extracting the additive from the pitch and additive mixture molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that a through hole for the additive is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
[不融化工程(2)]
得られた多孔性ピッチを架橋するため、次に酸化剤を用いて、好ましくは120~400℃の温度で酸化する。酸化剤としては、O2、O3、NO2、それらを空気若しくは窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。酸化剤として、空気又は空気と他のガス例えば燃焼ガス等との混合ガスのような酸素を含むガスを用いて、120~400℃で酸化して架橋処理を行うことが簡便であり、経済的にも有利である。この場合、ピッチ等の軟化点が低いと、酸化時にピッチが溶融して酸化が困難となるので、使用するピッチ等は軟化点が150℃以上であることが好ましい。 [Infusibilization step (2)]
In order to crosslink the resulting porous pitch, it is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting them with air or nitrogen, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to. It is simple and economical to oxidize at 120 to 400 ° C. and carry out a crosslinking treatment using a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous. In this case, if the softening point such as pitch is low, the pitch melts during oxidation and it becomes difficult to oxidize. Therefore, the pitch or the like used preferably has a softening point of 150 ° C. or higher.
得られた多孔性ピッチを架橋するため、次に酸化剤を用いて、好ましくは120~400℃の温度で酸化する。酸化剤としては、O2、O3、NO2、それらを空気若しくは窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。酸化剤として、空気又は空気と他のガス例えば燃焼ガス等との混合ガスのような酸素を含むガスを用いて、120~400℃で酸化して架橋処理を行うことが簡便であり、経済的にも有利である。この場合、ピッチ等の軟化点が低いと、酸化時にピッチが溶融して酸化が困難となるので、使用するピッチ等は軟化点が150℃以上であることが好ましい。 [Infusibilization step (2)]
In order to crosslink the resulting porous pitch, it is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting them with air or nitrogen, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to. It is simple and economical to oxidize at 120 to 400 ° C. and carry out a crosslinking treatment using a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous. In this case, if the softening point such as pitch is low, the pitch melts during oxidation and it becomes difficult to oxidize. Therefore, the pitch or the like used preferably has a softening point of 150 ° C. or higher.
(酸素架橋度)
炭素質前駆体を酸化により不融化した場合の酸素架橋度は、本発明の効果が得られる限りにおいて、特に限定されるものではない。すなわち、酸素架橋による不融化処理を行わない場合は、酸素架橋度0重量%でもよいが、酸素架橋度の下限は、好ましくは1重量%以上であり、より好ましくは2重量%以上であり、更に好ましくは3重量%以上である。1重量%未満であると真密度が大きくなりナトリウムを格納する空隙が小さくなるので好ましくない。特に、最適なブタノール真密度の炭素質材料を得るためには、酸素含有率が、10重量%以上が好ましい。酸素架橋度の上限は、好ましくは25重量%以下であり、より好ましくは20重量%以下であり、更に好ましくは18重量%以下である。25重量%を超えると真密度が小さくなり、体積当たりの充放電容量が低下することがあるため好ましくない。 (Oxygen crosslinking degree)
The oxygen crosslinking degree when the carbonaceous precursor is infusible by oxidation is not particularly limited as long as the effect of the present invention is obtained. That is, when the infusibilization treatment by oxygen crosslinking is not performed, the oxygen crosslinking degree may be 0% by weight, but the lower limit of the oxygen crosslinking degree is preferably 1% by weight or more, more preferably 2% by weight or more, More preferably, it is 3% by weight or more. If it is less than 1% by weight, the true density becomes large and the void for storing sodium becomes small, which is not preferable. In particular, in order to obtain an optimum butanol true density carbonaceous material, the oxygen content is preferably 10% by weight or more. The upper limit of the oxygen crosslinking degree is preferably 25% by weight or less, more preferably 20% by weight or less, and still more preferably 18% by weight or less. Exceeding 25% by weight is not preferable because the true density decreases and the charge / discharge capacity per volume may decrease.
炭素質前駆体を酸化により不融化した場合の酸素架橋度は、本発明の効果が得られる限りにおいて、特に限定されるものではない。すなわち、酸素架橋による不融化処理を行わない場合は、酸素架橋度0重量%でもよいが、酸素架橋度の下限は、好ましくは1重量%以上であり、より好ましくは2重量%以上であり、更に好ましくは3重量%以上である。1重量%未満であると真密度が大きくなりナトリウムを格納する空隙が小さくなるので好ましくない。特に、最適なブタノール真密度の炭素質材料を得るためには、酸素含有率が、10重量%以上が好ましい。酸素架橋度の上限は、好ましくは25重量%以下であり、より好ましくは20重量%以下であり、更に好ましくは18重量%以下である。25重量%を超えると真密度が小さくなり、体積当たりの充放電容量が低下することがあるため好ましくない。 (Oxygen crosslinking degree)
The oxygen crosslinking degree when the carbonaceous precursor is infusible by oxidation is not particularly limited as long as the effect of the present invention is obtained. That is, when the infusibilization treatment by oxygen crosslinking is not performed, the oxygen crosslinking degree may be 0% by weight, but the lower limit of the oxygen crosslinking degree is preferably 1% by weight or more, more preferably 2% by weight or more, More preferably, it is 3% by weight or more. If it is less than 1% by weight, the true density becomes large and the void for storing sodium becomes small, which is not preferable. In particular, in order to obtain an optimum butanol true density carbonaceous material, the oxygen content is preferably 10% by weight or more. The upper limit of the oxygen crosslinking degree is preferably 25% by weight or less, more preferably 20% by weight or less, and still more preferably 18% by weight or less. Exceeding 25% by weight is not preferable because the true density decreases and the charge / discharge capacity per volume may decrease.
(アルカリ添着工程)
炭素質前駆体にアルカリ添着を行い、その後に予備焼成等の熱処理を行うことによって、最適な細孔構造の炭素質材料を得ることができる。アルカリ添着する炭素質前駆体は、限定されるものではなく、石油系ピッチ若しくはタール、石炭系ピッチ若しくはタール、熱可塑性樹脂、又は熱硬化性樹脂を挙げることができる。 (Alkali attachment process)
A carbonaceous material having an optimal pore structure can be obtained by performing alkali addition on the carbonaceous precursor and then performing a heat treatment such as preliminary firing. The carbonaceous precursor to be alkali-added is not limited, and examples thereof include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin.
炭素質前駆体にアルカリ添着を行い、その後に予備焼成等の熱処理を行うことによって、最適な細孔構造の炭素質材料を得ることができる。アルカリ添着する炭素質前駆体は、限定されるものではなく、石油系ピッチ若しくはタール、石炭系ピッチ若しくはタール、熱可塑性樹脂、又は熱硬化性樹脂を挙げることができる。 (Alkali attachment process)
A carbonaceous material having an optimal pore structure can be obtained by performing alkali addition on the carbonaceous precursor and then performing a heat treatment such as preliminary firing. The carbonaceous precursor to be alkali-added is not limited, and examples thereof include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin.
アルカリ添着工程は、炭素質前駆体に、アルカリ金属元素を含む化合物を添加し、非酸化性ガス雰囲気中において500℃~1000℃で熱処理し、アルカリ処理炭素質前駆体を得る工程である。アルカリ金属元素としては、リチウム、ナトリウム、又はカリウム等のアルカリ金属元素を用いることができる。アルカリ金属元素は、金属の状態で炭素質前駆体に添着してもよいが、水酸化物、炭酸塩、炭酸水素塩、又はハロゲン化合物等アルカリ金属元素を含む化合物(以下、アルカリ金属化合物と称することがある)として添着してもよい。アルカリ金属化合物としては、限定されるものではないが、浸透性が高く、炭素質前駆体に均一に含浸できるため、水酸化物が好ましい。
The alkali deposition step is a step of adding an alkali metal element-containing compound to the carbonaceous precursor and heat-treating it in a non-oxidizing gas atmosphere at 500 ° C. to 1000 ° C. to obtain an alkali-treated carbonaceous precursor. As the alkali metal element, an alkali metal element such as lithium, sodium, or potassium can be used. The alkali metal element may be attached to the carbonaceous precursor in a metal state, but a compound containing an alkali metal element such as a hydroxide, carbonate, hydrogencarbonate, or halogen compound (hereinafter referred to as an alkali metal compound). May be attached). The alkali metal compound is not limited, but is preferably a hydroxide because it has high permeability and can be uniformly impregnated into the carbonaceous precursor.
(アルカリ添着炭素質前駆体)
前記炭素質前駆体にアルカリ金属元素又はアルカリ金属化合物を添加することによって、アルカリ添着炭素質前駆体を得ることができる。アルカリ金属元素又はアルカリ金属化合物の添加方法は、限定されるものでない。例えば、炭素質前駆体に対し、所定量のアルカリ金属元素又はアルカリ金属化合物を粉末状で混合してもよい。また、アルカリ金属化合物を適切な溶媒に溶解し、アルカリ金属化合物溶液を調製する。このアルカリ金属化合物溶液を炭素質前駆体と混合した後、溶媒を揮発させ、アルカリ金属化合物が添着した炭素質前駆体を調製してもよい。炭素質前駆体に添着するアルカリ金属化合物の添着量は、特に限定されるものではないが、添加量の上限は好ましくは、70.0重量%以下であり、より好ましくは60.0重量%以下であり、更に好ましくは50.0重量%以下である。アルカリ金属元素又はアルカリ金属化合物の添着量が多すぎる場合、過剰にアルカリ賦活が生じる。そのため、比表面積が増加し、それによって不可逆量容量が増加するので好ましくない。また、添加量の下限は、特に限定されるものではないが、好ましくは5.0重量%以上であり、より好ましくは10.0重量%以上であり、更に好ましくは15.0重量%以上である。アルカリ金属化合物の添加量が少なすぎると、ドープ及び脱ドープのための細孔構造を形成することが困難となり、好ましくない。 (Alkali-added carbonaceous precursor)
An alkali-added carbonaceous precursor can be obtained by adding an alkali metal element or an alkali metal compound to the carbonaceous precursor. The addition method of an alkali metal element or an alkali metal compound is not limited. For example, a predetermined amount of an alkali metal element or an alkali metal compound may be mixed in a powder form with respect to the carbonaceous precursor. Moreover, an alkali metal compound is dissolved in an appropriate solvent to prepare an alkali metal compound solution. After mixing the alkali metal compound solution with the carbonaceous precursor, the solvent may be volatilized to prepare a carbonaceous precursor to which the alkali metal compound is attached. The addition amount of the alkali metal compound attached to the carbonaceous precursor is not particularly limited, but the upper limit of the addition amount is preferably 70.0% by weight or less, more preferably 60.0% by weight or less. More preferably, it is 50.0% by weight or less. When the amount of the alkali metal element or alkali metal compound added is too large, the alkali activation occurs excessively. For this reason, the specific surface area increases, which increases the irreversible capacity, which is not preferable. Further, the lower limit of the addition amount is not particularly limited, but is preferably 5.0% by weight or more, more preferably 10.0% by weight or more, and further preferably 15.0% by weight or more. is there. If the amount of the alkali metal compound added is too small, it becomes difficult to form a pore structure for doping and dedoping, which is not preferable.
前記炭素質前駆体にアルカリ金属元素又はアルカリ金属化合物を添加することによって、アルカリ添着炭素質前駆体を得ることができる。アルカリ金属元素又はアルカリ金属化合物の添加方法は、限定されるものでない。例えば、炭素質前駆体に対し、所定量のアルカリ金属元素又はアルカリ金属化合物を粉末状で混合してもよい。また、アルカリ金属化合物を適切な溶媒に溶解し、アルカリ金属化合物溶液を調製する。このアルカリ金属化合物溶液を炭素質前駆体と混合した後、溶媒を揮発させ、アルカリ金属化合物が添着した炭素質前駆体を調製してもよい。炭素質前駆体に添着するアルカリ金属化合物の添着量は、特に限定されるものではないが、添加量の上限は好ましくは、70.0重量%以下であり、より好ましくは60.0重量%以下であり、更に好ましくは50.0重量%以下である。アルカリ金属元素又はアルカリ金属化合物の添着量が多すぎる場合、過剰にアルカリ賦活が生じる。そのため、比表面積が増加し、それによって不可逆量容量が増加するので好ましくない。また、添加量の下限は、特に限定されるものではないが、好ましくは5.0重量%以上であり、より好ましくは10.0重量%以上であり、更に好ましくは15.0重量%以上である。アルカリ金属化合物の添加量が少なすぎると、ドープ及び脱ドープのための細孔構造を形成することが困難となり、好ましくない。 (Alkali-added carbonaceous precursor)
An alkali-added carbonaceous precursor can be obtained by adding an alkali metal element or an alkali metal compound to the carbonaceous precursor. The addition method of an alkali metal element or an alkali metal compound is not limited. For example, a predetermined amount of an alkali metal element or an alkali metal compound may be mixed in a powder form with respect to the carbonaceous precursor. Moreover, an alkali metal compound is dissolved in an appropriate solvent to prepare an alkali metal compound solution. After mixing the alkali metal compound solution with the carbonaceous precursor, the solvent may be volatilized to prepare a carbonaceous precursor to which the alkali metal compound is attached. The addition amount of the alkali metal compound attached to the carbonaceous precursor is not particularly limited, but the upper limit of the addition amount is preferably 70.0% by weight or less, more preferably 60.0% by weight or less. More preferably, it is 50.0% by weight or less. When the amount of the alkali metal element or alkali metal compound added is too large, the alkali activation occurs excessively. For this reason, the specific surface area increases, which increases the irreversible capacity, which is not preferable. Further, the lower limit of the addition amount is not particularly limited, but is preferably 5.0% by weight or more, more preferably 10.0% by weight or more, and further preferably 15.0% by weight or more. is there. If the amount of the alkali metal compound added is too small, it becomes difficult to form a pore structure for doping and dedoping, which is not preferable.
[予備焼成工程(3)]
予備焼成工程は、炭素前駆体に熱処理を行うことで揮発分、例えばCO2、CO、CH4、及びH2等と、タール分とを除去する工程である。予備焼成の温度は、好ましくは400℃以上800℃未満であり、より好ましくは500℃以上800℃未満である。予備焼成温度が400℃未満であると脱タールが不十分となり、粉砕後の本焼成工程で発生するタール分やガスが多く、粒子表面に付着する可能性があり、粉砕したときの表面性を保てず電池性能の低下を引き起こすことがある。一方、予備焼成温度が800℃以上であるとタール発生温度領域を超えることになり、使用するエネルギー効率が低下することがある。更に、発生したタールが二次分解反応を引き起こしそれらが炭素前駆体に付着し、性能の低下を引き起こすことがある。 [Pre-baking step (3)]
The pre-baking step is a step of removing a volatile component such as CO 2 , CO, CH 4 , H 2, and the tar component by performing a heat treatment on the carbon precursor. The pre-baking temperature is preferably 400 ° C. or higher and lower than 800 ° C., more preferably 500 ° C. or higher and lower than 800 ° C. When the pre-baking temperature is less than 400 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. If not, battery performance may be degraded. On the other hand, when the pre-baking temperature is 800 ° C. or higher, the tar generation temperature region is exceeded, and the energy efficiency to be used may be reduced. Furthermore, the generated tar may cause a secondary decomposition reaction, which may adhere to the carbon precursor and cause a decrease in performance.
予備焼成工程は、炭素前駆体に熱処理を行うことで揮発分、例えばCO2、CO、CH4、及びH2等と、タール分とを除去する工程である。予備焼成の温度は、好ましくは400℃以上800℃未満であり、より好ましくは500℃以上800℃未満である。予備焼成温度が400℃未満であると脱タールが不十分となり、粉砕後の本焼成工程で発生するタール分やガスが多く、粒子表面に付着する可能性があり、粉砕したときの表面性を保てず電池性能の低下を引き起こすことがある。一方、予備焼成温度が800℃以上であるとタール発生温度領域を超えることになり、使用するエネルギー効率が低下することがある。更に、発生したタールが二次分解反応を引き起こしそれらが炭素前駆体に付着し、性能の低下を引き起こすことがある。 [Pre-baking step (3)]
The pre-baking step is a step of removing a volatile component such as CO 2 , CO, CH 4 , H 2, and the tar component by performing a heat treatment on the carbon precursor. The pre-baking temperature is preferably 400 ° C. or higher and lower than 800 ° C., more preferably 500 ° C. or higher and lower than 800 ° C. When the pre-baking temperature is less than 400 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. If not, battery performance may be degraded. On the other hand, when the pre-baking temperature is 800 ° C. or higher, the tar generation temperature region is exceeded, and the energy efficiency to be used may be reduced. Furthermore, the generated tar may cause a secondary decomposition reaction, which may adhere to the carbon precursor and cause a decrease in performance.
[粉砕工程]
炭素材料において、ナトリウムをドープかつ脱ドープできる領域を増やすため、粒子径を小さくすることが好ましい。粉砕のタイミングは特に限定されるものではないが、本焼成の前が好ましい。それは予備焼成前の炭素質前駆体を粉砕することができるが、炭素質前駆体が予備焼成時に溶融する場合がある。また本焼成後に行うこともできるが、炭素化反応が進行すると炭素前駆体が硬くなるため、粉砕による粒子径分布の制御が困難になる。粉砕によって、本発明の炭素質材料の平均粒子径を1~50μmにすることができる。粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ロッドミル、振動ボールミル、又はハンマーミルを用いることができるが、分級機を備えたジェットミルが好ましい。 [Crushing process]
In the carbon material, it is preferable to reduce the particle diameter in order to increase the region where sodium can be doped and dedoped. Although the timing of pulverization is not particularly limited, it is preferably before calcination. It can pulverize the carbonaceous precursor before pre-firing, but the carbonaceous precursor may melt during pre-firing. Moreover, although it can carry out after this baking, since a carbon precursor will become hard if a carbonization reaction advances, control of the particle size distribution by grinding | pulverization will become difficult. By grinding, the average particle diameter of the carbonaceous material of the present invention can be reduced to 1 to 50 μm. The pulverizer used for pulverization is not particularly limited, and for example, a jet mill, a rod mill, a vibrating ball mill, or a hammer mill can be used. A jet mill equipped with a classifier is preferable.
炭素材料において、ナトリウムをドープかつ脱ドープできる領域を増やすため、粒子径を小さくすることが好ましい。粉砕のタイミングは特に限定されるものではないが、本焼成の前が好ましい。それは予備焼成前の炭素質前駆体を粉砕することができるが、炭素質前駆体が予備焼成時に溶融する場合がある。また本焼成後に行うこともできるが、炭素化反応が進行すると炭素前駆体が硬くなるため、粉砕による粒子径分布の制御が困難になる。粉砕によって、本発明の炭素質材料の平均粒子径を1~50μmにすることができる。粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ロッドミル、振動ボールミル、又はハンマーミルを用いることができるが、分級機を備えたジェットミルが好ましい。 [Crushing process]
In the carbon material, it is preferable to reduce the particle diameter in order to increase the region where sodium can be doped and dedoped. Although the timing of pulverization is not particularly limited, it is preferably before calcination. It can pulverize the carbonaceous precursor before pre-firing, but the carbonaceous precursor may melt during pre-firing. Moreover, although it can carry out after this baking, since a carbon precursor will become hard if a carbonization reaction advances, control of the particle size distribution by grinding | pulverization will become difficult. By grinding, the average particle diameter of the carbonaceous material of the present invention can be reduced to 1 to 50 μm. The pulverizer used for pulverization is not particularly limited, and for example, a jet mill, a rod mill, a vibrating ball mill, or a hammer mill can be used. A jet mill equipped with a classifier is preferable.
(アルカリ金属及びアルカリ金属化合物の洗浄)
本発明の焼成工程においては、アルカリ金属及びアルカリ金属化合物を除去(アルカリ化合物の洗浄)することが好ましい。アルカリ金属及びアルカリ金属化合物が炭素質材料に大量に残留している場合、炭素質材料が強アルカリ性になる。例えば、PVDF(ポリフッ化ビニリデン)をバインダーとして用いて負極を作製する場合に、炭素質材料が強アルカリ性を示すとPVDFがゲル化することがある。また、炭素質材料にアルカリ金属が残存した場合、二次電池の放電時に、対極にアルカリ金属が移動し、充放電特性に悪影響を及ぼすことが考えられる。従って、アルカリ金属化合物を、炭素質前駆体から除去することが好ましい。アルカリ化合物の洗浄は、限定されるものではないが、本焼成の前、又は本焼成の後に行うことができる。アルカリ金属及びアルカリ化合物の洗浄は、通常の方法に従って行うことができる。具体的には、気相又は液相で、アルカリ金属及びアルカリ化合物の洗浄を行うことができる。気相の場合は、高温でアルカリ金属元素又はアルカリ金属化合物を揮発させることによって行う。 (Washing of alkali metals and alkali metal compounds)
In the firing step of the present invention, it is preferable to remove the alkali metal and the alkali metal compound (washing the alkali compound). When a large amount of alkali metal and alkali metal compound remain in the carbonaceous material, the carbonaceous material becomes strongly alkaline. For example, when a negative electrode is produced using PVDF (polyvinylidene fluoride) as a binder, PVDF may gel if the carbonaceous material exhibits strong alkalinity. In addition, when the alkali metal remains in the carbonaceous material, it is considered that the alkali metal moves to the counter electrode during the discharge of the secondary battery and adversely affects the charge / discharge characteristics. Therefore, it is preferable to remove the alkali metal compound from the carbonaceous precursor. Although washing of the alkali compound is not limited, it can be performed before or after the main baking. The alkali metal and the alkali compound can be washed according to a usual method. Specifically, the alkali metal and the alkali compound can be washed in a gas phase or a liquid phase. In the case of a gas phase, it is performed by volatilizing an alkali metal element or an alkali metal compound at a high temperature.
本発明の焼成工程においては、アルカリ金属及びアルカリ金属化合物を除去(アルカリ化合物の洗浄)することが好ましい。アルカリ金属及びアルカリ金属化合物が炭素質材料に大量に残留している場合、炭素質材料が強アルカリ性になる。例えば、PVDF(ポリフッ化ビニリデン)をバインダーとして用いて負極を作製する場合に、炭素質材料が強アルカリ性を示すとPVDFがゲル化することがある。また、炭素質材料にアルカリ金属が残存した場合、二次電池の放電時に、対極にアルカリ金属が移動し、充放電特性に悪影響を及ぼすことが考えられる。従って、アルカリ金属化合物を、炭素質前駆体から除去することが好ましい。アルカリ化合物の洗浄は、限定されるものではないが、本焼成の前、又は本焼成の後に行うことができる。アルカリ金属及びアルカリ化合物の洗浄は、通常の方法に従って行うことができる。具体的には、気相又は液相で、アルカリ金属及びアルカリ化合物の洗浄を行うことができる。気相の場合は、高温でアルカリ金属元素又はアルカリ金属化合物を揮発させることによって行う。 (Washing of alkali metals and alkali metal compounds)
In the firing step of the present invention, it is preferable to remove the alkali metal and the alkali metal compound (washing the alkali compound). When a large amount of alkali metal and alkali metal compound remain in the carbonaceous material, the carbonaceous material becomes strongly alkaline. For example, when a negative electrode is produced using PVDF (polyvinylidene fluoride) as a binder, PVDF may gel if the carbonaceous material exhibits strong alkalinity. In addition, when the alkali metal remains in the carbonaceous material, it is considered that the alkali metal moves to the counter electrode during the discharge of the secondary battery and adversely affects the charge / discharge characteristics. Therefore, it is preferable to remove the alkali metal compound from the carbonaceous precursor. Although washing of the alkali compound is not limited, it can be performed before or after the main baking. The alkali metal and the alkali compound can be washed according to a usual method. Specifically, the alkali metal and the alkali compound can be washed in a gas phase or a liquid phase. In the case of a gas phase, it is performed by volatilizing an alkali metal element or an alkali metal compound at a high temperature.
[本焼成工程(4)]
本発明の製造方法における本焼成は、通常の本焼成の手順に従って行うことができ、本焼成を行うことにより、ナトリウムイオン二次電池負極用炭素質材料を得ることができる。本焼成の温度は、限定されるものではないが、例えば800~1500℃である。しかしながら、本発明の本焼成温度の下限は好ましくは1000℃を超え、より好ましくは1050℃以上であり、更に好ましくは1100℃以上であり、特に好ましくは1150℃以上である。熱処理温度が低すぎると炭素化が不十分であり、炭素質材料に官能基が多く残存してH/Cの値が高くなり、ナトリウムとの反応により不可逆容量が増加することがある。一方、本発明の本焼成温度の上限は1450℃以下である。本焼成温度が1450℃を超えるとナトリウムの格納サイトとして形成された空隙が減少し、ドープ及び脱ドープ容量が減少することがある。すなわち、炭素六角平面の選択的配向性が高まり放電容量が低下することがある。 [Main firing step (4)]
The main calcination in the production method of the present invention can be performed according to a normal main calcination procedure, and a carbonaceous material for a negative electrode of a sodium ion secondary battery can be obtained by performing the main calcination. The temperature of the main firing is not limited, but is, for example, 800 to 1500 ° C. However, the lower limit of the firing temperature of the present invention is preferably more than 1000 ° C, more preferably 1050 ° C or more, further preferably 1100 ° C or more, and particularly preferably 1150 ° C or more. If the heat treatment temperature is too low, carbonization is insufficient, many functional groups remain in the carbonaceous material and the H / C value increases, and the irreversible capacity may increase due to reaction with sodium. On the other hand, the upper limit of the main firing temperature of the present invention is 1450 ° C. or lower. When the main baking temperature exceeds 1450 ° C., voids formed as sodium storage sites may decrease, and the doping and dedoping capacity may decrease. That is, the selective orientation of the carbon hexagonal plane is increased and the discharge capacity may be reduced.
本発明の製造方法における本焼成は、通常の本焼成の手順に従って行うことができ、本焼成を行うことにより、ナトリウムイオン二次電池負極用炭素質材料を得ることができる。本焼成の温度は、限定されるものではないが、例えば800~1500℃である。しかしながら、本発明の本焼成温度の下限は好ましくは1000℃を超え、より好ましくは1050℃以上であり、更に好ましくは1100℃以上であり、特に好ましくは1150℃以上である。熱処理温度が低すぎると炭素化が不十分であり、炭素質材料に官能基が多く残存してH/Cの値が高くなり、ナトリウムとの反応により不可逆容量が増加することがある。一方、本発明の本焼成温度の上限は1450℃以下である。本焼成温度が1450℃を超えるとナトリウムの格納サイトとして形成された空隙が減少し、ドープ及び脱ドープ容量が減少することがある。すなわち、炭素六角平面の選択的配向性が高まり放電容量が低下することがある。 [Main firing step (4)]
The main calcination in the production method of the present invention can be performed according to a normal main calcination procedure, and a carbonaceous material for a negative electrode of a sodium ion secondary battery can be obtained by performing the main calcination. The temperature of the main firing is not limited, but is, for example, 800 to 1500 ° C. However, the lower limit of the firing temperature of the present invention is preferably more than 1000 ° C, more preferably 1050 ° C or more, further preferably 1100 ° C or more, and particularly preferably 1150 ° C or more. If the heat treatment temperature is too low, carbonization is insufficient, many functional groups remain in the carbonaceous material and the H / C value increases, and the irreversible capacity may increase due to reaction with sodium. On the other hand, the upper limit of the main firing temperature of the present invention is 1450 ° C. or lower. When the main baking temperature exceeds 1450 ° C., voids formed as sodium storage sites may decrease, and the doping and dedoping capacity may decrease. That is, the selective orientation of the carbon hexagonal plane is increased and the discharge capacity may be reduced.
本焼成は、非酸化性ガス雰囲気中で行うことが好ましい。非酸化性ガスとしては、ヘリウム、窒素又はアルゴン等を挙げることができこれらを単独あるいは混合して用いることができる。更には塩素等のハロゲンガスを上記非酸化性ガスと混合したガス雰囲気中で本焼成を行うことも可能である。また、本焼成は、減圧下で行うこともでき、例えば、10kPa以下で行うことも可能である。本焼成の時間も特に限定されるものではないが、例えば0.1~10時間で行うことができ、0.3~8時間が好ましく、0.4~6時間がより好ましい。
The main firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination. Further, the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas. Moreover, this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less. Although the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.3 to 8 hours, and more preferably 0.4 to 6 hours.
(熱分解炭素による被覆工程)
熱分解炭素での被覆はCVD法を用いることができる。具体的には、焼成物を、直鎖状又は環状の炭化水素ガスと接触させ、熱分解により精製された炭素を、焼成物に蒸着する。この方法はいわゆる化学蒸着法(CVD法)として、よく知られている方法である。熱分解炭素による被覆工程によって、得られる炭素質材料の比表面積を制御することができる。本発明に用いる熱分解炭素は、炭化水素ガスとして添加できるものであり、炭素質材料の比表面積を低減させることのできるものであれば限定されるものではない。前記炭化水素ガスを、好ましくは非酸化性ガスに混合し、炭素質材料と接触させる。
炭化水素ガスの炭素源も限定されるものではないが、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、ノナン、デカン、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、アセチレン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロプロペン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、デカリン、ノルボルネン、メチルシクロヘキサン、ノルボルナジエン、ベンゼン、トルエン、キシレン、メシチレン、クメン、ブチルベンゼン又はスチレンを挙げることができる。また、炭化水素ガスの炭素源として、気体の有機物質及び、固体や液体の有機物質を加熱し、発生した炭化水素ガスを用いることもできる。 (Coating process with pyrolytic carbon)
The CVD method can be used for coating with pyrolytic carbon. Specifically, the fired product is brought into contact with a linear or cyclic hydrocarbon gas, and carbon purified by thermal decomposition is deposited on the fired product. This method is well known as a so-called chemical vapor deposition method (CVD method). The specific surface area of the obtained carbonaceous material can be controlled by the coating process with pyrolytic carbon. The pyrolytic carbon used in the present invention is not limited as long as it can be added as a hydrocarbon gas and can reduce the specific surface area of the carbonaceous material. The hydrocarbon gas is preferably mixed with a non-oxidizing gas and brought into contact with the carbonaceous material.
The carbon source of the hydrocarbon gas is not limited, for example, methane, ethane, propane, butane, pentane, hexane, octane, nonane, decane, ethylene, propylene, butene, pentene, hexene, acetylene, cyclopentane, cyclohexane , Cycloheptane, cyclooctane, cyclononane, cyclopropene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, decalin, norbornene, methylcyclohexane, norbornadiene, benzene, toluene, xylene, mesitylene, cumene, butylbenzene or styrene. Further, as the carbon source of the hydrocarbon gas, it is possible to use a hydrocarbon gas generated by heating a gaseous organic material and a solid or liquid organic material.
熱分解炭素での被覆はCVD法を用いることができる。具体的には、焼成物を、直鎖状又は環状の炭化水素ガスと接触させ、熱分解により精製された炭素を、焼成物に蒸着する。この方法はいわゆる化学蒸着法(CVD法)として、よく知られている方法である。熱分解炭素による被覆工程によって、得られる炭素質材料の比表面積を制御することができる。本発明に用いる熱分解炭素は、炭化水素ガスとして添加できるものであり、炭素質材料の比表面積を低減させることのできるものであれば限定されるものではない。前記炭化水素ガスを、好ましくは非酸化性ガスに混合し、炭素質材料と接触させる。
炭化水素ガスの炭素源も限定されるものではないが、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、ノナン、デカン、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、アセチレン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロプロペン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、デカリン、ノルボルネン、メチルシクロヘキサン、ノルボルナジエン、ベンゼン、トルエン、キシレン、メシチレン、クメン、ブチルベンゼン又はスチレンを挙げることができる。また、炭化水素ガスの炭素源として、気体の有機物質及び、固体や液体の有機物質を加熱し、発生した炭化水素ガスを用いることもできる。 (Coating process with pyrolytic carbon)
The CVD method can be used for coating with pyrolytic carbon. Specifically, the fired product is brought into contact with a linear or cyclic hydrocarbon gas, and carbon purified by thermal decomposition is deposited on the fired product. This method is well known as a so-called chemical vapor deposition method (CVD method). The specific surface area of the obtained carbonaceous material can be controlled by the coating process with pyrolytic carbon. The pyrolytic carbon used in the present invention is not limited as long as it can be added as a hydrocarbon gas and can reduce the specific surface area of the carbonaceous material. The hydrocarbon gas is preferably mixed with a non-oxidizing gas and brought into contact with the carbonaceous material.
The carbon source of the hydrocarbon gas is not limited, for example, methane, ethane, propane, butane, pentane, hexane, octane, nonane, decane, ethylene, propylene, butene, pentene, hexene, acetylene, cyclopentane, cyclohexane , Cycloheptane, cyclooctane, cyclononane, cyclopropene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, decalin, norbornene, methylcyclohexane, norbornadiene, benzene, toluene, xylene, mesitylene, cumene, butylbenzene or styrene. Further, as the carbon source of the hydrocarbon gas, it is possible to use a hydrocarbon gas generated by heating a gaseous organic material and a solid or liquid organic material.
《負極電極の製造》
本発明の炭素質材料を用いる負極電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板等からなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の炭素質材料を用いることにより特に導電助剤を添加しなくとも高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、アセチレンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ、又はカーボンファイバー等を用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5~15重量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100重量%とする)であり、更に好ましくは0.5~7重量%、特に好ましくは0.5~5重量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等の電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがナトリウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)等の極性溶媒が好ましく用いられるが、SBR等の水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3~13重量%であり、更に好ましくは3~10重量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物等、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5重量%が好ましく、更に好ましくは1~4重量%である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータ等が少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、限定されるものではなく10μm~1000μmの範囲内であるが、好ましくは10~80μmであり、更に好ましくは20~75μm、特に好ましくは20~60μmである。
負極電極は、通常集電体を有する。負極集電体としては、例えば、SUS、銅、アルミニウム、ニッケル又はカーボンを用いるができ、中でも、銅又はSUSが好ましい。 <Manufacture of negative electrode>
In the negative electrode using the carbonaceous material of the present invention, a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying. By using the carbonaceous material of the present invention, it is possible to produce an electrode having high conductivity without adding a conductive auxiliary agent. When preparing the agent, a conductive aid can be added. As the conductive auxiliary agent, acetylene black, ketjen black, carbon nanofiber, carbon nanotube, carbon fiber or the like can be used, and the addition amount varies depending on the type of conductive auxiliary agent used, but the added amount is small. If the amount is too large, the expected conductivity cannot be obtained, and this is not preferable. If the amount is too large, the dispersion in the electrode mixture deteriorates. From this point of view, the preferred proportion of the conductive auxiliary agent to be added is 0.5 to 15% by weight (where the amount of active material (carbonaceous material) + the amount of binder + the amount of conductive auxiliary agent = 100% by weight). More preferably 0.5 to 7% by weight, particularly preferably 0.5 to 5% by weight. The binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose). Among these, PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits sodium ion migration and obtains favorable input / output characteristics. In order to dissolve PVDF and form a slurry, a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, but an aqueous emulsion such as SBR or CMC can be dissolved in water. When the amount of the binder added is too large, the resistance of the obtained electrode is increased, which is not preferable because the internal resistance of the battery is increased and the battery characteristics are deteriorated. Moreover, when there is too little addition amount of a binder, the coupling | bonding with negative electrode particle | grains and a current collection material becomes inadequate, and is unpreferable. The preferred addition amount of the binder varies depending on the type of binder used, but is preferably 3 to 13% by weight, more preferably 3 to 10% by weight for the PVDF-based binder. On the other hand, a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by weight. The amount is preferably 1 to 4% by weight. The electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collectors and separators are required. However, the wider the electrode area facing the counter electrode, the better the input / output characteristics. Too much is not preferable because the input / output characteristics deteriorate. The thickness of the active material layer (per one side) is not limited and is in the range of 10 μm to 1000 μm, preferably 10 to 80 μm, more preferably 20 to 75 μm, and particularly preferably 20 to 60 μm. is there.
The negative electrode usually has a current collector. As the negative electrode current collector, for example, SUS, copper, aluminum, nickel, or carbon can be used, and among these, copper or SUS is preferable.
本発明の炭素質材料を用いる負極電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板等からなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の炭素質材料を用いることにより特に導電助剤を添加しなくとも高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、アセチレンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ、又はカーボンファイバー等を用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5~15重量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100重量%とする)であり、更に好ましくは0.5~7重量%、特に好ましくは0.5~5重量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等の電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがナトリウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)等の極性溶媒が好ましく用いられるが、SBR等の水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3~13重量%であり、更に好ましくは3~10重量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物等、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5重量%が好ましく、更に好ましくは1~4重量%である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータ等が少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、限定されるものではなく10μm~1000μmの範囲内であるが、好ましくは10~80μmであり、更に好ましくは20~75μm、特に好ましくは20~60μmである。
負極電極は、通常集電体を有する。負極集電体としては、例えば、SUS、銅、アルミニウム、ニッケル又はカーボンを用いるができ、中でも、銅又はSUSが好ましい。 <Manufacture of negative electrode>
In the negative electrode using the carbonaceous material of the present invention, a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying. By using the carbonaceous material of the present invention, it is possible to produce an electrode having high conductivity without adding a conductive auxiliary agent. When preparing the agent, a conductive aid can be added. As the conductive auxiliary agent, acetylene black, ketjen black, carbon nanofiber, carbon nanotube, carbon fiber or the like can be used, and the addition amount varies depending on the type of conductive auxiliary agent used, but the added amount is small. If the amount is too large, the expected conductivity cannot be obtained, and this is not preferable. If the amount is too large, the dispersion in the electrode mixture deteriorates. From this point of view, the preferred proportion of the conductive auxiliary agent to be added is 0.5 to 15% by weight (where the amount of active material (carbonaceous material) + the amount of binder + the amount of conductive auxiliary agent = 100% by weight). More preferably 0.5 to 7% by weight, particularly preferably 0.5 to 5% by weight. The binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose). Among these, PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits sodium ion migration and obtains favorable input / output characteristics. In order to dissolve PVDF and form a slurry, a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, but an aqueous emulsion such as SBR or CMC can be dissolved in water. When the amount of the binder added is too large, the resistance of the obtained electrode is increased, which is not preferable because the internal resistance of the battery is increased and the battery characteristics are deteriorated. Moreover, when there is too little addition amount of a binder, the coupling | bonding with negative electrode particle | grains and a current collection material becomes inadequate, and is unpreferable. The preferred addition amount of the binder varies depending on the type of binder used, but is preferably 3 to 13% by weight, more preferably 3 to 10% by weight for the PVDF-based binder. On the other hand, a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by weight. The amount is preferably 1 to 4% by weight. The electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collectors and separators are required. However, the wider the electrode area facing the counter electrode, the better the input / output characteristics. Too much is not preferable because the input / output characteristics deteriorate. The thickness of the active material layer (per one side) is not limited and is in the range of 10 μm to 1000 μm, preferably 10 to 80 μm, more preferably 20 to 75 μm, and particularly preferably 20 to 60 μm. is there.
The negative electrode usually has a current collector. As the negative electrode current collector, for example, SUS, copper, aluminum, nickel, or carbon can be used, and among these, copper or SUS is preferable.
[3]ナトリウムイオン二次電池
本発明の負極材料を用いて、ナトリウムイオン二次電池の負極を形成した場合、正極材料、セパレータ、及び電解液等電池を構成する他の材料は特に限定されることなく、ナトリウムイオン二次電池に従来使用され、あるいは提案されている種々の材料を使用することが可能である。 [3] Sodium ion secondary battery When the negative electrode material of the present invention is used to form a negative electrode of a sodium ion secondary battery, other materials constituting the battery such as the positive electrode material, the separator, and the electrolyte are particularly limited. Without limitation, it is possible to use various materials conventionally used or proposed for sodium ion secondary batteries.
本発明の負極材料を用いて、ナトリウムイオン二次電池の負極を形成した場合、正極材料、セパレータ、及び電解液等電池を構成する他の材料は特に限定されることなく、ナトリウムイオン二次電池に従来使用され、あるいは提案されている種々の材料を使用することが可能である。 [3] Sodium ion secondary battery When the negative electrode material of the present invention is used to form a negative electrode of a sodium ion secondary battery, other materials constituting the battery such as the positive electrode material, the separator, and the electrolyte are particularly limited. Without limitation, it is possible to use various materials conventionally used or proposed for sodium ion secondary batteries.
(正極電極)
正極電極は、正極活物質を含み、更に導電助剤、バインダー、又はその両方を含んでもよい。正極活物質層における正極活物質と、他の材料との混合比は、本発明の効果が得られる限りにおいて、限定されるものではなく、適宜決定することができる。
正極活物質としては、ナトリウムイオンをドープ及び脱ドープできる正極活物質を限定せずに用いることができる。例えば、正極活物質として、NaFeO2、NaNiO2、NaCoO2、NaMnO2、NaFe1-xM1 xO2、NaNi1-xM1 xO2、NaCo1-xM1 xO2、NaMn1-xM1 xO2(ただし、M1は3価金属からなる群より選ばれる1種以上の元素であり、0≦x<0.5である)、NabM2cSi12O30(M2は1種以上の遷移金属元素、2≦b≦6、2≦c≦5:例えば、Na6Fe2Si12O30又はNa2Fe5Si12O30)、NadM3eSi6O18(M3は1種以上の遷移金属元素、3≦d≦6、1≦e≦2:例えば、Na2Fe2Si6O18又はNa2MnFeSi6O18)、NafM4gSi2O6(M4は遷移金属元素、Mg及びAlからなる群より選ばれる1種以上の元素、1≦f≦2、1≦g≦2:例えば、Na2FeSi2O6)、リン酸塩(例えば、NaFePO4、Na3Fe2(PO4)3)、ホウ酸塩(例えば、NaFeBO4、又はNa3Fe2(BO4)3)、NahM5F6(M5は1種以上の遷移金属元素、2≦h≦3:例えば、Na3FeF6及びNa2MnF6)で示される化合物を挙げることができる。 (Positive electrode)
The positive electrode includes a positive electrode active material, and may further include a conductive additive, a binder, or both. The mixing ratio of the positive electrode active material and other materials in the positive electrode active material layer is not limited as long as the effect of the present invention is obtained, and can be determined as appropriate.
As the positive electrode active material, a positive electrode active material that can be doped and dedoped with sodium ions can be used without limitation. For example, as a positive electrode active material, NaFeO 2 , NaNiO 2 , NaCoO 2 , NaMnO 2 , NaFe 1-x M 1 x O 2 , NaNi 1-x M 1 x O 2 , NaCo 1-x M 1 x O 2 , NaMn 1-x M 1 x O 2 (where M 1 is one or more elements selected from the group consisting of trivalent metals, and 0 ≦ x <0.5), NabM2cSi 12 O 30 (M2 is 1 More than one kind of transition metal element, 2 ≦ b ≦ 6, 2 ≦ c ≦ 5: For example, Na 6 Fe 2 Si 12 O 30 or Na 2 Fe 5 Si 12 O 30 ), NadM3eSi 6 O 18 (M3 is one or more types) transition metal elements, 3 ≦ d ≦ 6,1 ≦ e ≦ 2: for example, Na 2 Fe 2 Si 6 O 18 or Na 2 MnFeSi 6 O 18), NafM4gSi 2 O 6 (M4 is a transition metal element One or more elements selected from the group consisting of Mg and Al, 1 ≦ f ≦ 2,1 ≦ g ≦ 2: For example, Na 2 FeSi 2 O 6) , phosphates (e.g., NaFePO 4, Na 3 Fe 2 (PO 4 ) 3 ), borate (eg, NaFeBO 4 or Na 3 Fe 2 (BO 4 ) 3 ), NahM5F6 (M5 is one or more transition metal elements, 2 ≦ h ≦ 3: for example, Na 3 And compounds represented by FeF 6 and Na 2 MnF 6 ).
正極電極は、正極活物質を含み、更に導電助剤、バインダー、又はその両方を含んでもよい。正極活物質層における正極活物質と、他の材料との混合比は、本発明の効果が得られる限りにおいて、限定されるものではなく、適宜決定することができる。
正極活物質としては、ナトリウムイオンをドープ及び脱ドープできる正極活物質を限定せずに用いることができる。例えば、正極活物質として、NaFeO2、NaNiO2、NaCoO2、NaMnO2、NaFe1-xM1 xO2、NaNi1-xM1 xO2、NaCo1-xM1 xO2、NaMn1-xM1 xO2(ただし、M1は3価金属からなる群より選ばれる1種以上の元素であり、0≦x<0.5である)、NabM2cSi12O30(M2は1種以上の遷移金属元素、2≦b≦6、2≦c≦5:例えば、Na6Fe2Si12O30又はNa2Fe5Si12O30)、NadM3eSi6O18(M3は1種以上の遷移金属元素、3≦d≦6、1≦e≦2:例えば、Na2Fe2Si6O18又はNa2MnFeSi6O18)、NafM4gSi2O6(M4は遷移金属元素、Mg及びAlからなる群より選ばれる1種以上の元素、1≦f≦2、1≦g≦2:例えば、Na2FeSi2O6)、リン酸塩(例えば、NaFePO4、Na3Fe2(PO4)3)、ホウ酸塩(例えば、NaFeBO4、又はNa3Fe2(BO4)3)、NahM5F6(M5は1種以上の遷移金属元素、2≦h≦3:例えば、Na3FeF6及びNa2MnF6)で示される化合物を挙げることができる。 (Positive electrode)
The positive electrode includes a positive electrode active material, and may further include a conductive additive, a binder, or both. The mixing ratio of the positive electrode active material and other materials in the positive electrode active material layer is not limited as long as the effect of the present invention is obtained, and can be determined as appropriate.
As the positive electrode active material, a positive electrode active material that can be doped and dedoped with sodium ions can be used without limitation. For example, as a positive electrode active material, NaFeO 2 , NaNiO 2 , NaCoO 2 , NaMnO 2 , NaFe 1-x M 1 x O 2 , NaNi 1-x M 1 x O 2 , NaCo 1-x M 1 x O 2 , NaMn 1-x M 1 x O 2 (where M 1 is one or more elements selected from the group consisting of trivalent metals, and 0 ≦ x <0.5), NabM2cSi 12 O 30 (M2 is 1 More than one kind of transition metal element, 2 ≦ b ≦ 6, 2 ≦ c ≦ 5: For example, Na 6 Fe 2 Si 12 O 30 or Na 2 Fe 5 Si 12 O 30 ), NadM3eSi 6 O 18 (M3 is one or more types) transition metal elements, 3 ≦ d ≦ 6,1 ≦ e ≦ 2: for example, Na 2 Fe 2 Si 6 O 18 or Na 2 MnFeSi 6 O 18), NafM4gSi 2 O 6 (M4 is a transition metal element One or more elements selected from the group consisting of Mg and Al, 1 ≦ f ≦ 2,1 ≦ g ≦ 2: For example, Na 2 FeSi 2 O 6) , phosphates (e.g., NaFePO 4, Na 3 Fe 2 (PO 4 ) 3 ), borate (eg, NaFeBO 4 or Na 3 Fe 2 (BO 4 ) 3 ), NahM5F6 (M5 is one or more transition metal elements, 2 ≦ h ≦ 3: for example, Na 3 And compounds represented by FeF 6 and Na 2 MnF 6 ).
正極電極は、更に導電助剤及び/又はバインダーを含むことができる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、又はカーボンファイバーを挙げることができる。導電助剤の含有量は、限定されるものではないが、例えば0.5~15重量%である。また、バインダーとしては、例えば、PTFE又はPVDF等のフッ素含有バインダーを挙げることができる。導電助剤の含有量は、限定されるものではないが、例えば0.5~15重量%である。また、正極活物質層の厚さは、限定されないが、例えば10μm~1000μmの範囲内である。
正極活物質層は、通常集電体を有する。負極集電体としては、例えば、SUS、アルミニウム、ニッケル、鉄、チタン及びカーボンを用いるができ、中でも、アルミニウム又はSUSが好ましい。 The positive electrode can further contain a conductive additive and / or a binder. As a conductive support agent, acetylene black, ketjen black, or carbon fiber can be mentioned, for example. The content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight. Moreover, as a binder, fluorine-containing binders, such as PTFE or PVDF, can be mentioned, for example. The content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight. Further, the thickness of the positive electrode active material layer is not limited, but is in the range of 10 μm to 1000 μm, for example.
The positive electrode active material layer usually has a current collector. As the negative electrode current collector, for example, SUS, aluminum, nickel, iron, titanium, and carbon can be used, and among these, aluminum or SUS is preferable.
正極活物質層は、通常集電体を有する。負極集電体としては、例えば、SUS、アルミニウム、ニッケル、鉄、チタン及びカーボンを用いるができ、中でも、アルミニウム又はSUSが好ましい。 The positive electrode can further contain a conductive additive and / or a binder. As a conductive support agent, acetylene black, ketjen black, or carbon fiber can be mentioned, for example. The content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight. Moreover, as a binder, fluorine-containing binders, such as PTFE or PVDF, can be mentioned, for example. The content of the conductive assistant is not limited, but is, for example, 0.5 to 15% by weight. Further, the thickness of the positive electrode active material layer is not limited, but is in the range of 10 μm to 1000 μm, for example.
The positive electrode active material layer usually has a current collector. As the negative electrode current collector, for example, SUS, aluminum, nickel, iron, titanium, and carbon can be used, and among these, aluminum or SUS is preferable.
(電解液)
これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。しかしながら、電解液は、本発明の効果が得られる限りにおいて、限定されるものではなく、例えばイオン液体を用いてもよい。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソラン等の有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、NaClO4、NaPF6、NaBF4、NaCF3SO3、NaN(CF3SO2)2、NaN(FSO2)2、NaN(C2F5SO2)2、NaC(CF3SO2)3、NaAsF6、NaPF6、NaB(C6H5)4、CH3SO3Na、CF3SO3Na、NaCl、又はNaBRを挙げることができる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、若しくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 (Electrolyte)
The nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent. However, the electrolytic solution is not limited as long as the effect of the present invention is obtained, and for example, an ionic liquid may be used. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. These can be used alone or in combination of two or more. As electrolytes, NaClO 4 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3 SO 2 ) 2 , NaN (FSO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 , NaC (CF 3 SO 2) 3, NaAsF 6 , NaPF 6, NaB (C 6 H 5) 4, CH 3 SO 3 Na, CF 3 SO 3 Na, may be mentioned NaCl, or NaBr. In a secondary battery, the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution so that they face each other through a liquid-permeable separator made of a nonwoven fabric or other porous material as necessary. It is formed by. As the separator, a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used. Alternatively, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。しかしながら、電解液は、本発明の効果が得られる限りにおいて、限定されるものではなく、例えばイオン液体を用いてもよい。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソラン等の有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、NaClO4、NaPF6、NaBF4、NaCF3SO3、NaN(CF3SO2)2、NaN(FSO2)2、NaN(C2F5SO2)2、NaC(CF3SO2)3、NaAsF6、NaPF6、NaB(C6H5)4、CH3SO3Na、CF3SO3Na、NaCl、又はNaBRを挙げることができる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、若しくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 (Electrolyte)
The nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent. However, the electrolytic solution is not limited as long as the effect of the present invention is obtained, and for example, an ionic liquid may be used. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. These can be used alone or in combination of two or more. As electrolytes, NaClO 4 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3 SO 2 ) 2 , NaN (FSO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 , NaC (CF 3 SO 2) 3, NaAsF 6 , NaPF 6, NaB (C 6 H 5) 4, CH 3 SO 3 Na, CF 3 SO 3 Na, may be mentioned NaCl, or NaBr. In a secondary battery, the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution so that they face each other through a liquid-permeable separator made of a nonwoven fabric or other porous material as necessary. It is formed by. As the separator, a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used. Alternatively, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
なお、以下に炭素質材料の物性値(「水素/炭素の原子比(H/C)」、「ブタノール真密度」、「ヘリウム真密度」、「平均粒子径」、「比表面積」「炭素材の平均層面間隔d002」及び「Lc」)の測定法を記載するが、実施例を含めて、本明細書中に記載するこれらの物性値は、以下の方法により求めた値に基づくものである。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
The physical properties of carbonaceous materials (“hydrogen / carbon atomic ratio (H / C)”, “butanol true density”, “helium true density”, “average particle diameter”, “specific surface area”, “carbon material” The average layer surface spacing d 002 ”and“ Lc ”) are described below. However, these physical property values described in this specification including the examples are based on values obtained by the following methods. is there.
なお、以下に炭素質材料の物性値(「水素/炭素の原子比(H/C)」、「ブタノール真密度」、「ヘリウム真密度」、「平均粒子径」、「比表面積」「炭素材の平均層面間隔d002」及び「Lc」)の測定法を記載するが、実施例を含めて、本明細書中に記載するこれらの物性値は、以下の方法により求めた値に基づくものである。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
The physical properties of carbonaceous materials (“hydrogen / carbon atomic ratio (H / C)”, “butanol true density”, “helium true density”, “average particle diameter”, “specific surface area”, “carbon material” The average layer surface spacing d 002 ”and“ Lc ”) are described below. However, these physical property values described in this specification including the examples are based on values obtained by the following methods. is there.
《水素原子と炭素原子の原子比(H/C)》
JIS M8819に定められた方法に準拠し測定した。CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の質量割合から、水素/炭素の原子数の比として求めた。 << Atomic ratio of hydrogen atom to carbon atom (H / C) >>
Measurement was performed in accordance with the method defined in JIS M8819. From the mass ratio of hydrogen and carbon in the sample obtained by elemental analysis with a CHN analyzer, the hydrogen / carbon atom number ratio was obtained.
JIS M8819に定められた方法に準拠し測定した。CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の質量割合から、水素/炭素の原子数の比として求めた。 << Atomic ratio of hydrogen atom to carbon atom (H / C) >>
Measurement was performed in accordance with the method defined in JIS M8819. From the mass ratio of hydrogen and carbon in the sample obtained by elemental analysis with a CHN analyzer, the hydrogen / carbon atom number ratio was obtained.
《ブタノール真密度》
JIS R7212に定められた方法に準拠し、ブタノールを用いて測定した。概要を以下に記す。なお、炭素質前駆体及び炭素質材料のいずれも、同じ測定方法で測定した。内容積約40mLの側管付比重びんの質量(m1)を正確に量る。次に、その底部に試料を約10mmの厚さになるように平らに入れた後、その質量(m2)を正確に量る。これに1-ブタノールを静かに加えて、底から20mm程度の深さにする。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中に入れ、徐々に排気して2.0~2.7kPaとする。その圧力に20分間以上保ち、気泡の発生が止まった後取り出して、更に1-ブタノールで満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせる。次に、これを取り出して外部をよくぬぐって室温まで冷却した後、質量(m4)を正確に量る。次に同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m3)を量る。また、使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんにとり、前と同様に恒温水槽に浸し、標線を合わせた後質量(m5)を量る。真密度(ρBt)は次の式により計算する。
(ここでdは水の30℃における比重(0.9946)である。)
《Butanol true density》
In accordance with the method defined in JIS R7212, measurement was performed using butanol. The outline is described below. Note that both the carbonaceous precursor and the carbonaceous material were measured by the same measurement method. The mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured. Next, the sample is put flat on the bottom so as to have a thickness of about 10 mm, and then its mass (m 2 ) is accurately measured. Gently add 1-butanol to this to a depth of about 20 mm from the bottom. Next, light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated. Then, the bottle is put in a vacuum desiccator and gradually exhausted to 2.0 to 2.7 kPa. Keep at that pressure for 20 minutes or more, take out after bubble generation stops, fill with 1-butanol, plug and immerse in a constant temperature water bath (adjusted to 30 ± 0.03 ° C) for 15 minutes or more. Adjust the liquid level of 1-butanol to the marked line. Next, this is taken out, the outside is well wiped off and cooled to room temperature, and then the mass (m 4 ) is accurately measured. Next, the same specific gravity bottle is filled with only 1-butanol, immersed in a constant temperature water bath in the same manner as described above, and after aligning the marked lines, the mass (m 3 ) is measured. Moreover, distilled water excluding the gas that has been boiled and dissolved immediately before use is placed in a specific gravity bottle, immersed in a constant temperature water bath as before, and the mass (m 5 ) is measured after aligning the marked lines. The true density (ρ Bt ) is calculated by the following formula.
(Where d is the specific gravity of water at 30 ° C. (0.9946))
JIS R7212に定められた方法に準拠し、ブタノールを用いて測定した。概要を以下に記す。なお、炭素質前駆体及び炭素質材料のいずれも、同じ測定方法で測定した。内容積約40mLの側管付比重びんの質量(m1)を正確に量る。次に、その底部に試料を約10mmの厚さになるように平らに入れた後、その質量(m2)を正確に量る。これに1-ブタノールを静かに加えて、底から20mm程度の深さにする。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中に入れ、徐々に排気して2.0~2.7kPaとする。その圧力に20分間以上保ち、気泡の発生が止まった後取り出して、更に1-ブタノールで満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせる。次に、これを取り出して外部をよくぬぐって室温まで冷却した後、質量(m4)を正確に量る。次に同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m3)を量る。また、使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんにとり、前と同様に恒温水槽に浸し、標線を合わせた後質量(m5)を量る。真密度(ρBt)は次の式により計算する。
In accordance with the method defined in JIS R7212, measurement was performed using butanol. The outline is described below. Note that both the carbonaceous precursor and the carbonaceous material were measured by the same measurement method. The mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured. Next, the sample is put flat on the bottom so as to have a thickness of about 10 mm, and then its mass (m 2 ) is accurately measured. Gently add 1-butanol to this to a depth of about 20 mm from the bottom. Next, light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated. Then, the bottle is put in a vacuum desiccator and gradually exhausted to 2.0 to 2.7 kPa. Keep at that pressure for 20 minutes or more, take out after bubble generation stops, fill with 1-butanol, plug and immerse in a constant temperature water bath (adjusted to 30 ± 0.03 ° C) for 15 minutes or more. Adjust the liquid level of 1-butanol to the marked line. Next, this is taken out, the outside is well wiped off and cooled to room temperature, and then the mass (m 4 ) is accurately measured. Next, the same specific gravity bottle is filled with only 1-butanol, immersed in a constant temperature water bath in the same manner as described above, and after aligning the marked lines, the mass (m 3 ) is measured. Moreover, distilled water excluding the gas that has been boiled and dissolved immediately before use is placed in a specific gravity bottle, immersed in a constant temperature water bath as before, and the mass (m 5 ) is measured after aligning the marked lines. The true density (ρ Bt ) is calculated by the following formula.
《平均粒子径》
試料約0.1gに対し、分散剤(カチオン系界面活性剤「SNウェット366」(サンノプコ社製))を3滴加え、試料に分散剤を馴染ませる。次に、純水30mLを加え、超音波洗浄機で約3分間分散させたのち、粒径分布測定器(日機装株式会社製「Microtrac MT3300EXII」)で、粒径0.02~2000μmの範囲の粒径分布を求めた。
得られた粒径分布から、累積容積が50%となる粒径をもって平均粒径Dv50(μm)とした。 《Average particle size》
Three drops of a dispersing agent (cationic surfactant “SN Wet 366” (manufactured by San Nopco)) are added to about 0.1 g of the sample, and the sample is made to conform to the dispersing agent. Next, after adding 30 mL of pure water and dispersing with an ultrasonic cleaner for about 3 minutes, particles having a particle size in the range of 0.02 to 2000 μm are measured with a particle size distribution measuring instrument (“Microtrac MT3300EXII” manufactured by Nikkiso Co., Ltd.). The diameter distribution was determined.
From the obtained particle size distribution, the average particle size Dv50 (μm) was defined as the particle size with a cumulative volume of 50%.
試料約0.1gに対し、分散剤(カチオン系界面活性剤「SNウェット366」(サンノプコ社製))を3滴加え、試料に分散剤を馴染ませる。次に、純水30mLを加え、超音波洗浄機で約3分間分散させたのち、粒径分布測定器(日機装株式会社製「Microtrac MT3300EXII」)で、粒径0.02~2000μmの範囲の粒径分布を求めた。
得られた粒径分布から、累積容積が50%となる粒径をもって平均粒径Dv50(μm)とした。 《Average particle size》
Three drops of a dispersing agent (cationic surfactant “SN Wet 366” (manufactured by San Nopco)) are added to about 0.1 g of the sample, and the sample is made to conform to the dispersing agent. Next, after adding 30 mL of pure water and dispersing with an ultrasonic cleaner for about 3 minutes, particles having a particle size in the range of 0.02 to 2000 μm are measured with a particle size distribution measuring instrument (“Microtrac MT3300EXII” manufactured by Nikkiso Co., Ltd.). The diameter distribution was determined.
From the obtained particle size distribution, the average particle size Dv50 (μm) was defined as the particle size with a cumulative volume of 50%.
《ヘリウム真密度》
ヘリウムを置換媒体とする真密度ρHeの測定は、マイクロメリティックス社製マルチボリューム・ピクノメーター(アキュピック1330)を用い、試料を200℃で12時間真空乾燥させてから行った。測定時の周囲温度は、25℃で一定として行った。本測定法での圧力はいずれもゲージ圧力であり、絶対圧力から周囲圧力を差し引いた圧力である。
測定装置マイクロメリティックス社製マルチボリューム・ピクノメーターは、試料室及び膨張室を具備し、試料室は室内の圧力を測定するための圧力計を備えている。試料室と膨張室はバルブを備える連結管により接続されている。試料室にはストップバルブを備えるヘリウムガス導入管が接続され、膨張室にはストップバルブを備えるヘリウムガス配出管が接続されている。
測定は以下のようにして行った。試料室の容積(VCELL)及び膨張室の容積(VEXP)を標準球を用いて予め測定しておいた。試料室に試料を入れ、試料室のヘリウムガス導入管、連結管、膨張室のヘリウムガス排出管を通して、ヘリウムガスを2時間流して装置内をヘリウムガスで置換した。次に試料室と膨張室の間のバルブ及び膨張室からのヘリウムガス排出管のバルブを閉じ(膨張室には周囲圧力と同じ圧力のヘリウムガスが残る)、試料室のヘリウムガス導入管からヘリウムガスを134kPaになるまで導入した後、ヘリウムガス導入管のストップバルブを閉じた。ストップバルブを閉じてから5分後の試料室の圧力(P1)を測定した。次に試料室と膨張室の間のバルブを開いて、ヘリウムガスを膨張室に移送し、そのときの圧力(P2)を測定した。
試料の体積(VSAMP)は次式で計算した。
VSAMP=VCELL-VEXP/[(P1/P2)-1]
したがって、試料の重量をWSAMPとすると、ヘリウム真密度はρHe=WSAMP/VSAMPとなる。
平衡速度の設定は0.010psig/minに設定した。 《Helium true density》
The measurement of the true density ρ He using helium as a substitution medium was performed after the sample was vacuum-dried at 200 ° C. for 12 hours using a multi-volume pycnometer (Accumic 1330) manufactured by Micromeritics. The ambient temperature during measurement was constant at 25 ° C. The pressures in this measurement method are all gauge pressures and are the pressures obtained by subtracting the ambient pressure from the absolute pressure.
A multi-volume pycnometer manufactured by Micromerix, Inc. has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber. The sample chamber and the expansion chamber are connected by a connecting pipe having a valve. A helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas distribution pipe having a stop valve is connected to the expansion chamber.
The measurement was performed as follows. The volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) were measured in advance using a standard sphere. A sample was put into the sample chamber, and helium gas was passed through the helium gas inlet tube, the connecting tube in the sample chamber, and the helium gas discharge tube in the expansion chamber for 2 hours to replace the inside of the apparatus with helium gas. Next, the valve between the sample chamber and the expansion chamber and the valve of the helium gas discharge pipe from the expansion chamber are closed (helium gas having the same pressure as the ambient pressure remains in the expansion chamber), and helium is introduced from the helium gas introduction tube of the sample chamber. After introducing the gas to 134 kPa, the stop valve of the helium gas introduction pipe was closed. The pressure (P 1 ) in the sample chamber was measured 5 minutes after closing the stop valve. Next, the valve between the sample chamber and the expansion chamber was opened, and helium gas was transferred to the expansion chamber, and the pressure (P 2 ) at that time was measured.
The volume of the sample (VSAMP) was calculated by the following formula.
V SAMP = V CELL −V EXP / [(P 1 / P 2 ) −1]
Therefore, if the weight of the sample is W SAMP , the true helium density is ρ He = W SAMP / V SAMP .
The equilibrium speed was set to 0.010 psig / min.
ヘリウムを置換媒体とする真密度ρHeの測定は、マイクロメリティックス社製マルチボリューム・ピクノメーター(アキュピック1330)を用い、試料を200℃で12時間真空乾燥させてから行った。測定時の周囲温度は、25℃で一定として行った。本測定法での圧力はいずれもゲージ圧力であり、絶対圧力から周囲圧力を差し引いた圧力である。
測定装置マイクロメリティックス社製マルチボリューム・ピクノメーターは、試料室及び膨張室を具備し、試料室は室内の圧力を測定するための圧力計を備えている。試料室と膨張室はバルブを備える連結管により接続されている。試料室にはストップバルブを備えるヘリウムガス導入管が接続され、膨張室にはストップバルブを備えるヘリウムガス配出管が接続されている。
測定は以下のようにして行った。試料室の容積(VCELL)及び膨張室の容積(VEXP)を標準球を用いて予め測定しておいた。試料室に試料を入れ、試料室のヘリウムガス導入管、連結管、膨張室のヘリウムガス排出管を通して、ヘリウムガスを2時間流して装置内をヘリウムガスで置換した。次に試料室と膨張室の間のバルブ及び膨張室からのヘリウムガス排出管のバルブを閉じ(膨張室には周囲圧力と同じ圧力のヘリウムガスが残る)、試料室のヘリウムガス導入管からヘリウムガスを134kPaになるまで導入した後、ヘリウムガス導入管のストップバルブを閉じた。ストップバルブを閉じてから5分後の試料室の圧力(P1)を測定した。次に試料室と膨張室の間のバルブを開いて、ヘリウムガスを膨張室に移送し、そのときの圧力(P2)を測定した。
試料の体積(VSAMP)は次式で計算した。
VSAMP=VCELL-VEXP/[(P1/P2)-1]
したがって、試料の重量をWSAMPとすると、ヘリウム真密度はρHe=WSAMP/VSAMPとなる。
平衡速度の設定は0.010psig/minに設定した。 《Helium true density》
The measurement of the true density ρ He using helium as a substitution medium was performed after the sample was vacuum-dried at 200 ° C. for 12 hours using a multi-volume pycnometer (Accumic 1330) manufactured by Micromeritics. The ambient temperature during measurement was constant at 25 ° C. The pressures in this measurement method are all gauge pressures and are the pressures obtained by subtracting the ambient pressure from the absolute pressure.
A multi-volume pycnometer manufactured by Micromerix, Inc. has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber. The sample chamber and the expansion chamber are connected by a connecting pipe having a valve. A helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas distribution pipe having a stop valve is connected to the expansion chamber.
The measurement was performed as follows. The volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) were measured in advance using a standard sphere. A sample was put into the sample chamber, and helium gas was passed through the helium gas inlet tube, the connecting tube in the sample chamber, and the helium gas discharge tube in the expansion chamber for 2 hours to replace the inside of the apparatus with helium gas. Next, the valve between the sample chamber and the expansion chamber and the valve of the helium gas discharge pipe from the expansion chamber are closed (helium gas having the same pressure as the ambient pressure remains in the expansion chamber), and helium is introduced from the helium gas introduction tube of the sample chamber. After introducing the gas to 134 kPa, the stop valve of the helium gas introduction pipe was closed. The pressure (P 1 ) in the sample chamber was measured 5 minutes after closing the stop valve. Next, the valve between the sample chamber and the expansion chamber was opened, and helium gas was transferred to the expansion chamber, and the pressure (P 2 ) at that time was measured.
The volume of the sample (VSAMP) was calculated by the following formula.
V SAMP = V CELL −V EXP / [(P 1 / P 2 ) −1]
Therefore, if the weight of the sample is W SAMP , the true helium density is ρ He = W SAMP / V SAMP .
The equilibrium speed was set to 0.010 psig / min.
《比表面積》
JIS Z8830に定められた方法に準拠し、比表面積を測定した。概要を以下に記す。
BETの式から誘導された近似式
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.2)によりvmを求め、次式により試料の比表面積を計算した:比表面積=4.35×vm(m2/g)(ここで、vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、xは相対圧力である。)
具体的には、マイクロメリティックス社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における炭素質物質への窒素の吸着量を測定した。
炭素材料を試料管に充填し、窒素ガスを20モル%濃度で含有するヘリウムガスを流しながら、試料管を-196℃に冷却し、炭素材に窒素を吸着させる。次に試験管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量vとした。 "Specific surface area"
The specific surface area was measured according to the method defined in JIS Z8830. The outline is described below.
Approximate formula derived from BET formula
Was used to calculate v m by the one-point method by nitrogen adsorption (relative pressure x = 0.2) at liquid nitrogen temperature, and the specific surface area of the sample was calculated by the following formula: specific surface area = 4.35 × v m ( m 2 / g) (where v m is the amount of adsorption necessary to form a monolayer on the sample surface (cm 3 / g), v is the amount of adsorption actually measured (cm 3 / g), and x is relative Pressure.)
Specifically, using a “Flow Sorb II2300” manufactured by Micromeritics, the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows.
The sample tube is filled with a carbon material, and the sample tube is cooled to −196 ° C. while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, and nitrogen is adsorbed on the carbon material. The test tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
JIS Z8830に定められた方法に準拠し、比表面積を測定した。概要を以下に記す。
BETの式から誘導された近似式
具体的には、マイクロメリティックス社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における炭素質物質への窒素の吸着量を測定した。
炭素材料を試料管に充填し、窒素ガスを20モル%濃度で含有するヘリウムガスを流しながら、試料管を-196℃に冷却し、炭素材に窒素を吸着させる。次に試験管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量vとした。 "Specific surface area"
The specific surface area was measured according to the method defined in JIS Z8830. The outline is described below.
Approximate formula derived from BET formula
Specifically, using a “Flow Sorb II2300” manufactured by Micromeritics, the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows.
The sample tube is filled with a carbon material, and the sample tube is cooled to −196 ° C. while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, and nitrogen is adsorbed on the carbon material. The test tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
(炭素材の平均層面間隔d002)
炭素質材料粉末を試料ホルダーに充填し、PANalytical社製X’Pert PROを用いて、対称反射法にて測定した。走査範囲は8<2θ<50°で印加電流/印加電圧は45kV/40mAの条件で、Niフィルターにより単色化したCuKα線(λ=1.5418Å)を線源とし、X線回折図形を得た。標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Braggの公式によりd002を計算した。 (Average layer spacing d 002 of carbon material)
The carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical. The scanning range was 8 <2θ <50 °, and the applied current / applied voltage was 45 kV / 40 mA. An X-ray diffraction pattern was obtained using a CuKα ray (λ = 1.5418Å) monochromated by a Ni filter as a radiation source. . Correction was performed using the diffraction peak of the (111) plane of the high-purity silicon powder for standard substances. The wavelength of the CuKα ray was 0.15418 nm, and d 002 was calculated according to the Bragg formula.
炭素質材料粉末を試料ホルダーに充填し、PANalytical社製X’Pert PROを用いて、対称反射法にて測定した。走査範囲は8<2θ<50°で印加電流/印加電圧は45kV/40mAの条件で、Niフィルターにより単色化したCuKα線(λ=1.5418Å)を線源とし、X線回折図形を得た。標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Braggの公式によりd002を計算した。 (Average layer spacing d 002 of carbon material)
The carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical. The scanning range was 8 <2θ <50 °, and the applied current / applied voltage was 45 kV / 40 mA. An X-ray diffraction pattern was obtained using a CuKα ray (λ = 1.5418Å) monochromated by a Ni filter as a radiation source. . Correction was performed using the diffraction peak of the (111) plane of the high-purity silicon powder for standard substances. The wavelength of the CuKα ray was 0.15418 nm, and d 002 was calculated according to the Bragg formula.
《X線回折法によるLc(002)の算出》
Scherrerの式に代入することによりLc(002)を算出する。
L=Kλ/(β・cosθ)(Scherrerの式)
K:形状因子(0.9),λ:X線の波長(CuKαm=0.15418nm),θ:回折角,β:半値幅 << Calculation of Lc (002) by X-ray diffraction method >>
Lc (002) is calculated by substituting into the Scherrer equation.
L = Kλ / (β · cos θ) (Scherrer equation)
K: Form factor (0.9), λ: X-ray wavelength (CuKαm = 0.15418 nm), θ: Diffraction angle, β: Half width
Scherrerの式に代入することによりLc(002)を算出する。
L=Kλ/(β・cosθ)(Scherrerの式)
K:形状因子(0.9),λ:X線の波長(CuKαm=0.15418nm),θ:回折角,β:半値幅 << Calculation of Lc (002) by X-ray diffraction method >>
Lc (002) is calculated by substituting into the Scherrer equation.
L = Kλ / (β · cos θ) (Scherrer equation)
K: Form factor (0.9), λ: X-ray wavelength (CuKαm = 0.15418 nm), θ: Diffraction angle, β: Half width
《実施例1》
軟化点205℃、H/C原子比0.65、キノリン不溶分0.4%の石油系ピッチ70kgと、ナフタレン30kgとを、撹拌翼及び出口ノズルのついた内容積300リットルの耐圧容器に仕込み、加熱溶融混合を行った。その後、加熱溶融混合した石油系ピッチを冷却後、粉砕し、得られた粉砕物を90~100℃の水中に投入し、撹拌分散し、冷却して球状ピッチ成型体を得た。大部分の水をろ過により取り除いた後に、球状ピッチ成型体をn-ヘキサンでピッチ成型体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、加熱空気を通じながら、加熱酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。多孔性球状酸化ピッチの酸素架橋度は17重量%であった。次に窒素雰囲気中600℃で熱処理し、粉砕機で粉砕し、平均粒子径が10~15μmの炭素質前駆体を得た。得られた粉末炭素前駆体を窒素雰囲気中250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料1を得た。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。 Example 1
A 70 kg petroleum pitch having a softening point of 205 ° C., an H / C atomic ratio of 0.65, and a quinoline insoluble content of 0.4%, and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle. The mixture was heated and melted. Thereafter, the heat-mixed petroleum pitch was cooled and pulverized, and the resulting pulverized product was poured into water at 90 to 100 ° C., stirred and dispersed, and cooled to obtain a spherical pitch molded body. After most of the water was removed by filtration, the spherical pitch molded body was extracted and removed with n-hexane. The porous spherical pitch obtained in this manner was heated and oxidized while passing heated air to obtain a porous spherical oxidized pitch that was infusible to heat. The oxygen crosslinking degree of the porous spherical oxide pitch was 17% by weight. Next, it was heat-treated at 600 ° C. in a nitrogen atmosphere and pulverized with a pulverizer to obtain a carbonaceous precursor having an average particle size of 10 to 15 μm. The obtained powdered carbon precursor was heated to 1200 ° C. at a temperature rising rate of 250 ° C./h in a nitrogen atmosphere, held at 1200 ° C. for 1 hour, and subjected to main firing to obtain a carbonaceous material 1. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
軟化点205℃、H/C原子比0.65、キノリン不溶分0.4%の石油系ピッチ70kgと、ナフタレン30kgとを、撹拌翼及び出口ノズルのついた内容積300リットルの耐圧容器に仕込み、加熱溶融混合を行った。その後、加熱溶融混合した石油系ピッチを冷却後、粉砕し、得られた粉砕物を90~100℃の水中に投入し、撹拌分散し、冷却して球状ピッチ成型体を得た。大部分の水をろ過により取り除いた後に、球状ピッチ成型体をn-ヘキサンでピッチ成型体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、加熱空気を通じながら、加熱酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。多孔性球状酸化ピッチの酸素架橋度は17重量%であった。次に窒素雰囲気中600℃で熱処理し、粉砕機で粉砕し、平均粒子径が10~15μmの炭素質前駆体を得た。得られた粉末炭素前駆体を窒素雰囲気中250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料1を得た。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。 Example 1
A 70 kg petroleum pitch having a softening point of 205 ° C., an H / C atomic ratio of 0.65, and a quinoline insoluble content of 0.4%, and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle. The mixture was heated and melted. Thereafter, the heat-mixed petroleum pitch was cooled and pulverized, and the resulting pulverized product was poured into water at 90 to 100 ° C., stirred and dispersed, and cooled to obtain a spherical pitch molded body. After most of the water was removed by filtration, the spherical pitch molded body was extracted and removed with n-hexane. The porous spherical pitch obtained in this manner was heated and oxidized while passing heated air to obtain a porous spherical oxidized pitch that was infusible to heat. The oxygen crosslinking degree of the porous spherical oxide pitch was 17% by weight. Next, it was heat-treated at 600 ° C. in a nitrogen atmosphere and pulverized with a pulverizer to obtain a carbonaceous precursor having an average particle size of 10 to 15 μm. The obtained powdered carbon precursor was heated to 1200 ° C. at a temperature rising rate of 250 ° C./h in a nitrogen atmosphere, held at 1200 ° C. for 1 hour, and subjected to main firing to obtain a carbonaceous material 1. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
《実施例2》
本焼成温度を1350℃とした以外は実施例1と同様にして炭素質材料2を得た。 Example 2
Acarbonaceous material 2 was obtained in the same manner as in Example 1 except that the main firing temperature was 1350 ° C.
本焼成温度を1350℃とした以外は実施例1と同様にして炭素質材料2を得た。 Example 2
A
《実施例3》
本焼成温度を1450℃とした以外は実施例1と同様にして炭素質材料3を得た。 Example 3
A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the main firing temperature was 1450 ° C.
本焼成温度を1450℃とした以外は実施例1と同様にして炭素質材料3を得た。 Example 3
A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the main firing temperature was 1450 ° C.
《比較例1》
本焼成温度を800℃とした以外は実施例1と同様にして炭素質材料5を得た。 << Comparative Example 1 >>
Acarbonaceous material 5 was obtained in the same manner as in Example 1 except that the main firing temperature was 800 ° C.
本焼成温度を800℃とした以外は実施例1と同様にして炭素質材料5を得た。 << Comparative Example 1 >>
A
《比較例2》
本焼成温度を1000℃とした以外は実施例1と同様にして炭素質材料6を得た。 << Comparative Example 2 >>
A carbonaceous material 6 was obtained in the same manner as in Example 1 except that the main firing temperature was set to 1000 ° C.
本焼成温度を1000℃とした以外は実施例1と同様にして炭素質材料6を得た。 << Comparative Example 2 >>
A carbonaceous material 6 was obtained in the same manner as in Example 1 except that the main firing temperature was set to 1000 ° C.
実施例及び比較例の炭素質材料を用いて、以下のように負極電極及びナトリウムイオン二次電池を作製し、そして電極性能の評価を行った。
Using the carbonaceous materials of Examples and Comparative Examples, negative electrodes and sodium ion secondary batteries were produced as follows, and the electrode performance was evaluated.
(a)電極作製
上記炭素材94重量部、ポリフッ化ビニリデン(株式会社クレハ製「KF#9100」)6重量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これをプレスして電極とした。なお、電極中の炭素材料の量は約10mgになるように調整した。 (A) Electrode preparation NMP was added to 94 parts by weight of the carbon material and 6 parts by weight of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The amount of the carbon material in the electrode was adjusted to be about 10 mg.
上記炭素材94重量部、ポリフッ化ビニリデン(株式会社クレハ製「KF#9100」)6重量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これをプレスして電極とした。なお、電極中の炭素材料の量は約10mgになるように調整した。 (A) Electrode preparation NMP was added to 94 parts by weight of the carbon material and 6 parts by weight of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The amount of the carbon material in the electrode was adjusted to be about 10 mg.
(b)試験電池の作製
本発明の炭素材は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)及び不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したナトリウム金属を対極として、上記で得られた電極を用いてナトリウム二次電池を構成し、その特性を評価した。
ナトリウム極の調製はAr雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属ナトリウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。
このようにして製造した電極の対を用い、電解液としてはプロピレンカーボネートに1.0mol/Lの割合でNaPF6を加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系ナトリウムイオン二次電池を組み立てた。 (B) Production of test battery The carbon material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-de-doping) of the battery active material. In order to accurately evaluate the quantity) without being affected by variations in the performance of the counter electrode, a sodium secondary battery is constructed using the electrode obtained above with sodium metal having stable characteristics as the counter electrode, Characteristics were evaluated.
The sodium electrode was prepared in a glove box in an Ar atmosphere. A 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal sodium sheet is punched into a 15 mm diameter disk shape. To be an electrode (counter electrode).
A pair of electrodes produced in this manner was used. As the electrolytic solution, propylene carbonate added with NaPF 6 at a rate of 1.0 mol / L, a borosilicate glass fiber microporous membrane having a diameter of 19 mm was used. As a separator, a 2016-size coin-type non-aqueous electrolyte sodium ion secondary battery was assembled in an Ar glove box using a polyethylene gasket.
本発明の炭素材は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)及び不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したナトリウム金属を対極として、上記で得られた電極を用いてナトリウム二次電池を構成し、その特性を評価した。
ナトリウム極の調製はAr雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属ナトリウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。
このようにして製造した電極の対を用い、電解液としてはプロピレンカーボネートに1.0mol/Lの割合でNaPF6を加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系ナトリウムイオン二次電池を組み立てた。 (B) Production of test battery The carbon material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-de-doping) of the battery active material. In order to accurately evaluate the quantity) without being affected by variations in the performance of the counter electrode, a sodium secondary battery is constructed using the electrode obtained above with sodium metal having stable characteristics as the counter electrode, Characteristics were evaluated.
The sodium electrode was prepared in a glove box in an Ar atmosphere. A 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal sodium sheet is punched into a 15 mm diameter disk shape. To be an electrode (counter electrode).
A pair of electrodes produced in this manner was used. As the electrolytic solution, propylene carbonate added with NaPF 6 at a rate of 1.0 mol / L, a borosilicate glass fiber microporous membrane having a diameter of 19 mm was used. As a separator, a 2016-size coin-type non-aqueous electrolyte sodium ion secondary battery was assembled in an Ar glove box using a polyethylene gasket.
(c)電池容量の測定
上記構成のナトリウムイオン二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて充放電試験を行った。炭素極へのナトリウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここでは、便宜上炭素極へのナトリウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素材からのナトリウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。このときの供給した電気量を電極の炭素材の質量で除した値を炭素材の単位重量当たりの充電容量(mAh/g)と定義する。充電終了後、30分間電池回路を開放し、その後、炭素質材料からナトリウムの脱ドープを行った。脱ドープは0.1mA/cm2の電流密度で行い、終止電圧を1.5Vとした。このときの電気量を電極の炭素材の質量で除した値を炭素材の単位重量当たりの放電容量(mAh/g)と定義する。ついで、不可逆容量は充電容量と放電容量の差として定義する。放電容量を充電容量で除した値に100を乗じて、効率(%)とした。測定は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して充放電容量、不可逆容量、効率を決定した。 (C) Measurement of battery capacity About the sodium ion secondary battery of the said structure, the charge / discharge test was done using the charge / discharge test apparatus ("TOSCAT" by Toyo System). The sodium doping reaction to the carbon electrode was performed by the constant current constant voltage method, and the dedoping reaction was performed by the constant current method. Here, for the sake of convenience, the sodium doping reaction on the carbon electrode is described as “charging”. Conversely, “discharge” is a charge reaction in the test battery, but it is described as “discharge” for convenience because it is a dedoping reaction of sodium from the carbon material. The charging method adopted here is a constant current constant voltage method. Specifically, after the terminal voltage reaches 0 mV, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV. Then, constant voltage charging was performed at a terminal voltage of 0 mV, and charging was continued until the current value reached 20 μA. A value obtained by dividing the supplied amount of electricity by the mass of the carbon material of the electrode is defined as a charge capacity (mAh / g) per unit weight of the carbon material. After charging, the battery circuit was opened for 30 minutes, and then sodium was dedopeed from the carbonaceous material. De-doping was performed at a current density of 0.1 mA / cm 2 , and the final voltage was 1.5V. A value obtained by dividing the amount of electricity at this time by the mass of the carbon material of the electrode is defined as a discharge capacity (mAh / g) per unit weight of the carbon material. The irreversible capacity is then defined as the difference between the charge capacity and the discharge capacity. The value obtained by dividing the discharge capacity by the charge capacity was multiplied by 100 to obtain the efficiency (%). The measurement was performed at 25 ° C., and the charge / discharge capacity, the irreversible capacity, and the efficiency were determined by averaging the measured values of n = 3 for the test batteries prepared using the same sample.
上記構成のナトリウムイオン二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて充放電試験を行った。炭素極へのナトリウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここでは、便宜上炭素極へのナトリウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素材からのナトリウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。このときの供給した電気量を電極の炭素材の質量で除した値を炭素材の単位重量当たりの充電容量(mAh/g)と定義する。充電終了後、30分間電池回路を開放し、その後、炭素質材料からナトリウムの脱ドープを行った。脱ドープは0.1mA/cm2の電流密度で行い、終止電圧を1.5Vとした。このときの電気量を電極の炭素材の質量で除した値を炭素材の単位重量当たりの放電容量(mAh/g)と定義する。ついで、不可逆容量は充電容量と放電容量の差として定義する。放電容量を充電容量で除した値に100を乗じて、効率(%)とした。測定は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して充放電容量、不可逆容量、効率を決定した。 (C) Measurement of battery capacity About the sodium ion secondary battery of the said structure, the charge / discharge test was done using the charge / discharge test apparatus ("TOSCAT" by Toyo System). The sodium doping reaction to the carbon electrode was performed by the constant current constant voltage method, and the dedoping reaction was performed by the constant current method. Here, for the sake of convenience, the sodium doping reaction on the carbon electrode is described as “charging”. Conversely, “discharge” is a charge reaction in the test battery, but it is described as “discharge” for convenience because it is a dedoping reaction of sodium from the carbon material. The charging method adopted here is a constant current constant voltage method. Specifically, after the terminal voltage reaches 0 mV, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV. Then, constant voltage charging was performed at a terminal voltage of 0 mV, and charging was continued until the current value reached 20 μA. A value obtained by dividing the supplied amount of electricity by the mass of the carbon material of the electrode is defined as a charge capacity (mAh / g) per unit weight of the carbon material. After charging, the battery circuit was opened for 30 minutes, and then sodium was dedopeed from the carbonaceous material. De-doping was performed at a current density of 0.1 mA / cm 2 , and the final voltage was 1.5V. A value obtained by dividing the amount of electricity at this time by the mass of the carbon material of the electrode is defined as a discharge capacity (mAh / g) per unit weight of the carbon material. The irreversible capacity is then defined as the difference between the charge capacity and the discharge capacity. The value obtained by dividing the discharge capacity by the charge capacity was multiplied by 100 to obtain the efficiency (%). The measurement was performed at 25 ° C., and the charge / discharge capacity, the irreversible capacity, and the efficiency were determined by averaging the measured values of n = 3 for the test batteries prepared using the same sample.
(d)サイクル特性の測定
上記構成のナトリウムイオン二次電池の電解液をエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でNaPF6を加えたものを使用した。初回の充電は定電流定電圧法により行った。具体的には、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。初回の充放電反応の後、繰り返し充放電試験を行った。具体的には、端子電圧が0mVになるまで0.2mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.2mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。このような充放電試験を50回繰り返した。1サイクル目の放電容量に対する50サイクル目の放電容量の割合を容量保持率として算出した。測定は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して放電容量、容量保持率(%)を決定した。 (D) Measurement of cycle characteristics A ratio of 1.5 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed in a volume ratio of 1: 2: 2 for the electrolyte of the sodium ion secondary battery having the above-described configuration. In which NaPF 6 was added. The first charge was performed by the constant current constant voltage method. Specifically, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until 20 μA was reached. After completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V. After the first charge / discharge reaction, a repeated charge / discharge test was conducted. Specifically, constant current charging is performed at a current density of 0.2 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until 20 μA was reached. After the completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.2 mA / cm 2 and a final voltage of 1.5V. Such a charge / discharge test was repeated 50 times. The ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle was calculated as the capacity retention rate. The measurement was performed at 25 ° C., and the discharge capacity and the capacity retention rate (%) were determined by averaging the measured values of n = 3 for the test batteries manufactured using the same sample.
上記構成のナトリウムイオン二次電池の電解液をエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でNaPF6を加えたものを使用した。初回の充電は定電流定電圧法により行った。具体的には、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。初回の充放電反応の後、繰り返し充放電試験を行った。具体的には、端子電圧が0mVになるまで0.2mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.2mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。このような充放電試験を50回繰り返した。1サイクル目の放電容量に対する50サイクル目の放電容量の割合を容量保持率として算出した。測定は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して放電容量、容量保持率(%)を決定した。 (D) Measurement of cycle characteristics A ratio of 1.5 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed in a volume ratio of 1: 2: 2 for the electrolyte of the sodium ion secondary battery having the above-described configuration. In which NaPF 6 was added. The first charge was performed by the constant current constant voltage method. Specifically, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until 20 μA was reached. After completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V. After the first charge / discharge reaction, a repeated charge / discharge test was conducted. Specifically, constant current charging is performed at a current density of 0.2 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until 20 μA was reached. After the completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.2 mA / cm 2 and a final voltage of 1.5V. Such a charge / discharge test was repeated 50 times. The ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle was calculated as the capacity retention rate. The measurement was performed at 25 ° C., and the discharge capacity and the capacity retention rate (%) were determined by averaging the measured values of n = 3 for the test batteries manufactured using the same sample.
(e)保存特性
上記構成のナトリウムイオン二次電池の電解液をエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でNaPF6を加えたものを使用した。初回の充放電として、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。2回目の充放電として、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の電流密度で定電流放電を行い、端子電圧が1.5Vに達した後、端子電圧1.5Vで定電圧放電を行い、電流値が20μAに達するまで放電を継続した。この後、保存前の充電として、0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電した。充電状態の試験電池を40℃で168時間保存した。保存後、0.1mA/cm2の電流密度で定電流放電を行い、端子電圧が1.5Vに達した後、端子電圧1.5Vで定電圧放電を行い、電流値が20μAに達するまで放電した。保存後の放電容量を保存前の充電容量で除した値に100を乗じて容量維持率(%)とした。充放電試験は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して容量維持率(%)を決定した。 (E) Storage characteristics NaPF at a rate of 1.5 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a capacity ratio of 1: 2: 2 for the electrolyte solution of the sodium ion secondary battery having the above configuration. What added 6 was used. As the first charge / discharge, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until the current reached 20 μA. After completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V. As the second charge / discharge, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until the value reached 20 μA. After completion of charging, the battery circuit is opened for 10 minutes, and constant current discharge is performed at a current density of 0.1 mA / cm 2. After the terminal voltage reaches 1.5 V, constant voltage discharge is performed at a terminal voltage of 1.5 V. The discharge was continued until the current value reached 20 μA. Thereafter, as a charge before storage, constant current charge is performed at a current density of 0.1 mA / cm 2 , the terminal voltage reaches 0 mV, then constant voltage charge is performed at a terminal voltage of 0 mV, and the current value reaches 20 μA. Until charged. The charged test battery was stored at 40 ° C. for 168 hours. After storage, constant current discharge is performed at a current density of 0.1 mA / cm 2 , terminal voltage reaches 1.5 V, constant voltage discharge is performed at terminal voltage 1.5 V, and discharge is performed until the current value reaches 20 μA. did. A value obtained by dividing the discharge capacity after storage by the charge capacity before storage was multiplied by 100 to obtain a capacity retention rate (%). The charge / discharge test was conducted at 25 ° C., and the capacity retention rate (%) was determined by averaging the measured values of n = 3 for the test batteries prepared using the same sample.
上記構成のナトリウムイオン二次電池の電解液をエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でNaPF6を加えたものを使用した。初回の充放電として、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の定電流で、終止電圧を1.5Vとして放電を行った。2回目の充放電として、端子電圧が0mVになるまで0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電を継続した。充電終了後、10分間電池回路を開放し、0.1mA/cm2の電流密度で定電流放電を行い、端子電圧が1.5Vに達した後、端子電圧1.5Vで定電圧放電を行い、電流値が20μAに達するまで放電を継続した。この後、保存前の充電として、0.1mA/cm2の電流密度で定電流充電を行い、端子電圧が0mVに達した後、端子電圧0mVで定電圧充電を行い、電流値が20μAに達するまで充電した。充電状態の試験電池を40℃で168時間保存した。保存後、0.1mA/cm2の電流密度で定電流放電を行い、端子電圧が1.5Vに達した後、端子電圧1.5Vで定電圧放電を行い、電流値が20μAに達するまで放電した。保存後の放電容量を保存前の充電容量で除した値に100を乗じて容量維持率(%)とした。充放電試験は25℃で行い、同一試料を用いて作製した試験電池についてのn=3の測定値を平均して容量維持率(%)を決定した。 (E) Storage characteristics NaPF at a rate of 1.5 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a capacity ratio of 1: 2: 2 for the electrolyte solution of the sodium ion secondary battery having the above configuration. What added 6 was used. As the first charge / discharge, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until the current reached 20 μA. After completion of charging, the battery circuit was opened for 10 minutes, and discharging was performed with a constant current of 0.1 mA / cm 2 and a final voltage of 1.5V. As the second charge / discharge, constant current charging is performed at a current density of 0.1 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, constant voltage charging is performed at a terminal voltage of 0 mV. Charging was continued until the value reached 20 μA. After completion of charging, the battery circuit is opened for 10 minutes, and constant current discharge is performed at a current density of 0.1 mA / cm 2. After the terminal voltage reaches 1.5 V, constant voltage discharge is performed at a terminal voltage of 1.5 V. The discharge was continued until the current value reached 20 μA. Thereafter, as a charge before storage, constant current charge is performed at a current density of 0.1 mA / cm 2 , the terminal voltage reaches 0 mV, then constant voltage charge is performed at a terminal voltage of 0 mV, and the current value reaches 20 μA. Until charged. The charged test battery was stored at 40 ° C. for 168 hours. After storage, constant current discharge is performed at a current density of 0.1 mA / cm 2 , terminal voltage reaches 1.5 V, constant voltage discharge is performed at terminal voltage 1.5 V, and discharge is performed until the current value reaches 20 μA. did. A value obtained by dividing the discharge capacity after storage by the charge capacity before storage was multiplied by 100 to obtain a capacity retention rate (%). The charge / discharge test was conducted at 25 ° C., and the capacity retention rate (%) was determined by averaging the measured values of n = 3 for the test batteries prepared using the same sample.
実施例1~3で得られたH/Cが0.05以下の炭素質材料は、優れた50サイクル時の保持率(%)及び放電量量(mAh/g)を示した(表1及び図1)。すなわち、本発明の炭素質材料を用いたナトリウムイオン二次電池は、優れたサイクル特性を示した。一方、比較例1及び2で得られたH/Cが0.1及び0.06の炭素質材料を用いた二次電池は、サイクル特性が劣っていた。
更に、実施例で得られた比表面積の小さい炭素質材料を用いたナトリウムイオン二次電池は、優れた容量維持率を示した(表1及び図2)。
なお、電池性能を測定した試験電池は、ナトリウム金属(対極)及び、本発明の炭素質材料を含む炭素極を用いたハーフセルである。従って、前記試験電池(ハーフセル)は、「[3]ナトリウムイオン二次電池」の項に記載の実セル(フルセル)の構成を有するものではない。しかしながら、当業者であれば「[3]ナトリウムイオン二次電池」の記載から、本発明の炭素質材料を用いてフルセルを製造することは可能である。また、本実施例で得られたハーフセルの電池性能は、フルセルの電池性能と、相関するものである。 The carbonaceous materials having H / C of 0.05 or less obtained in Examples 1 to 3 showed excellent retention rate (%) and discharge amount (mAh / g) at 50 cycles (Table 1 and FIG. 1). That is, the sodium ion secondary battery using the carbonaceous material of the present invention exhibited excellent cycle characteristics. On the other hand, the secondary battery using the carbonaceous material with H / C of 0.1 and 0.06 obtained in Comparative Examples 1 and 2 was inferior in cycle characteristics.
Furthermore, the sodium ion secondary battery using the carbonaceous material with a small specific surface area obtained in the example showed an excellent capacity retention rate (Table 1 and FIG. 2).
In addition, the test battery which measured battery performance is a half cell using the carbon electrode containing sodium metal (counter electrode) and the carbonaceous material of this invention. Therefore, the test battery (half cell) does not have the configuration of a real cell (full cell) described in the section “[3] Sodium ion secondary battery”. However, those skilled in the art can manufacture a full cell using the carbonaceous material of the present invention from the description of “[3] Sodium ion secondary battery”. In addition, the battery performance of the half cell obtained in this example correlates with the battery performance of the full cell.
更に、実施例で得られた比表面積の小さい炭素質材料を用いたナトリウムイオン二次電池は、優れた容量維持率を示した(表1及び図2)。
なお、電池性能を測定した試験電池は、ナトリウム金属(対極)及び、本発明の炭素質材料を含む炭素極を用いたハーフセルである。従って、前記試験電池(ハーフセル)は、「[3]ナトリウムイオン二次電池」の項に記載の実セル(フルセル)の構成を有するものではない。しかしながら、当業者であれば「[3]ナトリウムイオン二次電池」の記載から、本発明の炭素質材料を用いてフルセルを製造することは可能である。また、本実施例で得られたハーフセルの電池性能は、フルセルの電池性能と、相関するものである。 The carbonaceous materials having H / C of 0.05 or less obtained in Examples 1 to 3 showed excellent retention rate (%) and discharge amount (mAh / g) at 50 cycles (Table 1 and FIG. 1). That is, the sodium ion secondary battery using the carbonaceous material of the present invention exhibited excellent cycle characteristics. On the other hand, the secondary battery using the carbonaceous material with H / C of 0.1 and 0.06 obtained in Comparative Examples 1 and 2 was inferior in cycle characteristics.
Furthermore, the sodium ion secondary battery using the carbonaceous material with a small specific surface area obtained in the example showed an excellent capacity retention rate (Table 1 and FIG. 2).
In addition, the test battery which measured battery performance is a half cell using the carbon electrode containing sodium metal (counter electrode) and the carbonaceous material of this invention. Therefore, the test battery (half cell) does not have the configuration of a real cell (full cell) described in the section “[3] Sodium ion secondary battery”. However, those skilled in the art can manufacture a full cell using the carbonaceous material of the present invention from the description of “[3] Sodium ion secondary battery”. In addition, the battery performance of the half cell obtained in this example correlates with the battery performance of the full cell.
本発明に係る炭素質材料を用いたナトリウムイオン二次電池は、放電容量が向上する。資源量の豊富なナトリウムイオンを利用した、ナトリウムイオン二次電池は安価に製造することが可能となり、本発明は工業的に有用である。また、得られたナトリウムイオン二次電池は、ハイブリッド自動車(HEV)、プラグインハイブリッド(PHEV)及び電気自動車(EV)、に対して有効に用いることができる。
The sodium ion secondary battery using the carbonaceous material according to the present invention has improved discharge capacity. A sodium ion secondary battery using abundant sodium ions can be manufactured at low cost, and the present invention is industrially useful. The obtained sodium ion secondary battery can be effectively used for hybrid vehicles (HEV), plug-in hybrids (PHEV), and electric vehicles (EV).
Claims (6)
- 元素分析により求められる水素原子と炭素原子の比H/Cが0.05以下であることを特徴とするナトリウムイオン二次電池負極用炭素質材料。 A carbonaceous material for a negative electrode of a sodium ion secondary battery, wherein the ratio H / C of hydrogen atoms to carbon atoms determined by elemental analysis is 0.05 or less.
- BET比表面積が20m2/g未満である請求項1に記載のナトリウムイオン二次電池負極用炭素質材料。 The carbonaceous material for a sodium ion secondary battery negative electrode according to claim 1, wherein the BET specific surface area is less than 20 m 2 / g.
- ブタノール法によって求められる真密度が1.53g/cm3未満である請求項1又は2に記載のナトリウムイオン二次電池負極用炭素質材料。 The carbonaceous material for a sodium ion secondary battery negative electrode according to claim 1 or 2, wherein a true density obtained by a butanol method is less than 1.53 g / cm 3 .
- 石油ピッチ若しくはタール又は石炭ピッチ又はタールを炭素源とする、請求項1~3のいずれか一項に記載のナトリウムイオン二次電池負極用炭素質材料。 The carbonaceous material for a negative electrode of a sodium ion secondary battery according to any one of claims 1 to 3, wherein petroleum pitch or tar or coal pitch or tar is used as a carbon source.
- 請求項1~4のいずれか一項に記載の炭素質材料を含むナトリウムイオン二次電池用負極電極。 A negative electrode for a sodium ion secondary battery comprising the carbonaceous material according to any one of claims 1 to 4.
- 請求項5に記載の電極を含むナトリウムイオン二次電池。 A sodium ion secondary battery comprising the electrode according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017543106A JPWO2017056991A1 (en) | 2015-09-30 | 2016-09-14 | Carbonaceous material for negative electrode of sodium ion secondary battery and sodium ion secondary battery using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-194725 | 2015-09-30 | ||
JP2015194725 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056991A1 true WO2017056991A1 (en) | 2017-04-06 |
Family
ID=58423618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077100 WO2017056991A1 (en) | 2015-09-30 | 2016-09-14 | Sodium-ion secondary battery negative electrode carbonaceous material and sodium-ion secondary battery using thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2017056991A1 (en) |
TW (1) | TWI672855B (en) |
WO (1) | WO2017056991A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107732240A (en) * | 2017-09-05 | 2018-02-23 | 合肥工业大学 | The preparation method of anode material of lithium-ion battery, and negative material prepared therefrom |
CN107895797A (en) * | 2017-12-04 | 2018-04-10 | 中南大学深圳研究院 | A kind of preparation method of carbon nanosheet material and its application in sodium-ion battery |
CN116731527A (en) * | 2023-06-15 | 2023-09-12 | 浙江华宇钠电新能源科技有限公司 | Asphalt mixture and application thereof in preparing sodium ion battery for vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009129741A (en) * | 2007-11-26 | 2009-06-11 | Kyushu Univ | Sodium ion secondary battery and negative electrode active material using for the same |
WO2014185125A1 (en) * | 2013-05-17 | 2014-11-20 | 住友電気工業株式会社 | Sodium molten salt battery |
JP2015026520A (en) * | 2013-07-26 | 2015-02-05 | 大阪瓦斯株式会社 | Negative electrode material for sodium secondary battery, method of manufacturing the same, and sodium secondary battery using negative electrode material for sodium secondary battery |
JP2015050050A (en) * | 2013-09-02 | 2015-03-16 | 大阪瓦斯株式会社 | Negative electrode material for sodium secondary batteries, method for manufacturing the same, and sodium secondary battery arranged by use of negative electrode material for sodium secondary batteries |
WO2015141853A1 (en) * | 2014-03-20 | 2015-09-24 | 株式会社クレハ | Carbon molding for electrode, and method for producing same |
WO2016158823A1 (en) * | 2015-03-27 | 2016-10-06 | 株式会社クレハ | Carbonaceous molding for cell electrode, and method for manufacturing same |
-
2016
- 2016-09-14 WO PCT/JP2016/077100 patent/WO2017056991A1/en active Application Filing
- 2016-09-14 JP JP2017543106A patent/JPWO2017056991A1/en active Pending
- 2016-09-29 TW TW105131387A patent/TWI672855B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009129741A (en) * | 2007-11-26 | 2009-06-11 | Kyushu Univ | Sodium ion secondary battery and negative electrode active material using for the same |
WO2014185125A1 (en) * | 2013-05-17 | 2014-11-20 | 住友電気工業株式会社 | Sodium molten salt battery |
JP2015026520A (en) * | 2013-07-26 | 2015-02-05 | 大阪瓦斯株式会社 | Negative electrode material for sodium secondary battery, method of manufacturing the same, and sodium secondary battery using negative electrode material for sodium secondary battery |
JP2015050050A (en) * | 2013-09-02 | 2015-03-16 | 大阪瓦斯株式会社 | Negative electrode material for sodium secondary batteries, method for manufacturing the same, and sodium secondary battery arranged by use of negative electrode material for sodium secondary batteries |
WO2015141853A1 (en) * | 2014-03-20 | 2015-09-24 | 株式会社クレハ | Carbon molding for electrode, and method for producing same |
WO2016158823A1 (en) * | 2015-03-27 | 2016-10-06 | 株式会社クレハ | Carbonaceous molding for cell electrode, and method for manufacturing same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107732240A (en) * | 2017-09-05 | 2018-02-23 | 合肥工业大学 | The preparation method of anode material of lithium-ion battery, and negative material prepared therefrom |
CN107895797A (en) * | 2017-12-04 | 2018-04-10 | 中南大学深圳研究院 | A kind of preparation method of carbon nanosheet material and its application in sodium-ion battery |
CN107895797B (en) * | 2017-12-04 | 2020-08-18 | 中南大学深圳研究院 | Preparation method of carbon nanosheet material and application of carbon nanosheet material in sodium ion battery |
CN116731527A (en) * | 2023-06-15 | 2023-09-12 | 浙江华宇钠电新能源科技有限公司 | Asphalt mixture and application thereof in preparing sodium ion battery for vehicle |
CN116731527B (en) * | 2023-06-15 | 2023-10-31 | 浙江华宇钠电新能源科技有限公司 | Asphalt mixture and application thereof in preparing sodium ion battery for vehicle |
Also Published As
Publication number | Publication date |
---|---|
TWI672855B (en) | 2019-09-21 |
JPWO2017056991A1 (en) | 2018-08-30 |
TW201712931A (en) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10573891B2 (en) | Carbon material for nonaqueous electrolyte secondary battery and method for manufacturing same, and negative electrode using carbon material and nonaqueous electrolyte secondary battery | |
CN106663810B (en) | Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery, and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery | |
CN110034285B (en) | Negative electrode material for battery, method for producing same, negative electrode for secondary battery, and secondary battery | |
JP6450480B2 (en) | Non-aqueous electrolyte secondary battery negative electrode carbonaceous material | |
WO2017057146A1 (en) | Carbonaceous material for sodium ion secondary battery negative electrode, and sodium ion secondary battery using carbonaceous material for sodium ion secondary battery negative electrode | |
CN107148691B (en) | Carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery | |
JP2017183080A (en) | Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and method for manufacturing the same | |
WO2017056991A1 (en) | Sodium-ion secondary battery negative electrode carbonaceous material and sodium-ion secondary battery using thereof | |
JP2016181348A (en) | Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof | |
JP6570413B2 (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same | |
JP2016181405A (en) | Composite hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof | |
JP2016181406A (en) | Composite easily graphitizable carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851165 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017543106 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851165 Country of ref document: EP Kind code of ref document: A1 |