JP2012084265A - Cylindrical battery and cylindrical battery outer can - Google Patents

Cylindrical battery and cylindrical battery outer can Download PDF

Info

Publication number
JP2012084265A
JP2012084265A JP2010227453A JP2010227453A JP2012084265A JP 2012084265 A JP2012084265 A JP 2012084265A JP 2010227453 A JP2010227453 A JP 2010227453A JP 2010227453 A JP2010227453 A JP 2010227453A JP 2012084265 A JP2012084265 A JP 2012084265A
Authority
JP
Japan
Prior art keywords
cylindrical
thickness
cylindrical battery
electrode body
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010227453A
Other languages
Japanese (ja)
Other versions
JP5551560B2 (en
Inventor
Hiroyuki Shibaoka
浩行 柴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
FDK Twicell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Twicell Co Ltd filed Critical FDK Twicell Co Ltd
Priority to JP2010227453A priority Critical patent/JP5551560B2/en
Publication of JP2012084265A publication Critical patent/JP2012084265A/en
Application granted granted Critical
Publication of JP5551560B2 publication Critical patent/JP5551560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To further increase the capacity of a cylindrical battery while maintaining the hardness of a sealing portion at such a level that liquid leakage does not occur.SOLUTION: A cylindrical battery outer can 10 is a component used for manufacturing a cylindrical battery 20, and constitutes an outer can 1 of the cylindrical battery 20 as a finished product. The cylindrical battery outer can 10 is manufactured by working a metal plate and has a cylindrical shape with a bottom 11 and an opening 12, that is, a bottomed cylindrical shape. The cylindrical battery outer can 10 comprises: an electrode body housing portion 13 in which an electrode body 2 serving as a power generation element is housed; a first cylindrical portion 14 which has a fixed thickness B greater than a thickness A of the electrode body housing portion 13, and which is connected closer to the opening 12 than the electrode body housing portion 13 is to the opening 12: and a second cylindrical portion 15 which has a fixed thickness C greater than the thickness B of the first cylindrical portion 14, and which is connected closer to the opening 12 than the first cylindrical portion 14 is to the opening 12.

Description

本発明は、有底円筒形状の外装缶と、外装缶に収容され発電要素となる電極体と、外装缶の開口を封口する封口体と、外装缶と封口体との間に介装されるガスケットと、を備える円筒形電池、円筒形電池用外装缶に関する。   The present invention is interposed between a bottomed cylindrical outer can, an electrode body housed in the outer can and serving as a power generation element, a sealing body that seals the opening of the outer can, and the outer can and the sealing body. The present invention relates to a cylindrical battery including a gasket and a cylindrical battery outer can.

ニッケル水素電池やリチウムイオン電池等の円筒形アルカリ二次電池が公知である。このような円筒形電池においては、近年さらなる大容量化、軽量化のニーズが高まりつつある。ここで外形寸法を変更せずに円筒形電池の大容量化を実現する手法としては、例えば外装缶の肉厚をより薄くすることによって、電極体等を収容可能な容積を増加させる手法が挙げられる。しかし外装缶全体の肉厚が均一である一般的な円筒形電池においては、外装缶の肉厚を薄くしていくと、外装缶の開口を封口しているかしめ部分の強度が低下してしまうため、電池内部の電解液が外部に漏洩する所謂液漏れが生ずる虞が高まる。   Cylindrical alkaline secondary batteries such as nickel metal hydride batteries and lithium ion batteries are known. In such a cylindrical battery, there is a growing demand for further increase in capacity and weight in recent years. Here, as a technique for realizing a large capacity of the cylindrical battery without changing the outer dimensions, for example, a technique for increasing the volume capable of accommodating the electrode body etc. by reducing the thickness of the outer can is given. It is done. However, in a general cylindrical battery in which the overall thickness of the outer can is uniform, if the thickness of the outer can is reduced, the strength of the caulking portion that seals the opening of the outer can decreases. For this reason, there is an increased risk of so-called liquid leakage in which the electrolyte inside the battery leaks to the outside.

このような課題を解決することを目的とした従来技術としては、例えば開口部近傍の肉厚を他の部分の肉厚より厚くした外装缶、すなわち肉厚が二段階に変化する外装缶を用いた円筒形電池が公知である(例えば特許文献1を参照)。当該従来技術によれば、封口部の強度を液漏れが生じないレベルに維持しつつ、外装缶の容積を増加させて円筒形電池の容量を大きくすることができる。   As a conventional technique for solving such a problem, for example, an outer can in which the thickness in the vicinity of the opening is made thicker than the thickness of the other portion, that is, an outer can whose thickness changes in two stages is used. Known cylindrical batteries are known (see, for example, Patent Document 1). According to the related art, the capacity of the cylindrical battery can be increased by increasing the volume of the outer can while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur.

また肉厚が均一でない外装缶を採用した円筒形電池の従来技術の一例としては、その目的は全く異なるものであるが、例えば缶底から開口部へ向けて肉厚が次第に厚くなっていくテーパー形状の外装缶を用いた円筒形電池が公知である(例えば特許文献2を参照)。当該従来技術によれば、外装缶の肉厚が厚くなっている部分で外装缶内部の電極体がしっかりと保持されるため、円筒形電池の耐衝撃性を向上させることができる。   In addition, as an example of the prior art of a cylindrical battery that employs an outer can with a non-uniform thickness, the purpose is completely different, for example, a taper in which the thickness gradually increases from the can bottom to the opening. Cylindrical batteries using a shaped outer can are known (see, for example, Patent Document 2). According to the related art, since the electrode body inside the outer can is firmly held at the portion where the thickness of the outer can is thick, the impact resistance of the cylindrical battery can be improved.

特開平05−114389号公報JP 05-114389 A 特開2002−216709号公報JP 2002-216709 A

しかしながら、例えば特許文献1に開示されている肉厚が二段階に変化する外装缶を用いた円筒形電池は、開口部近傍の肉厚と他の部分の肉厚との差が大きすぎると、その肉厚の差によって生じる外装缶の剛性のアンバランスが顕著になる。そのため製造技術上の観点から、外装缶は容易に製造できない場合が多くなってくる。また外装缶を製造することができたとしても、その外装缶を用いて円筒形電池を製造する際のプレス加工や絞り加工において、その剛性のアンバランスに起因して外装缶の肉厚が薄い部分に変形が生じてしまい、本来の正常な円筒形電池の形状に成形できないという問題が生ずる。したがって特許文献1に開示された従来技術は、封口部の強度を液漏れが生じないレベルに維持しつつ、外装缶の容積を増加させて円筒形電池の大容量化を実現する上で、一定の限界がある。   However, for example, the cylindrical battery using the outer can whose thickness is disclosed in Patent Document 1 is changed in two stages, if the difference between the thickness in the vicinity of the opening and the thickness in the other part is too large, The rigidity imbalance of the outer can caused by the difference in the wall thickness becomes remarkable. For this reason, from the viewpoint of manufacturing technology, there are many cases where the outer can cannot be easily manufactured. Even if the outer can can be manufactured, the thickness of the outer can is thin due to the rigidity imbalance in press working and drawing when manufacturing the cylindrical battery using the outer can. The part is deformed, and there arises a problem that it cannot be formed into the original normal cylindrical battery shape. Therefore, the conventional technology disclosed in Patent Document 1 is constant in increasing the capacity of the outer can and increasing the capacity of the cylindrical battery while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur. There are limits.

また例えば特許文献2に開示されている円筒形電池は、外装缶の電極体が収容される部分の肉厚を厚くすることによって、その部分で電極体を保持する構造であるため、外装缶の電極体が収容される部分の容積は却って減少することとなる。したがって特許文献2に開示されている従来技術では、円筒形電池の大容量化を実現することは困難である。   In addition, for example, the cylindrical battery disclosed in Patent Document 2 has a structure in which the electrode body is held in that portion by increasing the thickness of the portion in which the electrode body of the outer can is accommodated. On the contrary, the volume of the portion in which the electrode body is accommodated decreases. Therefore, with the prior art disclosed in Patent Document 2, it is difficult to realize a large capacity of the cylindrical battery.

さらに特許文献2に開示されている円筒形電池は、外装缶が缶底から開口部へ向けて肉厚が次第に厚くなっていくテーパー形状であるため、開口部を封口する封口体に対して外装缶の内周面が角度をもって対面することとなる。つまり開口部を封口する封口体と外装缶の内周面との間隔は、略等間隔にならず、徐々に変化する広狭が生じてしまうことになる。したがって特許文献2に開示されている円筒形電池は、封口部における密閉性を安定的に確保する上で最も重要な封口体と外装缶内周面との間に介在するガスケットを均一に圧縮した状態とすることが極めて困難となる。そのため特許文献2に開示されている円筒形電池は、ガスケットの圧縮状態の不均一に起因する液漏れが生ずる虞が高まることとなる。また、それによって外装缶の製造公差を圧縮したりガスケットの圧縮率の管理をより厳しくしたりせざるを得ず、製造コストが大幅に上昇してしまう虞が生ずる。   Furthermore, the cylindrical battery disclosed in Patent Document 2 has a tapered shape in which the outer can gradually increases in thickness from the bottom of the can to the opening, so that the outer can is sealed against the sealing body that seals the opening. The inner peripheral surface of the can faces with an angle. That is, the gap between the sealing body that seals the opening and the inner peripheral surface of the outer can is not substantially equal, and a gradually changing width is generated. Therefore, the cylindrical battery disclosed in Patent Document 2 uniformly compresses the gasket interposed between the most important sealing body and the outer peripheral surface of the outer can in order to stably secure the sealing performance at the sealing portion. It becomes extremely difficult to obtain a state. Therefore, in the cylindrical battery disclosed in Patent Document 2, there is an increased risk of liquid leakage due to non-uniform compression of the gasket. In addition, the manufacturing tolerance of the outer can must be compressed and the compression rate of the gasket must be more strictly controlled, which may increase the manufacturing cost.

このような状況に鑑み本発明はなされたものであり、その目的は、円筒形電池において、封口部の強度を液漏れが生じないレベルに維持しつつ、さらなる大容量化を実現することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to realize a further increase in capacity while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur in a cylindrical battery. .

<本発明の第1の態様>
本発明の第1の態様は、有底円筒形状の外装缶と、発電要素となる電極体と、前記外装缶の開口を封口する封口体と、前記外装缶と前記封口体との間に介装されるガスケットと、を備え、前記外装缶は、前記電極体が収容される電極体収容部と、前記電極体収容部の肉厚より厚い一定の肉厚で前記電極体収容部より開口側に連設され、前記封口体を支持する第1周壁がプレス加工により内側に形成された第1円筒部と、前記第1円筒部の肉厚より厚い一定の肉厚で前記第1円筒部より開口側に連設され、前記第1周壁とで前記封口体を挟持する第2周壁がプレス加工により内側に形成された第2円筒部と、を含む、ことを特徴とした円筒形電池である。
<First Aspect of the Present Invention>
A first aspect of the present invention includes a bottomed cylindrical outer can, an electrode body serving as a power generation element, a sealing body that seals an opening of the outer can, and an intermediate between the outer can and the sealing body. A gasket to be mounted, and the outer can includes an electrode body housing portion in which the electrode body is housed, and a constant thickness that is greater than a thickness of the electrode body housing portion and is closer to the opening side than the electrode body housing portion. And a first cylindrical portion in which a first peripheral wall that supports the sealing body is formed inside by pressing, and a constant thickness that is thicker than a thickness of the first cylindrical portion, than the first cylindrical portion. A cylindrical battery characterized in that it includes a second cylindrical portion that is connected to the opening side and sandwiches the sealing body with the first peripheral wall and is formed inside by pressing. .

すなわち本発明に係る円筒形電池の外装缶は、電極体収容部から開口へ向けて三段階に肉厚が厚くなっていく形状を成しているため、電極体収容部の肉厚と封口部の肉厚と差を大きくしても、その肉厚の差によって生じる剛性のアンバランスを従来よりも小さくすることができる。したがって円筒形電池を製造する際のプレス加工や絞り加工において、その剛性のアンバランスに起因して外装缶に変形が生ずる虞を低減させることができる。それによって本発明に係る円筒形電池は、封口部の強度を液漏れが生じないレベルに維持しつつ、従来よりも外装缶の容積を増加させてさらなる大容量化を実現することができる。   That is, since the outer can of the cylindrical battery according to the present invention has a shape in which the thickness increases in three stages from the electrode body housing portion to the opening, the thickness of the electrode body housing portion and the sealing portion Even if the thickness and the difference are increased, the rigidity imbalance caused by the difference in the thickness can be reduced as compared with the conventional case. Therefore, it is possible to reduce the possibility that the outer can may be deformed due to the rigidity imbalance in the press working or drawing process when manufacturing the cylindrical battery. As a result, the cylindrical battery according to the present invention can achieve a further increase in capacity by increasing the volume of the outer can than in the past while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur.

また本発明に係る円筒形電池の外装缶は、第1円筒部の肉厚が一定であり、第2円筒部の肉厚も一定である。そのため、第1円筒部及び第2円筒部の内周面と封口体とが略平行に対面する状態となるので、第1円筒部及び第2円筒部の内周面と封口体との間に介在するガスケットを略均一に圧縮した状態とすることが容易に可能になる。したがって本発明に係る円筒形電池は、ガスケットの圧縮状態の不均一に起因する封口強度の低下によって封口部から液漏れが生ずる虞を極めて小さくすることができる。   In the outer can of the cylindrical battery according to the present invention, the thickness of the first cylindrical portion is constant, and the thickness of the second cylindrical portion is also constant. Therefore, since the inner peripheral surface of the first cylindrical portion and the second cylindrical portion and the sealing body face each other substantially in parallel, the inner peripheral surface of the first cylindrical portion and the second cylindrical portion and the sealing body are between them. It is possible to easily put the interposed gasket in a substantially uniformly compressed state. Therefore, the cylindrical battery according to the present invention can extremely reduce the possibility of liquid leakage from the sealing portion due to a decrease in sealing strength due to non-uniformity of the compressed state of the gasket.

これにより本発明の第1の態様によれば、円筒形電池において、封口部の強度を液漏れが生じないレベルに維持しつつ、さらなる大容量化を実現することができるという作用効果が得られる。   As a result, according to the first aspect of the present invention, in the cylindrical battery, there is obtained an effect that a further increase in capacity can be realized while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur. .

<本発明の第2の態様>
本発明の第2の態様は、有底円筒形状を成す円筒形電池用外装缶であって、発電要素となる電極体が収容される電極体収容部と、前記電極体収容部の肉厚より厚い一定の肉厚で前記電極体収容部より開口側に連設された第1円筒部と、前記第1円筒部の肉厚より厚い一定の肉厚で前記第1円筒部より開口側に連設された第2円筒部と、を備える、ことを特徴とした円筒形電池用外装缶である。
本発明の第2の態様によれば、この円筒形電池用外装缶を用いて製造した円筒形電池において、前述した本発明の第1の態様と同様の作用効果を得ることができる。
<Second Aspect of the Present Invention>
A second aspect of the present invention is a cylindrical battery outer can having a bottomed cylindrical shape, and includes an electrode body housing portion in which an electrode body serving as a power generation element is housed, and a thickness of the electrode body housing portion. A first cylindrical portion connected to the opening side from the electrode body housing portion with a constant thickness, and a constant thickness larger than the thickness of the first cylindrical portion, connected to the opening side from the first cylindrical portion. A cylindrical battery outer can comprising a second cylindrical portion provided.
According to the second aspect of the present invention, in the cylindrical battery manufactured using this cylindrical battery outer can, the same effects as those of the first aspect of the present invention described above can be obtained.

<本発明の第3の態様>
本発明の第3の態様は、前述した本発明の第2の態様において、底部から開口まで内径が一定に成形されている、ことを特徴とした円筒形電池用外装缶である。
本発明の第3の態様によれば、前述した本発明の第2の態様による作用効果に加えて、電極体収容部へ電極体を収容する作業を容易に行うことができるという作用効果が得られる。
<Third Aspect of the Present Invention>
According to a third aspect of the present invention, there is provided the cylindrical battery outer can according to the second aspect of the present invention, wherein the inner diameter is uniformly formed from the bottom to the opening.
According to the 3rd aspect of this invention, in addition to the effect by the 2nd aspect of this invention mentioned above, the effect that the operation | work which accommodates an electrode body in an electrode body accommodating part can be performed easily is acquired. It is done.

本発明によれば、円筒形電池において、封口部の強度を液漏れが生じないレベルに維持しつつ、さらなる大容量化を実現することができる。   According to the present invention, in the cylindrical battery, it is possible to realize further increase in capacity while maintaining the strength of the sealing portion at a level at which liquid leakage does not occur.

本発明に係る円筒形電池用外装缶及び円筒形電池の側断面図。The side sectional view of the cylindrical battery exterior can and cylindrical battery concerning the present invention. 円筒形電池の製造工程のシーム入れ工程を図示した側断面図。The sectional side view which illustrated the seam putting process of the manufacturing process of a cylindrical battery. 円筒形電池の製造工程の第1プレス加工工程を図示した側断面図。The sectional side view which illustrated the 1st press work process of the manufacturing process of a cylindrical battery. 円筒形電池の製造工程の第2プレス加工工程を図示した側断面図。The sectional side view which illustrated the 2nd press work process of the manufacturing process of a cylindrical battery. 円筒形電池の製造工程の圧着プレス加工工程を図示した側断面図。The sectional side view which illustrated the press bonding process of the manufacturing process of a cylindrical battery. 円筒形電池の製造工程の外径絞り工程を図示した側断面図。The sectional side view which illustrated the outer diameter drawing process of the manufacturing process of a cylindrical battery. 比較例の円筒形電池用外装缶及び円筒形電池を図示した側断面図。The sectional side view which illustrated the outer can for cylindrical batteries and the cylindrical battery of the comparative example.

<本発明に係る円筒形電池、円筒形電池用外装缶>
本発明に係る円筒形電池20及び円筒形電池用外装缶10の構造について、図1を参照しながら説明する。図1は本発明に係る円筒形電池用外装缶10(図1(a))及び円筒形電池20(図1(b))の側断面図である。
<Cylindrical battery according to the present invention, outer can for cylindrical battery>
The structure of the cylindrical battery 20 and the cylindrical battery outer can 10 according to the present invention will be described with reference to FIG. FIG. 1 is a side sectional view of a cylindrical battery outer can 10 (FIG. 1A) and a cylindrical battery 20 (FIG. 1B) according to the present invention.

円筒形電池用外装缶10は、円筒形電池20の製造に用いられる部品であり、完成品としての円筒形電池20において外装缶1を構成する。円筒形電池用外装缶10は、金属板を加工して製造され、底部11と開口12を有する円筒形状、すなわち有底円筒形状を成している。円筒形電池用外装缶10は、発電要素となる電極体2が収容される電極体収容部13と、電極体収容部13の肉厚Aより厚い一定の肉厚Bで電極体収容部13より開口12側に連設された第1円筒部14と、第1円筒部14の肉厚Bより厚い一定の肉厚Cで第1円筒部14より開口12側に連設された第2円筒部15とを備える。   The cylindrical battery outer can 10 is a component used for manufacturing the cylindrical battery 20, and constitutes the outer can 1 in the cylindrical battery 20 as a finished product. The cylindrical battery outer can 10 is manufactured by processing a metal plate, and has a cylindrical shape having a bottom 11 and an opening 12, that is, a bottomed cylindrical shape. The cylindrical battery outer can 10 includes an electrode body housing portion 13 in which the electrode body 2 serving as a power generation element is housed, and a constant thickness B that is thicker than the wall thickness A of the electrode body housing portion 13 from the electrode body housing portion 13. The first cylindrical part 14 provided continuously on the opening 12 side, and the second cylindrical part provided continuously on the opening 12 side from the first cylindrical part 14 with a constant thickness C greater than the thickness B of the first cylindrical part 14. 15.

また円筒形電池用外装缶10は、底部11から開口12まで内径が一定となるように成形されている。これは本発明に必須の構成要素ではないが、円筒形電池用外装缶10の電極体収容部13へ電極体2を収容する作業を容易に行うことができるという点で、このような形状とするのが好ましい。   The cylindrical battery outer can 10 is shaped so that the inner diameter is constant from the bottom 11 to the opening 12. This is not an essential component of the present invention, but it has such a shape in that the operation of housing the electrode body 2 in the electrode body housing portion 13 of the cylindrical battery outer can 10 can be easily performed. It is preferable to do this.

円筒形電池20は、有底円筒形状の外装缶1と、発電要素となる電極体2と、外装缶1の開口12を封口する封口体3と、外装缶1と封口体3との間に介装されるガスケット4とを備える。円筒形電池20の外装缶1は、電極体2が収容される電極体収容部13と、電極体収容部13の肉厚Aより厚い一定の肉厚Bで電極体収容部13より開口12側に連設され、封口体3を支持する第1周壁16がプレス加工により内側に形成された第1円筒部14と、第1円筒部14の肉厚Bより厚い一定の肉厚Cで第1円筒部14より開口12側に連設され、第1周壁16とで封口体3を挟持する第2周壁17がプレス加工により内側に形成された第2円筒部15とを含む。   The cylindrical battery 20 includes a bottomed cylindrical outer can 1, an electrode body 2 serving as a power generation element, a sealing body 3 that seals the opening 12 of the outer can 1, and the outer can 1 and the sealing body 3. And an interposed gasket 4. The outer can 1 of the cylindrical battery 20 includes an electrode body housing portion 13 in which the electrode body 2 is housed and a constant thickness B that is thicker than the wall thickness A of the electrode body housing portion 13 and the opening 12 side from the electrode body housing portion 13. And a first cylindrical portion 14 in which a first peripheral wall 16 that supports the sealing body 3 is formed inside by pressing, and a first thickness C is greater than a thickness B of the first cylindrical portion 14. A second peripheral wall 17 is provided which is connected to the opening 12 side of the cylindrical portion 14 and sandwiches the sealing body 3 with the first peripheral wall 16 and is formed inside by pressing.

電極体2は、例えば陽極板と陰極板との間にセパレータを介装したものを渦巻き状に巻回した電極群(図示せず)である。封口体3は、外装缶1の内部圧力を一定圧以下に維持する弁機構(図示せず)を含み、略円板形状の基部が第1周壁16と第2周壁17とで挟持された状態で外装缶1に取り付けられている。また封口体3は、図示していないリード線によって電極体2の陽極板と電気的に接続され、円筒形電池20の電極(+極)としても機能する。ガスケット4は、絶縁性及び弾性を有する材料からなる略円環形状の部材であり、略コ字断面形状を有する基部が第1周壁16及び第2周壁17と封口体3との間に、圧縮された状態で介装され、外装缶1の内部の密閉状態を安定的に維持して液漏れを防いでいる。   The electrode body 2 is an electrode group (not shown) in which, for example, a separator interposed between an anode plate and a cathode plate is wound in a spiral shape. The sealing body 3 includes a valve mechanism (not shown) that maintains the internal pressure of the outer can 1 at a predetermined pressure or lower, and a substantially disc-shaped base is sandwiched between the first peripheral wall 16 and the second peripheral wall 17. And attached to the outer can 1. Further, the sealing body 3 is electrically connected to the anode plate of the electrode body 2 by a lead wire (not shown), and also functions as an electrode (+ electrode) of the cylindrical battery 20. The gasket 4 is a substantially ring-shaped member made of an insulating and elastic material, and a base portion having a substantially U-shaped cross-section is compressed between the first peripheral wall 16 and the second peripheral wall 17 and the sealing body 3. In this state, the sealed state inside the outer can 1 is stably maintained to prevent liquid leakage.

以上説明したように本発明に係る円筒形電池用外装缶10、円筒形電池20の外装缶1は、電極体収容部13から開口12へ向けて三段階に肉厚が厚くなっていく三段円筒形状を成している。ここで電極体収容部13の肉厚Aに対する第1円筒部14の肉厚B及び第2円筒部15の肉厚Cの差は、より大きい電極体収容部13の容積を確保しつつ、より高い封口強度を実現する上では、円筒形電池用外装缶10を製造可能な範囲で、可能な限り大きく設定するのが好ましい。例えば第1円筒部14の肉厚Bは、電極体収容部13の肉厚Aに対して101〜150%程度の肉厚に設定し、第2円筒部15の肉厚Cは、肉厚Bより厚い肉厚とした上で、電極体収容部13の肉厚Aに対して131〜200%程度の肉厚に設定するのが好ましい。特に、第1円筒部14の肉厚Bは電極体収容部13の肉厚Aに対して135%程度の肉厚に設定し、第2円筒部15の肉厚Cは電極体収容部13の肉厚Aに対して160%程度の肉厚に設定するのがより好ましい。   As described above, the outer can 10 of the cylindrical battery and the outer can 1 of the cylindrical battery 20 according to the present invention have three stages in which the thickness increases in three stages from the electrode body housing portion 13 to the opening 12. It has a cylindrical shape. Here, the difference between the wall thickness B of the first cylindrical portion 14 and the wall thickness C of the second cylindrical portion 15 with respect to the wall thickness A of the electrode body housing portion 13 is greater while ensuring a larger volume of the electrode body housing portion 13. In order to achieve a high sealing strength, it is preferable to set the cylindrical battery outer can 10 as large as possible within a range in which the cylindrical battery can 10 can be manufactured. For example, the thickness B of the first cylindrical portion 14 is set to a thickness of about 101 to 150% with respect to the thickness A of the electrode body housing portion 13, and the thickness C of the second cylindrical portion 15 is set to the thickness B. It is preferable to set the thickness to about 131 to 200% with respect to the thickness A of the electrode body housing portion 13 after making the thickness thicker. In particular, the thickness B of the first cylindrical portion 14 is set to a thickness of about 135% with respect to the thickness A of the electrode body housing portion 13, and the thickness C of the second cylindrical portion 15 is set to the thickness of the electrode body housing portion 13. It is more preferable to set the thickness to about 160% with respect to the thickness A.

<円筒形電池の製造方法>
円筒形電池20の製造方法について、図2〜図6を参照しながら説明する。円筒形電池20は、以下説明するシーム入れ工程、第1プレス加工工程、第2プレス加工工程、圧着プレス加工工程及び外径絞り工程を経て製造される。
<Method for manufacturing cylindrical battery>
A method for manufacturing the cylindrical battery 20 will be described with reference to FIGS. The cylindrical battery 20 is manufactured through a seam putting process, a first press working process, a second press working process, a pressure press working process, and an outer diameter drawing process described below.

尚、図2〜図6に図示した円筒形電池用外装缶10は、より図面を観やすくするために図面上は肉厚が略一定になっているが、図1(a)に図示した肉厚が三段階に異なる円筒形電池用外装缶10と同じものである。また図2〜図6においては、より図面を観やすくするために、電極体2、封口体3、ガスケット4及び円筒形電池用外装缶10のハッチングを省略して図示している。   The cylindrical battery outer can 10 shown in FIGS. 2 to 6 has a substantially constant thickness on the drawing in order to make the drawing easier to see, but the meat shown in FIG. This is the same as the cylindrical battery outer can 10 having three different thicknesses. 2 to 6, the electrode body 2, the sealing body 3, the gasket 4, and the cylindrical battery outer can 10 are not shown hatched for easier viewing.

図2はシーム入れ工程を図示した側断面図である。
まず円筒形電池用外装缶10の電極体収容部13に電極体2を収容する。つづいて円筒形電池用外装缶10の第1円筒部14の外周面を線状に押す溝入れ加工等によって、第1円筒部14の所定位置にシーム10a(棚部)を形成する。このシーム10aは第1周壁16となる。つづいて所定量の電解液(図示せず)を電極体収容部13に充填した後、封口体3及びガスケット4を図示の如くシーム10a(第1周壁16)に載置する。
FIG. 2 is a side sectional view illustrating the seam insertion process.
First, the electrode body 2 is accommodated in the electrode body accommodating portion 13 of the cylindrical battery outer can 10. Subsequently, a seam 10a (shelf) is formed at a predetermined position of the first cylindrical portion 14 by grooving or the like that linearly presses the outer peripheral surface of the first cylindrical portion 14 of the cylindrical battery outer can 10. The seam 10 a becomes the first peripheral wall 16. Subsequently, after a predetermined amount of electrolytic solution (not shown) is filled in the electrode body housing part 13, the sealing body 3 and the gasket 4 are placed on the seam 10a (first peripheral wall 16) as shown in the figure.

図3は第1プレス加工工程を図示した側断面図である。   FIG. 3 is a sectional side view illustrating the first press working step.

つづいてシーム入れ工程後の円筒形電池用外装缶10をかしめ割型21に取り付ける。かしめ割型21は、略円環形状の割型であり、円筒形電池用外装缶10のシーム10aに係合する凸部211が内周面に全周にわたって形成されている。この凸部211は、円筒形電池用外装缶10のシーム10aを下側から支持する。つづいて第1プレス型22で、円筒形電池用外装缶10の第2円筒部15を開口端側から下方Pへプレスする。第1プレス型22は、略円錐断面形状の円形凹部221が底面の中央に形成されている。円筒形電池用外装缶10の第2円筒部15は、第1プレス型22の円形凹部221の斜面に押圧されることによって、第1円筒部14との境界近傍が内側に斜めに折り曲げられて折り癖が付いた状態に強圧成型される。それによって封口体3及びガスケット4が固定される。   Subsequently, the cylindrical battery outer can 10 after the seam inserting step is attached to the caulking split mold 21. The caulking split mold 21 is a substantially annular split mold, and a convex portion 211 that engages with the seam 10a of the cylindrical battery outer can 10 is formed on the inner peripheral surface over the entire circumference. The convex portion 211 supports the seam 10a of the cylindrical battery outer can 10 from below. Subsequently, the second cylindrical portion 15 of the cylindrical battery outer can 10 is pressed downward P from the opening end side by the first press die 22. As for the 1st press type | mold 22, the circular recessed part 221 of a substantially conical cross-sectional shape is formed in the center of the bottom face. When the second cylindrical portion 15 of the cylindrical battery outer can 10 is pressed against the slope of the circular recess 221 of the first press die 22, the vicinity of the boundary with the first cylindrical portion 14 is obliquely bent inward. Strong pressure molding with a crease. Thereby, the sealing body 3 and the gasket 4 are fixed.

図4は第2プレス加工工程を図示した側断面図である。
つづいて第1プレス加工後の円筒形電池用外装缶10をかしめ割型21に取り付けた状態のまま、第2プレス型23で、円筒形電池用外装缶10の第2円筒部15を開口端側から下方Pへプレスする。第2プレス型23は、略矩形断面形状の円形凹部231が底面の中央に形成されている。円筒形電池用外装缶10の第2円筒部15は、第2プレス型23の円形凹部231の底面に押圧されることによって、図示の如く内側に略直角に折り曲げられた状態に強圧成型される。この第2円筒部15の略直角に折り曲げられた部分は第2周壁17となる。
FIG. 4 is a sectional side view illustrating the second press working process.
Subsequently, the second cylindrical portion 15 of the cylindrical battery outer can 10 is opened by the second press mold 23 while the cylindrical battery outer can 10 after the first press working is attached to the caulking split mold 21. Press from side to bottom P. The second press die 23 is formed with a circular recess 231 having a substantially rectangular cross-sectional shape at the center of the bottom surface. The second cylindrical portion 15 of the cylindrical battery outer can 10 is pressed to the bottom surface of the circular concave portion 231 of the second press die 23 to be strongly pressure-molded in a state of being bent at a substantially right angle as shown in the drawing. . A portion of the second cylindrical portion 15 bent at a substantially right angle is a second peripheral wall 17.

図5は圧着プレス加工工程を図示した側断面図である。
つづいて第2プレス加工後の円筒形電池用外装缶10を、圧着割型24、圧着受けストリッパ25及び圧着受け型26に取り付ける。圧着割型24は、円筒形電池用外装缶10の外径に略等しい内径を有する略円環形状の割型であり、図示の如く内周面が円筒形電池用外装缶10の側面に接する。圧着受けストリッパ25は、略円板形状の部材であり、円筒形電池用外装缶10の底面に接して円筒形電池用外装缶10を支持する。圧着受け型26は、略台形状断面を有する円形凹部261が形成された略円板形状の部材であり、円形凹部261の斜面が円筒形電池用外装缶10の底面の外周端に当接する。
FIG. 5 is a side cross-sectional view illustrating the pressing process.
Subsequently, the cylindrical battery outer can 10 after the second press working is attached to the crimping split mold 24, the crimp receiving stripper 25, and the crimp receiving mold 26. The crimping split mold 24 is a substantially annular split mold having an inner diameter substantially equal to the outer diameter of the cylindrical battery outer can 10, and its inner peripheral surface is in contact with the side surface of the cylindrical battery outer can 10 as shown in the figure. . The crimp receiving stripper 25 is a substantially disk-shaped member, and supports the cylindrical battery outer can 10 in contact with the bottom surface of the cylindrical battery outer can 10. The crimp receiving die 26 is a substantially disk-shaped member in which a circular concave portion 261 having a substantially trapezoidal cross section is formed, and the inclined surface of the circular concave portion 261 contacts the outer peripheral end of the bottom surface of the cylindrical battery outer can 10.

その状態から、圧着プレス型27の底面271で、円筒形電池用外装缶10の第2円筒部15(第2周壁17)を下方Pへプレスする。圧着プレス型27は、封口体3を逃がすための円形凹部272が底面271の中央に形成されている。円筒形電池用外装缶10は、圧着受けストリッパ25及び圧着受け型26と圧着プレス型27との間で、シーム10aが変形しながら第1円筒部14が圧縮される。それによって円筒形電池用外装缶10は、円筒形電池20の全高(円筒形電池用外装缶10の底面から封口体3の端面までの長さ)が規定長となるように強圧成型される。またシーム10aが変形しながら第1円筒部14が圧縮されることによって、第1周壁16と第2周壁17との間隔が狭まる。それによって、第1周壁16及び第2周壁17と封口体3との間に介装されているガスケット4は、円筒形電池用外装缶10の内部の密閉状態を安定的に維持できる適切な圧縮率(例えば約30%)で圧縮された状態となる。   From this state, the second cylindrical portion 15 (second peripheral wall 17) of the cylindrical battery outer can 10 is pressed downward P by the bottom surface 271 of the crimping press die 27. The crimping press die 27 is formed with a circular recess 272 in the center of the bottom surface 271 for allowing the sealing body 3 to escape. In the cylindrical battery outer can 10, the first cylindrical portion 14 is compressed while the seam 10 a is deformed between the pressure receiving stripper 25 and the pressure receiving mold 26 and the pressure pressing mold 27. Thereby, the cylindrical battery outer can 10 is subjected to high pressure molding so that the total height of the cylindrical battery 20 (the length from the bottom surface of the cylindrical battery outer can 10 to the end face of the sealing body 3) becomes a specified length. Moreover, the space | interval of the 1st surrounding wall 16 and the 2nd surrounding wall 17 becomes narrow because the 1st cylindrical part 14 is compressed, deform | transforming the seam 10a. Thereby, the gasket 4 interposed between the first peripheral wall 16 and the second peripheral wall 17 and the sealing body 3 is appropriately compressed so that the sealed state inside the cylindrical battery outer can 10 can be stably maintained. It will be in the state compressed at the rate (for example, about 30%).

図6は外径絞り工程を図示した側断面図である。   FIG. 6 is a side sectional view illustrating the outer diameter drawing step.

つづいて圧着プレス加工後の円筒形電池用外装缶10を、絞り受け型28と絞り上型29との間に取り付ける。絞り上型29は、封口体3を逃がすための円形凹部292が底面291の中央に形成されている。円筒形電池用外装缶10は、底面が絞り受け型28に当接して支持され、上端(第2周壁17)が絞り上型29の底面291に当接した状態で固定される。   Subsequently, the cylindrical battery outer can 10 after the press-pressing process is attached between the drawing receiver 28 and the upper drawing die 29. In the upper diaphragm die 29, a circular recess 292 for allowing the sealing body 3 to escape is formed in the center of the bottom surface 291. The cylindrical battery outer can 10 is supported with its bottom surface in contact with the diaphragm receiving die 28 and fixed with its upper end (second peripheral wall 17) in contact with the bottom surface 291 of the upper diaphragm die 29.

略円環形状の絞りダイ30は、円筒形電池20の規定外径と一致する内径に設定された絞り凸部301が内周面に形成されている。円筒形電池用外装缶10は、絞りダイ30を保持するホルダー31が底面側から上端側へ移動することによって、絞りダイ30の絞り凸部301に側面が押圧され、側面が内側へ変形しながら外径が縮径する。それによって円筒形電池用外装缶10は、外径が規定長となるように強圧成型される。   The substantially annular diaphragm die 30 is formed with a diaphragm protrusion 301 having an inner diameter that is set to an inner diameter that matches the prescribed outer diameter of the cylindrical battery 20. The cylindrical battery outer can 10 has its side face pressed against the diaphragm convex portion 301 of the diaphragm die 30 as the holder 31 holding the diaphragm die 30 moves from the bottom surface side to the upper end side, and the side surface is deformed inward. The outer diameter is reduced. As a result, the cylindrical battery outer can 10 is subjected to high pressure molding so that the outer diameter becomes a specified length.

<本発明に係る円筒形電池20の評価試験>
発明者が行った本発明に係る円筒形電池20の評価試験について説明する。
<Evaluation test of cylindrical battery 20 according to the present invention>
An evaluation test of the cylindrical battery 20 according to the present invention conducted by the inventors will be described.

1.実施例
本発明に係る円筒形電池20の実施例1〜7は、外径寸法をφ14.25mm、高さ50.6mmとした三段円筒構造の本発明に係る円筒形電池用外装缶10を用いて、上記説明した製造方法により、外形寸法がφ14.0mm、高さ50.2mmとなるように製造したアルカリ二次電池である。
1. Examples Examples 1 to 7 of the cylindrical battery 20 according to the present invention include a cylindrical battery outer can 10 according to the present invention having a three-stage cylindrical structure with an outer diameter of 14.25 mm and a height of 50.6 mm. It is an alkaline secondary battery manufactured using the manufacturing method described above so that the outer dimensions are φ14.0 mm and the height is 50.2 mm.

実施例1〜4は、電極体収容部13の肉厚Aを0.100mmとすることによって容積を7.84ccとした円筒形電池用外装缶10を用いた。また実施例1は、第1円筒部14の肉厚Bを0.130mm(肉厚Aの約130%)、第2円筒部15の肉厚Cを0.150mm(肉厚Aの約150%)とした。実施例2は、第1円筒部14の肉厚Bを0.130mm(肉厚Aの約130%)、第2円筒部15の肉厚Cを0.170mm(肉厚Aの約170%)とした。実施例3は、第1円筒部14の肉厚Bを0.150mm(肉厚Aの約150%)、第2円筒部15の肉厚Cを0.170mm(肉厚Aの約170%)とした。実施例4は、第1円筒部14の肉厚Bを0.150mm(肉厚Aの約150%)、第2円筒部15の肉厚Cを0.200mm(肉厚Aの約200%)とした。   In Examples 1 to 4, the cylindrical battery outer can 10 having a volume of 7.84 cc by setting the wall thickness A of the electrode body housing portion 13 to 0.100 mm was used. In Example 1, the thickness B of the first cylindrical portion 14 is 0.130 mm (about 130% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.150 mm (about 150% of the thickness A). ). In Example 2, the thickness B of the first cylindrical portion 14 is 0.130 mm (about 130% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.170 mm (about 170% of the thickness A). It was. In Example 3, the thickness B of the first cylindrical portion 14 is 0.150 mm (about 150% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.170 mm (about 170% of the thickness A). It was. In Example 4, the thickness B of the first cylindrical portion 14 is 0.150 mm (about 150% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.200 mm (about 200% of the thickness A). It was.

実施例5〜7は、電極体収容部13の肉厚Aを0.080mmとすることによって容積を7.89ccとした円筒形電池用外装缶10を用いた。また実施例5は、第1円筒部14の肉厚Bを0.110mm(肉厚Aの約138%)、第2円筒部15の肉厚Cを0.130mm(肉厚Aの約163%)とした。実施例6は、第1円筒部14の肉厚Bを0.110mm(肉厚Aの約138%)、第2円筒部15の肉厚Cを0.150mm(肉厚Aの約188%)とした。実施例7は、第1円筒部14の肉厚Bを0.120mm(肉厚Aの約150%)、第2円筒部15の肉厚Cを0.150mm(肉厚Aの約188%)とした。   Examples 5 to 7 used the cylindrical battery outer can 10 having a volume of 7.89 cc by setting the wall thickness A of the electrode body housing portion 13 to 0.080 mm. In Example 5, the thickness B of the first cylindrical portion 14 is 0.110 mm (about 138% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.130 mm (about 163% of the thickness A). ). In Example 6, the thickness B of the first cylindrical portion 14 is 0.110 mm (about 138% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.150 mm (about 188% of the thickness A). It was. In Example 7, the thickness B of the first cylindrical portion 14 is 0.120 mm (about 150% of the thickness A), and the thickness C of the second cylindrical portion 15 is 0.150 mm (about 188% of the thickness A). It was.

2.比較例
比較例について、図7を参照しながら説明する。
図7は、比較例の円筒形電池用外装缶50(図7(a))及び円筒形電池60(図7(b))を図示した側断面図である。
2. Comparative Example A comparative example will be described with reference to FIG.
FIG. 7 is a side sectional view illustrating a cylindrical battery outer can 50 (FIG. 7A) and a cylindrical battery 60 (FIG. 7B) of a comparative example.

円筒形電池用外装缶50は、比較例の円筒形電池60の製造に用いた部品であり、比較例の円筒形電池60において外装缶5を構成する。円筒形電池用外装缶50は、金属板を加工して製造し、底部11と開口12を有する円筒形状、すなわち有底円筒形状を成している。円筒形電池用外装缶50は、発電要素となる電極体2が収容される電極体収容部13と、電極体収容部13の肉厚Aより厚い一定の肉厚Bで電極体収容部13より開口12側に連設された第1円筒部14とを備える。   The cylindrical battery outer can 50 is a component used for manufacturing the cylindrical battery 60 of the comparative example, and constitutes the outer can 5 in the cylindrical battery 60 of the comparative example. The cylindrical battery outer can 50 is manufactured by processing a metal plate, and has a cylindrical shape having a bottom 11 and an opening 12, that is, a bottomed cylindrical shape. The cylindrical battery outer can 50 includes an electrode body housing portion 13 in which the electrode body 2 serving as a power generation element is housed, and a constant thickness B that is thicker than the wall thickness A of the electrode body housing portion 13 from the electrode body housing portion 13. And a first cylindrical portion 14 continuously provided on the opening 12 side.

つまり比較例の円筒形電池用外装缶50、円筒形電池60の外装缶5は、電極体収容部13から開口12へ向けて二段階に肉厚が厚くなっていく二段円筒形状を成している点で本発明の実施例と相違している。それ以外の構成は、本発明の実施例と共通しているため、同一の符号を付して説明を省略する。   That is, the cylindrical battery outer can 50 of the comparative example and the outer can 5 of the cylindrical battery 60 have a two-stage cylindrical shape in which the thickness increases in two stages from the electrode body housing portion 13 toward the opening 12. This is different from the embodiment of the present invention. Since the other configuration is common to the embodiment of the present invention, the same reference numeral is given and the description is omitted.

比較例1〜6の円筒形電池60は、上記の二段円筒構造の円筒形電池用外装缶50を用いて製造したアルカリ二次電池である。円筒形電池用外装缶50の外径寸法は、実施例と同様にφ14.25mm、高さ50.6mmとした。また実施例と同様に、上記説明した製造方法により、外形寸法がφ14.0mm、高さ50.2mmとなるように製造した。   The cylindrical battery 60 of Comparative Examples 1 to 6 is an alkaline secondary battery manufactured using the above-described cylindrical battery outer can 50 having a two-stage cylindrical structure. The outer diameter of the cylindrical battery outer can 50 was φ14.25 mm and the height was 50.6 mm, as in the example. Further, in the same manner as in the example, the outer diameter was manufactured to be φ14.0 mm and the height was 50.2 mm by the manufacturing method described above.

比較例1〜3は、電極体収容部13の肉厚Aを0.100mmとすることによって容積を実施例1〜4と同じ7.84ccとした円筒形電池用外装缶50を用いた。また比較例1は、第1円筒部14の肉厚Bを0.130mm(肉厚Aの約130%)とした。比較例2は、第1円筒部14の肉厚Bを0.150mm(肉厚Aの約150%)とした。比較例3は、第1円筒部14の肉厚Bを0.160mm(肉厚Aの約160%)とした。   Comparative Examples 1 to 3 used the cylindrical battery outer can 50 having a volume of 7.84 cc as in Examples 1 to 4 by setting the wall thickness A of the electrode body housing portion 13 to 0.100 mm. In Comparative Example 1, the thickness B of the first cylindrical portion 14 was set to 0.130 mm (about 130% of the thickness A). In Comparative Example 2, the thickness B of the first cylindrical portion 14 was set to 0.150 mm (about 150% of the thickness A). In Comparative Example 3, the thickness B of the first cylindrical portion 14 was set to 0.160 mm (about 160% of the thickness A).

比較例4〜6は、電極体収容部13の肉厚Aを0.080mmとすることによって容積を実施例5〜7と同じ7.89ccとした円筒形電池用外装缶50を用いた。また比較例4は、第1円筒部14の肉厚Bを0.100mm(肉厚Aの約125%)とした。比較例5は、第1円筒部14の肉厚Bを0.120mm(肉厚Aの約150%)とした。比較例6は、第1円筒部14の肉厚Bを0.130mm(肉厚Aの約163%)とした。   In Comparative Examples 4 to 6, the cylindrical battery outer can 50 having a volume of 7.89 cc as in Examples 5 to 7 was used by setting the wall thickness A of the electrode body housing portion 13 to 0.080 mm. In Comparative Example 4, the thickness B of the first cylindrical portion 14 was 0.100 mm (about 125% of the thickness A). In Comparative Example 5, the thickness B of the first cylindrical portion 14 was set to 0.120 mm (about 150% of the thickness A). In Comparative Example 6, the thickness B of the first cylindrical portion 14 was set to 0.130 mm (about 163% of the thickness A).

尚、第1円筒部14の肉厚Bが電極体収容部13の肉厚Aの170%以上となる二段円筒構造の円筒形電池用外装缶50は、肉厚の差が大きすぎて製造することができなかった。   In addition, the cylindrical battery outer can 50 having a two-stage cylindrical structure in which the thickness B of the first cylindrical portion 14 is 170% or more of the thickness A of the electrode body accommodating portion 13 is manufactured because the difference in thickness is too large. I couldn't.

3.試験方法
実施例1〜7の円筒形電池20及び比較例1〜6の円筒形電池60の各々について、目視で外観の評価を行った。また実施例1〜7の円筒形電池20及び比較例1〜6の円筒形電池60の各々について、封口強度の測定を行った。封口強度の測定は、円筒形電池20の外装缶1、円筒形電池60の外装缶5に穴を開け、内部に窒素ガスを0.05MPa/secの速度で充填し、封口体3による封口部からガス漏れが発生した時における窒素ガスの充填圧力を封口強度とした。
3. Test Method The appearance of each of the cylindrical batteries 20 of Examples 1 to 7 and the cylindrical batteries 60 of Comparative Examples 1 to 6 was visually evaluated. Moreover, the sealing strength was measured about each of the cylindrical battery 20 of Examples 1-7 and the cylindrical battery 60 of Comparative Examples 1-6. The sealing strength is measured by making a hole in the outer can 1 of the cylindrical battery 20 and the outer can 5 of the cylindrical battery 60 and filling the interior with nitrogen gas at a rate of 0.05 MPa / sec. The filling pressure of nitrogen gas at the time when gas leakage occurred was taken as the sealing strength.

4.試験結果及び評価

Figure 2012084265
上記の表1に示した試験結果を参照しながら以下説明する。 4). Test results and evaluation
Figure 2012084265
This will be described below with reference to the test results shown in Table 1 above.

まず電極体収容部13の肉厚Aを0.100mm、円筒形電池用外装缶の容積を7.84ccとした比較例1〜3と実施例1〜4とを対比して評価した。   First, Comparative Examples 1 to 3 and Examples 1 to 4 in which the wall thickness A of the electrode body housing part 13 was 0.100 mm and the volume of the cylindrical battery outer can was 7.84 cc were evaluated.

比較例1の封口強度は4.6MPa、比較例2の封口強度は5.6MPaであり、ともに外装缶5に凹みは生じておらず外観は良好であった。また第1円筒部14の肉厚Bをより厚くした比較例3は、比較例1、2より高い封口強度6.1MPaが得られた。しかし比較例3は、電極体収容部13の肉厚Aと第1円筒部14の肉厚Bとの差が大きすぎることに起因して、電池製造工程で外装缶5の側面に凹みが生じたため、外観評価で不適と評価した。   The sealing strength of Comparative Example 1 was 4.6 MPa, and the sealing strength of Comparative Example 2 was 5.6 MPa. Both the outer cans 5 had no dents and the appearance was good. In Comparative Example 3 in which the thickness B of the first cylindrical portion 14 was increased, a sealing strength of 6.1 MPa higher than those of Comparative Examples 1 and 2 was obtained. However, in Comparative Example 3, the difference between the wall thickness A of the electrode body housing portion 13 and the wall thickness B of the first cylindrical portion 14 is too large, and a dent is generated on the side surface of the outer can 5 in the battery manufacturing process. Therefore, the appearance was evaluated as inappropriate.

それに対して実施例1〜4は、比較例1、2を上回る封口強度5.6〜7.8MPaが得られた。特に実施例2〜4は、外観評価で不適と評価された比較例3の封口強度6.1MPaをも上回る封口強度6.7〜7.8MPaが得られた。そして実施例1〜4は、いずれも電池製造工程で側面に凹みは生じておらず、外観の評価はいずれも良好であった。   In contrast, in Examples 1 to 4, sealing strengths of 5.6 to 7.8 MPa exceeding those of Comparative Examples 1 and 2 were obtained. In particular, in Examples 2 to 4, a sealing strength of 6.7 to 7.8 MPa exceeding the sealing strength of 6.1 MPa of Comparative Example 3, which was evaluated as inappropriate in appearance evaluation, was obtained. In all of Examples 1 to 4, no dents were produced on the side surfaces in the battery manufacturing process, and the appearance evaluations were all good.

つづいて電極体収容部13の肉厚Aをより薄く0.080mmとし、円筒形電池用外装缶の容積をより大きい7.89ccとした比較例4〜6と実施例5〜7とを対比して評価した。   Next, Comparative Examples 4 to 6 and Examples 5 to 7 in which the wall thickness A of the electrode body housing portion 13 was made thinner, 0.080 mm, and the volume of the cylindrical battery outer can was increased to 7.89 cc were compared. And evaluated.

比較例4の封口強度は3.1MPa、比較例5の封口強度は3.7MPaであり、ともに第1円筒部14の肉厚Bを薄くした分だけ比較例1〜3よりも封口強度は低下したが、いずれも電池製造工程で外装缶5に凹みは生じておらず外観は良好であった。また第1円筒部14の肉厚Bをより厚くした比較例6は、比較例4、5より高い封口強度4.6MPaが得られた。しかし比較例6は、電極体収容部13の肉厚Aと第1円筒部14の肉厚Bとの差が大きすぎることに起因して、電池製造工程で外装缶5の側面に凹みが生じたため、外観評価で不適と評価した。   The sealing strength of Comparative Example 4 is 3.1 MPa, and the sealing strength of Comparative Example 5 is 3.7 MPa. Both the sealing strengths are lower than those of Comparative Examples 1 to 3 because the thickness B of the first cylindrical portion 14 is reduced. However, in any case, the outer can 5 did not have a dent in the battery manufacturing process, and the appearance was good. In Comparative Example 6 in which the thickness B of the first cylindrical portion 14 was increased, a sealing strength of 4.6 MPa higher than those of Comparative Examples 4 and 5 was obtained. However, in Comparative Example 6, the difference between the wall thickness A of the electrode body housing portion 13 and the wall thickness B of the first cylindrical portion 14 is too large, and a dent is generated on the side surface of the outer can 5 in the battery manufacturing process. Therefore, the appearance was evaluated as inappropriate.

それに対して実施例5〜7は、比較例4、5を上回る封口強度4.6〜5.6MPaが得られた。特に実施例6、7は、外観評価で不適と評価された比較例6の封口強度4.6MPaをも上回る封口強度5.6MPaが得られた。そして実施例5〜7は、いずれも電池製造工程で側面に凹みは生じておらず、外観の評価はいずれも良好であった。   In contrast, in Examples 5 to 7, sealing strengths of 4.6 to 5.6 MPa exceeding Comparative Examples 4 and 5 were obtained. In particular, in Examples 6 and 7, a sealing strength of 5.6 MPa was obtained, which exceeded the sealing strength of 4.6 MPa of Comparative Example 6 that was evaluated as inappropriate in appearance evaluation. In all of Examples 5 to 7, no dent was formed on the side surface in the battery production process, and the appearance evaluation was good.

結論としては、二段円筒構造の円筒形電池用外装缶50を用いた比較例の円筒形電池60においては、封口体3をかしめる第2周壁17の肉厚(第1円筒部14の肉厚B)は、電極体収容部13の肉厚Aの約150%が限界であった。それに対して本発明に係る三段円筒構造の円筒形電池用外装缶10を用いた円筒形電池20の実施例においては、封口体3をかしめる第2周壁17の肉厚(第2円筒部15の肉厚C)を電極体収容部13の肉厚Aの約200%まで厚くすることが可能であった。   As a conclusion, in the cylindrical battery 60 of the comparative example using the cylindrical battery outer can 50 having a two-stage cylindrical structure, the thickness of the second peripheral wall 17 that caulks the sealing body 3 (the thickness of the first cylindrical portion 14). The thickness B) was limited to about 150% of the wall thickness A of the electrode body housing portion 13. On the other hand, in the embodiment of the cylindrical battery 20 using the cylindrical battery outer can 10 of the three-stage cylindrical structure according to the present invention, the thickness (second cylindrical portion) of the second peripheral wall 17 for caulking the sealing body 3. It was possible to increase the thickness C) of 15 to about 200% of the thickness A of the electrode body accommodating portion 13.

以上説明したように、本発明に係る円筒形電池20の外装缶1(円筒形電池用外装缶10)は、電極体収容部13から開口12へ向けて三段階に肉厚が厚くなっていく形状を成しているため、電極体収容部13の肉厚Aと封口部の肉厚(第2円筒部15の肉厚C)と差を大きくしても、その肉厚の差によって生じる剛性のアンバランスを従来よりも小さくすることができる。したがって円筒形電池20を製造する際のプレス加工や絞り加工において、その剛性のアンバランスに起因して外装缶1に変形が生ずる虞を低減させることができる。それによって本発明に係る円筒形電池20は、封口体3による封口部の強度を液漏れが生じないレベルに維持しつつ、従来よりも外装缶1の容積を増加させてさらなる大容量化を実現することができる。   As described above, the outer can 1 (cylindrical battery outer can 10) of the cylindrical battery 20 according to the present invention increases in thickness in three stages from the electrode body housing portion 13 toward the opening 12. Even if the difference between the thickness A of the electrode body accommodating portion 13 and the thickness of the sealing portion (thickness C of the second cylindrical portion 15) is increased, the rigidity caused by the difference in thickness is obtained. Can be made smaller than before. Therefore, it is possible to reduce the possibility that the outer can 1 is deformed due to the rigidity imbalance in press working or drawing work when manufacturing the cylindrical battery 20. Thereby, the cylindrical battery 20 according to the present invention realizes a further increase in the capacity by increasing the volume of the outer can 1 as compared with the conventional one while maintaining the strength of the sealing portion by the sealing body 3 at a level at which liquid leakage does not occur. can do.

また本発明に係る円筒形電池20の外装缶1(円筒形電池用外装缶10)は、第1円筒部14の肉厚Bが一定であり、第2円筒部15の肉厚Cも一定である。そのため、第1円筒部14及び第2円筒部15の内周面と封口体3とが略平行に対面する状態となるので、第1円筒部14及び第2円筒部15の内周面と封口体3との間に介在するガスケット4を略均一に圧縮した状態とすることが容易に可能になる。したがって本発明に係る円筒形電池20は、ガスケット4の圧縮状態の不均一に起因する封口強度の低下によって封口部から液漏れが生ずる虞を極めて小さくすることができる。   Further, in the outer can 1 (cylindrical battery outer can 10) of the cylindrical battery 20 according to the present invention, the thickness B of the first cylindrical portion 14 is constant, and the thickness C of the second cylindrical portion 15 is also constant. is there. Therefore, since the inner peripheral surfaces of the first cylindrical portion 14 and the second cylindrical portion 15 and the sealing body 3 face each other substantially in parallel, the inner peripheral surfaces and the sealing surfaces of the first cylindrical portion 14 and the second cylindrical portion 15 are sealed. It is possible to easily make the gasket 4 interposed between the body 3 and the body 3 compressed into a substantially uniform state. Therefore, the cylindrical battery 20 according to the present invention can greatly reduce the possibility of liquid leakage from the sealing portion due to a decrease in sealing strength due to the non-uniform compression state of the gasket 4.

このようにして本発明によれば、円筒形電池20において、封口体3による封口部の強度を液漏れが生じないレベルに維持しつつ、さらなる大容量化を実現することができる。
尚、本発明は、上記説明した実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であること言うまでもない。
Thus, according to the present invention, in the cylindrical battery 20, it is possible to realize a further increase in capacity while maintaining the strength of the sealing portion by the sealing body 3 at a level at which liquid leakage does not occur.
Note that the present invention is not particularly limited to the above-described embodiments, and it goes without saying that various modifications are possible within the scope of the invention described in the claims.

1 外装缶
2 電極体
3 封口体
4 ガスケット
10 円筒形電池用外装缶
13 電極体収容部
14 第1円筒部
15 第2円筒部
16 第1周壁
17 第2周壁
DESCRIPTION OF SYMBOLS 1 Exterior can 2 Electrode body 3 Sealing body 4 Gasket 10 Cylindrical battery exterior can 13 Electrode body accommodating part 14 1st cylindrical part 15 2nd cylindrical part 16 1st surrounding wall 17 2nd surrounding wall

Claims (3)

有底円筒形状の外装缶と、
発電要素となる電極体と、
前記外装缶の開口を封口する封口体と、
前記外装缶と前記封口体との間に介装されるガスケットと、を備え、
前記外装缶は、前記電極体が収容される電極体収容部と、前記電極体収容部の肉厚より厚い一定の肉厚で前記電極体収容部より開口側に連設され、前記封口体を支持する第1周壁がプレス加工により内側に形成された第1円筒部と、前記第1円筒部の肉厚より厚い一定の肉厚で前記第1円筒部より開口側に連設され、前記第1周壁とで前記封口体を挟持する第2周壁がプレス加工により内側に形成された第2円筒部と、を含む、ことを特徴とした円筒形電池。
A bottomed cylindrical outer can,
An electrode body as a power generation element;
A sealing body for sealing the opening of the outer can;
A gasket interposed between the outer can and the sealing body,
The outer can is connected to an electrode body housing portion in which the electrode body is housed and a constant thickness larger than a thickness of the electrode body housing portion on the opening side from the electrode body housing portion. A first cylindrical wall supporting the first cylindrical portion formed inside by press working, and a constant thickness that is thicker than a thickness of the first cylindrical portion, are provided continuously to the opening side from the first cylindrical portion, A cylindrical battery, comprising: a second cylindrical portion having a second peripheral wall sandwiched between the first peripheral wall and a second cylindrical portion formed inside by pressing.
有底円筒形状を成す円筒形電池用外装缶であって、
発電要素となる電極体が収容される電極体収容部と、
前記電極体収容部の肉厚より厚い一定の肉厚で前記電極体収容部より開口側に連設された第1円筒部と、
前記第1円筒部の肉厚より厚い一定の肉厚で前記第1円筒部より開口側に連設された第2円筒部と、を備える、ことを特徴とした円筒形電池用外装缶。
A cylindrical battery outer can having a bottomed cylindrical shape,
An electrode body housing portion in which an electrode body serving as a power generation element is housed;
A first cylindrical portion continuously provided on the opening side from the electrode body housing portion with a constant thickness thicker than the thickness of the electrode body housing portion;
A cylindrical battery outer can comprising: a second cylindrical portion continuously provided on the opening side of the first cylindrical portion with a constant thickness larger than the thickness of the first cylindrical portion.
請求項2に記載の円筒形電池用外装缶において、底部から開口まで内径が一定に成形されている、ことを特徴とした円筒形電池用外装缶。   The cylindrical battery outer can according to claim 2, wherein the inner diameter of the cylindrical battery outer can is constant from the bottom to the opening.
JP2010227453A 2010-10-07 2010-10-07 Cylindrical battery Active JP5551560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227453A JP5551560B2 (en) 2010-10-07 2010-10-07 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227453A JP5551560B2 (en) 2010-10-07 2010-10-07 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2012084265A true JP2012084265A (en) 2012-04-26
JP5551560B2 JP5551560B2 (en) 2014-07-16

Family

ID=46242952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227453A Active JP5551560B2 (en) 2010-10-07 2010-10-07 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP5551560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104945A (en) * 2018-12-25 2020-07-09 東レ株式会社 End part processing device and end part processing method for molded active carbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554796B1 (en) 2021-07-16 2023-07-13 주식회사 인탑스테크닉 apparatus for adjusting spindle of crimping and pressing machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150660U (en) * 1989-05-24 1990-12-27
JPH05114389A (en) * 1991-10-23 1993-05-07 Sanyo Electric Co Ltd Cylindrical battery
JPH09161736A (en) * 1995-12-01 1997-06-20 Kishimoto Akira Battery can and manufacture thereof
JP2004241186A (en) * 2003-02-04 2004-08-26 Ishizaki Press Kogyo Kk Negative electrode can for battery and its manufacturing method
JP2005190688A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Sealed lead storage battery
JP2007027046A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Battery can and method of manufacturing same
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
JP2009181754A (en) * 2008-01-29 2009-08-13 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
JP2009230991A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Cylindrical cell and manufacturing method of cylindrical cell
JP2010062013A (en) * 2008-09-04 2010-03-18 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
JP2011006087A (en) * 2009-06-24 2011-01-13 Toyo Seikan Kaisha Ltd Cylindrical container, and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150660U (en) * 1989-05-24 1990-12-27
JPH05114389A (en) * 1991-10-23 1993-05-07 Sanyo Electric Co Ltd Cylindrical battery
JPH09161736A (en) * 1995-12-01 1997-06-20 Kishimoto Akira Battery can and manufacture thereof
JP2004241186A (en) * 2003-02-04 2004-08-26 Ishizaki Press Kogyo Kk Negative electrode can for battery and its manufacturing method
JP2005190688A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Sealed lead storage battery
JP2007027046A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Battery can and method of manufacturing same
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
JP2009181754A (en) * 2008-01-29 2009-08-13 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
JP2009230991A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Cylindrical cell and manufacturing method of cylindrical cell
JP2010062013A (en) * 2008-09-04 2010-03-18 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
JP2011006087A (en) * 2009-06-24 2011-01-13 Toyo Seikan Kaisha Ltd Cylindrical container, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104945A (en) * 2018-12-25 2020-07-09 東レ株式会社 End part processing device and end part processing method for molded active carbon

Also Published As

Publication number Publication date
JP5551560B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5425526B2 (en) Sealed battery
US9899640B2 (en) Flat-shaped battery
US20130330601A1 (en) Coin battery
CN103392246B (en) Flat battery
JP2006147267A (en) Sealing square battery
US11201367B2 (en) Flat battery
JP2016100323A (en) Battery and manufacturing method for the same
JP5551560B2 (en) Cylindrical battery
JP4831625B2 (en) Coin battery
JP5322511B2 (en) Cylindrical sealed battery
JP2021150243A (en) Cylindrical battery
JP4070136B2 (en) Coin battery
JP2009230991A (en) Cylindrical cell and manufacturing method of cylindrical cell
JP2011060672A (en) Manufacturing device and manufacturing method for battery, and battery
JP6094910B2 (en) Method for manufacturing cylindrical battery
JPH0513054A (en) Sealed rectangular storage battery and manufacture thereof
JP2013143331A (en) Method for manufacturing alkaline secondary battery, and alkaline secondary battery manufactured by this manufacturing method
WO2016088287A1 (en) Manufacturing method for sealed type battery and sealed type battery
JP3729138B2 (en) Sealed prismatic storage battery and manufacturing method thereof
JP5420871B2 (en) Flat battery
JP2015060694A (en) Cylindrical battery, outer can for cylindrical battery
JP6688029B2 (en) battery
US20160093841A1 (en) Energy storage device and manufacturing method of the same
CN216528459U (en) Capacitor with improved capacitance
JP5137438B2 (en) Cylindrical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140522

R150 Certificate of patent or registration of utility model

Ref document number: 5551560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250