JP2012083740A - Optical sheet, optical member, surface light source device, and liquid crystal display device - Google Patents

Optical sheet, optical member, surface light source device, and liquid crystal display device Download PDF

Info

Publication number
JP2012083740A
JP2012083740A JP2011201914A JP2011201914A JP2012083740A JP 2012083740 A JP2012083740 A JP 2012083740A JP 2011201914 A JP2011201914 A JP 2011201914A JP 2011201914 A JP2011201914 A JP 2011201914A JP 2012083740 A JP2012083740 A JP 2012083740A
Authority
JP
Japan
Prior art keywords
hardness
coating film
optical
optical sheet
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201914A
Other languages
Japanese (ja)
Other versions
JP5196335B2 (en
Inventor
Tsuyoshi Kuroda
田 剛 志 黒
Keiko Kitano
野 恵 子 北
Akinobu Ushiyama
山 章 伸 牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011201914A priority Critical patent/JP5196335B2/en
Publication of JP2012083740A publication Critical patent/JP2012083740A/en
Application granted granted Critical
Publication of JP5196335B2 publication Critical patent/JP5196335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical sheet with a scratch resistance capable of preventing damage of the optical sheet itself when the optical sheet is disposed adjacent to another optical member or itself, the optical sheet having a rugged coating surface that is a rough surface on an opposite side of an optical element surface such as a prism surface; and to provide a surface light source device using the same and a liquid crystal display device.SOLUTION: An optical sheet 10 includes a unit optical element 2 disposed on one surface 1p of a main body section 1, and a rugged coating film 3 having a rough surface by small protrusions, on the other surface 1q. As for the hardness He of the optical element surface Pe and the hardness Hm of the rugged coating film surface using pencil hardness (with a load of 1000 g and speed of 1 mm/s) conformed to JIS K5600-5-4 (1999), the hardness Hm is F or more, and Hm≥He. Further, assuming that 1 unit harder hardness on a pencil hardness scale is defined as +1, it is favorable that the respective levels of hardness satisfy He+3≥Hm≥He+2. Furthermore, two optical sheets may be stacked with the surface/backside facing the same direction. The optical sheet is used for a surface light source device and a liquid crystal display device.

Description

本発明は、光の進行方向を変化させる光学シートと、それを用いた光学部材、面光源装置、該面光源装置を用いた液晶表示装置に関する。
特に、柱状プリズム等による光学要素面の反対側を、最外面が粗面の凹凸塗膜や表面が平滑の平滑塗膜とした光学シートであって、しかも光学シートを2枚重ねで使用したり、ロールにして保管や運搬したりして光学シート同士で表裏が接触したり、或いは他の部材と接触したりしても、光学シート自体の表裏面が傷付き難く耐擦傷性に優れる光学シートに関する。また、本発明は、それを用いた光学部材、面光源装置、及び該面光源装置を用いた液晶表示装置に関する。
The present invention relates to an optical sheet that changes the traveling direction of light, an optical member using the optical sheet, a surface light source device, and a liquid crystal display device using the surface light source device.
In particular, an optical sheet having a rough coating film with a rough outer surface or a smooth coating film with a smooth surface on the opposite side of the optical element surface by a columnar prism, etc. An optical sheet that is excellent in scratch resistance because the front and back surfaces of the optical sheet itself are hard to be damaged even if the optical sheets are in contact with each other or in contact with other members by storing and transporting in a roll. About. The present invention also relates to an optical member using the same, a surface light source device, and a liquid crystal display device using the surface light source device.

透過型液晶表示装置に於いて、背面光源の出光面上に配置してその出射光を集光し輝度を向上させる光学シートが知られている。
例えば、特許文献1では、単位光学要素として三角柱単位プリズム等を配列したプリズム面の反対側の面を、高さが光源光の波長以上且つ100μm以下の空隙形成用の微小な突起を多数有する粗面にした光学シートが開示されている。プリズム面の反対側面を単なる平滑面とせずに、この様な粗面とすることで、光学シートのプリズム面の反対側面に導光板を隣接して配置したときに、導光板との光学密着を防止し、該光学密着による輝度の面内不均一化、干渉縞等を効果的に防止することができる。
In a transmissive liquid crystal display device, there is known an optical sheet that is arranged on a light exit surface of a back light source and collects the emitted light to improve luminance.
For example, in Patent Document 1, a surface opposite to a prism surface on which triangular prism unit prisms and the like are arranged as unit optical elements has a large number of minute protrusions for forming a gap whose height is not less than the wavelength of the light source light and not more than 100 μm. A faced optical sheet is disclosed. By making the opposite side of the prism surface a rough surface instead of just a smooth surface, when the light guide plate is placed adjacent to the opposite side of the prism surface of the optical sheet, the optical contact with the light guide plate is improved. It is possible to effectively prevent in-plane luminance unevenness, interference fringes, and the like due to the optical contact.

また、この様な微小突起を表面に多数有する粗面は、熱エンボス法、紫外線又は電子線硬化性樹脂液と成形型を用いた成形法(2P法:フォトポリマー法)、微粒子を樹脂液中に含有させた塗料の塗膜表面に微粒子による凹凸を現出させて粗面とする塗膜法などで形成できる。なかでも、塗膜法は、樹脂に熱可塑性樹脂や熱硬化性樹脂も使用でき、微粒子も樹脂ビーズ等を使用でき、他の方法に比べて、簡便且つ安価に形成できる利点がある。   In addition, a rough surface having many such fine protrusions on the surface can be obtained by a hot embossing method, a molding method using an ultraviolet ray or electron beam curable resin solution and a molding die (2P method: photopolymer method), and fine particles in a resin solution. It can be formed by a coating method or the like in which irregularities due to fine particles appear on the surface of the coating film of the paint contained in the coating to make it rough. Among them, the coating film method has an advantage that a thermoplastic resin or a thermosetting resin can be used for the resin, and fine particles can use resin beads or the like, which can be easily and inexpensively formed as compared with other methods.

ただ、粗面によって光学密着は防げるが、該粗面の微小突起や、或いは塗膜内部から脱落した微粒子等によって、光学シートの裏面側に隣接して配置された他の光学部材の表面が、傷付くことがあった。
そこで、特許文献2では、この様な隣接配置される他の光学部材の傷付を防止する為に、塗膜中に含有させる微粒子として粒子径分布の半値幅が1μm以下の単分散の球状ビーズを用いる技術を提案している。
However, although the optical adhesion can be prevented by the rough surface, the surface of the other optical member disposed adjacent to the back side of the optical sheet due to fine projections on the rough surface or fine particles dropped from the inside of the coating film, I was hurt.
Therefore, in Patent Document 2, monodisperse spherical beads having a half-value width of 1 μm or less as a fine particle to be contained in the coating film in order to prevent such other adjacently disposed optical members from being damaged. We are proposing a technology that uses.

また、光学シートは、その存在によって輝度が低下しない様にすることも重要である。そこで、特許文献3では、片方をレンズ面とする光学シートにおいて、入光面となる他方の面に低屈折率層を設けて、入光面での無駄な光反射を防いで、正面方向の輝度を向上させた光学シートを提案している。   It is also important that the optical sheet does not decrease in luminance due to its presence. Therefore, in Patent Document 3, in the optical sheet having one lens surface, a low refractive index layer is provided on the other surface serving as the light incident surface to prevent unnecessary light reflection on the light incident surface, and in the front direction. An optical sheet with improved brightness is proposed.

特許第3518554号公報Japanese Patent No. 3518554 特許第3913870号公報Japanese Patent No. 3913870 特許平8−286005号公報Japanese Patent No. 8-286005

しかしながら、他の光学部材の傷付きが、特許文献2で提案された様な単分散の微粒子を用いて改善されたとしても、なお光学シート自身の傷付きも発生しており、その解消が望まれた。
即ち、光学シートが他の光学部材ではなく自分自身を傷付ける現象は、第1には、光学シートを面光源装置にアセンブリする前の段階で、製品として光学シートを出荷する際に発生する。光学シートは通常、生産性の点で帯状シートの形態で製造され、それをロール状に巻き取り保管、搬送し、必要なときに、用途に応じた形状及びサイズの枚葉シートに切断して出荷する。また、枚葉シートに切断した後の光学シートは、積み重ねて保管、搬送される。これらのロール状態、及び、積み重ね状態では、光学シートの表面(最外面)と、その上に重ねられた光学シートの裏面(対向する最外面)とが互いに接触している。この状態で、保管時や運搬時の振動等によって、互いに接触する表裏面が擦られ、これが原因となって、傷付きや脱落した微粒子による更なる傷付きが発生するのである。このような傷付きは、プリズム面およびプリズム面の反対側の塗膜面(表裏面)のいずれかにも発生する。
ところで、この様な、光学シート使用時までの表裏面の傷付きは、表裏面に保護フィルムを貼り付けておき、光学シートを面光源装置等にアセンブリするときに、該保護フィルムを剥離すれば、解決する。ただ、低コスト化及び省資源の観点から、最終的には不要となる保護フィルムは、なるべくならば省略できる様にするのが好ましい。
However, even if the scratches of other optical members are improved by using monodispersed fine particles as proposed in Patent Document 2, the optical sheet itself is still scratched, and it is hoped that this will be eliminated. Mareta.
That is, the phenomenon in which the optical sheet scratches itself rather than other optical members first occurs when the optical sheet is shipped as a product at a stage before the optical sheet is assembled to the surface light source device. The optical sheet is usually manufactured in the form of a belt-like sheet from the viewpoint of productivity, and is wound up in a roll, stored, transported, and cut into single-sheet sheets of a shape and size according to the application when necessary. Ship. In addition, the optical sheets after being cut into single sheets are stacked and stored and transported. In these roll states and stacked states, the surface (outermost surface) of the optical sheet and the back surface (opposite outermost surface) of the optical sheet stacked thereon are in contact with each other. In this state, the front and back surfaces that are in contact with each other are rubbed due to vibrations during storage and transportation, and this causes damage and further damage due to the dropped fine particles. Such scratches occur on either the prism surface or the coating surface (front and back surfaces) on the opposite side of the prism surface.
By the way, such scratches on the front and back surfaces until the optical sheet is used can be obtained by attaching a protective film to the front and back surfaces and peeling the protective film when assembling the optical sheet to a surface light source device or the like. ,Resolve. However, from the viewpoint of cost reduction and resource saving, it is preferable that the protective film that is ultimately unnecessary can be omitted if possible.

次に、光学シートが他の光学部材ではなく自分自身を傷付ける現象は、第2には、光学シートを面光源装置等にアセンブリした後の段階で発生する。例えば、特公平1−37801号公報、特表平10−506500号公報等に記載の光学シートを2枚重ね合わせてアセンブリする場合に、この現象が生じる。なお、重ねられる二枚の光学シートの各々は、通常、配列方向に配列された単位光学要素として三角柱プリズムを一方の面に有し、且つ、この二枚の光学シートが、三角柱プリズムの配列方向が互いに直交するようにして、同じ向きで重ね合わされる。
この様に複数枚の光学シートを隣接して重ね合わせた構成を有する面光源装置、或いは該面光源装置を用いた液晶表示装置などの光学装置では、各光学シートがアセンブリされた後の状態でも、振動の影響で同様に光学シートの表裏面に傷付きが発生することがある。それは、光学装置に於いても、半製品、商品などとして保管、搬送するときに振動が加わることがあるからである。
また、光学シートを重ね合わせなくても、導光板や液晶パネル等の他の光学部材と光学シートとが隣接配置されると、他の光学部材との接触状態での保管、搬送等による振動によって、同様に光学シート自体の表裏面が傷付くことがある。
尚、プリズム等の単位光学要素の方は、比較的広い面積で外力を受けることが出来、又微粒子等の脱落し易い物を含まない。したがって、特開2009−37204号公報記載のような柔軟で復元性を有する樹脂で構成することによって、外力による傷付きを防止する設計も可能である。一方、凹凸塗膜の方は、比較的狭い面積に応力が集中することに加えて、脱落し易い微粒子も含有する為、塗膜に復元性を付与しても傷付き防止は、依然困難であった。
Next, the phenomenon in which the optical sheet damages itself rather than other optical members occurs secondly after the optical sheet is assembled into a surface light source device or the like. For example, this phenomenon occurs when two optical sheets described in JP-B-1-37801, JP-A-10-506500, and the like are overlaid and assembled. Each of the two optical sheets to be overlaid usually has a triangular prism on one surface as unit optical elements arranged in the arrangement direction, and the two optical sheets are arranged in the arrangement direction of the triangular prisms. Are superimposed in the same direction so that they are orthogonal to each other.
In such a surface light source device having a configuration in which a plurality of optical sheets are adjacently stacked, or an optical device such as a liquid crystal display device using the surface light source device, even after each optical sheet is assembled, Similarly, scratches may occur on the front and back surfaces of the optical sheet due to the influence of vibration. This is because even in an optical apparatus, vibration may be applied when stored and transported as a semi-finished product or a commercial product.
Moreover, even if the optical sheets are not overlapped, if another optical member such as a light guide plate or a liquid crystal panel and the optical sheet are disposed adjacent to each other, vibration due to storage, transportation, etc. in contact with the other optical members Similarly, the front and back surfaces of the optical sheet itself may be damaged.
The unit optical element such as a prism can receive an external force in a relatively wide area, and does not include an object that easily falls off, such as fine particles. Therefore, it is possible to design to prevent damage caused by an external force by using a resin having flexibility and resilience as described in JP-A-2009-37204. On the other hand, in the case of a concavo-convex coating film, in addition to concentration of stress in a relatively small area, it also contains fine particles that easily fall off. there were.

また、光学密着を防止する為の接触面の粗面化は、光学シートの粗面化で対処する以外に、光学シートと接触する他の光学部材の粗面化で対処する策もあり、前記特許文献1の〔0015〕及び図4にもこの様な形態が記載されている。例えば、光学シートに接触する他の光学部材が、光拡散シートである場合に、その出光面(及び入光面)を粗面化するという対処法である。
この様な用途への光学シートの塗膜面を粗面化する必要はない。そして、平滑面化された塗膜面によれば、塗膜面に隣接するプリズム面や塗膜面に隣接する他の光学部材の傷付きを低減化することができる。又、塗膜面へ隣接するプリズム面や光学部材が傷付いた場合でも、傷付きが比較的に軽微となり、光学特性への影響も低減化する。
但し、塗膜面の方は、表面が平滑であるが故に、逆に傷が目立ち易くなる。光学特性に影響の無い程度の傷でも、外観検査で不良と判定されたり、商品価値を低く評価されることは不可避である。一方、プリズム面の方は、プリズム面の筋状外観や集光乃至光拡散特性に紛れて傷が視認され難い為、光学特性に影響の無い程度の傷であれば、傷が許容されることもある。
従って、プリズム面の反対側となる塗膜面が平滑面の場合であっても、光学シート表裏面同士の摩擦に起因した傷付の問題は残る。中でも特に、塗膜面の傷付き低減は重要な課題となり、保護フィルムレスを目指す場合、上記の様に、光学シート同士の接触による傷付きに対処する必要があった。
In addition, the roughening of the contact surface for preventing optical adhesion may be dealt with by roughening the other optical member in contact with the optical sheet in addition to the roughening of the optical sheet. Patent Document 1 [0015] and FIG. 4 also describe such a form. For example, when the other optical member that contacts the optical sheet is a light diffusing sheet, the light emitting surface (and the light incident surface) is roughened.
It is not necessary to roughen the coating surface of the optical sheet for such applications. And according to the smoothed coating-film surface, the damage of the prism surface adjacent to a coating-film surface and the other optical member adjacent to a coating-film surface can be reduced. Further, even when the prism surface or the optical member adjacent to the coating surface is damaged, the damage is relatively minor and the influence on the optical characteristics is reduced.
However, since the surface of the coating film is smooth, scratches are conspicuous. It is inevitable that even scratches that do not affect the optical characteristics are judged to be defective in the appearance inspection or the commercial value is evaluated low. On the other hand, for the prism surface, since scratches are difficult to be visually recognized due to the streaky appearance of the prism surface and light collection or light diffusion characteristics, scratches are acceptable if they do not affect the optical characteristics. There is also.
Therefore, even when the coating film surface opposite to the prism surface is a smooth surface, the problem of scratches due to friction between the front and back surfaces of the optical sheet remains. In particular, reduction of scratches on the coating surface is an important issue, and when aiming for a protective film-less, it is necessary to deal with scratches due to contact between optical sheets as described above.

また、輝度向上の観点から設けられる低屈折率層は、多くの場合、反射防止対象となる光の波長の1/4程度といった薄い厚みを有し、他の光学部材との接触によって容易に傷付きやすい。また、この様な低屈折率層それ自体は、光学密着の防止や、他の光学部材或いは光学シート自体の傷付きの防止は考慮されておらず、これらの傷付きを防ぐことができない。   In addition, the low refractive index layer provided from the viewpoint of improving brightness often has a thin thickness of about 1/4 of the wavelength of light to be antireflective, and is easily scratched by contact with other optical members. Easy to stick. Further, such a low refractive index layer itself does not take into consideration prevention of optical adhesion and damage of other optical members or optical sheets themselves, and these damages cannot be prevented.

すなわち、本発明の課題は、プリズム等からなる光学要素面の反対側となる面を、光学密着を防ぐ為に粗面からなる塗膜面とするか、或いは、光学密着の防止は他の部材に任せて自身は平滑面からなる塗膜面とした構成の光学シートについて、光学シートを2枚重ねて使用したり、ロールにして保管や運搬したりして光学シート同士で表裏が接触しても、或いは他の部材と接触しても、光学シート自体の少なくとも塗膜面が傷付き難い耐擦傷性に優れ、しかも、輝度向上も可能となる光学シートを提供することである。
また、この様な光学シートを用いることで、該光学シート等の光学部材が傷付き難い、光学部材、面光源装置および液晶表示装置を提供することである。
That is, the object of the present invention is to make the surface opposite to the optical element surface made of a prism or the like into a coating film surface made of a rough surface in order to prevent optical adhesion, or to prevent optical adhesion. As for the optical sheet configured as a coated film surface consisting of a smooth surface, the front and back of the optical sheet are in contact with each other by using two optical sheets stacked or stored and transported in a roll. Alternatively, it is an object of the present invention to provide an optical sheet that is excellent in scratch resistance, and that can improve brightness, at least the coating film surface of the optical sheet itself is hardly scratched even when it comes into contact with other members.
Another object of the present invention is to provide an optical member, a surface light source device, and a liquid crystal display device in which an optical member such as the optical sheet is hardly damaged by using such an optical sheet.

本発明による光学シートは、
対向する一対の表面を有する光学シートであって、
シート状の本体部と、
前記本体部の一方の面上に配列された単位光学要素と、
前記本体部の他方の面上に設けられた塗膜と、を備え、
前記一対の表面のうちの一方が、前記単位光学要素によって形成された光学要素面として構成され、
前記一対の表面のうちの他方が、前記塗膜の表面からなる塗膜面によって形成され、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)された鉛筆硬度を用いて前記光学要素面の硬度Heおよび前記塗膜面の硬度Hmを評価した場合、前記硬度HmがF以上であり(硬度Hm≧F)、且つ、前記硬度Hmが前記硬度He以上である(硬度Hm≧硬度He)。
The optical sheet according to the present invention is
An optical sheet having a pair of opposing surfaces,
A sheet-like body,
Unit optical elements arranged on one surface of the main body, and
A coating film provided on the other surface of the main body,
One of the pair of surfaces is configured as an optical element surface formed by the unit optical element,
The other of the pair of surfaces is formed by a coating surface comprising the surface of the coating film,
When the hardness He of the optical element surface and the hardness Hm of the coating surface are evaluated using pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s) The hardness Hm is F or more (hardness Hm ≧ F), and the hardness Hm is more than the hardness He (hardness Hm ≧ hardness He).

本発明による光学シートにおいて、鉛筆硬度スケール上で1単位硬い硬度を+1としたとき、
硬度He+3≧硬度Hm≧硬度He+2
の関係を満たすようにしてもよい。
In the optical sheet according to the present invention, when the hardness of one unit on the pencil hardness scale is +1,
Hardness He + 3 ≧ Hardness Hm ≧ Hardness He + 2
The relationship may be satisfied.

本発明による光学シートにおいて、前記塗膜を成す樹脂の屈折率Nmが、前記本体部に於ける前記他方の面をなす部分の屈折率Nsよりも小さくなっていてもよい。   In the optical sheet according to the present invention, the refractive index Nm of the resin forming the coating film may be smaller than the refractive index Ns of the portion forming the other surface in the main body.

本発明による光学シートにおいて、前記塗膜は、前記塗膜面が微小突起によって粗面を形成している凹凸塗膜であってもよいし、或いは、前記塗膜面が平滑な平滑塗膜であってもよい。   In the optical sheet according to the present invention, the coating film may be a concavo-convex coating film in which the coating film surface forms a rough surface by fine protrusions, or a smooth coating film in which the coating film surface is smooth. There may be.

本発明による光学部材は、上述した本発明による光学シートのいずれかを二枚備え、
二枚の光学シートが、表裏を同じ向きで2枚重ね合わせられている。
The optical member according to the present invention includes two optical sheets according to the present invention described above,
Two optical sheets are overlapped with each other in the same direction.

本発明による面光源装置は、
光源と、
上述した本発明による光学シートのいずれかと、を備える。
A surface light source device according to the present invention comprises:
A light source;
Any of the optical sheets according to the present invention described above.

本発明による液晶表示装置は、
上述した本発明による面光源装置のいずれかと、
前記面光源装置に対向して配置された透過型液晶表示パネルと、を備える。
The liquid crystal display device according to the present invention comprises:
Any of the surface light source devices according to the present invention described above;
A transmissive liquid crystal display panel disposed to face the surface light source device.

図1は、本発明の一実施の形態を説明するための図であって、光学シートを示す斜視図である。FIG. 1 is a perspective view showing an optical sheet for explaining an embodiment of the present invention. 図2は、光学シートの表裏面の鉛筆硬度の好ましい関係を説明するためのグラフである。FIG. 2 is a graph for explaining a preferable relationship between the pencil hardness of the front and back surfaces of the optical sheet. 図3は、光学シートの一変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the optical sheet. 図4は、光学シートの他の実施の形態(2枚重ね合わせ形態)を示す断面図である。FIG. 4 is a cross-sectional view showing another embodiment (two-sheet superposition form) of an optical sheet. 図5は、光学シートのさらに他の実施の形態(2枚重ね合わせ形態)を示す断面図である。FIG. 5 is a cross-sectional view showing still another embodiment (two-sheet superposition form) of the optical sheet. 図6は、図1の光学シートを含んだ面光源装置および液晶表示装置を示す断面である。FIG. 6 is a cross-sectional view showing a surface light source device and a liquid crystal display device including the optical sheet of FIG. 図7は、図3の光学シートを含んだ面光源装置および液晶表示装置を示す断面である。7 is a cross-sectional view showing a surface light source device and a liquid crystal display device including the optical sheet of FIG.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、図面は概念図であり、構成要素の縮尺関係、縦横比等は誇張されていることがある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are conceptual diagrams, and the scale relationships, aspect ratios, and the like of components may be exaggerated.

<〔A〕概要>
先ず、本発明による光学シートの一実施形態を、図1の斜視図で示す。同図に示す光学シート10は、シート状の本体部1の一方の面1p(図面では図面上方の面)に、単位光学要素2として断面三角形の単位柱状プリズムをその稜線方向を互い平行にして多数配列してなるプリズム群を有し、該本体部1の他方の面1qに、最外面が粗面をなす凹凸塗膜3を有する。この凹凸塗膜3は、一例としてバインダ樹脂中に微粒子を含有する塗料を本体部1に塗工することによって形成され、微粒子の存在によって最外面に微小突起が形成されることで最外面を粗面にしたものである。そして、この光学シート10は、単位光学要素2を有する側の最外面が光学要素面Peとなり、凹凸塗膜3を有する側の最外面が塗膜面Pmとなっている。
<[A] Outline>
First, an optical sheet according to an embodiment of the present invention is shown in the perspective view of FIG. The optical sheet 10 shown in the figure has unit columnar prisms having a triangular section as unit optical elements 2 on one surface 1p (surface in the drawing in the drawing) of the sheet-like main body portion 1 and their ridge directions are parallel to each other. A plurality of prism groups are arranged, and the other surface 1q of the main body 1 has an uneven coating film 3 whose outermost surface is a rough surface. As an example, the uneven coating film 3 is formed by applying a coating containing fine particles in a binder resin to the main body 1, and the outermost surface is roughened by forming minute protrusions on the outermost surface due to the presence of fine particles. Face. In the optical sheet 10, the outermost surface on the side having the unit optical elements 2 is the optical element surface Pe, and the outermost surface on the side having the uneven coating film 3 is the coating film surface Pm.

なお、図1では、直交座標系のXYZの各軸を夫々、X軸は単位光学要素2(本実施形態では単位柱状プリズム)の配列方向と平行にとり、Y軸を単位光学要素2(単位柱状プリズム)の稜線方向と平行にとり、Z軸を本体部1の厚み方向及び凹凸塗膜3の厚み方向と平行にとってある。   In FIG. 1, the X, Y, and Z axes of the orthogonal coordinate system are parallel to the arrangement direction of the unit optical elements 2 (unit columnar prisms in this embodiment), and the Y axis is the unit optical element 2 (unit columnar shape). The Z axis is parallel to the thickness direction of the main body 1 and the thickness direction of the uneven coating film 3.

なお、本発明に於いて本体部1の他方の面1q上に形成する塗膜としては、図3の断面図で示される光学シート10の様に、該凹凸塗膜3に代えて表面が平滑な塗膜4とする形態もある。本発明においては、後述するように耐擦傷性の観点から、塗膜3,4が所定の硬度を有するようになっている。この観点から、塗膜3,4には耐擦傷性が付与されていると言え、このような平滑塗膜4は耐擦傷性塗膜とも呼ばれる。そこで本明細書では、平滑塗膜4を耐擦傷性塗膜とも呼ぶ。   In the present invention, the coating film formed on the other surface 1q of the main body 1 has a smooth surface instead of the uneven coating film 3 as in the optical sheet 10 shown in the sectional view of FIG. There is also a form which makes the coating film 4. In the present invention, as will be described later, the coating films 3 and 4 have a predetermined hardness from the viewpoint of scratch resistance. From this point of view, it can be said that the coating films 3 and 4 are given scratch resistance, and such a smooth coating film 4 is also called an abrasion resistance coating film. Therefore, in this specification, the smooth coating film 4 is also referred to as an abrasion-resistant coating film.

そして、これら凹凸塗膜3及び平滑塗膜(耐擦傷性塗膜)4を成す樹脂の屈折率Nmが、シート状の本体部1の塗膜に面する部分(本体部の他方の面1qをなす部分)の屈折率Nsよりも小さくしてある。この結果、凹凸塗膜3や平滑塗膜4を設けることによって輝度が低下することがなく、逆に、輝度を向上させることができる。   And the refractive index Nm of resin which comprises these uneven | corrugated coating film 3 and smooth coating film (scratch-resistant coating film) 4 is the part (the other surface 1q of a main-body part) which faces the coating film of the sheet-like main-body part 1. The refractive index Ns of the portion formed) is smaller. As a result, by providing the uneven coating film 3 and the smooth coating film 4, the luminance does not decrease, and conversely, the luminance can be improved.

図1の実施形態に戻って、更に本実施形態では、配列された単位光学要素2で形成される光学要素面Peの硬度Heと、凹凸塗膜3又は平滑塗膜4(両者を総称して、単に「塗膜」或いは「塗膜3、4」とも呼称する)の表面からなる塗膜面Pmの硬度Hmと、をJIS K5600−5−4(1999年)に準拠して荷重1000g、速度1mm/sの条件で測定された鉛筆硬度で評価した場合、硬度HmがF以上となり、且つ、硬度Hm≧硬度He、つまり硬度Hmが硬度He以上となる。   Returning to the embodiment of FIG. 1, in this embodiment, the hardness He of the optical element surface Pe formed by the arrayed unit optical elements 2 and the uneven coating film 3 or the smooth coating film 4 (collectively referring to both) The hardness Hm of the coating surface Pm consisting of the surface of the “coating film” or “coating film 3, 4”) is a load of 1000 g, speed according to JIS K5600-5-4 (1999). When the pencil hardness measured under the condition of 1 mm / s is evaluated, the hardness Hm is F or higher, and the hardness Hm ≧ hardness He, that is, the hardness Hm is higher than the hardness He.

図2は、光学要素面Peの硬度Heを横軸(X軸)にとり、塗膜面Pmの硬度Hmを縦軸(Y軸)にとり、硬度Heと硬度Hmの好ましい領域を示すグラフである。同図に示す様に、硬度HmがF以上で且つ硬度Hm≧硬度Heを満たす領域が、領域Eaである。この領域Ea内に硬度Heと硬度Hmを設定することで、光学シート1自身の耐擦傷性を向上させることができる。なお、硬度Heについては、例えば「B」の如く「F」に比べて軟らかくても、外力が加わると変形し外力から開放されたときは弾性復元力で元の形状に戻ることで、傷付きを効果的に防止することができるので、塗膜面Pmの硬度Hmの様に、特にF以上にする必要はない。通常は、光学要素面の硬度Heは4B以上に設定する。   FIG. 2 is a graph showing preferred regions of the hardness He and the hardness Hm, with the hardness He of the optical element surface Pe on the horizontal axis (X axis) and the hardness Hm of the coating film surface Pm on the vertical axis (Y axis). As shown in the drawing, the region Ea is a region where the hardness Hm is F or more and the hardness Hm ≧ hardness He is satisfied. By setting the hardness He and the hardness Hm in the region Ea, the scratch resistance of the optical sheet 1 itself can be improved. As for the hardness He, for example, even if it is softer than “F” such as “B”, it is deformed when an external force is applied, and when it is released from the external force, it returns to its original shape by an elastic restoring force. Can be effectively prevented, and it is not particularly necessary to set F or higher as in the hardness Hm of the coating surface Pm. Usually, the hardness He of the optical element surface is set to 4B or more.

更に好ましくは、硬度He+3≧硬度Hm≧硬度He+2とする領域Ebとすることで、光学シートの耐擦傷性を顕著に向上させることができ、とりわけ光学シート同士を重ね合わせた際に、傷の発生を極めて効果的に防止することが可能となる。特に、2枚の光学シート10が図4、5の如く、光学要素面Peと裏側面Pmとが互いに接触し且つ相互に強く摩擦が加わった場合、硬度Hm−硬度He>3となる場合には塗膜面Pmと比較して光学要素面Peが軟らか過ぎて、光学要素面Peが傷付いてしまう可能性がある。逆に、硬度Hm−硬度He<1となる場合には塗膜面Pmに対して光学要素面Peが硬過ぎ(脆くなり)、光学要素面Peが傷付いてしまう可能性があり、また、硬い光学要素面Peによって塗膜面Pmが傷付けられてしまう可能性もある。   More preferably, by setting the region Eb with hardness He + 3 ≧ hardness Hm ≧ hardness He + 2, the scratch resistance of the optical sheet can be remarkably improved, and particularly when the optical sheets are superposed, scratches are generated. Can be effectively prevented. In particular, when the optical element surface Pe and the back side surface Pm are in contact with each other and are strongly subjected to friction as shown in FIGS. 4 and 5, the two optical sheets 10 have a hardness Hm−hardness He> 3. There is a possibility that the optical element surface Pe is too soft compared with the coating film surface Pm, and the optical element surface Pe is damaged. Conversely, when hardness Hm−hardness He <1, the optical element surface Pe is too hard (becomes brittle) with respect to the coating film surface Pm, and the optical element surface Pe may be damaged, The coating surface Pm may be damaged by the hard optical element surface Pe.

<〔B〕用語の定義>
次に、本発明において用いる主要な用語について、その定義をここで説明しておく。
<[B] Definition of terms>
Next, definitions of major terms used in the present invention will be explained here.

本体部1の「一方の面1p」は、本体部1の単位光学要素2が配列される側の面である。また、光学シート10の「一方の面1p」の側を「光学要素側」と呼ぶ。「一方の面1p」は、単位光学要素2が隙間なく埋め尽くして配列されて光学要素群を構成するときは、本体部1自体には最外面乃至界面となる面としては実在しない仮想的な面となる。また、単位光学要素2が隙間を空けて配列され光学要素群を構成するときは、本体部の「一方の面1p」は、単位光学要素2の間に露出した実在の面を含む。
「光学要素面Pe」は、本体部1の一方の面1pが、隙間なく配列された単位光学要素2によって埋め尽くされる場合、隙間無く配列された単位光学要素2のみからなる面となる。また、単位光学要素2が本体部1の一方の面1pに隙間を空けて配列される場合、光学要素面Peは、隙間を空けて配列された単位光学要素2の表面と、単位光学要素2間に露出した本体部1の一方の面1pと、を含んで構成される。
「光学要素側」を「出光側」とする向きで光学シート10を使用する場合は、「光学要素側」は光学シート10をディスプレイに適用した時にディスプレイ画像を観察する「観察者側」となる。
「表裏面」とは、光学要素面Peと塗膜面Pmとの相互関係を問題とするときに、該両面を総括する呼称である。ここで、表(面)や裏(面)の語は、特に画像観察者や光源等を基準として表側や裏側の面を意味するものでは無い。
又、「光学シートを、表裏を同じ向きで2枚重ね合わせてなる」とは、2枚以上の光学シート10a、10b、・・を図4や図5の如く(2枚の場合を図示)、各光学要素面Pe、Pe、・・が全て同一方向(図4及び図5に於いては、上方)を向くようにして重ね合わせ、1つの光学シート10bの光学要素面Peが隣接する光学シート10aの塗膜面Pmと対面するようにすることを意味する。
The “one surface 1p” of the main body 1 is a surface on the side where the unit optical elements 2 of the main body 1 are arranged. Further, the “one surface 1p” side of the optical sheet 10 is referred to as an “optical element side”. The “one surface 1p” is a virtual surface that does not actually exist on the main body 1 itself as a surface serving as an outermost surface or an interface when the unit optical elements 2 are arranged so as to be filled without gaps to constitute an optical element group. It becomes a surface. Further, when the unit optical elements 2 are arranged with a gap therebetween to constitute an optical element group, the “one surface 1 p” of the main body includes an actual surface exposed between the unit optical elements 2.
The “optical element surface Pe” is a surface composed of only the unit optical elements 2 arranged without a gap when one surface 1p of the main body 1 is completely filled with the unit optical elements 2 arranged without a gap. Further, when the unit optical elements 2 are arranged on the one surface 1p of the main body 1 with a gap, the optical element surface Pe includes the surface of the unit optical elements 2 arranged with a gap and the unit optical element 2 And one surface 1p of the main body 1 exposed therebetween.
When the optical sheet 10 is used in a direction in which the “optical element side” is the “light exit side”, the “optical element side” is the “observer side” that observes the display image when the optical sheet 10 is applied to the display. .
The “front and back surfaces” is a general term for both surfaces when the mutual relationship between the optical element surface Pe and the coating film surface Pm is a problem. Here, the terms “front (surface)” and “back (surface)” do not mean front or back surfaces, particularly based on an image observer, a light source, or the like.
In addition, “the two optical sheets are overlapped in the same direction” means that two or more optical sheets 10a, 10b,... Are as shown in FIG. 4 and FIG. The optical element surfaces Pe, Pe,... Are superposed so that they all face the same direction (upward in FIGS. 4 and 5), and the optical element surfaces Pe of one optical sheet 10b are adjacent to each other. It means making it face the coating film surface Pm of the sheet 10a.

「主切断面」とは、単位光学要素2が単位柱状プリズムなど柱状形状である場合において、本体部1の「一方の面1p」に立てた法線nd(図1参照)に平行な断面のうち、単位光学要素2の配列方向にも平行な断面のことを言う。言い換えると、該法線ndに平行で且つ単位光学要素2(単位柱状プリズム)の稜線に直交する断面である。尚、図1に於いては、Z軸が該法線ndと平行方向となっている。
「平滑」とは、光学的な意味合いでの平滑を意味する。すなわち、或る程度の割合の可視光が、光学シート10を構成する面においてスネルの法則を満たしながら屈折するようになる程度を意味している。したがって、例えば、十点平均粗さRz(JISB0601:1994年版)が最短の可視光波長(0.38μm)未満となる面は、十分、平滑な面に該当する。
「粗面」とは、上記「平滑」の条件を満たさない凹凸面を意味する。即ち、或る表面(最外面)の十点平均粗さRz値が0.38μm以上であれば、一応粗面と言える。但し、光学密着防止効果、光拡散効果等の粗面の光学的効果を可視光波長の全帯域に亙って十分に奏する為には、表面の十点平均粗さRz値が、最長の可視光0.78μmを超過することが好ましい。通常は、粗面の十点平均粗さRz値は1〜10μm程度とする。
形状や幾何学的条件を特定する用語、例えば、「三角形」、「円形」、「楕円形」、「平行」、「直交」、「折れ線」等の用語は、厳密な意味に縛られることなく、製造技術における限界や成型時の誤差も含めて、同様の機能を期待し得る程度の誤差、許容範囲、乃至は均等範囲を含めて解釈される用語である。
The “main cut surface” refers to a cross section parallel to the normal nd (see FIG. 1) standing on “one surface 1p” of the main body 1 when the unit optical element 2 has a columnar shape such as a unit columnar prism. Of these, a section parallel to the arrangement direction of the unit optical elements 2 is meant. In other words, the cross section is parallel to the normal line nd and orthogonal to the ridge line of the unit optical element 2 (unit columnar prism). In FIG. 1, the Z axis is parallel to the normal line nd.
“Smooth” means smooth in an optical sense. That is, it means the degree to which a certain percentage of visible light is refracted while satisfying Snell's law on the surface constituting the optical sheet 10. Therefore, for example, a surface having a ten-point average roughness Rz (JISB0601: 1994 version) less than the shortest visible light wavelength (0.38 μm) corresponds to a sufficiently smooth surface.
The “rough surface” means an uneven surface that does not satisfy the “smooth” condition. That is, if the 10-point average roughness Rz value of a certain surface (outermost surface) is 0.38 μm or more, it can be said to be a rough surface. However, in order to sufficiently achieve the optical effects of the rough surface such as the optical adhesion prevention effect and the light diffusion effect over the entire visible light wavelength band, the surface 10-point average roughness Rz value is the longest visible. It is preferable that the light exceeds 0.78 μm. Usually, the ten-point average roughness Rz value of the rough surface is about 1 to 10 μm.
Terms that specify shape and geometric conditions, such as “triangle”, “circular”, “elliptical”, “parallel”, “orthogonal”, “polyline”, etc., are not bound to a strict meaning. It is a term that is interpreted to include an error, an allowable range, or an equivalent range to the extent that a similar function can be expected, including limitations in manufacturing technology and errors during molding.

<〔C〕光学シート>
以下、光学シートについて、各層について更に説明する。
<[C] Optical sheet>
Hereinafter, each layer of the optical sheet will be further described.

〔本体部〕
本体部1としては、ポリリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等の透明樹脂材料、或いはガラス、セラミックス等の透明無機材料を用いることができる。
本体部1は「シート状」であるが、ここで「シート」とは、「フィルム」、「板」の概念も含むものであり、これらの用語は、呼称の違いのみに基づいて、互いから区別されるものではない。つまり、厚みや剛性によって区別されるものではない。例えば、本体部1の厚さは、25μm〜5mm等である。
但し、生産性に優れる点では、光学シートはロールに巻き取れる可撓性を有することが好ましく、この点では、剛直な所謂板乃至は基板と呼ばれるものではない方が好ましい。この点を考慮すると、本体部1の厚さは、25μ〜500μm程度が好ましい。
なお、本体部1の他方の面1qは、塗膜3、4が形成される面であり、通常は平滑面であるが、非平滑面とすることも可能である。
また、本体部1の一方の面1p及び他方の面1qは、共に通常は平面であり、本体部1は板のときは平板状となる。
[Main body]
As the main body 1, a polyester resin such as poly (ethylene terephthalate) or polyethylene naphthalate, a transparent resin material such as an acrylic resin, a polycarbonate resin, or a polyolefin resin, or a transparent inorganic material such as glass or ceramics can be used. .
The main body 1 is “sheet-like”, and “sheet” here also includes the concept of “film” and “plate”, and these terms are different from each other based only on the difference in designation. It is not distinguished. That is, they are not distinguished by thickness or rigidity. For example, the thickness of the main body 1 is 25 μm to 5 mm or the like.
However, in terms of excellent productivity, the optical sheet is preferably flexible enough to be wound on a roll. In this respect, it is preferable that the optical sheet is not called a rigid so-called plate or substrate. Considering this point, the thickness of the main body 1 is preferably about 25 μm to 500 μm.
The other surface 1q of the main body 1 is a surface on which the coating films 3 and 4 are formed, and is usually a smooth surface, but may be a non-smooth surface.
Moreover, both the 1st surface 1p and the other surface 1q of the main-body part 1 are normally planes, and when the main-body part 1 is a plate, it will become flat form.

(本体部と単位光学要素の形成)
なお、本体部1及び単位光学要素2からなる光学シート10の部分は、従来公知の方法及び透明材料より形成することができる。例えば、単位光学要素2が配列されて形成される光学要素群と本体部1とを、溶融押出法、射出成形法、熱プレスによるエンボス法等の成形法で同一材料で一体的に成形して形成することができる。或いは、予め成膜乃至は成形した本体部1に対して、樹脂液を接触させ且つ該樹脂液を成形型と前記本体部1とで挟んだ状態で、硬化反応の化学反応或いは冷却によって固化させて、表面にプリズム形状など光学要素群を賦形する成形法によって、異なる層として形成することもできる。なお、樹脂液に紫外線や電子線等の電離放射線で硬化する電離放射線硬化性樹脂を使用して電離放射線で硬化させる方法、所謂2P法(フォトポリマー法)によって、単位光学要素2を作製することもできる。この場合、本体部1として樹脂シート等の透明基材を用いると、透明基材上に樹脂層からなる光学要素群が形成される。つまり、隣接する光学要素2同士の間の谷部においても僅かな厚みの樹脂層が形成される。この様なときは、本体部1は、該谷部における樹脂の厚みを有した樹脂層であって、谷部及び谷部以外の部分に延び亘る樹脂層(ランド部)と、透明基材と、から構成され、透明基材上に形成した樹脂層の厚みの一部を含むことになる。
(Formation of main body and unit optical element)
In addition, the part of the optical sheet 10 which consists of the main-body part 1 and the unit optical element 2 can be formed from a conventionally well-known method and a transparent material. For example, an optical element group formed by arranging unit optical elements 2 and the main body 1 are integrally molded with the same material by a molding method such as a melt extrusion method, an injection molding method, or an embossing method by hot pressing. Can be formed. Alternatively, a resin liquid is brought into contact with the main body 1 formed or molded in advance and the resin liquid is sandwiched between the mold and the main body 1 and solidified by a chemical reaction of a curing reaction or cooling. In addition, the layers can be formed as different layers by a molding method in which an optical element group such as a prism shape is formed on the surface. The unit optical element 2 is prepared by a method of curing with ionizing radiation using an ionizing radiation curable resin that is cured with ionizing radiation such as ultraviolet rays or electron beams in the resin liquid, so-called 2P method (photopolymer method). You can also. In this case, when a transparent substrate such as a resin sheet is used as the main body 1, an optical element group composed of a resin layer is formed on the transparent substrate. That is, a resin layer having a slight thickness is formed also in the valley portion between the adjacent optical elements 2. In such a case, the main body portion 1 is a resin layer having a resin thickness in the valley portion, the resin layer (land portion) extending to a portion other than the valley portion and the valley portion, a transparent substrate, And includes a part of the thickness of the resin layer formed on the transparent substrate.

〔単位光学要素〕
単位光学要素2は、代表的には単位柱状プリズムであるが、この他、マイクロレンズ(マイクロレンズを多数配列したものが、フライアイレンズ或いは蝿の目レンズなどと呼ばれている)など、従来公知の各種単位光学要素を適宜採用することができる。
以下、ここでは単位柱状プリズムについて、更に説明する。
(Unit optical element)
The unit optical element 2 is typically a unit columnar prism, but other than this, a microlens (a device in which a large number of microlenses are arranged is called a fly-eye lens or an eyelet lens) is conventionally used. Various known unit optical elements can be appropriately employed.
Hereinafter, the unit columnar prism will be further described.

(単位柱状プリズム)
単位柱状プリズムは、代表的には主切断面の形状が、本体部1側を底辺とする三角形形状の単位プリズムである。この様な、単位柱状プリズムとしては、従来公知の各種プリズムを適宜採用することができる。また、主切断面形状は、三角形、四角形、五角形、六角形等の様な直線のみからなる形状の他、一部に曲線がある形状、曲線のみからなる形状(例えば、円、楕円、抛物線、双曲線、正弦曲線等の曲線の一部)も含み得る。
なお、主切断面形状が円、楕円等の曲線一部の場合は、単位柱状レンズと呼ぶこともでき、本発明に於ける単位柱状プリズムには単位柱状レンズも含み得る。
(Unit columnar prism)
The unit columnar prism is typically a unit prism having a triangular shape with a main cut surface having a base on the main body 1 side. As such unit columnar prisms, various conventionally known prisms can be appropriately employed. The main cutting plane shape is not only a straight line shape such as a triangle, quadrangle, pentagon, hexagon, etc., but also a shape with a curve in part, a shape only with a curve (for example, a circle, an ellipse, a fence line, A part of a curve such as a hyperbola or a sine curve may also be included.
When the main cut surface is a part of a curve such as a circle or an ellipse, it can also be called a unit columnar lens, and the unit columnar prism in the present invention may include a unit columnar lens.

また、単位柱状プリズムは、配列された各単位柱状プリズムが全て同一形状、同一寸法である必要は無く、形状及び寸法のうち1以上が異なるものでも良く、更に不規則に異なっていてもよい。また、単位柱状プリズムの配列は、全て同一配列周期での規則的配列以外に、配列周期が異なるものでも良く、更に不規則に異なっているものでも良い。
また、単位柱状プリズムとして、特許第3119471号公報、特表2002−504698号公報等に記載の稜線の高さが折れ線状に変化し一定でない形状は、プリズム面側での光滲潤や干渉縞等の光学密着に起因する諸問題を防げる点で、好ましい形状の一種である。なお、稜線の高さを折れ線状に変化させた単位柱状プリズムを配列したプリズム群を製造するには、例えば、従来からこの種のプリズム群の製造に利用されているシリンダ状(円筒状)成形型を、切削バイトで作製するときに、切削バイトの切削深さを折れ線状に変化させつつ切削していくことで、容易に製造できる。
Further, the unit columnar prisms do not have to have the same shape and the same size as each of the arranged unit columnar prisms, and one or more of the shapes and sizes may be different or may be irregularly different. Further, the arrangement of the unit columnar prisms may be different from each other in the arrangement period other than the regular arrangement in the same arrangement period, or may be irregularly different.
Further, as the unit columnar prism, the height of the ridge line described in Japanese Patent No. 3119471, Japanese Translation of PCT International Publication No. 2002-504698, etc. is changed into a polygonal line shape, and the shape is not constant. It is a kind of a preferable shape in that various problems caused by optical adhesion such as can be prevented. In order to manufacture a prism group in which unit columnar prisms in which the height of the ridgeline is changed to a polygonal line are manufactured, for example, cylindrical (cylindrical) molding conventionally used for manufacturing this type of prism group is used. When the mold is manufactured with a cutting tool, it can be easily manufactured by cutting while changing the cutting depth of the cutting tool into a polygonal line.

(寸法及び分布の具体例)
ここで、単位柱状プリズム及びそれからなる光学要素群(プリズム群)の寸法の具体例を示せば、単位柱状プリズムの底面の幅(プリズム配列方向での寸法)は10〜500μm、稜線を形成する頂部の高さは5〜250μm、主切断面形状は二等辺三角形状のとき稜線を形成する頂角は80〜110°好ましくは90°である。
(Specific examples of dimensions and distribution)
Here, if the specific example of the dimension of a unit columnar prism and the optical element group (prism group) which consists of it is shown, the width | variety of the bottom face (dimension in a prism arrangement direction) of a unit columnar prism will be 10-500 micrometers, and the top part which forms a ridgeline When the main cutting plane shape is an isosceles triangle, the apex angle forming the ridge line is 80 to 110 °, preferably 90 °.

また、マイクロレンズも単位柱状プリズムと同様に、配列された各マイクロレンズが全て同一形状、同一寸法以外に、形状及び寸法のうち1以上が異なるものでも良く、更に不規則に異なっているものでも良い。また、マイクロレンズの配列は、全て同一配列周期での規則的配列以外に、配列周期が異なるものでも良く、更に不規則に異なっているものでも良い。なお、マイクロレンズとしては、球又は楕円体の一部で底面形状が円又は楕円となる形状が代表的であるが、この他の形状(例えば円錐、角錐など)でも良い。   Similarly to the unit columnar prism, each of the arranged microlenses may have one or more different shapes and dimensions other than the same shape and size, and may be irregularly different. good. Further, the arrangement of the microlenses may be other than the regular arrangement with the same arrangement period, the arrangement period may be different, and the arrangement may be irregularly different. A typical microlens is a part of a sphere or ellipsoid whose bottom shape is a circle or an ellipse, but other shapes (for example, a cone or a pyramid) may be used.

以上の様に単位光学要素2としては、代表的には単位柱状プリズムとマイクロレンズとがあるが、本光学シート10が備える単位光学要素2としては、単位柱状プリズム(単位柱状レンズを含み得る)のみでも良いし、マイクロレンズのみでも良いし、特開2010−44379号公報に開示されているような単位柱状プリズムとマイクロレンズとの両方を有するものとしても良い。   As described above, the unit optical element 2 typically includes a unit columnar prism and a microlens, but the unit optical element 2 provided in the optical sheet 10 includes a unit columnar prism (can include a unit columnar lens). Or a microlens alone, or may have both a unit columnar prism and a microlens as disclosed in Japanese Patent Application Laid-Open No. 2010-44379.

〔凹凸塗膜〕
塗膜のうち凹凸塗膜3の形態は、少なくともバインダ樹脂を含み、外部(周囲の雰囲気等)に露出した最外面が粗面となった透明な層である。凹凸塗膜3は、微粒子を含まない構成であって、成形型によって塗膜表面に凹凸(粗面)を形成したものでも良いし、或はバインダ樹脂と微粒子とを含む構成とし、微粒子の塗膜表面への突出によって凹凸を形成しても良い。以下、特に、バインダ樹脂に微粒子を含む形態について詳述する。
この様な形態の場合、凹凸塗膜3は、バインダ樹脂と微粒子を必須成分とし、更に必要に応じて、各種添加剤、溶剤等を含む樹脂組成物(塗液、塗料)を塗布することによって形成される得る。樹脂組成物が溶剤を含むことによって、固化時に塗膜体積収縮による膜厚減少を引き起こすようにしてもよい。膜厚減少によって、微粒子が浮き上がる様に突出した微小突起が形成され、凹凸塗膜3の表面、つまり塗膜面Pmを粗面として形成することができる。又、バインダ樹脂を架橋反応、附加重合反応等によって硬化する樹脂を用い、硬化時の体積收縮を引き起こすようにしてもよい。この場合も、体積収縮によって、微粒子が凹凸塗膜面に突出して、粗面を形成することができる。
尚、上記微粒子を含む何れの形態に於いても、突出した微粒子表面は、バインダ樹脂で被覆される形態、或はバインダ樹脂で被覆されない形態の何れも可能である。但し、突出した微粒子の脱落防止、及び本発明が目指す光学シート自体の表裏面に対する傷付き防止効果の更なる向上の為には、突出した微粒子表面をバインダ樹脂が被覆する形態の方が好ましい。
[Uneven film]
Among the coating films, the uneven coating film 3 is a transparent layer containing at least a binder resin and having an outermost surface exposed to the outside (such as an ambient atmosphere) as a rough surface. The concavo-convex coating 3 may have a structure that does not include fine particles, and may have a concavo-convex surface (rough surface) formed on the surface of the coating film by a mold, or may include a binder resin and fine particles. Concavities and convexities may be formed by protrusion to the film surface. Hereinafter, in particular, a mode in which the binder resin contains fine particles will be described in detail.
In the case of such a form, the concavo-convex coating film 3 includes a binder resin and fine particles as essential components, and further, by applying a resin composition (coating liquid, paint) containing various additives, solvents, and the like as necessary. Can be formed. When the resin composition contains a solvent, it may cause a decrease in film thickness due to shrinkage of the coating film volume during solidification. By reducing the film thickness, fine protrusions are formed so that the fine particles are lifted, and the surface of the uneven coating film 3, that is, the coating film surface Pm can be formed as a rough surface. Further, a resin that is cured by a crosslinking reaction, an addition polymerization reaction, or the like may be used for the binder resin to cause volume reduction at the time of curing. Also in this case, the rough surface can be formed by projecting the fine particles on the surface of the uneven coating film by volume shrinkage.
In any form including the fine particles, the protruding fine particle surface may be either coated with a binder resin or not coated with a binder resin. However, in order to prevent the protruding fine particles from falling off and to further improve the effect of preventing scratches on the front and back surfaces of the optical sheet itself aimed at by the present invention, a form in which the protruding fine particle surface is coated with a binder resin is preferable.

上記バインダ樹脂としては、第1には、微粒子をバインダ樹脂マトリック中に強固に固定し、凹凸塗膜3自体の本体部1からの剥離を防ぐ観点から、本体部1及び微粒子との密着性が強い透明な樹脂を適宜採用すると良い。
この様なバインダ樹脂としては、熱可塑性樹脂、或いは、熱硬化性樹脂や電離放射線硬化性樹脂等の硬化性樹脂などの透明な樹脂を使用できる。例えば、熱可塑性樹脂は、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、塩化ビニル−酢酸ビニル共重合体等であり、熱硬化性樹脂は熱硬化性アクリル系樹脂、熱硬化性ポリエステル系樹脂、熱硬化性ポリウレタン系樹脂等であり、電離放射線硬化性樹脂は紫外線や電子線等の電離放射線の照射で硬化する、アクリル系樹脂、エポキシ系樹脂、ポリエステル系樹脂等である。なお、硬化性樹脂の場合は、硬化剤、重合開示剤などが該樹脂成分の一部として含み得る。
上記各種バインダ樹脂のなかでも、特に電離放射線硬化性樹脂は、硬化が迅速で生産性に優れる上、形成される凹凸塗膜3の塗膜強度を強くでき耐擦傷性を優れたものに出来る点で好ましい。
As the binder resin, first, from the viewpoint of firmly fixing the fine particles in the binder resin matrix and preventing peeling of the uneven coating film 3 itself from the main body 1, the adhesion between the main body 1 and the fine particles is high. A strong transparent resin may be used as appropriate.
As such a binder resin, a transparent resin such as a thermoplastic resin or a curable resin such as a thermosetting resin or an ionizing radiation curable resin can be used. For example, the thermoplastic resin is an acrylic resin, a polyester resin, a polyurethane resin, a vinyl chloride-vinyl acetate copolymer, and the thermosetting resin is a thermosetting acrylic resin, a thermosetting polyester resin, Examples of the thermosetting polyurethane resin include ionizing radiation curable resins such as acrylic resins, epoxy resins, and polyester resins that are cured by irradiation with ionizing radiation such as ultraviolet rays and electron beams. In the case of a curable resin, a curing agent, a polymerization disclosure agent, and the like can be included as part of the resin component.
Among the various binder resins mentioned above, the ionizing radiation curable resin, in particular, is quick in curing and excellent in productivity, and also can increase the coating strength of the formed uneven coating film 3 and have excellent scratch resistance. Is preferable.

該電離放射線硬化性樹脂としては、電離放射線で架橋等の反応により重合硬化するモノマー及び/又はプレポリマーが用いられる。
上記モノマー(単量体)としては、ラジカル重合性モノマーとして、例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートなどの単官能(メタ)アクリレート類、ジプロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能(メタ)アクリレート類等の各種(メタ)アクリレートが挙げられる。尚、ここで(メタ)アクリレートとの表記は、アクリレート又はメタクリレートを意味する。
カチオン重合性モノマーとして、例えば、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートなどの脂環式エポキシド類、ビスフェノールAジグリシジルエーテルなどグリシジルエーテル類、4−ヒドロキシブチルビニルエーテルなどビニルエーテル類、3−エチル−3−ヒドロキシメチルオキセタンなどオキセタン類等が挙げられる。
As the ionizing radiation curable resin, monomers and / or prepolymers that are polymerized and cured by a reaction such as crosslinking with ionizing radiation are used.
Examples of the monomer (monomer) include radically polymerizable monomers such as methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate, Monofunctional (meth) acrylates such as dicyclopentenyl (meth) acrylate, dipropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane Tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (me ) Acrylates, polyfunctional (meth) acrylate various (meth) acrylates such as such as dipentaerythritol hexa (meth) acrylate. Here, the expression (meth) acrylate means acrylate or methacrylate.
Examples of the cationic polymerizable monomer include alicyclic epoxides such as 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, glycidyl ethers such as bisphenol A diglycidyl ether, 4-hydroxybutyl vinyl ether And vinyl ethers, and oxetanes such as 3-ethyl-3-hydroxymethyloxetane.

また、上記プレポリマー(乃至オリゴマー)としては、ラジカル重合性プレポリマーとして、例えば、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、トリアジン(メタ)アクリレート、シリコン(メタ)アクリレート等の各種(メタ)アクリレートプレポリマー、トリメチロールプロパントリチオグリコレート、ペンタエリスリトールテトラチオグリコレート等のポリチオール系プレポリマー、不飽和ポリエステルプレポリマー等が挙げられる。
この他、カチオン重合性プレポリマーとして、例えば、ノボラック系型エポキシ樹脂プレポリマー、芳香族ビニルエーテル系樹脂プレポリマー等が挙げられる。
これらモノマー、或いはプレポリマーは、要求される性能、塗布適性等に応じて、1種類単独で用いる他、モノマーを2種類以上混合したり、プレポリマーを2種類以上混合したり、或いはモノマー1種類以上とプレポリマー1種類以上とを混合して用いたりすることができる。
Moreover, as said prepolymer (or oligomer), as a radically polymerizable prepolymer, for example, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, triazine (meth) acrylate, silicon (meth) acrylate And various (meth) acrylate prepolymers such as polythiol prepolymers such as trimethylolpropane trithioglycolate and pentaerythritol tetrathioglycolate, and unsaturated polyester prepolymers.
In addition, examples of the cationic polymerizable prepolymer include a novolac type epoxy resin prepolymer and an aromatic vinyl ether type resin prepolymer.
These monomers or prepolymers may be used alone or in combination of two or more types of monomers, two or more types of prepolymers, or one type of monomer, depending on the required performance, coating suitability, etc. A mixture of the above and one or more prepolymers can be used.

電離放射線として、紫外線、又は可視光線を採用する場合には、通常は、光重合開始剤を添加する。光重合開始剤としては、ラジカル重合性のモノマー又はプレポリマーの場合には、ベンゾフェノン系、チオキサントン系、ベンゾイン系、アセトフェノン系等の化合物が、又カチオン重合系のモノマー又はプレポリマーの場合には、メタロセン系、芳香族スルホニウム系、芳香族ヨードニウム系等の化合物が用いられる。これら光重合開始剤は、上記モノマー及び/又はプレポリマーからなる組成物100質量部に対して、0.1〜5質量部程度添加する。   When ultraviolet rays or visible rays are employed as the ionizing radiation, a photopolymerization initiator is usually added. As a photopolymerization initiator, in the case of a radical polymerizable monomer or prepolymer, a compound such as a benzophenone-based, thioxanthone-based, benzoin-based, or acetophenone-based compound, or in the case of a cationic polymerization-based monomer or prepolymer, Metallocene, aromatic sulfonium and aromatic iodonium compounds are used. These photopolymerization initiators are added in an amount of about 0.1 to 5 parts by mass with respect to 100 parts by mass of the composition comprising the monomer and / or prepolymer.

((屈折率))
更に、上記バインダ樹脂としては、第2には、輝度を向上させる観点から、該樹脂の屈折率Nmを、本体部1に於ける塗膜面に面する部分(他方の面1qに面する部分)を成す樹脂の屈折率Nsに比べて小さいものを採用する。この結果、光学シート10の入光面側に設けた凹凸塗膜3の塗膜面で生じ得る拡散や反射等による光の損失を抑制できる結果、その分、輝度を向上できることになる。また、空気層との界面での屈折率差は、屈折率Nsの本体部1の面が露出している場合よりも、該屈折率Nsよりも小さい屈折率Nmの凹凸塗膜3の面が露出している場合の方が、小さい。従って、この点でも、空気との屈折率差が小さい凹凸塗膜3の存在によって、その分、輝度を向上できることになる。
((Refractive index))
Further, as the binder resin, secondly, from the viewpoint of improving luminance, the refractive index Nm of the resin is set to a portion facing the coating surface in the main body portion 1 (portion facing the other surface 1q). A resin having a smaller refractive index Ns than that of the resin is employed. As a result, the loss of light due to diffusion, reflection, etc. that can occur on the coating surface of the uneven coating 3 provided on the light incident surface side of the optical sheet 10 can be suppressed. As a result, the luminance can be improved accordingly. Further, the refractive index difference at the interface with the air layer is such that the surface of the uneven coating film 3 with a refractive index Nm smaller than the refractive index Ns is smaller than when the surface of the main body 1 having a refractive index Ns is exposed. Smaller when exposed. Accordingly, also in this respect, the luminance can be improved by the presence of the uneven coating film 3 having a small refractive index difference from air.

なお、屈折率Nm及び屈折率Nsは、屈折率Nm<屈折率Ns、となるように設定する。そして、光学の反射防止膜の設計理論に於いて知られているように、入射光の反射損失を最小化し、輝度向上効果を最大化する為には、更に、Nm=(Ns)1/2とする(( )1/2は( )の平方根を意味する)現実に使用可能な材料でこの関係を厳密に満たすことは、一般的には、難しいことが多いが、可能な範囲内で極力この関係に近付く設計とするのが良い。
凹凸塗膜3を成す樹脂の屈折率Nmを、本体部1の屈折率Nsよりも小さくするには、本体部1が例えばポリエチレンテレフタレートからなる場合、屈折率Nsを1.65とすれば、凹凸塗膜3を成す樹脂は、屈折率Nm<1.65、である樹脂を使用すれば良く、特に、Nm=(1.65)1/2=1.29が最適である。
The refractive index Nm and the refractive index Ns are set so that the refractive index Nm <the refractive index Ns. Further, as is known in the design theory of optical antireflection films, in order to minimize the reflection loss of incident light and maximize the brightness enhancement effect, Nm = (Ns) 1/2. (() 1/2 means the square root of ()) In general, it is often difficult to meet this relationship exactly with materials that can be used, but as much as possible A design that approaches this relationship is good.
In order to make the refractive index Nm of the resin forming the uneven coating film 3 smaller than the refractive index Ns of the main body 1, when the main body 1 is made of, for example, polyethylene terephthalate, the refractive index Ns is 1.65. The resin forming the coating film 3 may be a resin having a refractive index Nm <1.65, and particularly, Nm = (1.65) 1/2 = 1.29 is optimal.

また、バインダ樹脂は、各種物性を調整する為に2種以上を併用しても良いが、そのなかでも屈折率を調整し低下させる為の好ましい樹脂の一種として、公知の低屈折率樹脂を併用しても良く、或いは、低屈折率樹脂を単独使用しても良い。低屈折率樹脂としては、例えば、フッ素原子含有ポリマーを用いることができる。フッ素原子含有ポリマーは単独使用でも良いが、密着性などの物性調整の為に、フッ素原子は含有していないフッ素原子非含有ポリマーを併用することもできる。また、フッ素原子含有ポリマー自体は、フッ素原子含有モノマー以外にフッ素原子非含有モノマーを併用したポリマー(共重合体)でも良く、フッ素原子非含有モノマーの併用により、ポリマー自体で屈折率、密着性などの物性調整を行ってもよい。
フッ素原子含有ポリマーとしては、塗膜強度や硬化が迅速な点で電離放射線硬化性のものを好ましく用いることができる。例えば、フッ素原子含有アクリレート系電離放射線硬化性樹脂である。フッ素原子含有ポリマーによれば、屈折率Nmを1.45以下にすることが可能である。また、フッ素原子含有アクリレート系電離放射線硬化性樹脂は、フッ素原子を含有していないフッ素原子非含有アクリレート系電離放射線硬化性樹脂を併用しても良い。例えば、多官能アクリレート系モノマーの併用などである。
Two or more binder resins may be used in combination to adjust various physical properties. Among them, a known low refractive index resin is used in combination as a preferred resin for adjusting and lowering the refractive index. Alternatively, a low refractive index resin may be used alone. As the low refractive index resin, for example, a fluorine atom-containing polymer can be used. The fluorine atom-containing polymer may be used alone, but in order to adjust physical properties such as adhesion, a fluorine atom-free polymer containing no fluorine atom may be used in combination. In addition, the fluorine atom-containing polymer itself may be a polymer (copolymer) in which a fluorine atom-free monomer is used in addition to the fluorine atom-containing monomer. The physical properties may be adjusted.
As the fluorine atom-containing polymer, an ionizing radiation curable polymer can be preferably used in terms of coating film strength and rapid curing. For example, a fluorine atom-containing acrylate ionizing radiation curable resin. According to the fluorine atom-containing polymer, the refractive index Nm can be 1.45 or less. The fluorine atom-containing acrylate ionizing radiation curable resin may be used in combination with a fluorine atom-free acrylate ionizing radiation curable resin that does not contain fluorine atoms. For example, combined use of polyfunctional acrylate monomers.

また、フッ素原子含有ポリマーとしては、市販品を用いることもできる。例えば、JSR社製のオプスターTU2181−6、オプスターTU2181−7、オプスターTU2202、オプスターJN35、ダイキン工業社製のオプツールAR110、オプツールAR100等が挙げられる。   Moreover, as a fluorine atom containing polymer, a commercial item can also be used. For example, Opstar TU2181-6, Opstar TU2181-7, Opstar TU2202, Opstar JN35, Daikin Industries, Ltd. OPTOOL AR110, OPTOOL AR100, etc. manufactured by JSR Corporation may be used.

また、凹凸塗膜3は、バインダ樹脂以外に、塗膜の屈折率を低下させる為に、低屈折率剤を含有させても良い。低屈折率剤としては公知のものを用いることができる。例えば、それ自体が低屈折率で中実の無機微粒子、内部に空洞や空隙がある中空状微粒子などを用いることができる。ここで、中空状微粒子とは、内部に空洞を有する中空構造、或いは内部に隙間を有する多孔質構造、を有する微粒子のことを意味する。
中実の無機微粒子としては、シリカ(屈折率1.45)、弗化マグネシウム(屈折率1.38)、Na3AlF6(屈折率1.33)等があり、平均粒子径は例えば10nm〜100nmである。また、中空状微粒子としては、内部に空洞を有する中空シリカが代表的であり、平均粒子径を例えば10nm〜100nmとすることができる。
なお、低屈折率剤は、その屈折率低下効果の点で、バインダ樹脂に対して通常50〜200wt%の範囲で使用される。
Moreover, in order to reduce the refractive index of a coating film, the uneven | corrugated coating film 3 may contain a low refractive index agent other than binder resin. A well-known thing can be used as a low refractive index agent. For example, solid inorganic fine particles having a low refractive index per se, hollow fine particles having cavities and voids inside, and the like can be used. Here, the hollow fine particles mean fine particles having a hollow structure having a cavity inside or a porous structure having a gap inside.
Solid inorganic fine particles include silica (refractive index 1.45), magnesium fluoride (refractive index 1.38), Na 3 AlF 6 (refractive index 1.33), and the average particle size is, for example, 10 nm to 100 nm. The hollow fine particles are typically hollow silica having cavities inside, and the average particle size can be set to, for example, 10 nm to 100 nm.
In addition, a low refractive index agent is normally used in 50-200 wt% with respect to binder resin at the point of the refractive index fall effect.

凹凸塗膜3を、前記した様に、バインダ樹脂と共に表面凹凸形成の為に微粒子を必須成分とし構成する場合、該微粒子としては、光学シートとしての基本性能である光透過性を損なわない様に透明性を有する微粒子を用いることができる。なかでも、粒子形状が球状の球状粒子が微粒子として好ましい。なお、球状とは粒子形状が球状乃至はそれに近い略球状の粒子である。粒子形状を球状とすることで、微粒子によって凹凸塗膜3の表面に生成される微小突起の頂上部及びその周辺の形状を、角ばった形状ではなく、丸みを帯びた形状にして生成できる。しかも、更に、微小突起部分で微粒子が露出せず、球状粒子の微粒子をバインダ樹脂で被覆する形態とした場合は、微粒子が脱落し難くなる上、バインダ樹脂自体が隣接する部材と接触する部分となる。その結果、微小突起を形状的に滑り易い形状にできるので、光学シートに接触する光学部材、或いは該光学シート自体(それも微小突起の先端など微小突起自体)を摩擦等によって傷付き難くして、接触部の欠け等の防止に効果的となる。
この様な球状の微粒子、つまり球状粒子としては、アクリル樹脂ビーズ、ポリカーボネート樹脂ビーズ、ポリウレタン樹脂ビーズ等の樹脂ビーズの他、ガラスビーズ、シリカビーズ等の無機質ビーズを用いることができる。
As described above, when the concavo-convex coating film 3 is constituted with fine particles as an essential component for forming the surface concavo-convex together with the binder resin, the fine particles do not impair the light transmittance which is the basic performance as an optical sheet. Fine particles having transparency can be used. Of these, spherical particles having a spherical particle shape are preferred as the fine particles. Note that the term “spherical” refers to particles having a spherical shape or a nearly spherical shape. By making the particle shape spherical, the shape of the tops of the fine protrusions generated on the surface of the concavo-convex coating film 3 by the fine particles and the periphery thereof can be generated in a rounded shape instead of a square shape. In addition, when the fine protrusions do not expose the fine particles and the spherical fine particles are coated with the binder resin, the fine particles are difficult to drop off, and the binder resin itself is in contact with the adjacent member. Become. As a result, the microprotrusions can be made slippery in shape, so that the optical member in contact with the optical sheet, or the optical sheet itself (also the microprotrusions such as the tips of the microprotrusions) are hardly damaged by friction or the like. It is effective for preventing the contact portion from being chipped.
As such spherical fine particles, that is, spherical particles, in addition to resin beads such as acrylic resin beads, polycarbonate resin beads, and polyurethane resin beads, inorganic beads such as glass beads and silica beads can be used.

なお、この微粒子の屈折率は、通常は、低屈折率材料と兼用はさせない為、バインダ樹脂の屈折率になるべく近い屈折率のものを用いることが、微粒子とバインダ樹脂との界面で光を拡散させない点で好ましい。但し、光拡散機能を意識的に光学シートに付与したい場合には、この限りではない。
ところで、この表面凹凸形成用の微粒子を、前記した低屈折率剤と兼用させることも出来る。但しその為には、低屈折率化効果の点で、バインダ樹脂に対して50〜200wt%程度などと、同レベルで含有させる必要がある。しかし、こうすると、表面凹凸形成用の微粒子の方はバインダ樹脂に対して通常最大でも5wt%以下で含有させるのが好ましいので、該微粒子によって、表面凹凸を意図した様に形成することが難しくなり、且つ光拡散性が必要以上に強くなり過ぎる。従って、表面凹凸形成用の微粒子は、光学密着防止用の可視光線波長以上(Rz≧0.78μm)の微小突起を形成するのに足る1〜10μm程度の粒径で、且つバインダ樹脂と極力屈折率が近い物とし、一方、低屈折率剤としての無機微粒子や中空状微粒は、不要な光拡散発現を回避する為に、可視光線の最小波長未満である0.01〜0.2μm程度の粒径で、且つ屈折率もNm=(Ns)1/2の関係を極力満たす物とし、各々にその機能を分担させ併用するのが好ましい。
Since the refractive index of the fine particles is not usually used as a low refractive index material, it is necessary to use a material having a refractive index as close as possible to the refractive index of the binder resin, which diffuses light at the interface between the fine particles and the binder resin. This is preferable in that it is not allowed to occur. However, this is not the case when the light diffusion function is consciously imparted to the optical sheet.
By the way, the fine particles for forming surface irregularities can also be used as the low refractive index agent. However, for that purpose, it is necessary to contain it at the same level as about 50 to 200 wt% with respect to the binder resin in terms of the effect of reducing the refractive index. However, in this case, since the fine particles for forming the surface irregularities are preferably contained in the binder resin usually at a maximum of 5 wt% or less, it becomes difficult to form the surface irregularities as intended by the fine particles. In addition, the light diffusibility becomes too strong than necessary. Accordingly, the fine particles for forming the surface irregularities have a particle diameter of about 1 to 10 μm, which is sufficient to form microprotrusions having a wavelength longer than the visible light wavelength (Rz ≧ 0.78 μm) for preventing optical adhesion, and are refracted as much as possible with the binder resin. On the other hand, the inorganic fine particles and hollow fine particles as the low refractive index agent are about 0.01 to 0.2 μm which is less than the minimum wavelength of visible light in order to avoid unnecessary light diffusion expression. It is preferable to use a particle size and a refractive index satisfying the relationship of Nm = (Ns) 1/2 as much as possible, and to share the function with each other.

球状粒子の粒子径は、例えば、(平均しない個々の粒子の1次)粒子径で1〜10μm程度である。また、粒子径分布は広いと微小突起の夫々の突出高さ(微小突起の存在しない部分の凹凸塗膜3の表面からの個々の微小突起部分の標高)の分布が広くなる。従って、粒子径の大きい球状粒子は突出高さが高い微小突起を生成し空隙形成に積極的に作用するが、光学部材との接触頻度が大きく且つ接触による外力も大きくなるので、その分、塗膜面Pmが傷付き易くなる。この為、粒子径分布は狭い方が好ましい。従って、粒子径分布が狭い、つまり単分散乃至は単分散に近い粒子径分布を有するものが、より好ましい。例えば、先の特許文献2で開示されている様な、粒子径分布が粒子径分布曲線に於ける半値幅を1μm以下としたものが好ましい。この様に半値幅が1μm以下の単分散の球状粒子を微粒子として用いることによって、微粒子によって生成される微小突起の突出高さの均一性が向上し、突出高さの相対的に高い微小突起への荷重集中の度合いを低下させることができる。なお、半値幅とは粒子径分布に於いては、粒子径分布曲線のピーク高さの1/2の高さに該当する部分での粒子径(値の分布)幅である。この為、球状粒子の側からも耐擦傷性を向上させることができる。   The particle size of the spherical particles is, for example, about 1 to 10 μm in terms of (primary of individual particles not averaged). In addition, when the particle size distribution is wide, the distribution of the respective protrusion heights of the microprotrusions (the altitudes of the individual microprotrusion portions from the surface of the uneven coating film 3 where the microprotrusions do not exist) becomes wide. Therefore, spherical particles with a large particle size generate microprojections with a high protrusion height and positively act on the formation of voids. However, since the contact frequency with the optical member is high and the external force due to the contact also increases, the coating amount is increased accordingly. The film surface Pm is easily damaged. For this reason, it is preferable that the particle size distribution is narrow. Accordingly, it is more preferable that the particle size distribution is narrow, that is, monodisperse or has a particle size distribution close to monodispersion. For example, as disclosed in the above-mentioned Patent Document 2, it is preferable that the particle size distribution has a half width of 1 μm or less in the particle size distribution curve. Thus, by using monodispersed spherical particles having a half-value width of 1 μm or less as the fine particles, the uniformity of the projection height of the microprojections generated by the microparticles is improved, and the microprojections having a relatively high projection height are obtained. The load concentration degree can be reduced. The half-value width is the particle diameter (value distribution) width at a portion corresponding to a height that is ½ of the peak height of the particle diameter distribution curve. For this reason, the scratch resistance can be improved also from the spherical particle side.

なお、粒子径分布及び平均粒子径は、個数基準もあるが、一般には体積基準(乃至は重量)が使われており、本発明でもこれと同様に体積基準の体積平均粒子径であり、半値幅も同様である。この様な、体積基準の粒子径分布乃至は平均粒子径は、レーザ光線を利用した動的光散乱法等によって測定できる。また、顕微鏡観察で個々の球状粒子の粒子径を測定しこれから算出しても良い。   The particle size distribution and the average particle size may be based on the number, but generally, the volume basis (or weight) is used. In the present invention, the volume-based volume average particle size is also used in the same manner. The price range is the same. Such a volume-based particle size distribution or average particle size can be measured by a dynamic light scattering method using a laser beam. Moreover, the particle diameter of each spherical particle may be measured by microscopic observation and calculated from this.

また、球状粒子の(個々の粒子の)最大径が10μmを超えると光の進路変更作用が増加する。この為、光学シート10を輝度向上シートとして使用するときに、光学シート10の光学要素面Peで機能させる集光作用が低下しその光学機能が損なわれ始める。従って、極力10μm超の粒子は避けるのが好ましい。
もっとも、あえて、粒子径の大きいものを採用して、適度に拡散させる機能を付与する形態を排除するものではない。一方、球状粒子の(個々の粒子の)最小径が1μm未満となると、凹凸塗膜3を形成する塗料組成物での球状粒子の分散に高度の技術が必要になるとともに、粗面の凹凸の突起高さ(十点平均粗さRzで評価)を必要とされる0.78μm以上確保することが難しくなり、また材料自体が高価となる等の点で好ましくない。
なお、球状粒子など微粒子の含有量は、バインダ樹脂に対して、例えば2〜15質量%とする。微粒子の含有量を調整することで、微小突起の面密度を調整することができる。
Further, when the maximum diameter (individual particles) of the spherical particles exceeds 10 μm, the light path changing action increases. For this reason, when the optical sheet 10 is used as a brightness enhancement sheet, the light condensing action that functions on the optical element surface Pe of the optical sheet 10 is reduced, and the optical function thereof starts to be impaired. Therefore, it is preferable to avoid particles exceeding 10 μm as much as possible.
However, it is not intended to exclude a mode of giving a function of appropriately diffusing by adopting a particle having a large particle diameter. On the other hand, when the minimum diameter (individual particles) of the spherical particles is less than 1 μm, a high level of technology is required to disperse the spherical particles in the coating composition that forms the uneven coating film 3, and the uneven surface roughness is reduced. It is not preferable in that it is difficult to secure a projection height (evaluated by a ten-point average roughness Rz) of 0.78 μm or more which is required and the material itself is expensive.
In addition, content of microparticles | fine-particles, such as a spherical particle, shall be 2-15 mass% with respect to binder resin, for example. By adjusting the content of the fine particles, the surface density of the fine protrusions can be adjusted.

なお、凹凸塗膜3に、光を拡散させる光拡散機能を積極的に付与してもよい。例えば、凹凸塗膜3が含有する微粒子を光拡散剤として機能させることによって、光拡散機能が付与され得る。微粒子を光拡散剤として機能させるには、微粒子とバインダ樹脂との屈折率差の大きい材料を用いると良い。この場合、微粒子とバインダ樹脂との屈折率の差は0.1以上とすることができ、好ましくは0.15以上とすることができる。   The uneven coating film 3 may be positively imparted with a light diffusion function for diffusing light. For example, the light diffusing function can be imparted by causing the fine particles contained in the uneven coating film 3 to function as a light diffusing agent. In order for the fine particles to function as a light diffusing agent, it is preferable to use a material having a large difference in refractive index between the fine particles and the binder resin. In this case, the difference in refractive index between the fine particles and the binder resin can be 0.1 or more, preferably 0.15 or more.

(添加剤)
なお、凹凸塗膜3中には、滑剤、分散剤、安定剤、可塑剤、紫外線吸収剤、帯電防止剤など、公知の各種添加剤を含み得る。これらは、前記凹凸塗膜3を形成する為の樹脂組成物中に添加して使用する。
(Additive)
The uneven coating film 3 may contain various known additives such as a lubricant, a dispersant, a stabilizer, a plasticizer, an ultraviolet absorber, and an antistatic agent. These are used by adding to the resin composition for forming the uneven coating film 3.

例えば、滑剤は、凹凸塗膜3の粗面となった最外面(表面)の滑り性を向上させて、光学シート自身を傷付き難くでき耐擦傷性を向上させることができる。
滑剤としては、流動パラフィン、パラフィンワックス、合成ポリエチレンワックスなどの炭化水素系滑剤、ラウリン酸などの脂肪酸系滑剤、ステアリルアルコールなどの高級アルコール系滑剤、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等の脂肪族アミド系滑剤、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等のアルキレン脂肪酸アミド系滑剤、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムなどのステアリン酸金属塩からなる金属石鹸系滑剤、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル系滑剤、シリコーンオイル、変性シリコーンオイル等のシリコーン系滑剤、を挙げることができる。
また、変性シリコーンオイルとしては、上記以外にも、ポリエーテル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、オレフィン変性シリコーンオイル、フッ素変性シリコーンオイル、アルコール変性シリコーンオイル、高級脂肪酸変性シリコーンオイル等を挙げることができる。
For example, the lubricant improves the slipperiness of the outermost surface (surface) that is the rough surface of the uneven coating film 3, makes it difficult for the optical sheet itself to be damaged, and improves the scratch resistance.
Lubricants include hydrocarbon lubricants such as liquid paraffin, paraffin wax, synthetic polyethylene wax, fatty acid lubricants such as lauric acid, higher alcohol lubricants such as stearyl alcohol, stearic acid amide, oleic acid amide, erucic acid amide, etc. Aliphatic amide lubricants, alkylene fatty acid amide lubricants such as methylene bis stearamide, ethylene bis stearamide, metal soap lubricants composed of metal stearates such as zinc stearate, calcium stearate, magnesium stearate, stearic acid Examples thereof include fatty acid ester lubricants such as monoglyceride, stearyl stearate and hydrogenated oil, and silicone lubricants such as silicone oil and modified silicone oil.
In addition to the above, as modified silicone oil, polyether modified silicone oil, amino modified silicone oil, epoxy modified silicone oil, olefin modified silicone oil, fluorine modified silicone oil, alcohol modified silicone oil, higher fatty acid modified silicone oil, etc. Can be mentioned.

また、上記各種滑剤の中でも、変性シリコーンオイルは好ましく、特にポリエーテル変性シリコーンオイルは好ましい滑剤である。ポリエーテル変性シリコーンオイルは、シリコーンオイルのシロキサン骨格をポリエーテル骨格で修飾した化合物であり、シロキサン骨格の片末端、両末端及び側鎖のいずれか1以上の部位に、ポリエーテル骨格が結合したブロック共重合体である。この様なポリエーテル変性シリコーンオイルの好ましい化合物例として、例えば、ポリエーテル変性ジメチルポリシロキサンを挙げることができる。ポリエーテル変性ジメチルポリシロキサンは、シロキサン骨格がジメチルポリシロキサンであり、これにポリエーテル骨格が結合した化合物である。   Of the above-mentioned various lubricants, modified silicone oils are preferable, and polyether-modified silicone oils are particularly preferable lubricants. The polyether-modified silicone oil is a compound in which the siloxane skeleton of the silicone oil is modified with the polyether skeleton, and a block in which the polyether skeleton is bonded to one or more of one end, both ends, and side chains of the siloxane skeleton. It is a copolymer. As a preferred compound example of such a polyether-modified silicone oil, for example, polyether-modified dimethylpolysiloxane can be mentioned. The polyether-modified dimethylpolysiloxane is a compound in which the siloxane skeleton is dimethylpolysiloxane and the polyether skeleton is bonded thereto.

〔平滑塗膜(耐擦傷性塗膜)〕
また、本発明による光学シートは、図3の断面図で例示する実施形態の様に、即ち上記した凹凸塗膜3に代えて、表面が平滑な平滑塗膜4を有するものでも良い。この場合、塗膜面Pmは、平滑塗膜4によって平滑面となる。
[Smooth coating (scratch-resistant coating)]
Further, the optical sheet according to the present invention may have a smooth coating film 4 having a smooth surface in place of the uneven coating film 3 described above, as in the embodiment illustrated in the cross-sectional view of FIG. In this case, the coating film surface Pm becomes a smooth surface by the smooth coating film 4.

平滑塗膜4は、少なくとも樹脂を含み表面が平滑面となった透明な層であって、樹脂組成物の塗工によって形成される。平滑塗膜4は、保護フィルム無しで光学シート10同士がその表裏で接触するとき、或いは、光学密着防止の為に接触面を粗面化した他の光学部材と接触するときに、光学シートの傷付きを防止する為の層である。
この様な平滑塗膜4は、上記した凹凸塗膜の形成に用いる樹脂組成物から、該凹凸形成用の微粒子を除いた樹脂組成物によって、形成することができる。よって、樹脂成分は同様なものを適宜採用すれば良く、また、前記微粒子以外の例えば、低屈折率樹脂、低屈折率剤、滑剤などの各種添加剤は同様に添加することができ、また、屈折率の大小関係の設定も同様であるので、ここでは更なる説明は省略する。
The smooth coating film 4 is a transparent layer containing at least a resin and having a smooth surface, and is formed by coating a resin composition. The smooth coating film 4 is formed when the optical sheets 10 are in contact with each other without a protective film, or when the optical sheet 10 is in contact with another optical member whose contact surface is roughened to prevent optical adhesion. It is a layer for preventing scratches.
Such a smooth coating film 4 can be formed by a resin composition obtained by removing the fine particles for forming the unevenness from the resin composition used for forming the uneven coating film. Therefore, the same resin component may be adopted as appropriate, and various additives such as a low refractive index resin, a low refractive index agent, and a lubricant other than the fine particles can be similarly added. Since the setting of the magnitude relationship of the refractive index is the same, further explanation is omitted here.

〔表裏面の硬度〕
本発明では、光学シート10の表面側、即ち、単位光学要素2側の最外面である光学要素面Peの硬度Heと、光学シート10の裏側面、即ち、凹凸塗膜3側の粗面を成す最外面、或いは平滑塗膜4側の平滑面を成す最外面、であるところの塗膜面Pmの硬度Hmは、鉛筆硬度で特定された硬度とする。
[Front and back hardness]
In the present invention, the surface He of the optical sheet 10, that is, the hardness He of the optical element surface Pe that is the outermost surface on the unit optical element 2 side, and the back side of the optical sheet 10, that is, the rough surface on the uneven coating film 3 side. The hardness Hm of the coating film surface Pm, which is the outermost surface formed or the outermost surface forming the smooth surface on the smooth coating film 4 side, is the hardness specified by the pencil hardness.

(鉛筆硬度)
ここで、硬度He及び硬度Hmに関する鉛筆硬度とは、JIS K5600−5−4(1999年版)に準拠して荷重1000g、速度1mm/sの条件で測定された鉛筆硬度のことを意味する。そして、凹凸塗膜3又は平滑塗膜4の塗膜面Pmの硬度Hmを鉛筆硬度でF以上とし、且つ、該硬度Hmが、反対側の面の光学要素面Peの鉛筆硬度による硬度He以上(Hm≧He)となっていることが好ましい。図2のグラフで示せば、光学シート10について測定された硬度Hm及び硬度Heは、領域Ea内に位置していることが好ましい。
(Pencil hardness)
Here, the pencil hardness related to the hardness He and the hardness Hm means a pencil hardness measured under conditions of a load of 1000 g and a speed of 1 mm / s in accordance with JIS K5600-5-4 (1999 edition). And the hardness Hm of the coating film surface Pm of the uneven coating film 3 or the smooth coating film 4 is F or more in pencil hardness, and the hardness Hm is more than the hardness He by the pencil hardness of the optical element surface Pe on the opposite surface. It is preferable that (Hm ≧ He). As shown in the graph of FIG. 2, the hardness Hm and the hardness He measured for the optical sheet 10 are preferably located in the region Ea.

なお、硬度Hmを硬度He以上とするのは、塗膜面Pmの硬度Hmを光学要素面Peの方の硬度He以上にしないと、塗膜面Pmが、傷付き易いからである。一方、光学要素面Peは外力が加えられた時は変形し外力から開放された時は元に戻る様に軟らかくすることによって、光学要素面Peの傷付きを防ぐことができる。この点について、塗膜面Pmは、特に、粗面を有する凹凸塗膜3の場合は、逆に、外力が加えられた時でも光学密着を防止する為に相応に変形せずに耐えて形状を維持させる必要がある。加えて、凹凸塗膜3における凹凸の点状突出部には、光学要素面Peに比べて、応力が集中し、これに耐える必要も有る。その為、硬度Hmは硬度He以上とするのが好ましい。   The reason why the hardness Hm is equal to or higher than the hardness He is that unless the hardness Hm of the coating film surface Pm is equal to or higher than the hardness He of the optical element surface Pe, the coating film surface Pm is easily damaged. On the other hand, the optical element surface Pe is deformed when an external force is applied and softened so that it returns to the original state when released from the external force, thereby preventing the optical element surface Pe from being damaged. In this regard, the coating film surface Pm, particularly in the case of the uneven coating film 3 having a rough surface, on the contrary, even when an external force is applied, in order to prevent optical adhesion, the coating film surface Pm can endure without corresponding deformation. Need to be maintained. In addition, stress is concentrated on the concavo-convex point-like protrusions in the concavo-convex coating film 3 as compared with the optical element surface Pe, and it is necessary to withstand this. Therefore, it is preferable that the hardness Hm is not less than the hardness He.

また、塗膜面Pmが、平滑面を有する平滑塗膜4の場合には、前記凹凸塗膜3の様に、外力に対する粗面を成す凹凸形状の維持を考慮する必要はない。しかしながら、塗膜面Pmが平滑塗膜4の平滑面からなる場合、粗面が塗膜面Pmに接触すると、例えば、光拡散シート等の光学部材や光学シート10の光学要素面Peが塗膜面Pmに接触すると、平滑面に凹みが生じそれが回復せず残ると光学欠陥につながり、且つ、平滑面であるが故に逆に光学欠陥が目立つので、外力に対する変形に耐える必要も有る。
そもそも、光学要素面Peは元々凹凸を有することから、多少の傷が光学要素面Peに付いていたとしても、当該傷は比較的目立ち難く、当該傷は比較的に問題となりにくい。その一方で、平滑塗膜4の塗膜面Pmの方は表面が平滑の為、少しでも傷が付くと目立ち易い為でもある。
したがって、平滑塗膜4が採用される場にも、硬度Hmが硬度He以上となっていることが好ましい。
Moreover, when the coating film surface Pm is the smooth coating film 4 which has a smooth surface, it is not necessary to consider maintenance of the uneven | corrugated shape which forms the rough surface with respect to external force like the said uneven | corrugated coating film 3. FIG. However, when the coating film surface Pm is a smooth surface of the smooth coating film 4, when the rough surface comes into contact with the coating film surface Pm, for example, an optical member such as a light diffusion sheet or the optical element surface Pe of the optical sheet 10 is coated. When the surface Pm is contacted, a dent is generated on the smooth surface, and if the surface remains unrecovered, it leads to an optical defect. On the other hand, since the surface is smooth, the optical defect is conspicuous, and it is also necessary to withstand deformation against an external force.
In the first place, since the optical element surface Pe originally has irregularities, even if some scratches are attached to the optical element surface Pe, the scratches are relatively inconspicuous, and the scratches are less likely to be a problem. On the other hand, the surface Pm of the smooth coating film 4 is also smooth because the surface is smooth, and it is easy to stand out if any scratches are made.
Therefore, it is preferable that the hardness Hm is equal to or higher than the hardness He even when the smooth coating film 4 is employed.

この様な硬度及び硬度関係にすることによって、光学シートの表裏面同士の(光学要素面Peと塗膜面Pmとの間の)接触、或いは光学シートと接触面が粗面の他の光学部材との接触が生じても、光学シートの光学要素面Peや塗膜面Pmが削られる様な傷付きを効果的に防ぐことができる。   By making such hardness and hardness relationship, contact between the front and back surfaces of the optical sheet (between the optical element surface Pe and the coating film surface Pm), or another optical member having a rough surface of the optical sheet and the contact surface Even if contact with the surface occurs, it is possible to effectively prevent scratches such that the optical element surface Pe and the coating film surface Pm of the optical sheet are scraped.

更に、好ましくは、硬度Heと硬度Hmとの関係は、鉛筆硬度のスケール上で1単位硬い硬度を+1としたときに、硬度He+3≧硬度Hm≧硬度He+2とするのが良い。すなわち、塗膜面Pmの硬度Hmは、光学要素面Peの硬度Heの硬度よりも、最低限、鉛筆硬度のスケール上で+2単位以上硬くすることが好ましい。但し、最大でも、塗膜面Pmの硬度Hmは、光学要素面Peの硬度Heに対して、鉛筆硬度のスケール上で+3単位までは硬くして良いが、3単位を超過して硬くないことが好ましい。単純に考えれば鉛筆硬度は硬くするほど傷付き難くなると考えられるが、実際には硬過ぎても光学シート10の表裏面を重ね合わせた際に、逆に、光学要素面Peの方が傷付くため、上記の様な範囲関係とするのが良い事が判明した。
又、塗膜面の硬度Hm及び光学要素面Heを上記の如く規定すること、特に塗膜面の硬度に上限He+3を設けることは、塗膜3、4による光学シート10と隣接して配置される他の光学部材に対する傷付きを解消する上でも有效である。
なお、鉛筆硬度のスケールとは、軟らかい方から硬い方に向かって順に、3B、2B、B、HB、F、H、2H、3H、4H、5H等のことである。また、この鉛筆硬度のスケールで、例えば、「HB」に対して「+1単位」とは1つ上の硬度単位である「F」を意味し、「+2単位」とは2つ上の硬度単位である「H」を意味する。従って、例えば、HeがHBならば、硬度He+3≧硬度Hm≧硬度He+2とは、2H≧硬度Hm≧Hを意味する。
More preferably, the relationship between the hardness He and the hardness Hm is such that the hardness He + 3 ≧ the hardness Hm ≧ the hardness He + 2 when the hardness of one unit on the pencil hardness scale is +1. That is, it is preferable that the hardness Hm of the coating surface Pm is at least +2 units or more on the pencil hardness scale, rather than the hardness He of the optical element surface Pe. However, at most, the hardness Hm of the coating surface Pm may be hardened up to +3 units on the pencil hardness scale with respect to the hardness He of the optical element surface Pe, but it should not be harder than 3 units. Is preferred. In simple terms, it is considered that the harder the pencil hardness is, the harder it is to be scratched. However, when the front and back surfaces of the optical sheet 10 are actually superposed, the optical element surface Pe is scratched. Therefore, it has been found that the above range relation is good.
In addition, the specification of the hardness Hm of the coating film surface and the optical element surface He as described above, particularly the provision of the upper limit He + 3 to the hardness of the coating film surface, is arranged adjacent to the optical sheet 10 by the coating films 3 and 4. It is also effective in eliminating scratches on other optical members.
In addition, the scale of pencil hardness is 3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, etc. in order from the softer to the harder. In this pencil hardness scale, for example, “+1 unit” with respect to “HB” means “F”, which is one higher hardness unit, and “+2 unit” means two higher hardness units. Means “H”. Therefore, for example, if He is HB, hardness He + 3 ≧ hardness Hm ≧ hardness He + 2 means 2H ≧ hardness Hm ≧ H.

この様な硬度及び硬度関係にすることによって、光学シート同士の表裏面の接触、或いは光学シートと他の部材との接触(とりわけ、平滑塗膜4の場合は接触面が粗面を成す部材との接触)が生じても、光学シートの光学要素面Peや塗膜面Pmが削られる様なことをより確実に防ぐことができる(表1、表3および表4参照)。   By having such hardness and hardness relationship, contact between the front and back surfaces of the optical sheets, or contact between the optical sheet and other members (particularly, in the case of the smooth coating film 4, the contact surface is a rough surface) Can be more reliably prevented from being scraped off the optical element surface Pe and the coating film surface Pm of the optical sheet (see Tables 1, 3 and 4).

(マルテンス硬さ試験に於ける回復率とマルテンス硬度)
また、光学要素面Peの硬度Heと、凹凸塗膜3の凹凸塗膜面Pmの硬度Hmとについては、更にマルテンス硬さ試験による回復率も規定するのが好ましい。マルテンス硬さ(硬度)とは、硬度指標の一種であり、例えば、(株)フィッシャー・インストルメンツ製の微小硬さ試験機(PICODENTOR(登録商標) HM500、ISO14577−1)を用いて測定することができる。
ここでは、マルテンス硬さ試験に於ける回復率とマルテンス硬度は、上記HM500の微小硬さ試験機を用いて測定した特性値である。具体的には、該微小硬さ試験機を用いた硬さ試験で、一定の押し込み荷重のときの押し込み深さ(μm)から、算出された硬度を意味する。押し込み荷重は、光学シート10に対する法線方向の荷重を意味し、押し込み深さは押し込まれる前の測定面の界面を0とし、荷重を加えたとき(荷重時)の前記界面の深を表す。そして、回復率(%)とは、下記〔式1〕で算出される。
(Recovery rate and Martens hardness in Martens hardness test)
For the hardness He of the optical element surface Pe and the hardness Hm of the concavo-convex coating surface Pm of the concavo-convex coating 3, it is preferable to further define a recovery rate by a Martens hardness test. Martens hardness (hardness) is a kind of hardness index, and is measured using, for example, a micro hardness tester (PICODERTOR (registered trademark) HM500, ISO 14577-1) manufactured by Fisher Instruments Co., Ltd. Can do.
Here, the recovery rate and Martens hardness in the Martens hardness test are characteristic values measured using the HM500 micro hardness tester. Specifically, it means a hardness calculated from an indentation depth (μm) at a constant indentation load in a hardness test using the microhardness tester. The indentation load means a load in the normal direction with respect to the optical sheet 10, and the indentation depth represents the depth of the interface when the load is applied (at the time of loading) with the interface of the measurement surface before being pushed as 0. The recovery rate (%) is calculated by the following [Equation 1].

Figure 2012083740
Figure 2012083740

鉛筆硬度による前記した硬度の規定の他に、単位光学要素2と凹凸塗膜3の何れか一方又は両方について、この回復率が50%以上であると、光学シート自体の耐擦傷性を向上できる(表2参照)。回復率が高いと、外力が加わっても形状復帰が行われる度合いが増して、一部が欠損したり永久変形して凹んだままになったりせずに、傷が付き難くなると思われる。   In addition to the above-mentioned definition of hardness by pencil hardness, if this recovery rate is 50% or more for either one or both of the unit optical element 2 and the uneven coating film 3, the scratch resistance of the optical sheet itself can be improved. (See Table 2). When the recovery rate is high, the degree to which the shape is restored is increased even when an external force is applied, and a part is not lost or permanently deformed and remains indented, so that it is difficult to be damaged.

なお、硬度He及び硬度Hmを、鉛筆硬度、或いは更にマルテンス硬さ試験に於ける回復率を、上記の様にするには、単位光学要素2及び凹凸塗膜3を樹脂で構成し、且つその樹脂に電離放射線硬化性樹脂等を使用し樹脂組成を調整することによって実現できる。また、単位光学要素2及び凹凸塗膜3の樹脂に電離放射線硬化性樹脂等の同じ硬化性樹脂を使用することで、硬化収縮などによる光学シートの反りの防止に対しても効果がある。   In order to make the hardness He and the hardness Hm, the pencil hardness or the recovery rate in the Martens hardness test as described above, the unit optical element 2 and the concavo-convex coating film 3 are made of resin, and This can be realized by using an ionizing radiation curable resin or the like as the resin and adjusting the resin composition. Further, by using the same curable resin such as an ionizing radiation curable resin for the resin of the unit optical element 2 and the concavo-convex coating film 3, it is effective for preventing warpage of the optical sheet due to curing shrinkage or the like.

また、マルテンス硬度については、光学シート自体の耐擦傷性の点で、例えば表2の様の様に、凹凸塗膜面Pmに対して、第1桁を四捨五入した数値で、100〜180N/mm2では好ましい結果が得られているが、220N/mm2では好ましい結果が得られていない。また、上記した回復率が50%以上でも、マルテンス硬度が例えば220N/mm2と高いと、最高レベルの耐擦傷性は得られない(表2の比較例A3)。
一方、光学要素面Peの回復率も、凹凸塗膜面Pmと同様に、50%以上が外力により凹んだままとなり難い点で好ましいが、マルテンス硬度は、凹凸塗膜Pmよりも軟らかくても良い結果が得られている(表2では約2〜4N/mm2である)。
Further, the Martens hardness is a numerical value obtained by rounding off the first digit with respect to the concavo-convex coating surface Pm as shown in Table 2 in terms of scratch resistance of the optical sheet itself, and is 100 to 180 N / mm. Although a favorable result was obtained with 2 , no favorable result was obtained with 220 N / mm 2 . Even if the recovery rate is 50% or more, the highest level of scratch resistance cannot be obtained if the Martens hardness is as high as 220 N / mm 2 (Comparative Example A3 in Table 2).
On the other hand, the recovery rate of the optical element surface Pe is also preferable in that 50% or more hardly remains recessed due to an external force, like the concavo-convex coating surface Pm, but the Martens hardness may be softer than the concavo-convex coating layer Pm. Results are obtained (in Table 2 it is about 2-4 N / mm 2 ).

〔2枚重ね形態〕
本発明による光学シート10は、図4及び図5の断面図で概念的に示す様に、2枚重ね合わせた状態の光学シート(光学部材)10Aとしても良い。この2枚重ね合わせた状態とは、上下の光学シート10a,10b同士が間に空間を空けて配置されることではなく、互いに接触しており隣接配置されることを意味する。図4及び図5に示された形態では、下側の光学シート10bの光学要素面Peと、上側の光学シート10aの塗膜面Pmとが互いに接触するようにして、二枚の光学シートが重ねられている。
なお、図4に示された形態では、各光学シート10a,10bが凹凸塗膜3を塗膜として有しており、各光学シート10a,10bの塗膜面Pmは凹凸塗膜3によって粗面として形成されている。一方、図5に示された形態では、各光学シート10a,10bが平滑塗膜4を塗膜として有しており、各光学シート10a,10bの塗膜面Pmは平滑塗膜4によって平滑面として形成されている。また、図示は省略するが、二枚の光学シートのいずれか一方の塗膜が凹凸塗膜3によって形成され、二枚の光学シートの他方の塗膜が平滑塗膜4として形成されてもよい。
また、複数の光学シートから構成される光学部材10Aが、上述してきた光学シートを三枚以上含んで構成されてもよい。
[Two sheets stacked]
The optical sheet 10 according to the present invention may be an optical sheet (optical member) 10A in a state where two sheets are overlapped as conceptually shown in the cross-sectional views of FIGS. The state where the two sheets are overlapped means that the upper and lower optical sheets 10a and 10b are not arranged with a space between them but are in contact with each other and arranged adjacent to each other. In the form shown in FIGS. 4 and 5, the two optical sheets are formed such that the optical element surface Pe of the lower optical sheet 10b and the coating surface Pm of the upper optical sheet 10a are in contact with each other. It is piled up.
In the form shown in FIG. 4, each optical sheet 10 a, 10 b has the uneven coating film 3 as a coating film, and the coating film surface Pm of each optical sheet 10 a, 10 b is roughened by the uneven coating film 3. It is formed as. On the other hand, in the form shown in FIG. 5, each of the optical sheets 10 a and 10 b has the smooth coating film 4 as a coating film, and the coating film surface Pm of each of the optical sheets 10 a and 10 b is smooth by the smooth coating film 4. It is formed as. Moreover, although illustration is abbreviate | omitted, either one coating film of two optical sheets may be formed of the uneven | corrugated coating film 3, and the other coating film of two optical sheets may be formed as the smooth coating film 4. .
Moreover, 10 A of optical members comprised from a some optical sheet may be comprised including 3 or more of the optical sheets which were mentioned above.

なお、図4及び図5に示された光学部材10Aでは、上下の光学シート10a,10bは、光学要素面Peが同じ側を向くようにして重ねられた形態であるが、互いに異なる側を向くようにして重ねられる形態を本発明は排除しない。また、上下の光学シート10a,10bは、共に単位光学要素2として断面三角形の単位柱状プリズムで、しかも、その稜線の延在方向は作図の便宜上、共に紙面に垂直方向として描いているが、通常は、この様な柱状の単位光学要素を配列するときは、その稜線の延在方向は、光学シート10aと光学シート10bとの間で互いに直交させる等、交差させる。
また、光学シートを2枚重ねするとき、重ね合わせる光学シート同士は、単位光学要素2の内容、及び、塗膜面Pmを形成する凹凸塗膜3同士や平滑塗膜4同士が同様に構成されてもよいし、異なるように構成されてもよい。
In the optical member 10A shown in FIGS. 4 and 5, the upper and lower optical sheets 10a and 10b are stacked such that the optical element surface Pe faces the same side, but face different sides. The present invention does not exclude forms that are overlapped in this way. The upper and lower optical sheets 10a and 10b are both unit columnar prisms having a triangular section as the unit optical element 2, and the extending direction of the ridge line is drawn as a direction perpendicular to the paper surface for convenience of drawing. When such columnar unit optical elements are arranged, the extending direction of the ridge line intersects between the optical sheet 10a and the optical sheet 10b, such as orthogonal to each other.
Further, when two optical sheets are stacked, the optical sheets to be stacked are configured in the same manner as the contents of the unit optical element 2 and the uneven coating films 3 and the smooth coating films 4 that form the coating film surface Pm. It may be configured differently.

そして、このような光学シート(光学部材)10Aが面光源装置等に組み込まれた場合、互いの接触に起因した光学シート10a,10bの塗膜面Pm及び光学要素面Peの削れ等が生じ難い耐擦傷性が得られる。また、屈折率Nm,Nmが調節された光学シート(光学部材)10Aによれば、輝度を向上させることもできる。   When such an optical sheet (optical member) 10A is incorporated into a surface light source device or the like, the coating surface Pm and the optical element surface Pe of the optical sheets 10a and 10b due to mutual contact are unlikely to occur. Scratch resistance is obtained. Further, according to the optical sheet (optical member) 10A in which the refractive indexes Nm and Nm are adjusted, the luminance can be improved.

〔その他〕
なお、本発明の光学シート10は、本発明の主旨を逸脱しない範囲内で、上記した層以外のその他の層を含んでいても良い。
例えば、光学シート10に帯電防止層を更に設けても良い。帯電防止層によって、埃等の異物付着を低減し、付着した異物による傷付きを防止できる。なお、帯電防止層を別途の層として設けず、本体部1、単位光学要素2、塗膜3、4(凹凸塗膜3或いは平滑塗膜4)のいずれか一以上に、帯電防止剤を添加して帯電防止機能を付与しても良い。
また、光学シート10の入光面となる面が、反射を効果的に防止する機能を有した反射防止層として形成されてもよい。例えば、光学シート10の入光面をなす層が、当該層に隣接する層よりも低い屈折率を有する場合、当該層が反射防止層として機能することができる。
[Others]
The optical sheet 10 of the present invention may include other layers other than the above-described layers within a range not departing from the gist of the present invention.
For example, an antistatic layer may be further provided on the optical sheet 10. The antistatic layer can reduce the adhesion of foreign matters such as dust, and can prevent the attached foreign matter from being damaged. In addition, an antistatic agent is added to any one or more of the main body 1, the unit optical element 2, and the coatings 3 and 4 (uneven coating 3 or smooth coating 4) without providing an antistatic layer as a separate layer. Thus, an antistatic function may be added.
Moreover, the surface which becomes the light incident surface of the optical sheet 10 may be formed as an antireflection layer having a function of effectively preventing reflection. For example, when the layer forming the light incident surface of the optical sheet 10 has a lower refractive index than the layer adjacent to the layer, the layer can function as an antireflection layer.

なお、塗膜面Pmが粗面となっている凹凸塗膜3を有した光学シート10において、単位光学要素2が存在しない本体部1と塗膜3,4との状態で、90%以上の全光線透過率を呈するようにすることができる。また同様の状態で、ヘーズを10%以下とすることができる。また同様の状態で、0.125mm及び0.5mmの光学櫛を用いた透過鮮明度を、50%以上とすることができる。
なお、全光線透過率はJIS K−7361に準拠して測定され、ヘーズはJIS K−7136に準拠して測定される。全光線透過率およびヘーズは、例えばヘーズ・透過率計HM−15(株式会社村上色彩技術研究所製)を用いて測定され得る。透過鮮明度は、JIS K−7105規定の像鮮明度に準拠して測定される。なお、透過鮮明度は、例えば写像性測定器(スガ試験機株式会社、ICM−1DP)を用いて、測定され得る。
In addition, in the optical sheet 10 having the concavo-convex coating film 3 whose coating film surface Pm is rough, 90% or more in the state of the main body 1 and the coating films 3 and 4 where the unit optical element 2 does not exist. The total light transmittance can be exhibited. In the same state, the haze can be reduced to 10% or less. In the same state, the transmission sharpness using the optical combs of 0.125 mm and 0.5 mm can be 50% or more.
The total light transmittance is measured according to JIS K-7361, and the haze is measured according to JIS K-7136. The total light transmittance and haze can be measured using, for example, a haze / transmittance meter HM-15 (manufactured by Murakami Color Research Laboratory Co., Ltd.). The transmission sharpness is measured in accordance with the image sharpness defined in JIS K-7105. The transmission definition can be measured using, for example, a image clarity measuring device (Suga Test Instruments Co., Ltd., ICM-1DP).

<〔D〕面光源装置>
本発明による面光源装置は、少なくとも、光源と、該光源からの光が透過する光学シート10と、を備え、面状に光を放射する光源装置である。光学シート10以外の構成要素である、光源やその他必要に応じて配置される光学部材の構成や配置などは、従来公知の面光源装置の各種光学部材の構成及び配置を、適宜採用することができる。
<[D] Surface light source device>
The surface light source device according to the present invention is a light source device that includes at least a light source and an optical sheet 10 through which light from the light source passes, and emits light in a planar shape. The configuration and arrangement of various optical members of a conventionally known surface light source device may be appropriately adopted as the configuration and arrangement of the light source and other optical members arranged as necessary, which are components other than the optical sheet 10. it can.

例えば、図6で例示の面光源装置30では、光源31と、該光源31を側面に備えた導光板32と、該導光板32の出光面上に隣接配置された光学シート10と、を備えている。光源31、導光板32、或いは、必要に応じて設けられるその他光学部材(図示せず)は、公知のものを適宜採用することができる。なお、図6に示された面光源装置30に於いては、光学シート10は、その光学要素面Peを図面上方の出光面側とする向きで配置されている。
一方、光学シート10の塗膜面Pmは導光板32側であり、塗膜面Pmは、光学シート10と接触する他の光学部材である導光板32の出光面に接触している。しかし、同図の形態では、光学シート10の塗膜面Pmは凹凸塗膜3によって粗面として形成されている。したがって、凹凸塗膜3によって導光板32との光学密着が防止され、該光学密着による輝度の面内不均一化、干渉縞等を効果的に防げる構成となっている。更に、塗膜面Pmの耐擦傷性が向上しているので、光学シート自身の傷付き、図示された面光源装置内における導光板32の出光面との接触による傷付きを、効果的に防止することができる。
For example, the surface light source device 30 illustrated in FIG. 6 includes a light source 31, a light guide plate 32 including the light source 31 on a side surface, and the optical sheet 10 disposed adjacent to the light output surface of the light guide plate 32. ing. A well-known thing can be suitably employ | adopted for the light source 31, the light-guide plate 32, or the other optical member (not shown) provided as needed. In the surface light source device 30 shown in FIG. 6, the optical sheet 10 is arranged in such a direction that the optical element surface Pe is on the light output surface side in the upper part of the drawing.
On the other hand, the coating film surface Pm of the optical sheet 10 is on the light guide plate 32 side, and the coating film surface Pm is in contact with the light exit surface of the light guide plate 32 that is another optical member that contacts the optical sheet 10. However, in the form of the figure, the coating film surface Pm of the optical sheet 10 is formed as a rough surface by the uneven coating film 3. Therefore, the uneven coating 3 prevents optical contact with the light guide plate 32, and can effectively prevent uneven luminance in the surface, interference fringes, and the like due to the optical contact. Furthermore, since the scratch resistance of the coating surface Pm is improved, it is possible to effectively prevent the optical sheet itself from being damaged and from being damaged by contact with the light exit surface of the light guide plate 32 in the illustrated surface light source device. can do.

なお、図6の形態では、面光源装置30に組み込まれた光学シート10が塗膜として凹凸塗膜3を有しているが、図7に示すように、面光源装置30に組み込まれる光学シート10が、該凹凸塗膜3に代えて、平滑塗膜4を有するようにしてもよい。図7に示された面光源装置では、該平滑塗膜4に接する他の光学部材の面を粗面として、光学密着を防止している。該平滑塗膜4に接する光学部材は、導光板32でも良いが、図示された例では、導光板32と光学シート10との間に、光学シートに対面する面が粗面として形成された部材、例えば光拡散シート35が配置されている。図7に示された面光源装置30においても、光学シート10の平滑な塗膜面Pmと、光学シートに隣接配置された部材の粗面(例えば、光拡散シート35の出光面をなす粗面)と、が接触したとしても、光学シート10の平滑な塗膜面Pmの傷付きや、光学密着による不具合を、効果的に回避することができる。   6, the optical sheet 10 incorporated in the surface light source device 30 has the uneven coating film 3 as a coating film. However, as shown in FIG. 7, the optical sheet incorporated in the surface light source device 30. 10 may have a smooth coating film 4 instead of the uneven coating film 3. In the surface light source device shown in FIG. 7, the surface of the other optical member in contact with the smooth coating film 4 is a rough surface to prevent optical adhesion. The optical member in contact with the smooth coating film 4 may be the light guide plate 32, but in the illustrated example, a member in which the surface facing the optical sheet is formed as a rough surface between the light guide plate 32 and the optical sheet 10. For example, a light diffusion sheet 35 is disposed. Also in the surface light source device 30 shown in FIG. 7, the smooth coating surface Pm of the optical sheet 10 and the rough surface of the member disposed adjacent to the optical sheet (for example, the rough surface forming the light exit surface of the light diffusion sheet 35). ) Can be effectively avoided from scratches on the smooth coating film surface Pm of the optical sheet 10 and problems due to optical adhesion.

なお、図6および図7の形態では、一枚の光学シート10のみが面光源装置に組み込まれている例を示したが、図4や図5に示された複数枚、例えば二枚の光学シートを、面光源装置に組み込んでもよい。
また、図6および図7に示された面光源装置はエッジライト型として構成されているが、光学シートが組み込まれる面光源装置が直下型として構成されていてもよい。また、光源31は、線状の冷陰極管等の蛍光灯の他、点状のLED(発光ダイオード)、或いは面状のEL(電場発光体)等が使用される。導光板32には、例えば、透明なアクリル樹脂等が使用され、その出光面に対峙する面には印刷等により光拡散部が設けられる。
また、光源31に対して、光源31からの光を導光板32や光学シート10側へ向ける為に反射板等の反射部材を通常は備える。反射部材は金属等の高反射率の材料で構成される。その他、必要に応じて、光拡散板、偏光分離フィルム、位相差板などの光学部材が更に配置される。
6 and 7 show an example in which only one optical sheet 10 is incorporated in the surface light source device, but a plurality of, for example, two optical sheets shown in FIGS. 4 and 5 are used. The sheet may be incorporated in the surface light source device.
Moreover, although the surface light source device shown in FIGS. 6 and 7 is configured as an edge light type, the surface light source device into which the optical sheet is incorporated may be configured as a direct type. Further, as the light source 31, in addition to a fluorescent lamp such as a linear cold cathode tube, a spot LED (light emitting diode) or a planar EL (electroluminescent element) is used. For example, a transparent acrylic resin or the like is used for the light guide plate 32, and a light diffusing portion is provided on the surface facing the light output surface by printing or the like.
The light source 31 is usually provided with a reflecting member such as a reflecting plate in order to direct light from the light source 31 toward the light guide plate 32 or the optical sheet 10. The reflecting member is made of a highly reflective material such as metal. In addition, optical members such as a light diffusing plate, a polarization separation film, and a retardation plate are further arranged as necessary.

<〔E〕液晶表示装置>
本発明による液晶表示装置は、少なくとも、バックライトとして用いられる本発明による面光源装置と、該面光源装置の出光面上に配置される透過表示可能な液晶パネルと、を備える表示装置である。該面光源装置内には、本発明による光学シート10が設けられている。この表示装置において、液晶パネルや、図示しない他の部材、例えば、防眩フィルム等の光学部材、パネル駆動回路などは、従来公知の液晶表示装置の構成部材を、適宜採用することができる。
例えば、図6および図7に示された液晶表示装置40では、上記した面光源装置30をバックライトとして、その出光面上に、透過型の液晶パネル41を隣接配置してある。従って、該面光源装置30の出光面は、同図に示す様に、光学シート10の光学要素面Peであったから、該光学要素面Peが、光学シート10と接触する他の光学部材としての液晶パネル41の背面と接触している。なお、接触する液晶パネル41の背面は通常は偏光板が積層されている。そして、液晶パネル41の画像は、面光源装置30からの光によって、図面上方の観察者Vによって観察される。
このような構成の液晶表示装置として、光学シート10と液晶パネルとが隣接配置されていても、光学要素面Peの耐擦傷性が向上しているので、光学シート自身の傷付きを防げる構成となっている。また、光学シート10が含まれた面光源装置30を用いているため、輝度を向上させることもできる。
<[E] Liquid crystal display device>
A liquid crystal display device according to the present invention is a display device including at least a surface light source device according to the present invention used as a backlight and a transmissive displayable liquid crystal panel disposed on a light exit surface of the surface light source device. An optical sheet 10 according to the present invention is provided in the surface light source device. In this display device, conventionally known constituent members of a liquid crystal display device can be appropriately adopted as the liquid crystal panel, other members not shown, for example, an optical member such as an antiglare film, a panel drive circuit, and the like.
For example, in the liquid crystal display device 40 shown in FIGS. 6 and 7, the surface light source device 30 described above is used as a backlight, and a transmissive liquid crystal panel 41 is disposed adjacently on the light exit surface. Accordingly, the light exit surface of the surface light source device 30 is the optical element surface Pe of the optical sheet 10 as shown in the figure, so that the optical element surface Pe serves as another optical member in contact with the optical sheet 10. It is in contact with the back surface of the liquid crystal panel 41. Note that a polarizing plate is usually laminated on the back surface of the liquid crystal panel 41 in contact. Then, the image on the liquid crystal panel 41 is observed by the observer V above the drawing by the light from the surface light source device 30.
As a liquid crystal display device having such a configuration, even when the optical sheet 10 and the liquid crystal panel are disposed adjacent to each other, the scratch resistance of the optical element surface Pe is improved, and thus the optical sheet itself can be prevented from being damaged. It has become. Moreover, since the surface light source device 30 including the optical sheet 10 is used, the luminance can be improved.

なお、図6および図7に例示の液晶表示装置40では、それが備える面光源装置30はエッジライト型として構成されているが、既に説明したように、直下型として構成されても良い。   In the liquid crystal display device 40 illustrated in FIGS. 6 and 7, the surface light source device 30 included in the liquid crystal display device 40 is configured as an edge light type, but may be configured as a direct type as described above.

<〔F〕作用効果>
(1)上述した光学シートでは、最外面が粗面の凹凸塗膜又は最外面平滑な平滑塗膜を設けてあるにも係わらず、光学シートの表裏面の各々の鉛筆硬度及び両者の関係を特定したことで、2枚重ね合わせたときの自身を含めて光学部材に隣接配置して使用したときの、光学シート自体の表裏面の耐擦傷性が向上し、傷付きを効果的に防止することができる。
とりわけ、光学シートがロール状態での保管、運搬等で振動を受けても表裏面の傷付きを防げ、外観不良等で品質が低下しない。その結果、光学シートの表裏両面に通常は使用時まで一時的に貼り付けておく保護フィルムが不要とすることも可能となるので、省資源および低コスト化を図ることができる。
さらに、塗膜と本体部との屈折率関係を規定したことで、耐擦傷性向上の為の塗膜を設ける一方、輝度がその分低下することもなく、塗膜を設けたことによって層数が増えても輝度が低下することがない。すなわち、耐擦傷性を確保した上で輝度も向上できる。
(2)また、上述した面光源装置及び液晶表示装置では、上述した効果の様に光学シートの表裏面の耐擦傷性が向上しているので、装置が、保管や運搬等で振動を受けても組み込まれた光学シートの表裏面の傷付きを効果的に防止することができる。
<[F] effect>
(1) In the optical sheet described above, the pencil hardness on the front and back surfaces of the optical sheet and the relationship between the two are in spite of the fact that the outermost surface has a rough concavo-convex coating or the outermost smooth coating. By specifying, the scratch resistance of the front and back surfaces of the optical sheet itself when used adjacent to the optical member including itself when two sheets are overlapped is improved, and scratches are effectively prevented. be able to.
In particular, even if the optical sheet is subjected to vibration during storage, transportation or the like in a roll state, the front and back surfaces are prevented from being scratched, and the quality is not deteriorated due to poor appearance or the like. As a result, it is possible to eliminate the need for a protective film that is usually temporarily attached to both the front and back surfaces of the optical sheet until use, so that resource saving and cost reduction can be achieved.
Furthermore, by defining the refractive index relationship between the coating film and the main body, while providing a coating film for improving the scratch resistance, the brightness does not decrease correspondingly, and the number of layers is provided by providing the coating film. Even if the brightness increases, the luminance does not decrease. That is, the luminance can be improved while ensuring the scratch resistance.
(2) Further, in the surface light source device and the liquid crystal display device described above, since the scratch resistance of the front and back surfaces of the optical sheet is improved as described above, the device is subjected to vibration during storage and transportation. In addition, it is possible to effectively prevent scratches on the front and back surfaces of the incorporated optical sheet.

以下、実施例及び比較例によって、本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples and comparative examples.

<調査1>
まず、調査1として、図1の構成を有する光学シートにについて調査を行った。すなわち、調査1で対象とした光学シートは、凹凸塗膜からなる塗膜を有し、塗膜面が粗面として形成されているようにした。
<Survey 1>
First, as investigation 1, an investigation was performed on an optical sheet having the configuration of FIG. That is, the optical sheet targeted in Investigation 1 had a coating film composed of a concavo-convex coating film, and the coating film surface was formed as a rough surface.

〔凹凸塗膜形成用塗料の準備〕
各種鉛筆硬度の凹凸塗膜を形成するために、次の各組成の塗料を準備した。
[Preparation of paint for forming uneven film]
In order to form uneven coating films having various pencil hardnesses, paints having the following respective compositions were prepared.

(組成A1:鉛筆硬度HB用)
フッ素原子含有ウレタンアクリレート系紫外線硬化性樹脂 99質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A1: for pencil hardness HB)
Fluorine atom-containing urethane acrylate ultraviolet curable resin 99 parts by mass Fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle diameter of 5 μm) 1 part by mass (MX-500H, manufactured by Soken Chemical Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A2:鉛筆硬度F用)
フッ素原子含有ウレタンアクリレート系紫外線硬化性樹脂 49.5質量部
ペンタエリスリトールトリアクリレート 49.5質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A2: for pencil hardness F)
Fluorine atom-containing urethane acrylate UV curable resin 49.5 parts by mass Pentaerythritol triacrylate 49.5 parts by mass Fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle diameter of 5 μm) 1 part by mass (Soken Chemical Co., Ltd.) (Made by company, MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A3:鉛筆硬度H用)
ペンタエリスリトールトリアクリレート 99質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A3: for pencil hardness H)
99 parts by weight of pentaerythritol triacrylate Fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle diameter of 5 μm) 1 part by weight (Made by Soken Chemical Co., Ltd., MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A4:鉛筆硬度2H用)
ペンタエリスリトールトリアクリレート 49.5質量部
ジペンタエリスリトールヘキサアクリレート 49.5質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A4: for pencil hardness 2H)
Pentaerythritol triacrylate 49.5 parts by mass Dipentaerythritol hexaacrylate 49.5 parts by mass Fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle diameter of 5 μm) 1 part by mass (manufactured by Soken Chemical Co., Ltd., MX- 500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成A5:鉛筆硬度3H用)
ジペンタエリスリトールヘキサアクリレート 99質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition A5: for pencil hardness 3H)
99 parts by mass of dipentaerythritol hexaacrylate 1 part by mass of fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle size of 5 μm) (MX-500H, manufactured by Soken Chemical Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

〔実施例A1〕
単位光学要素2として単位柱状プリズムを採用した図1に示された光学シート10を作製した。
先ず、成形型として単位柱状プリズムからなるプリズム群とは逆凹凸形状の型面を有する金属製のシリンダ状の成形型を用意した。そして、この成形型に、下記単位光学要素形成用の樹脂組成の透明なアクリル系の紫外線硬化性樹脂液を塗布し、更にその上に、厚み188μmの透明な2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を重ねた状態で、高圧水銀灯からの紫外線照射によって該樹脂液を硬化させた。そして、単位光学要素2として単位柱状プリズムがその稜線を互いに平行に、シート状の本体部1の一方の面1pに配列して成るプリズム群を有する、プリズムシート部材を作製した。
[Example A1]
The optical sheet 10 shown in FIG. 1 in which a unit columnar prism was adopted as the unit optical element 2 was produced.
First, a metallic cylinder-shaped mold having an uneven surface opposite to the prism group composed of unit columnar prisms was prepared as a mold. Then, a transparent acrylic ultraviolet curable resin liquid having a resin composition for forming unit optical elements described below was applied to the mold, and a transparent biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 188 μm was further formed thereon. The resin liquid was cured by ultraviolet irradiation from a high pressure mercury lamp. Then, a prism sheet member having a prism group in which unit columnar prisms as unit optical elements 2 are arranged on one surface 1p of the sheet-like main body portion 1 in parallel with each other in the ridgeline was manufactured.

[単位光学要素形成用の樹脂組成]
プレポリマー(カプロラクトン変性ウレタンアクリレート) 11質量部
プレポリマー(トリレンジイソシアネート系ウレタンアクリレート) 8質量部
2官能モノマー(ビスフェノールAジアクリレート) 47質量部
3官能モノマー(グリセリンエポキシトリアクリレート) 30質量部
開始剤 2.5質量部
(2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド)
滑剤(リン酸エステル系滑剤) 1質量部
[Resin composition for unit optical element formation]
Prepolymer (caprolactone-modified urethane acrylate) 11 parts by weight Prepolymer (tolylene diisocyanate urethane acrylate) 8 parts by weight Bifunctional monomer (bisphenol A diacrylate) 47 parts by weight Trifunctional monomer (glycerin epoxy triacrylate) 30 parts by weight Initiator 2.5 parts by mass (2,4,6-trimethylbenzoyldiphenylphosphine oxide)
Lubricant (phosphate ester lubricant) 1 part by mass

なお、本体部1は上記PETフィルムと、該PETフィルムと成形型面上の凸部と間の上記紫外線硬化性樹脂液の硬化物層の厚みに該当する該硬化物層の一部から構成される。また、該硬化物層の残りの厚み部分が、多数の単位柱状プリズムを単位光学要素2とするプリズム群を構成する。また、単位柱状プリズムの形状は、主切断面形状が、頂角90°の直角二等辺三角形で底辺が50μm、高さは一定で25μm、配列周期は50μmである。また、この単位柱状プリズムからなる単位光学要素2は本体部1の一方の面1pを完全に被覆して、同一形状同一寸法同一周期で、単位光学要素を配列したプリズム構造が形成され、この最外面が光学要素面Peとなっている。   The main body 1 is composed of the PET film and a part of the cured product layer corresponding to the thickness of the cured product layer of the ultraviolet curable resin liquid between the PET film and the convex portion on the mold surface. The Further, the remaining thickness portion of the cured product layer constitutes a prism group having a number of unit columnar prisms as unit optical elements 2. The unit columnar prism has a main cut surface shape of a right isosceles triangle having an apex angle of 90 °, a base of 50 μm, a constant height of 25 μm, and an arrangement period of 50 μm. The unit optical element 2 composed of the unit columnar prism completely covers one surface 1p of the main body 1 to form a prism structure in which unit optical elements are arranged in the same shape, the same size and the same period. The outer surface is the optical element surface Pe.

次に、上記プリズムシート部材の裏面側である本体部1の他方の面1qに、前記組成A2の凹凸塗膜形成用塗料を塗布し加熱乾燥後、高圧水銀灯から紫外線照射して硬化させて厚み3μmの凹凸塗膜3を形成し、目的とする光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeがB、凹凸塗膜面Pmの硬度HmがFを示した。
Next, the other surface 1q of the main body 1 which is the back surface side of the prism sheet member is coated with the coating composition for forming an uneven coating film of the composition A2, dried by heating, and then cured by irradiation with ultraviolet rays from a high pressure mercury lamp. A 3 μm-thick uneven coating film 3 was formed to produce a target optical sheet.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was F.

〔実施例A2〕
実施例A1に於ける凹凸塗膜形成用塗料を組成A3に変更した他は、実施例A1と同様にして実施例A2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度HmはHを示した。
[Example A2]
An optical sheet of Example A2 was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film in Example A1 was changed to Composition A3.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was H.

〔実施例A3〕
実施例A1に於ける凹凸塗膜形成用塗料を組成A4に変更した他は、実施例A1と同様にして実施例A3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度Hmは2Hを示した。
[Example A3]
An optical sheet of Example A3 was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film in Example A1 was changed to Composition A4.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating film surface Pm was 2H.

〔実施例A4〕
実施例A1に於ける凹凸塗膜形成用塗料を組成A5に変更した他は、実施例A1と同様にして実施例A4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度Hmは3Hを示した。
[Example A4]
An optical sheet of Example A4 was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film in Example A1 was changed to Composition A5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating film surface Pm was 3H.

〔実施例A5〕
実施例A2に於ける凹凸塗膜形成用塗料は組成A3のままとして、単位光学要素形成用の樹脂組成物を次の組成に変更した他は、実施例A2と同様にして実施例A5の光学シートを作製した。
光学要素形成用の樹脂組成物は、プレポリマーとしてカプロラクトン変性ウレタンアクリレートとエチレンオキサイド変性ビフェニロキシエチルアクリレートとを用い、これに更に2官能モノマーとしてネオペンチルグリコールメタクリレートとビスフェノールAジアクリレートとを用い、3官能モノマーとしてグリセリンエポキシトリアクリレートを用いたもので、更に開始剤としてビスアシルフォスフィンオキサイド系開始剤及び1−ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)を添加し、リン酸エステル系滑剤を添加した樹脂組成物である。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはHを示した。
[Example A5]
The optical coating of Example A5 is the same as Example A2 except that the coating composition for forming an uneven coating film in Example A2 remains as composition A3 and the resin composition for forming unit optical elements is changed to the following composition. A sheet was produced.
The resin composition for forming an optical element uses caprolactone-modified urethane acrylate and ethylene oxide-modified biphenyloxyethyl acrylate as prepolymers, and further uses neopentyl glycol methacrylate and bisphenol A diacrylate as bifunctional monomers. A glycerin epoxy triacrylate is used as a functional monomer, and a bisacylphosphine oxide-based initiator and 1-hydroxycyclohexyl phenyl ketone (Irgacure (registered trademark) 184) are added as initiators, and a phosphate ester-based lubricant is added. It is the added resin composition.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was H.

〔実施例A6〕
実施例A5に於ける凹凸塗膜形成用塗料を組成A4に変更した他は、実施例A5と同様にして実施例A6の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度Hmは2Hを示した。
[Example A6]
An optical sheet of Example A6 was produced in the same manner as in Example A5, except that the coating film for forming an uneven coating film in Example A5 was changed to Composition A4.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was 2H.

〔実施例A7〕
実施例A5に於ける凹凸塗膜形成用塗料を組成A5に変更した他は、実施例A5と同様にして実施例A7の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度Hmは3Hを示した。
[Example A7]
An optical sheet of Example A7 was produced in the same manner as in Example A5, except that the coating film for forming an uneven coating film in Example A5 was changed to Composition A5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was 3H.

〔実施例A8〕
実施例A5に於ける凹凸塗膜形成用塗料を組成A2に変更した他は、実施例A5と同様にして実施例A8の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはFを示した。
[Example A8]
An optical sheet of Example A8 was produced in the same manner as in Example A5 except that the coating film for forming an uneven coating film in Example A5 was changed to Composition A2.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was F.

〔実施例A9〕
実施例A5に於ける凹凸塗膜形成用塗料は組成A3のままとして、単位光学要素形成用の樹脂組成物として、上述した凹凸塗膜形成用塗料の組成A3から微粒子を除いた組成物を用いた他は、実施例A5と同様にして実施例A9の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、凹凸塗膜面Pmの硬度HmはHを示した。
[Example A9]
In Example A5, the concavo-convex coating film-forming coating material remains as composition A3, and as the resin composition for forming the unit optical element, the above-described concavo-convex coating film-forming coating material composition A3 is used. Otherwise, an optical sheet of Example A9 was produced in the same manner as Example A5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the uneven coating surface Pm was H.

〔比較例A1〕
実施例A1に於ける凹凸塗膜形成用塗料を組成A1に変更した他は、実施例A1と同様にして比較例A1の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、凹凸塗膜面Pmの硬度HmはHBを示した。
[Comparative Example A1]
An optical sheet of Comparative Example A1 was produced in the same manner as in Example A1, except that the coating film for forming an uneven coating film in Example A1 was changed to Composition A1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the uneven coating surface Pm was HB.

〔比較例A2〕
実施例A5に於ける凹凸塗膜形成用塗料を組成A1に変更した他は、実施例A5と同様にして比較例A2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはHBを示した。
[Comparative Example A2]
An optical sheet of Comparative Example A2 was produced in the same manner as in Example A5, except that the uneven coating film-forming coating material in Example A5 was changed to Composition A1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was HB.

〔比較例A3〕
実施例A9に於ける凹凸塗膜形成用塗料を組成A2に変更した他は、実施例A9と同様にして比較例A3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、凹凸塗膜面Pmの硬度HmはFを示した。
[Comparative Example A3]
An optical sheet of Comparative Example A3 was produced in the same manner as in Example A9, except that the coating film for forming an uneven coating film in Example A9 was changed to Composition A2.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the uneven coating surface Pm was F.

〔比較例A4〕
実施例A5に於ける凹凸塗膜形成用塗料は組成A3のままとして、単位光学要素形成用の樹脂組成物として、上述した凹凸塗膜形成用塗料の組成A4から微粒子を除いた組成物を用いた他は、実施例A5と同様にして比較例A4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度Heは2Hで、凹凸塗膜面Pmの硬度HmはHを示した。
[Comparative Example A4]
In Example A5, the concavo-convex coating film-forming coating material remains as composition A3, and the above-described concavo-convex coating film-forming coating material composition A4 is used as the resin composition for unit optical element formation. Otherwise, an optical sheet of Comparative Example A4 was produced in the same manner as Example A5.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was 2H, and the hardness Hm of the uneven coating surface Pm was H.

〔性能評価〕
上記の実施例A1〜A9及び比較例A1〜A4の光学シートについて、鉛筆硬度と耐擦傷性を評価した。また、各実施例のマルテンス硬度と回復率を測定した。尚、光学要素面Peの鉛筆硬度試験は、鉛筆をプリズム稜線方向に移動させて行った。
[Performance evaluation]
About the optical sheet of said Example A1-A9 and Comparative Example A1-A4, pencil hardness and scratch resistance were evaluated. Moreover, the Martens hardness and recovery rate of each Example were measured. The pencil hardness test on the optical element surface Pe was performed by moving the pencil in the prism ridge direction.

(1)鉛筆硬度は、JIS K5600−5−4(1999年)に準拠して、荷重1000g、速度1mm/sの条件で測定した。
(2)耐擦傷性は、次のようにして評価した。まず、透明なアクリル樹脂板上に、1辺の長さが5cmの正方形に裁断した10枚の光学シートを、重ねて配置した。10枚の光学シートは、各光学要素面を下側に向けて且つ各単位光学要素つまり単位柱状プリズムの配列方向を互いに平行にして、重ねた。重ねられた10枚の光学シートの上に、更に、前記と同じ透明なアクリル樹脂板を重ね、四辺周囲を粘着テープで固定した。10枚の光学シートを間に挟んだ一対のアクリル樹脂板を、振動試験機(アイデッスク株式会社製、BF−50UL)の水平な加振台の上に固定し、更にその上から荷重10gの重りを載せて固定した状態で、上下及び左右の3軸同時振動を加えた。振動は、加速度7.3G、周波数67Hzとした。
振動を加えた後の光学シートについて、その表面具合を倍率500倍の顕微鏡による目視観察で確認した。光学要素面Peについては単位柱状プリズムの稜線部分の長さ3mmに亘った領域を観察し、塗膜面Pmについては面積9mm2の正方形の領域を観察して、傷の有無を確認した。
塗膜面(調査1においては、凹凸塗膜面)の耐擦傷性を評価するため、各実施例乃至比較例とも試験後の光学シート5枚について傷の有無の確認を行った。そして、5枚全部の光学シートの塗膜面に傷が発生していなかった場合、塗膜面の耐擦傷性を「優」と評価し、5枚全部の光学シートの塗膜面に傷が発生していた場合、塗膜面の耐擦傷性を「不良」と評価し、一部の光学シートの光学要素面に傷が発生していたが残りの光学シートの塗膜面面に傷が発生していなかった場合、塗膜面の耐擦傷性を「良」と評価した。
光学要素面についての耐擦傷性を評価するため、各実施例乃至比較例とも試験後の光学シート5枚について傷の有無の確認を行った。そして、5枚全部の光学シートの光学要素面に傷が発生していなかった場合、光学要素面の耐擦傷性を「優」と評価し、5枚全部の光学シートの光学要素面に傷が発生していた場合、光学要素面の耐擦傷性を「不良」と評価し、一部の光学シートの光学要素面に傷が発生していたが残りの光学シートの光学要素面に傷が発生していなかった場合、光学要素面の耐擦傷性を「良」と評価した。
(3)マルテンス硬度と回復率は、(株)フィッシャー・インストルメンツ製の微小硬さ試験機(PICODENTOR(登録商標) HM500、ISO14577−1)を用いて測定した。
(1) The pencil hardness was measured under the conditions of a load of 1000 g and a speed of 1 mm / s in accordance with JIS K5600-5-4 (1999).
(2) The scratch resistance was evaluated as follows. First, ten optical sheets cut into a square having a side length of 5 cm were stacked on a transparent acrylic resin plate. Ten optical sheets were overlapped with each optical element surface facing downward and with the unit optical elements, that is, unit columnar prisms arranged in parallel to each other. The same transparent acrylic resin plate as described above was further stacked on the 10 optical sheets stacked, and the periphery of each side was fixed with an adhesive tape. A pair of acrylic resin plates with 10 optical sheets sandwiched between them are fixed on a horizontal shaking table of a vibration tester (manufactured by IDEX Co., Ltd., BF-50UL). In this state, three axes of vertical and horizontal vibrations were applied simultaneously. The vibration was an acceleration of 7.3 G and a frequency of 67 Hz.
About the optical sheet after applying vibration, the surface condition was confirmed by visual observation with a microscope having a magnification of 500 times. For the optical element surface Pe, an area over the length of 3 mm of the ridge line portion of the unit columnar prism was observed, and for the coating film surface Pm, a square area with an area of 9 mm 2 was observed to confirm the presence or absence of scratches.
In order to evaluate the scratch resistance of the coating film surface (the uneven coating film surface in Investigation 1), the presence or absence of scratches on each of the five optical sheets after the test was confirmed in each of the Examples and Comparative Examples. If no scratches were generated on the coating surfaces of all five optical sheets, the scratch resistance of the coating surfaces was evaluated as “excellent”, and the coating surfaces of all five optical sheets were scratched. If it occurred, the scratch resistance of the coating film surface was evaluated as “bad”, and scratches were generated on the optical element surface of some optical sheets, but the coating surface of the remaining optical sheets were scratched. When it did not occur, the scratch resistance of the coating surface was evaluated as “good”.
In order to evaluate the scratch resistance of the optical element surface, in each of the Examples and Comparative Examples, the presence or absence of scratches was confirmed on five optical sheets after the test. If no scratch has occurred on the optical element surfaces of all five optical sheets, the scratch resistance of the optical element surfaces is evaluated as “excellent”, and the optical element surfaces of all five optical sheets are scratched. If it occurs, the scratch resistance of the optical element surface is evaluated as “bad”, and scratches have occurred on the optical element surfaces of some optical sheets, but scratches have occurred on the optical element surfaces of the remaining optical sheets. If not, the scratch resistance of the optical element surface was evaluated as “good”.
(3) Martens hardness and recovery rate were measured using a microhardness tester (PICODERTOR (registered trademark) HM500, ISO145777-1) manufactured by Fisher Instruments Co., Ltd.

〔性能比較〕
そして、実施例A1〜A9及び比較例A1〜A4の鉛筆硬度での硬度He及び硬度Hmと、耐擦傷性を表1および図2に示す。図2および表1において、総合評価として、塗膜面Pmおよび光学要素面Peの耐擦傷性の評価が「優」であった場合を○印を示し、塗膜面Pmの耐擦傷性の評価が「優」であり且つ光学要素面Peの耐擦傷性の評価が「良」であった場合を△印で示し、塗膜面Pmの耐擦傷性の評価が「良」または「不良」となり或いは光学要素面Peの耐擦傷性の評価が「不良」となった場合を×印で示している。また、これら○印、△印、及び×印の脇に沿えてあるアルファベットA〜Hが、表1における「グラフ上の位置」に対応する記号である。例えば、点AのHe=BでHm=HBの座標(B,HB)は比較例A1に対応する。
[Performance comparison]
And Table 1 and FIG. 2 show hardness He and hardness Hm in pencil hardness of Examples A1 to A9 and Comparative Examples A1 to A4 and scratch resistance. In FIG. 2 and Table 1, as a comprehensive evaluation, a case where the evaluation of the scratch resistance of the coating film surface Pm and the optical element surface Pe was “excellent” is indicated by a circle, and the evaluation of the scratch resistance of the coating film surface Pm Is “excellent” and the evaluation of the scratch resistance of the optical element surface Pe is “good” is indicated by Δ, and the evaluation of the scratch resistance of the coating surface Pm is “good” or “bad”. Alternatively, a case where the evaluation of the scratch resistance of the optical element surface Pe is “defective” is indicated by a cross. Further, alphabets A to H alongside the circle mark, the triangle mark, and the cross mark are symbols corresponding to “positions on the graph” in Table 1. For example, the coordinates (B, HB) of He = B and Hm = HB of the point A correspond to the comparative example A1.

Figure 2012083740
Figure 2012083740

表1及び図2に示すように、塗膜面Pmの硬度Hmが光学要素面Peの硬度Heよりも低くなった比較例A3及び比較例A4では、塗膜面Pmの耐擦傷性が「不良」となった。また、塗膜面Pmの硬度Hmが光学要素面Peの硬度He以上となっていても、塗膜面Pmの硬度Hmが「F」より低くなった比較例A1及び比較例A2では、塗膜面Pmの耐擦傷性が「優」にはならなかった。そして、硬度Hmが硬度He以上(硬度Hm≧硬度He)且つ硬度Hmが「F」以上(硬度Hm≧F)を満たす各実施例では、塗膜面Pmの耐擦傷性が「優」となり且つ光学要素面Peの耐擦傷性が「良」以上となり、塗膜面Pmでの耐擦傷性を重視した総合評価が良好な「○」又は「△」となった。   As shown in Table 1 and FIG. 2, in Comparative Example A3 and Comparative Example A4 in which the hardness Hm of the coating film surface Pm is lower than the hardness He of the optical element surface Pe, the scratch resistance of the coating film surface Pm is “bad”. " In Comparative Examples A1 and A2 in which the hardness Hm of the coating film surface Pm is lower than “F” even though the hardness Hm of the coating film surface Pm is equal to or higher than the hardness He of the optical element surface Pe, The scratch resistance of the surface Pm did not become “excellent”. In each example where the hardness Hm is equal to or higher than the hardness He (hardness Hm ≧ hardness He) and the hardness Hm is equal to or higher than “F” (hardness Hm ≧ F), the scratch resistance of the coating surface Pm becomes “excellent” and The scratch resistance of the optical element surface Pe was “good” or higher, and the overall evaluation focusing on the scratch resistance on the coating film surface Pm was “good” or “good”.

ただし、「硬度Hm−硬度He>3」となった実施例A3、実施例A4、実施例A7では、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。また、「硬度Hm−硬度He」が「1」または「0」となった実施例A8、実施例A9においても、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。一方、硬度He+3≧硬度Hm≧硬度He+2を満たす実施例A1、実施例A2、実施例A5、実施例A6では、光学要素面Peおよび塗膜面Pmの耐擦傷性が共に「優」となり、総合評価が「○」となった。   However, in Example A3, Example A4, and Example A7 in which “Hardness Hm−Hardness He> 3”, scratches that are considered to have no problem in practice are optically damaged on one or two optical sheets. It occurred on the element surface Pe. Also in Example A8 and Example A9 in which “Hardness Hm−Hardness He” is “1” or “0”, there is one or two optical scratches to the extent that there is no practical problem. It occurred on the optical element surface Pe of the sheet. On the other hand, in Example A1, Example A2, Example A5, and Example A6 satisfying the hardness He + 3 ≧ hardness Hm ≧ hardness He + 2, both the scratch resistance of the optical element surface Pe and the coating surface Pm is “excellent”. Evaluation became "(circle)".

次に、表2に、上記各実施例及び各比較例のうちの数例について、マルテンス硬さ試験に於ける回復率を、鉛筆硬度と共に示す。表2に示す様に、回復率が50%以上であると耐擦傷性が良いことが判り、41.6%(比較例A1)と50%未満であると耐擦傷性が悪いことが判る。
また、マルテンス硬度は、凹凸塗膜面Pmについては、大きすぎても小さすぎても耐擦傷性が悪くなり、100〜180N/mm2の範囲では良いことが判る。一方、光学要素面Peについては、マルテンス硬度は凹凸塗膜面Pmよりも約2桁小さく2〜4N/mm2であるが、それでも耐擦傷性は良いことが判る。光学要素面Peについては、柳の様に外力に対してあまり抵抗せず変形して外力から開放されたときに元の形状に戻る様にすることが良い方向に作用していると考えられる。
Next, in Table 2, the recovery rate in the Martens hardness test is shown together with the pencil hardness for several examples of the above examples and comparative examples. As shown in Table 2, it can be seen that the scratch resistance is good when the recovery rate is 50% or more, and that the scratch resistance is poor when it is 41.6% (Comparative Example A1) and less than 50%.
Further, it can be seen that the Martens hardness is too large or too small for the uneven coating film surface Pm to deteriorate the scratch resistance and is good in the range of 100 to 180 N / mm 2 . On the other hand, regarding the optical element surface Pe, the Martens hardness is 2 to 4 N / mm 2 which is about two orders of magnitude smaller than the concavo-convex coating surface Pm, but it can be seen that the scratch resistance is still good. It is considered that the optical element surface Pe is acting in a good direction to be deformed without resisting to external force much like a willow and to return to its original shape when released from the external force.

Figure 2012083740
Figure 2012083740

<調査2>
調査2として、図1の構成を有する光学シートについて調査を行った。すなわち、調査2で対象とした光学シートは、凹凸塗膜からなる塗膜を有し、塗膜面が粗面として形成されているようにした。
<Survey 2>
As Survey 2, an optical sheet having the configuration of FIG. 1 was surveyed. That is, the optical sheet used in Investigation 2 had a coating film composed of a concavo-convex coating film, and the coating film surface was formed as a rough surface.

〔凹凸塗膜形成用塗料の準備〕
各種鉛筆硬度の凹凸塗膜を形成するために、次の各組成の塗料を準備した。
[Preparation of paint for forming uneven film]
In order to form uneven coating films having various pencil hardnesses, paints having the following respective compositions were prepared.

(組成B1:鉛筆硬度HB用)
紫外線硬化型フッ素原子含有ポリマー(屈折率1.41) 99質量部
(オプスター(登録商標)JN35、JSR(株)製、固形分15wt%、溶媒メチルイソブチルケトン)
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition B1: for pencil hardness HB)
99 parts by mass of UV curable fluorine atom-containing polymer (refractive index 1.41) (Opstar (registered trademark) JN35, manufactured by JSR Corporation, solid content 15 wt%, solvent methyl isobutyl ketone)
1 part by weight of fine particles (monodispersed spherical cross-linked acrylic resin beads having an average particle diameter of 5 μm) (manufactured by Soken Chemical Co., Ltd., MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成B2:鉛筆硬度F用)
紫外線硬化型フッ素原子含有ポリマー(屈折率1.41) 80質量部
(オプスター(登録商標)JN35、JSR(株)製、固形分15wt%、溶媒メチルイソブチルケトン)
ペンタエリスリトールトリアクリレート(屈折率1.51) 19質量部
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition B2: for pencil hardness F)
80 parts by mass of UV curable fluorine atom-containing polymer (refractive index 1.41) (Opstar (registered trademark) JN35, manufactured by JSR Corporation, solid content 15 wt%, solvent methyl isobutyl ketone)
Pentaerythritol triacrylate (refractive index 1.51) 19 parts by mass Fine particles (monodispersed spherical crosslinked acrylic resin beads having an average particle diameter of 5 μm) 1 part by mass (MX-500H, manufactured by Soken Chemical Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成B3:鉛筆硬度H用)
ペンタエリスリトールトリアクリレート(屈折率1.51) 80質量部
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)19質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition B3: for pencil hardness H)
Pentaerythritol triacrylate (refractive index 1.51) 80 parts by mass UV curable urethane acrylate oligomer (refractive index 1.52) 19 parts by mass (Shikou (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
1 part by weight of fine particles (monodispersed spherical cross-linked acrylic resin beads having an average particle diameter of 5 μm) (manufactured by Soken Chemical Co., Ltd., MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成B4:鉛筆硬度2H用)
ジペンタエリスリトールへキサアクリレート(屈折率1.51) 29質量部
(KAYARAD(登録商標)DPHA、日本化薬(株)製)
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)70質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition B4: for pencil hardness 2H)
29 parts by mass of dipentaerythritol hexaacrylate (refractive index 1.51) (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
70 parts by mass of UV-curable curable urethane acrylate oligomer (refractive index 1.52) (purple light (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
1 part by weight of fine particles (monodispersed spherical cross-linked acrylic resin beads having an average particle diameter of 5 μm) (manufactured by Soken Chemical Co., Ltd., MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成B5:鉛筆硬度3H用)
ジペンタエリスリトールヘキサアクリレート(屈折率1.51) 80質量部
(KAYARAD(登録商標)DPHA、日本化薬(株)製)
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)19質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
微粒子(平均粒子径5μmで単分散の球形状の架橋アクリル系樹脂ビーズ)1質量部
(綜研化学株式会社製、MX−500H)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition B5: for pencil hardness 3H)
80 parts by mass of dipentaerythritol hexaacrylate (refractive index 1.51) (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
UV-curable curable urethane acrylate oligomer (refractive index 1.52) 19 parts by mass (purple light (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
1 part by weight of fine particles (monodispersed spherical cross-linked acrylic resin beads having an average particle diameter of 5 μm) (manufactured by Soken Chemical Co., Ltd., MX-500H)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

〔実施例B1〕
単位光学要素2として単位柱状プリズムを採用した図1に示された光学シート10を作製した。単位柱状プリズムの形状は、実施例A1と同様にした。実施例B1に於いて、凹凸塗膜形成用塗料を組成B2に変更した他は、実施例A1と同様にして光学シートを作製した。したがって、実施例B1において、単位光学要素形成用の樹脂組成物は、実施例A1と同様の単位光学要素形成用樹脂組成物を用いて、実施例A1と同様の形状を有した単位柱状プリズムを作製した。なお、単位光学要素形成用の樹脂組成物は、実施例A1と同様に、厚み188μmの透明な2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)とし、このPETフィルムの屈折率は1.65であった。
[Example B1]
The optical sheet 10 shown in FIG. 1 in which a unit columnar prism was adopted as the unit optical element 2 was produced. The shape of the unit columnar prism was the same as in Example A1. In Example B1, an optical sheet was produced in the same manner as in Example A1, except that the coating for forming an uneven coating film was changed to composition B2. Therefore, in Example B1, the unit optical element-forming resin composition was obtained by using a unit optical element-forming resin composition similar to Example A1 and a unit columnar prism having the same shape as Example A1. Produced. The resin composition for forming the unit optical element was a transparent biaxially stretched polyethylene terephthalate film (PET film) having a thickness of 188 μm, as in Example A1, and the refractive index of this PET film was 1.65. .

塗膜面Pmの最外面のRz(JIS B0601(1994年版)規定)は3.26μmであった。得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeがB、塗膜面Pmの硬度HmがFを示した。また、本体部1の塗膜に対面する部分の屈折率Nsは1.65であり、凹凸塗膜3を成す樹脂の屈折率Nmは1.47であった。   Rz (JIS B0601 (1994 version) regulation) of the outermost surface of the coating film surface Pm was 3.26 μm. Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating surface Pm was F. Moreover, the refractive index Ns of the part which faces the coating film of the main-body part 1 was 1.65, and the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.47.

〔実施例B2〕
実施例B1に於ける凹凸塗膜形成用塗料を組成B3に変更した他は、実施例B1と同様にして実施例B2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度HmはHを示した。また、本体部1の塗膜に対面する部分の屈折率Ns1.65に対して、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example B2]
An optical sheet of Example B2 was produced in the same manner as in Example B1, except that the coating film for forming an uneven coating film in Example B1 was changed to Composition B3.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was H. Further, the refractive index Nm of the resin forming the uneven coating film 3 was 1.51 with respect to the refractive index Ns1.65 of the portion facing the coating film of the main body 1.

〔実施例B3〕
実施例B1に於ける凹凸塗膜形成用塗料を組成B4に変更した他は、実施例B1と同様にして実施例B3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度Hmは2Hを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.52であった。
[Example B3]
An optical sheet of Example B3 was produced in the same manner as in Example B1, except that the coating material for forming an uneven coating film in Example B1 was changed to Composition B4.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was 2H. Further, the refractive index Nm of the resin forming the uneven coating film 3 was 1.52.

〔実施例B4〕
実施例B1に於ける凹凸塗膜形成用塗料を組成B5に変更した他は、実施例B1と同様にして実施例B4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度Hmは3Hを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example B4]
An optical sheet of Example B4 was produced in the same manner as in Example B1, except that the coating for forming an uneven coating film in Example B1 was changed to Composition B5.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was 3H. Moreover, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.51.

〔実施例B5〕
実施例B2に於ける凹凸塗膜形成用塗料は組成B3のままとして、単位光学要素形成用の樹脂組成物を次の組成に変更した他は、実施例B2と同様にして実施例B5の光学シートを作製した。
光学要素形成用の樹脂組成物は、プレポリマーとしてカプロラクトン変性ウレタンアクリレートとエチレンオキサイド変性ビフェニロキシエチルアクリレートとを用い、これに更に2官能モノマーとしてネオペンチルグリコールメタクリレートとビスフェノールAジアクリレートとを用い、3官能モノマーとしてグリセリンエポキシトリアクリレートを用いたもので、更に開始剤としてビスアシルフォスフィンオキサイド系開始剤及び1−ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)を添加し、リン酸エステル系滑剤を添加した樹脂組成物である。得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度HmはHを示した。なお、本体部1の塗膜に対面する部分の屈折率Ns1.65に対して、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example B5]
The optical coating of Example B5 is the same as Example B2 except that the coating composition for forming an uneven coating film in Example B2 is still the composition B3 and the resin composition for forming the unit optical element is changed to the following composition. A sheet was produced.
The resin composition for forming an optical element uses caprolactone-modified urethane acrylate and ethylene oxide-modified biphenyloxyethyl acrylate as prepolymers, and further uses neopentyl glycol methacrylate and bisphenol A diacrylate as bifunctional monomers. A glycerin epoxy triacrylate is used as a functional monomer, and a bisacylphosphine oxide-based initiator and 1-hydroxycyclohexyl phenyl ketone (Irgacure (registered trademark) 184) are added as initiators, and a phosphate ester-based lubricant is added. It is the added resin composition. Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating surface Pm was H. In addition, with respect to the refractive index Ns1.65 of the part which faces the coating film of the main-body part 1, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.51.

〔実施例B6〕
実施例B5に於ける凹凸塗膜形成用塗料を組成B4に変更した他は、実施例B5と同様にして実施例B6の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度Hmは2Hを示した。なお、凹凸塗膜3を成す樹脂の屈折率Nmは1.52であった。
[Example B6]
An optical sheet of Example B6 was produced in the same manner as in Example B5, except that the coating film for forming an uneven coating film in Example B5 was changed to Composition B4.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating film surface Pm was 2H. The refractive index Nm of the resin forming the uneven coating film 3 was 1.52.

〔実施例B7〕
実施例B5に於ける凹凸塗膜形成用塗料を組成B5に変更した他は、実施例B3と同様にして実施例B7の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度Hmは3Hを示した。なお、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example B7]
An optical sheet of Example B7 was produced in the same manner as in Example B3 except that the coating film for forming an uneven coating film in Example B5 was changed to Composition B5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating film surface Pm was 3H. The refractive index Nm of the resin forming the uneven coating film 3 was 1.51.

〔実施例B8〕
実施例B5に於ける凹凸塗膜形成用塗料を組成B2に変更した他は、実施例B5と同様にして実施例B8の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはFを示した。なお、凹凸塗膜3を成す樹脂の屈折率Nmは1.47であった。
[Example B8]
An optical sheet of Example B8 was produced in the same manner as in Example B5 except that the coating material for forming an uneven coating film in Example B5 was changed to Composition B2.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was F. The refractive index Nm of the resin forming the uneven coating film 3 was 1.47.

〔実施例B9〕
実施例B5に於ける凹凸塗膜形成用塗料は組成B3のままとして、単位光学要素形成用の樹脂組成物として、上述した凹凸塗膜形成用塗料の組成B3から微粒子を除いた組成物を用いた他は、実施例B5と同様にして実施例B9の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、凹凸塗膜面Pmの硬度HmはHを示した。なお、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example B9]
In Example B5, the concavo-convex coating film-forming coating material remains as composition B3, and the above-described concavo-convex coating film-forming coating material composition B3 is used as the resin composition for unit optical element formation. Otherwise, an optical sheet of Example B9 was produced in the same manner as Example B5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the uneven coating surface Pm was H. The refractive index Nm of the resin forming the uneven coating film 3 was 1.51.

〔比較例B1〕
実施例B1に於ける凹凸塗膜形成用塗料を組成B1に変更した他は、実施例B1と同様にして比較例B1の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度HmはHBを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.41であった。
[Comparative Example B1]
An optical sheet of Comparative Example B1 was produced in the same manner as in Example B1, except that the coating film for forming an uneven coating film in Example B1 was changed to Composition B1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was HB. Moreover, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.41.

〔比較例B2〕
実施例B5に於ける凹凸塗膜形成用塗料を組成B1に変更した他は、実施例B5と同様にして比較例B2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、凹凸塗膜面Pmの硬度HmはHBを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.41であった。
[Comparative Example B2]
An optical sheet of Comparative Example B2 was prepared in the same manner as in Example B5, except that the uneven coating film-forming coating material in Example B5 was changed to Composition B1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the uneven coating surface Pm was HB. Moreover, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.41.

〔比較例B3〕
実施例B9に於ける凹凸塗膜形成用塗料を組成B2に変更した他は、実施例B9と同様にして比較例B3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、凹凸塗膜面Pmの硬度HmはFを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.47であった。
[Comparative Example B3]
An optical sheet of Comparative Example B3 was produced in the same manner as in Example B9, except that the coating film for forming an uneven coating film in Example B9 was changed to Composition B2.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the uneven coating surface Pm was F. Moreover, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.47.

〔比較例B4〕
実施例B5に於ける凹凸塗膜形成用塗料は組成B3のままとして、単位光学要素形成用の樹脂組成物として、上述した凹凸塗膜形成用塗料の組成B4から微粒子を除いた組成物を用いた他は、実施例B5と同様にして比較例B4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度Heは2Hで、凹凸塗膜面Pmの硬度HmはHを示した。また、凹凸塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Comparative Example B4]
In Example B5, the concavo-convex coating film-forming coating material remains as composition B3, and the above-described concavo-convex coating film-forming coating material composition B4 is used as the resin composition for unit optical element formation. Otherwise, an optical sheet of Comparative Example B4 was produced in the same manner as Example B5.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was 2H, and the hardness Hm of the uneven coating surface Pm was H. Moreover, the refractive index Nm of resin which comprises the uneven | corrugated coating film 3 was 1.51.

〔比較例D1〕
実施例B1に於ける凹凸塗膜3の形成を省略した他は、実施例B1と同様にして光学シートを作製した。この光学シートは、本体部1と単位光学要素2とからなり、光学シートの光学要素面とは反対側となる裏側面は、本体部1の他方の面(単位光学要素2が形成されていない側の面)からなっている。
[Comparative Example D1]
An optical sheet was produced in the same manner as in Example B1, except that the formation of the uneven coating film 3 in Example B1 was omitted. This optical sheet is composed of a main body 1 and unit optical elements 2, and the back side surface opposite to the optical element surface of the optical sheet is the other surface of the main body 1 (unit optical elements 2 are not formed). Side surface).

〔比較例D2〕
実施例B5に於ける凹凸塗膜3の形成を省略した他は、実施例B5と同様にして光学シートを作製した。この光学シートは、本体部1と単位光学要素2とからなり、光学シートの光学要素面とは反対側となる裏側面は、本体部1の他方の面(単位光学要素2が形成されていない側の面)からなっている。
[Comparative Example D2]
An optical sheet was produced in the same manner as in Example B5 except that the formation of the uneven coating film 3 in Example B5 was omitted. This optical sheet is composed of a main body 1 and unit optical elements 2, and the back side surface opposite to the optical element surface of the optical sheet is the other surface of the main body 1 (unit optical elements 2 are not formed). Side surface).

〔性能評価〕
上記の実施例B1〜B9及び比較例B1〜B4の光学シートについて、鉛筆硬度と耐擦傷性を評価した。また、実施例B1〜B7及び比較例B1,B2,D1,D2の光学シートについて、輝度を評価した。尚、光学要素面Peの鉛筆硬度試験は、鉛筆をプリズム稜線方向に移動させて行った。
[Performance evaluation]
About the optical sheet of said Example B1-B9 and Comparative Example B1-B4, pencil hardness and abrasion resistance were evaluated. Moreover, the brightness | luminance was evaluated about the optical sheet of Example B1-B7 and Comparative Example B1, B2, D1, D2. The pencil hardness test on the optical element surface Pe was performed by moving the pencil in the prism ridge direction.

(1)鉛筆硬度は、上述した実施例A1〜A9及び比較例A1〜A4と同様に評価した。
(2)耐擦傷性は、上述した実施例A1〜A9及び比較例A1〜A4と同様に評価した。
(3)輝度は、三星電子社製の液晶テレビジョン受像装置(品番:UN40B6000VF)の画面側から液晶表示板および各種光学部材を除去して、エッジライト型面光源装置(最表面が導光板)を取り出し、該面光源装置の出光面上(導光板上)に実施例B1〜B7及び比較例B1,B2,D1,D2の光学シートを、その塗膜面Pm側を導光板側に向けて載置して、該導光板の法線方向に於ける輝度を測定し、評価した。輝度は、輝度計(株式会社トプコン製、BM−7)を用いて計測した。評価の方法は、比較例B1及び実施例B1〜B4は、塗膜を設けず単位光学要素2がこれらと同一樹脂の比較例D1の輝度を100%とした時の百分率で評価し、比較例B2及び実施例B5〜B8は、塗膜を設けず単位光学要素2がこれらと同一樹脂の比較例D2の輝度を100%とした時の百分率で評価した。
(1) The pencil hardness was evaluated in the same manner as in Examples A1 to A9 and Comparative Examples A1 to A4 described above.
(2) The scratch resistance was evaluated in the same manner as in Examples A1 to A9 and Comparative Examples A1 to A4 described above.
(3) Brightness is obtained by removing the liquid crystal display plate and various optical members from the screen side of a liquid crystal television receiver (product number: UN40B6000VF) manufactured by Samsung Electronics Co., Ltd., and an edge light type surface light source device (the outermost surface is a light guide plate). The optical sheets of Examples B1 to B7 and Comparative Examples B1, B2, D1, and D2 are placed on the light exit surface (on the light guide plate) of the surface light source device, with the coating film surface Pm side facing the light guide plate side. Then, the luminance in the normal direction of the light guide plate was measured and evaluated. The luminance was measured using a luminance meter (Topcon Co., Ltd., BM-7). The evaluation method is as follows: Comparative Example B1 and Examples B1 to B4 are evaluated as a percentage when the unit optical element 2 is not provided with a coating film and the luminance of Comparative Example D1 of the same resin is 100%. B2 and Examples B5 to B8 were evaluated in terms of percentage when the coating film was not provided and the unit optical element 2 had the same luminance as Comparative Example D2 of the same resin as 100%.

〔性能比較〕
そして、実施例B1〜B9及び比較例B1〜B4,D1,D2の鉛筆硬度での硬度He及び硬度Hmと、耐擦傷性と、塗膜屈折率と、正面方向の輝度を、表3に示す。
[Performance comparison]
And Table 3 shows hardness He and hardness Hm in pencil hardness of Examples B1 to B9 and Comparative Examples B1 to B4, D1 and D2, scratch resistance, coating film refractive index, and luminance in the front direction. .

Figure 2012083740
Figure 2012083740

実施例B1〜B9及び比較例B1〜B4について、塗膜面Pmの硬度Hmおよび光学要素面Heの硬度Peと耐擦傷性との関係は、図2に示された実施例A1〜A9及び比較例A1〜A4と同様になった。   Regarding Examples B1 to B9 and Comparative Examples B1 to B4, the relationship between the hardness Hm of the coating surface Pm and the hardness Pe of the optical element surface He and the scratch resistance is the same as that of Examples A1 to A9 shown in FIG. Similar to Examples A1-A4.

具体的には、表3及び図2に示すように、塗膜面Pmの硬度Hmが光学要素面Peの硬度Heよりも低くなった比較例B3及び比較例B4では、塗膜面Pmの耐擦傷性が「不良」となった。また、塗膜面Pmの硬度Hmが光学要素面Peの硬度He以上となっていても、塗膜面Pmの硬度Hmが「F」より低くなった比較例B1及び比較例B2では、塗膜面Pmの耐擦傷性が「優」にはならなかった。そして、硬度Hmが硬度He以上(硬度Hm≧硬度He)且つ硬度Hmが「F」以上(硬度Hm≧F)を満たす実施例B1〜B9では、塗膜面Pmの耐擦傷性が「優」となり且つ光学要素面Peの耐擦傷性が「良」以上となり、塗膜面Pmでの耐擦傷性を重視した総合評価が良好な「○」又は「△」となった。   Specifically, as shown in Table 3 and FIG. 2, in Comparative Examples B3 and B4 in which the hardness Hm of the coating surface Pm is lower than the hardness He of the optical element surface Pe, the resistance of the coating surface Pm Abrasion became "bad". In Comparative Examples B1 and B2 in which the hardness Hm of the coating film surface Pm is lower than “F” even if the hardness Hm of the coating film surface Pm is equal to or higher than the hardness He of the optical element surface Pe, The scratch resistance of the surface Pm did not become “excellent”. In Examples B1 to B9 where the hardness Hm is equal to or higher than the hardness He (hardness Hm ≧ hardness He) and the hardness Hm is equal to or higher than “F” (hardness Hm ≧ F), the scratch resistance of the coating surface Pm is “excellent”. As a result, the scratch resistance of the optical element surface Pe was “good” or higher, and the overall evaluation focusing on the scratch resistance on the coating film surface Pm was “good” or “good”.

ただし、「硬度Hm−硬度He>3」となった実施例B3、実施例B4、実施例B7では、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。また、「硬度Hm−硬度He」が「1」または「0」となった実施例B8、実施例B9においても、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。一方、硬度He+3≧硬度Hm≧硬度He+2を満たす実施例B1、実施例B2、実施例B5、実施例B6では、光学要素面Peおよび塗膜面Pmの耐擦傷性が共に「優」となり、総合評価が「○」となった。   However, in Example B3, Example B4, and Example B7 in which “Hardness Hm−Hardness He> 3”, scratches that are considered to have no problem in practical use are caused by the optical properties of one or two optical sheets. It occurred on the element surface Pe. Also in Example B8 and Example B9 in which “Hardness Hm−Hardness He” is “1” or “0”, there is one or two optical scratches to the extent that there is no practical problem. It occurred on the optical element surface Pe of the sheet. On the other hand, in Example B1, Example B2, Example B5, and Example B6 satisfying the hardness He + 3 ≧ hardness Hm ≧ hardness He + 2, both the scratch resistance of the optical element surface Pe and the coating film surface Pm becomes “excellent”. Evaluation became "(circle)".

(輝度の評価)
表3に示す様に、本体部1の塗膜3に面する部分(PETフィルム)の屈折率1.65よりも低い屈折率の樹脂からなる塗膜を形成した実施例B1〜B8及び比較例B1,B2は、何れも100%を超過し、入光面にこの様な塗膜が未形成の比較例D1,D2の輝度(100%)よりも高輝度となった。
(Evaluation of brightness)
As shown in Table 3, Examples B1 to B8 and Comparative Examples in which a coating film made of a resin having a refractive index lower than the refractive index 1.65 of the portion (PET film) facing the coating film 3 of the main body 1 was formed. Both B1 and B2 exceeded 100%, and the brightness was higher than that of Comparative Examples D1 and D2 (100%) where such a coating film was not formed on the light incident surface.

<調査3>
調査3として、図3の構成を有する光学シートについて調査を行った。すなわち、調査3で対象とした光学シートは、平滑塗膜(耐擦傷性塗膜)からなる塗膜を有し、塗膜面が平滑面として形成されているようにした。
<Survey 3>
As Survey 3, an optical sheet having the configuration of FIG. 3 was surveyed. That is, the optical sheet used in Investigation 3 had a coating film made of a smooth coating film (a scratch-resistant coating film), and the coating film surface was formed as a smooth surface.

〔平滑塗膜形成用塗料の準備〕
各種鉛筆硬度の平滑塗膜を形成するために、次の各組成の塗料を準備した。
[Preparation of paint for forming smooth coating film]
In order to form smooth coating films having various pencil hardnesses, paints having the following respective compositions were prepared.

(組成C1:鉛筆硬度HB用)
紫外線硬化型フッ素原子含有ポリマー(屈折率1.41) 100質量部
(オプスター(登録商標)JN35、JSR(株)製、固形分15wt%、溶媒メチルイソブチルケトン)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition C1: for pencil hardness HB)
UV-curable fluorine atom-containing polymer (refractive index 1.41) 100 parts by mass (Opstar (registered trademark) JN35, manufactured by JSR Corporation, solid content 15 wt%, solvent methyl isobutyl ketone)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成C2:鉛筆硬度F用)
紫外線硬化型フッ素原子含有ポリマー(屈折率1.41) 80質量部
(オプスター(登録商標)JN35、JSR(株)製、固形分15%、溶媒メチルイソブチルケトン)
ペンタエリスリトールトリアクリレート(屈折率1.51) 20質量部
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition C2: for pencil hardness F)
UV-curable fluorine atom-containing polymer (refractive index 1.41) 80 parts by mass (Opstar (registered trademark) JN35, manufactured by JSR Corporation, solid content 15%, solvent methyl isobutyl ketone)
Pentaerythritol triacrylate (refractive index 1.51) 20 parts by mass Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成C3:鉛筆硬度H用)
ペンタエリスリトールトリアクリレート(屈折率1.51) 80質量部
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)20質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition C3: for pencil hardness H)
80 parts by mass of pentaerythritol triacrylate (refractive index 1.51) 20 parts by mass of UV-curable curable urethane acrylate oligomer (refractive index 1.52) (purple light (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成C4:鉛筆硬度2H用)
ジペンタエリスリトールへキサアクリレート(屈折率1.51) 30質量部
(KAYARAD(登録商標)DPHA、日本化薬(株)製)
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)70質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition C4: for pencil hardness 2H)
30 parts by mass of dipentaerythritol hexaacrylate (refractive index 1.51) (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
70 parts by mass of UV-curable curable urethane acrylate oligomer (refractive index 1.52) (purple light (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

(組成C5:鉛筆硬度3H用)
ジペンタエリスリトールヘキサアクリレート(屈折率1.51) 80質量部
(KAYARAD(登録商標)DPHA、日本化薬(株)製)
紫外線硬化型硬化型ウレタンアクリレートオリゴマー(屈折率1.52)20質量部
(紫光(登録商標)UV1700B、日本合成化学工業(株)製)
光開始剤(1−ヒドロキシシクロヘキシルフェニルケトン) 1質量部
(Irgacure(登録商標)184)
溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1質量比) 適量
(Composition C5: for pencil hardness 3H)
80 parts by mass of dipentaerythritol hexaacrylate (refractive index 1.51) (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.)
UV-curable curable urethane acrylate oligomer (refractive index 1.52) 20 parts by mass (purple light (registered trademark) UV1700B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
Photoinitiator (1-hydroxycyclohexyl phenyl ketone) 1 part by mass
(Irgacure (registered trademark) 184)
Solvent (Methyl isobutyl ketone: cyclohexanone = 1: 1 mass ratio) Appropriate amount

〔実施例C1〕
実施例B1に於ける凹凸塗膜形成用塗料を、組成C2の平滑塗膜形成用塗料に変更して平滑塗膜4を形成した他は、実施例B1と同様にして実施例C1の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度HmはFを示した。また、本体部1の塗膜に対面する部分の屈折率Ns1.65に対して、平滑な平滑塗膜4を成す樹脂の屈折率Nmは1.47であった。
又、塗膜面Pmの最外面のRz(JIS B0601(1994年版)規定)は0.16μmであった。
[Example C1]
The optical sheet of Example C1 in the same manner as in Example B1, except that the smooth coating film 4 was formed by changing the coating material for forming the uneven coating film in Example B1 to the smooth coating film forming composition C2. Was made.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating surface Pm was F. Further, the refractive index Nm of the resin forming the smooth smooth coating film 4 was 1.47 with respect to the refractive index Ns1.65 of the portion facing the coating film of the main body 1.
The outermost surface Rz (JIS B0601 (1994 version) regulation) of the coating film surface Pm was 0.16 μm.

〔実施例C2〕
実施例C1に於ける平滑塗膜形成用塗料を、組成C3に変更した他は、実施例C1と同様にして実施例C2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度HmはHを示した。また、本体部1の塗膜に対面する部分の屈折率Ns1.65に対して、平滑な平滑塗膜4を成す樹脂の屈折率Nmは1.51であった。
[Example C2]
An optical sheet of Example C2 was produced in the same manner as in Example C1, except that the coating material for forming a smooth coating film in Example C1 was changed to composition C3.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was H. Further, the refractive index Nm of the resin forming the smooth smooth coating film 4 was 1.51 with respect to the refractive index Ns1.65 of the portion facing the coating film of the main body 1.

〔実施例C3〕
実施例C1に於ける平滑塗膜形成用塗料を組成C4に変更した他は、実施例C1と同様にして実施例C3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度Hmは2Hを示した。また、平滑塗膜4を成す樹脂の屈折率Nmは1.52であった。
[Example C3]
An optical sheet of Example C3 was produced in the same manner as in Example C1, except that the coating material for forming a smooth coating film in Example C1 was changed to composition C4.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was 2H. Further, the refractive index Nm of the resin forming the smooth coating film 4 was 1.52.

〔実施例C4〕
実施例C1に於ける平滑塗膜形成用塗料を組成C5に変更した他は、実施例C1と同様にして実施例C4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度Hmは3Hを示した。また、平滑塗膜4を成す樹脂の屈折率Nmは1.51であった。
[Example C4]
An optical sheet of Example C4 was produced in the same manner as in Example C1, except that the coating material for forming a smooth coating film in Example C1 was changed to composition C5.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was 3H. Further, the refractive index Nm of the resin forming the smooth coating film 4 was 1.51.

〔実施例C5〕
実施例C2に於ける平滑塗膜形成用塗料は組成C3のままとして、単位光学要素形成用の樹脂組成物を次の組成に変更した他は、実施例C2と同様にして実施例C5の光学シートを作製した。
光学要素形成用の樹脂組成物は、プレポリマーとしてカプロラクトン変性ウレタンアクリレートとエチレンオキサイド変性ビフェニロキシエチルアクリレートとを用い、これに更に2官能モノマーとしてネオペンチルグリコールメタクリレートとビスフェノールAジアクリレートとを用い、3官能モノマーとしてグリセリンエポキシトリアクリレートを用いたもので、更に開始剤としてビスアシルフォスフィンオキサイド系開始剤及び1−ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)を添加し、リン酸エステル系滑剤を添加した樹脂組成物である。得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度HmはHを示した。なお、本体部1の塗膜に対面する部分の屈折率Ns1.65に対して、平滑塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example C5]
The optical coating of Example C5 was the same as Example C2 except that the coating composition for forming a smooth coating film in Example C2 was kept as composition C3 and the resin composition for forming the unit optical element was changed to the following composition. A sheet was produced.
The resin composition for forming an optical element uses caprolactone-modified urethane acrylate and ethylene oxide-modified biphenyloxyethyl acrylate as prepolymers, and further uses neopentyl glycol methacrylate and bisphenol A diacrylate as bifunctional monomers. A glycerin epoxy triacrylate is used as a functional monomer, and a bisacylphosphine oxide-based initiator and 1-hydroxycyclohexyl phenyl ketone (Irgacure (registered trademark) 184) are added as initiators, and a phosphate ester-based lubricant is added. It is the added resin composition. Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating surface Pm was H. In addition, with respect to the refractive index Ns1.65 of the part which faces the coating film of the main-body part 1, the refractive index Nm of resin which comprises the smooth coating film 3 was 1.51.

〔実施例C6〕
実施例C5に於ける平滑塗膜形成用塗料を組成C4に変更した他は、実施例C5と同様にして実施例C6の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度Hmは2Hを示した。また、平滑塗膜4を成す樹脂の屈折率Nmは1.52であった。
[Example C6]
An optical sheet of Example C6 was produced in the same manner as in Example C5, except that the coating material for forming a smooth coating film in Example C5 was changed to composition C4.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating film surface Pm was 2H. Further, the refractive index Nm of the resin forming the smooth coating film 4 was 1.52.

〔実施例C7〕
実施例C5に於ける平滑塗膜形成用塗料を組成C5に変更した他は、実施例C5と同様にして実施例C7の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度Hmは3Hを示した。また、平滑塗膜4を成す樹脂の屈折率Nmは1.51であった。
[Example C7]
An optical sheet of Example C7 was produced in the same manner as in Example C5, except that the coating material for forming a smooth coating film in Example C5 was changed to composition C5.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating film surface Pm was 3H. Further, the refractive index Nm of the resin forming the smooth coating film 4 was 1.51.

〔実施例C8〕
実施例C5に於ける平滑塗膜形成用塗料を組成C2に変更した他は、実施例C5と同様にして実施例C8の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度HmはFを示した。なお、平滑塗膜3を成す樹脂の屈折率Nmは1.47であった。
[Example C8]
An optical sheet of Example C8 was produced in the same manner as in Example C5 except that the coating material for forming a smooth coating film in Example C5 was changed to composition C2.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating surface Pm was F. In addition, the refractive index Nm of resin which comprises the smooth coating film 3 was 1.47.

〔実施例C9〕
実施例C5に於ける平滑塗膜形成用塗料は組成C3のままとして、単位光学要素形成用の樹脂組成物として、上述した平滑塗膜形成用塗料の組成C3を用いた他は、実施例C5と同様にして実施例C9の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、塗膜面Pmの硬度HmはHを示した。なお、平滑塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Example C9]
The coating composition for forming a smooth coating film in Example C5 remains as composition C3, and the composition C3 for coating composition for forming a smooth coating film described above is used as the resin composition for forming the unit optical element. In the same manner as described above, an optical sheet of Example C9 was produced.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the coating surface Pm was H. In addition, the refractive index Nm of resin which comprises the smooth coating film 3 was 1.51.

〔比較例C1〕
実施例C1に於ける平滑塗膜形成用塗料を、組成C1に変更した他は、実施例C1と同様にして比較例C1の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはBで、塗膜面Pmの硬度HmはHBを示した。また、平滑塗膜4を成す樹脂の屈折率Nmは1.41であった。
[Comparative Example C1]
An optical sheet of Comparative Example C1 was prepared in the same manner as in Example C1, except that the coating material for forming a smooth coating film in Example C1 was changed to the composition C1.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was B, and the hardness Hm of the coating film surface Pm was HB. Further, the refractive index Nm of the resin forming the smooth coating film 4 was 1.41.

〔比較例C2〕
実施例C5に於ける平滑塗膜形成用塗料を組成C1に変更した他は、実施例C5と同様にして比較例C2の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHBで、塗膜面Pmの硬度HmはHBを示した。また、平滑塗膜3を成す樹脂の屈折率Nmは1.41であった。
[Comparative Example C2]
An optical sheet of Comparative Example C2 was produced in the same manner as in Example C5, except that the coating material for forming a smooth coating film in Example C5 was changed to the composition C1.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was HB, and the hardness Hm of the coating surface Pm was HB. Moreover, the refractive index Nm of resin which comprises the smooth coating film 3 was 1.41.

〔比較例C3〕
実施例C9に於ける平滑塗膜形成用塗料を組成C2に変更した他は、実施例C9と同様にして比較例C3の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度HeはHで、塗膜面Pmの硬度HmはFを示した。また、平滑塗膜3を成す樹脂の屈折率Nmは1.47であった。
[Comparative Example C3]
An optical sheet of Comparative Example C3 was produced in the same manner as in Example C9, except that the coating material for forming a smooth coating film in Example C9 was changed to Composition C2.
Regarding the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was H, and the hardness Hm of the coating surface Pm was F. Moreover, the refractive index Nm of resin which comprises the smooth coating film 3 was 1.47.

〔比較例C4〕
実施例C5に於ける平滑塗膜形成用塗料は組成C3のままとして、単位光学要素形成用の樹脂組成物として、上述した平滑塗膜形成用塗料の組成C4を用いた他は、実施例C5と同様にして比較例C4の光学シートを作製した。
得られた光学シートの鉛筆硬度は、光学要素面Peの硬度Heは2Hで、塗膜面Pmの硬度HmはHを示した。また、平滑塗膜3を成す樹脂の屈折率Nmは1.51であった。
[Comparative Example C4]
The coating composition for forming a smooth coating film in Example C5 remains as composition C3, and the composition C4 for coating composition for forming a smooth coating film is used as the resin composition for forming a unit optical element. In the same manner, an optical sheet of Comparative Example C4 was produced.
As for the pencil hardness of the obtained optical sheet, the hardness He of the optical element surface Pe was 2H, and the hardness Hm of the coating surface Pm was H. Further, the refractive index Nm of the resin forming the smooth coating film 3 was 1.51.

〔性能評価〕
上記の実施例C1〜C9及び比較例C1〜C4の光学シートについて、鉛筆硬度と耐擦傷性を評価した。また、実施例C1〜C7及び比較例C1,C2の光学シートについて、輝度も測定した。尚、光学要素面Peの鉛筆硬度試験は、鉛筆をプリズム稜線方向に移動させて行った。
[Performance evaluation]
About the optical sheet of said Example C1-C9 and Comparative Example C1-C4, pencil hardness and abrasion resistance were evaluated. Moreover, the luminance was also measured for the optical sheets of Examples C1 to C7 and Comparative Examples C1 and C2. The pencil hardness test on the optical element surface Pe was performed by moving the pencil in the prism ridge direction.

(1)鉛筆硬度は、上述した実施例A1〜A9及び比較例A1〜A4と同様に評価した。
(2)耐擦傷性は、上述した実施例A1〜A9及び比較例A1〜A4と同様に評価した。
(3)輝度は、上述した実施例B1〜B7及び比較例B1,B2と同様に評価した。評価の方法は、比較例C1及び実施例C1〜C4は、塗膜を設けず単位光学要素2がこれらと実質的に同一樹脂の比較例D1(調査2)の輝度を100%とした時の百分率で評価し、比較例C2及び実施例C5〜C8は、塗膜を設けず単位光学要素2がこれらと実質的に同一樹脂の比較例D2(調査2)の輝度を100%とした時の百分率で評価した。
(1) The pencil hardness was evaluated in the same manner as in Examples A1 to A9 and Comparative Examples A1 to A4 described above.
(2) The scratch resistance was evaluated in the same manner as in Examples A1 to A9 and Comparative Examples A1 to A4 described above.
(3) The luminance was evaluated in the same manner as in Examples B1 to B7 and Comparative Examples B1 and B2 described above. As for the evaluation method, Comparative Example C1 and Examples C1 to C4 were not provided with a coating film, and the unit optical element 2 had a luminance of Comparative Example D1 (Survey 2) of substantially the same resin as 100%. Evaluation in percentage, Comparative Example C2 and Examples C5 to C8, when no coating film is provided, the unit optical element 2 is substantially the same resin as Comparative Example D2 (Survey 2) when the luminance is 100% The percentage was evaluated.

〔性能比較〕
そして、実施例C1〜C9及び比較例C1〜C4の鉛筆硬度での硬度He及び硬度Hmと、耐擦傷性と、塗膜屈折率と、正面方向の輝度を、表4に示す。
[Performance comparison]
Table 4 shows the hardness He and hardness Hm in Examples C1 to C9 and Comparative Examples C1 to C4, the scratch resistance, the coating film refractive index, and the luminance in the front direction.

Figure 2012083740
Figure 2012083740

〔性能比較〕
実施例C1〜C9及び比較例C1〜C4について、塗膜面Pmの硬度Hmおよび光学要素面Heの硬度Peと耐擦傷性との関係は、図2に示された実施例A1〜A9及び比較例A1〜A4と同様になった。
[Performance comparison]
Regarding Examples C1 to C9 and Comparative Examples C1 to C4, the relationship between the hardness Hm of the coating film surface Pm and the hardness Pe of the optical element surface He and the scratch resistance is the same as in Examples A1 to A9 shown in FIG. Similar to Examples A1-A4.

具体的には、表4及び図2に示すように、塗膜面Pmの硬度Hmが光学要素面Peの硬度Heよりも低くなった比較例C3及び比較例C4では、塗膜面Pmの耐擦傷性が「不良」となった。また、塗膜面Pmの硬度Hmが光学要素面Peの硬度He以上となっていても、塗膜面Pmの硬度Hmが「F」より低くなった比較例C1及び比較例C2では、塗膜面Pmの耐擦傷性が「優」にはならなかった。そして、硬度Hmが硬度He以上(硬度Hm≧硬度He)且つ硬度Hmが「F」以上(硬度Hm≧F)を満たす実施例C1〜C9では、塗膜面Pmの耐擦傷性が「優」となり且つ光学要素面Peの耐擦傷性が「良」以上となり、塗膜面Pmでの耐擦傷性を重視した総合評価が良好な「○」又は「△」となった。   Specifically, as shown in Table 4 and FIG. 2, in Comparative Example C3 and Comparative Example C4 in which the hardness Hm of the coating film surface Pm is lower than the hardness He of the optical element surface Pe, the resistance of the coating film surface Pm Abrasion became "bad". Further, in Comparative Examples C1 and C2 in which the hardness Hm of the coating film surface Pm is lower than “F” even if the hardness Hm of the coating film surface Pm is equal to or higher than the hardness He of the optical element surface Pe, the coating film The scratch resistance of the surface Pm did not become “excellent”. In Examples C1 to C9 where the hardness Hm is equal to or higher than the hardness He (hardness Hm ≧ hardness He) and the hardness Hm is equal to or higher than “F” (hardness Hm ≧ F), the scratch resistance of the coating surface Pm is “excellent”. As a result, the scratch resistance of the optical element surface Pe was “good” or higher, and the overall evaluation focusing on the scratch resistance on the coating film surface Pm was “good” or “good”.

ただし、「硬度Hm−硬度He>3」となった実施例C3、実施例C4、実施例C7では、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。また、「硬度Hm−硬度He」が「1」または「0」となった実施例C8、実施例C9においても、実用上は問題無いとされる程度の傷が、1枚または2枚の光学シートの光学要素面Peに生じていた。一方、硬度He+3≧硬度Hm≧硬度He+2を満たす実施例C1、実施例C2、実施例C5、実施例C6では、光学要素面Peおよび塗膜面Pmの耐擦傷性が共に「優」となり、総合評価が「○」となった。   However, in Example C3, Example C4, and Example C7 in which “Hardness Hm−Hardness He> 3”, scratches that are considered to have no problem in practice are optically damaged on one or two optical sheets. It occurred on the element surface Pe. Also in Example C8 and Example C9 in which “Hardness Hm−Hardness He” is “1” or “0”, there is one or two optical scratches to the extent that there is no practical problem. It occurred on the optical element surface Pe of the sheet. On the other hand, in Example C1, Example C2, Example C5, and Example C6 satisfying the hardness He + 3 ≧ hardness Hm ≧ hardness He + 2, both the scratch resistance of the optical element surface Pe and the coating surface Pm is “excellent”. Evaluation became "(circle)".

(輝度の評価)
表4に示す様に、本体部1の塗膜3に面する部分(PETフィルム)の屈折率1.65よりも低い屈折率の樹脂からなる塗膜を形成した実施例C1〜C7及び比較例C1,C2は、何れも100%を超過し、入光面にこの様な塗膜が未形成の比較例D1,D2の輝度(100%)よりも高輝度となった。
(Evaluation of brightness)
As shown in Table 4, Examples C1 to C7 and Comparative Examples in which a coating film made of a resin having a refractive index lower than the refractive index 1.65 of the portion (PET film) facing the coating film 3 of the main body 1 was formed. C1 and C2 both exceeded 100%, and the brightness was higher than the brightness (100%) of Comparative Examples D1 and D2 in which such a coating film was not formed on the light incident surface.

1 本体部
1p 一方の面
1q 他方の面
2 単位光学要素
3 凹凸塗膜、塗膜
4 平滑塗膜、塗膜
10,10a,10b 光学シート
10A 2枚重ねの光学シート
20 接触する他の光学部材(導光板、液晶パネルなど)
30 (エッジライト型の)面光源装置
31 光源
32 導光板
40 液晶表示装置
41 液晶パネル
He 光学要素面の鉛筆硬度
Hm 凹凸塗膜面の鉛筆硬度
nd 法線
Pe 光学要素面
Pm 凹凸塗膜面
V 観察者
DESCRIPTION OF SYMBOLS 1 Main-body part 1p One surface 1q The other surface 2 Unit optical element 3 Concavity and convexity coating film, coating film 4 Smooth coating film, coating films 10, 10a, 10b Optical sheet 10A Two-layered optical sheet 20 Other optical member which contacts (Light guide plate, liquid crystal panel, etc.)
30 (light source type) surface light source device 31 light source 32 light guide plate 40 liquid crystal display device 41 liquid crystal panel He pencil hardness Hm of optical element surface pencil hardness of uneven film surface nd normal Pe optical element surface Pm uneven film surface V Observer

Claims (8)

対向する一対の表面を有する光学シートであって、
シート状の本体部と、
前記本体部の一方の面上に配列された単位光学要素と、
前記本体部の他方の面上に設けられた塗膜と、を備え、
前記一対の表面のうちの一方が、前記単位光学要素によって形成された光学要素面として構成され、
前記一対の表面のうちの他方が、前記塗膜の表面からなる塗膜面によって形成され、
JIS K5600−5−4(1999年)に準拠して測定(荷重1000g、速度1mm/s)された鉛筆硬度を用いて前記光学要素面の硬度Heおよび前記塗膜面の硬度Hmを評価した場合、前記硬度HmがF以上であり(硬度Hm≧F)、且つ、前記硬度Hmが前記硬度He以上である(硬度Hm≧硬度He)、光学シート。
An optical sheet having a pair of opposing surfaces,
A sheet-like body,
Unit optical elements arranged on one surface of the main body, and
A coating film provided on the other surface of the main body,
One of the pair of surfaces is configured as an optical element surface formed by the unit optical element,
The other of the pair of surfaces is formed by a coating surface comprising the surface of the coating film,
When the hardness He of the optical element surface and the hardness Hm of the coating surface are evaluated using pencil hardness measured according to JIS K5600-5-4 (1999) (load 1000 g, speed 1 mm / s) The optical sheet is such that the hardness Hm is F or more (hardness Hm ≧ F) and the hardness Hm is more than the hardness He (hardness Hm ≧ hardness He).
鉛筆硬度スケール上で1単位硬い硬度を+1としたとき、
硬度He+3≧硬度Hm≧硬度He+2
である、請求項1記載の光学シート。
When the hardness of 1 unit on the pencil hardness scale is +1,
Hardness He + 3 ≧ Hardness Hm ≧ Hardness He + 2
The optical sheet according to claim 1, wherein
前記塗膜を成す樹脂の屈折率Nmが、前記本体部に於ける前記他方の面をなす部分の屈折率Nsよりも小さい、請求項1または2に記載の、光学シート。   The optical sheet according to claim 1 or 2, wherein a refractive index Nm of the resin forming the coating film is smaller than a refractive index Ns of a portion forming the other surface in the main body portion. 前記塗膜は、前記塗膜面が微小突起によって粗面を形成している凹凸塗膜である、請求項1〜3のいずれか一項に記載の光学シート。   The said coating film is an optical sheet as described in any one of Claims 1-3 whose said coating-film surface is an uneven | corrugated coating film in which the rough surface forms the microprotrusion. 前記塗膜は、前記塗膜面が平滑な平滑塗膜である、請求項1〜3のいずれか一項に記載の光学シート。   The optical sheet according to claim 1, wherein the coating film is a smooth coating film having a smooth coating film surface. 請求項1〜5のいずれか一項に記載の光学シートを二枚備え、
二枚の光学シートが、表裏を同じ向きで2枚重ね合わせられている、光学部材。
Two optical sheets according to any one of claims 1 to 5 are provided,
An optical member in which two optical sheets are superposed on each other in the same direction.
光源と、
請求項1〜5のいずれか一項に記載の光学シートまたは請求項6の光学部材と、を備える面光源装置。
A light source;
A surface light source device comprising the optical sheet according to claim 1 or the optical member according to claim 6.
請求項7に記載の面光源装置と、
前記面光源装置に対向して配置された透過型液晶表示パネルと、を備える液晶表示装置。
A surface light source device according to claim 7;
A transmissive liquid crystal display panel disposed to face the surface light source device.
JP2011201914A 2010-09-16 2011-09-15 Optical sheet, optical member, surface light source device, and liquid crystal display device Active JP5196335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201914A JP5196335B2 (en) 2010-09-16 2011-09-15 Optical sheet, optical member, surface light source device, and liquid crystal display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010207691 2010-09-16
JP2010207691 2010-09-16
JP2011201914A JP5196335B2 (en) 2010-09-16 2011-09-15 Optical sheet, optical member, surface light source device, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2012083740A true JP2012083740A (en) 2012-04-26
JP5196335B2 JP5196335B2 (en) 2013-05-15

Family

ID=46242606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201914A Active JP5196335B2 (en) 2010-09-16 2011-09-15 Optical sheet, optical member, surface light source device, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP5196335B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071153A (en) * 2012-09-27 2014-04-21 Dainippon Printing Co Ltd Prism sheet, face light source device, and transmission type image display device
JP2015025877A (en) * 2013-07-24 2015-02-05 コニカミノルタ株式会社 Optical film, polarizing plate, and liquid crystal display device
JP2015069097A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical sheet, surface light source device, display device, and manufacturing method for the optical sheet
WO2017057395A1 (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and polarizing plate set and liquid crystal display device that use said optical member
JP2017068248A (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and set of polarizing plates using the optical member and liquid crystal display
JP2017068250A (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and set of polarizing plates using the optical member and liquid crystal display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128178A (en) * 2010-12-15 2012-07-05 Dainippon Printing Co Ltd Optical sheet, surface light source device and liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195013A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Prism sheet, manufacture thereof, surface light source device, and transmissive display
JP2008304524A (en) * 2007-06-05 2008-12-18 Goyo Paper Working Co Ltd Anti-abrasion multilayer lens film
JP2009103884A (en) * 2007-10-23 2009-05-14 Goyo Paper Working Co Ltd Punchable abrasion flaw-resistant double layer lens film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195013A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Prism sheet, manufacture thereof, surface light source device, and transmissive display
JP2008304524A (en) * 2007-06-05 2008-12-18 Goyo Paper Working Co Ltd Anti-abrasion multilayer lens film
JP2009103884A (en) * 2007-10-23 2009-05-14 Goyo Paper Working Co Ltd Punchable abrasion flaw-resistant double layer lens film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071153A (en) * 2012-09-27 2014-04-21 Dainippon Printing Co Ltd Prism sheet, face light source device, and transmission type image display device
JP2015025877A (en) * 2013-07-24 2015-02-05 コニカミノルタ株式会社 Optical film, polarizing plate, and liquid crystal display device
JP2015069097A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical sheet, surface light source device, display device, and manufacturing method for the optical sheet
WO2017057395A1 (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and polarizing plate set and liquid crystal display device that use said optical member
JP2017068248A (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and set of polarizing plates using the optical member and liquid crystal display
JP2017068250A (en) * 2015-09-28 2017-04-06 日東電工株式会社 Optical member, and set of polarizing plates using the optical member and liquid crystal display
KR20180061172A (en) * 2015-09-28 2018-06-07 닛토덴코 가부시키가이샤 An optical member, a polarizing plate set using the optical member, and a liquid crystal display
US10859871B2 (en) 2015-09-28 2020-12-08 Nitto Denko Corporation Optical member, and polarizing plate set and liquid crystal display device that use said optical member
KR102239407B1 (en) 2015-09-28 2021-04-12 닛토덴코 가부시키가이샤 Optical member, and polarizing plate set and liquid crystal display device using the optical member

Also Published As

Publication number Publication date
JP5196335B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
US9140831B2 (en) Optical sheet, optical member, surface light source device, and liquid crystal display device
JP5196335B2 (en) Optical sheet, optical member, surface light source device, and liquid crystal display device
WO2018164088A1 (en) Optical sheet and backlight unit
US9158038B2 (en) Antireflection film, display device and light transmissive member
JP5789931B2 (en) Prism sheet, surface light source device and liquid crystal display device
KR102056505B1 (en) Edge light-type backlight device and light diffusion member
TWI635358B (en) Hard coating film and display element with surface member
JP6518057B2 (en) Light diffusing member and backlight unit using the same
KR102046200B1 (en) Edge light-type backlight device and light diffusion member
JP2012133072A (en) Optical sheet, face light source device, and liquid crystal display apparatus
JP2011021114A (en) Ionizing radiation-curable resin composition for optical sheet, and optical sheet
JP2012128178A (en) Optical sheet, surface light source device and liquid crystal display device
JP2013171056A (en) Optical sheet, surface light source device and liquid crystal display device
JP2016212191A (en) Prism sheet, surface light source device, image source unit, and liquid crystal display device
WO2005085915A1 (en) Light control film and backlight device using it
JP2012198423A (en) Optical sheet, surface light source device and image display device
US11194169B2 (en) Light diffraction film and wearable display device
JP2016177902A (en) Surface light source device, video source unit, liquid crystal display device, and optical sheet
JP2015200898A (en) Optical sheet, surface light source device, and liquid crystal display device
KR100544518B1 (en) Prismatic film for minimizing loss of light source
WO2018164089A1 (en) Optical sheet and backlight unit
JP2015143879A (en) Optical sheet, face light source device, and liquid crystal display apparatus
JP2017207703A (en) Optical unit and method for manufacturing optical unit
JP5699328B2 (en) Optical sheet, surface light source device, and liquid crystal display device
JP2016001322A (en) Optical sheet, surface light source device and image display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02