JP2012083548A - Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article - Google Patents

Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article Download PDF

Info

Publication number
JP2012083548A
JP2012083548A JP2010229589A JP2010229589A JP2012083548A JP 2012083548 A JP2012083548 A JP 2012083548A JP 2010229589 A JP2010229589 A JP 2010229589A JP 2010229589 A JP2010229589 A JP 2010229589A JP 2012083548 A JP2012083548 A JP 2012083548A
Authority
JP
Japan
Prior art keywords
light
refractive index
heat conductive
matrix material
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010229589A
Other languages
Japanese (ja)
Inventor
Hisashi Aoki
恒 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2010229589A priority Critical patent/JP2012083548A/en
Publication of JP2012083548A publication Critical patent/JP2012083548A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light-diffusing thermally conductive composition and a light-diffusing thermally conductive molded article which have light-diffusing properties, light transmissivity and thermal conductivity.SOLUTION: In the light-diffusing thermally conductive composition which contains a thermally conductive filler in a liquid matrix material formed by using a polymer composition as a main material and has both light-diffusing properties and light transmissivity, a difference in refractive index between the matrix material and the thermally conductive filler is in a range of 0.010-0.025 in terms of absolute value.

Description

本発明は光拡散性と光透過性と熱伝導性とを兼ね備えた光拡散熱伝導性組成物及び光拡散熱伝導性成形体に関する。   The present invention relates to a light diffusing heat conductive composition and a light diffusing heat conductive molded body having both light diffusibility, light transmittance and heat conductivity.

近年バックライトや照明に対して、高輝度で且つ低消費電力であることへの要求が高まっており、光透過性や熱伝導率をより高くした光学材料が求められている。例えば液晶ディスプレイのバックライトや照明の光源などに用いる発光ダイオードにおいて特に高輝度タイプのものは、これら発光素子より発生した熱を効率的に逃がす放熱経路が必要である。通常輝度タイプは発生した熱をリードフレームや基板を通じて逃がす放熱経路を有しているが、高輝度タイプの放熱要求に応えるためにはこの放熱経路だけでは不十分である。新たな放熱経路として、バックライトの発光面や発光ダイオードのレンズ部側から熱を逃がすことが考えられる。
これに関連する技術として、例えば特開2010−170026号公報(特許文献1)には、バックライトに用いる光拡散性樹脂フィルムや、レンズ部に用いる光拡散性樹脂が開示されている。
また、特開2005−202361号公報(特許文献2)には熱伝導性に優れる光学材料が開示されている。
In recent years, there has been an increasing demand for backlights and illumination that have high luminance and low power consumption, and optical materials with higher light transmission and thermal conductivity are required. For example, light emitting diodes used for backlights of liquid crystal displays, illumination light sources, and the like, in particular, have high luminance types, require a heat dissipation path that efficiently releases heat generated from these light emitting elements. Normally, the luminance type has a heat dissipation path for releasing the generated heat through the lead frame and the substrate, but this heat dissipation path alone is insufficient to meet the heat dissipation requirement of the high luminance type. As a new heat dissipation path, it is conceivable to release heat from the light emitting surface of the backlight or the lens portion side of the light emitting diode.
As a technique related to this, for example, Japanese Patent Application Laid-Open No. 2010-170026 (Patent Document 1) discloses a light diffusing resin film used for a backlight and a light diffusing resin used for a lens portion.
JP-A-2005-202361 (Patent Document 2) discloses an optical material having excellent thermal conductivity.

特開2010−170026号公報JP 2010-170026 JP 特開2005−202361号公報JP-A-2005-202361

しかしながら、特開2010−170026号公報(特許文献1)に記載の技術では、充填材を高充填した場合には、光透過性が低く好適な成形体を得ることはできなかった。また、特開2005−202361号公報(特許文献2)に記載の技術では、熱伝導率が高く透明なアルミナや酸化マグネシウムを充填しているが、高充填するに従って光透過率が低下してしまい、熱伝導性と透明性とを両立することが難しかった。   However, with the technique described in Japanese Patent Application Laid-Open No. 2010-170026 (Patent Document 1), when the filler is highly filled, it is not possible to obtain a suitable molded article with low light transmittance. Further, in the technique described in Japanese Patent Application Laid-Open No. 2005-202361 (Patent Document 2), transparent alumina or magnesium oxide having high thermal conductivity is filled, but the light transmittance decreases as the filling is high. It was difficult to achieve both thermal conductivity and transparency.

一方、上述のような放熱部材は、拡散光の影響も考慮することが必要で、透明性が低くても光拡散性と光透過性に優れた材料であれば、高輝度で熱伝導性に優れた所期の目的を達成する放熱部材が得られるのではないかという知見が得られた。
そこで本発明は、光拡散性と光透過性と熱伝導性とを兼ね備えた光拡散熱伝導性組成物及び光拡散熱伝導性成形体を提供することを目的とする。
On the other hand, the heat radiating member as described above needs to take into consideration the influence of diffused light. If the material is excellent in light diffusibility and light transmittance even if the transparency is low, it has high brightness and thermal conductivity. The knowledge that a heat radiating member that achieves an excellent desired purpose could be obtained was obtained.
Then, an object of this invention is to provide the light-diffusion heat conductive composition and light-diffusion heat conductive molded object which have light diffusibility, light transmittance, and heat conductivity.

上記目的を達成すべく以下の構成を提供する。
高分子組成物を主材とする液状のマトリクス材中に熱伝導性充填材を含有し、光拡散性と光透過性とを共に備える光拡散熱伝導性組成物であって、前記マトリクス材の屈折率と前記熱伝導性充填材の屈折率の差が絶対値で0.010〜0.025の範囲にある関係を有するマトリクス材と熱伝導性充填材でなる光拡散熱伝導性組成物である。
In order to achieve the above object, the following configuration is provided.
A light diffusing heat conductive composition comprising a heat conductive filler in a liquid matrix material mainly composed of a polymer composition, and having both light diffusibility and light transmissive property. A light diffusion heat conductive composition comprising a matrix material and a heat conductive filler having a relationship in which the difference between the refractive index and the refractive index of the heat conductive filler is in the range of 0.010 to 0.025 in absolute value. is there.

高分子組成物を主材とする液状のマトリクス材中に熱伝導性充填材を含有し、光拡散性と光透過性とを共に備える光拡散熱伝導性組成物について、前記マトリクス材の屈折率と前記熱伝導性充填材の屈折率の差が絶対値で0.010〜0.025の範囲にある関係を有するマトリクス材と熱伝導性充填材でなる光拡散熱伝導性組成物としたため、マトリクス材中で熱伝導性充填材が光を散乱して高い拡散性を得ることができる。また、後方散乱を抑制して光透過性も高くすることができる。そしてこの光拡散熱伝導性組成物で成形体を形成すれば、光透過性と光拡散性が高い光拡散熱伝導性成形体を得ることができる。
マトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値は0.010〜0.025であるが、0.010〜0.020であることがより好ましい。全光線透過率もヘイズ値も高く、光拡散性及び光透過性がより優れるからである。
A light diffusion heat conductive composition containing a heat conductive filler in a liquid matrix material mainly composed of a polymer composition and having both light diffusibility and light transmittance, and the refractive index of the matrix material And a light diffusion heat conductive composition comprising a matrix material and a heat conductive filler having a relationship in which the difference in refractive index between the heat conductive filler and the heat conductive filler is in the range of 0.010 to 0.025 in absolute value. In the matrix material, the heat conductive filler can scatter light and obtain high diffusibility. Further, the light scattering property can be increased by suppressing back scattering. And if a molded object is formed with this light diffusion heat conductive composition, the light diffusion heat conductive molded object with high light transmittance and light diffusibility can be obtained.
The absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler is from 0.010 to 0.025, more preferably from 0.010 to 0.020. This is because the total light transmittance and haze value are high, and the light diffusibility and light transmittance are more excellent.

熱伝導性充填材の含有量が50体積%〜70体積%である光拡散熱伝導性組成物とすることができる。熱伝導性充填剤の含有量を50体積%〜70体積%と高充填しても、
マトリクス材と熱伝導性充填材との屈折率差の絶対値を0.010〜0.025としているため、高い拡散性と光透過性を維持することできる。そして、熱伝導性充填剤が50体積%〜70体積%と高充填されているため、熱伝導性が良く成形が容易な光拡散熱伝導性組成物を実現することができる。熱伝導性充填材が50体積%未満では、光拡散熱伝導性組成物による成形体の熱伝導性を高め難い。熱伝導性充填材が70体積%を超えると、光拡散熱伝導性組成物の粘度が上昇し、簡易な工程で成形し難くなるばかりでなく、粘度の上昇により気泡が混入し、光透過性を損ねてしまう恐れがある。より好ましい熱伝導性充填材の含有量は60体積%〜70体積%である。
It can be set as the light-diffusion heat conductive composition whose content of a heat conductive filler is 50 volume%-70 volume%. Even if the content of the thermally conductive filler is as high as 50% by volume to 70% by volume,
Since the absolute value of the difference in refractive index between the matrix material and the thermally conductive filler is set to 0.010 to 0.025, high diffusibility and light transmittance can be maintained. And since the heat conductive filler is highly filled with 50 volume%-70 volume%, the light-diffusion heat conductive composition with favorable heat conductivity and easy shaping | molding is realizable. When the heat conductive filler is less than 50% by volume, it is difficult to increase the heat conductivity of the molded body by the light diffusion heat conductive composition. When the heat conductive filler exceeds 70% by volume, the viscosity of the light diffusing heat conductive composition increases, and it becomes difficult to mold by a simple process. May be damaged. A more preferable content of the heat conductive filler is 60% by volume to 70% by volume.

厚さ500μmで測定した全光線透過率およびヘイズ値が70%を超え100%未満である光拡散性と光透過性とを共に備える光拡散熱伝導性組成物を提供する。
厚さ500μmで測定した全光線透過率およびヘイズ値が70%を超え100%未満であるため、光拡散性と光透過性の両者に優れた光拡散熱伝導性組成物である。
特に所定温度Tにおいて、厚さ500μmで測定した全光線透過率およびヘイズ値が70%を超え100%未満とすれば、所定温度Tでの光拡散性と光透過性の両者に優れた光拡散熱伝導性組成物となる。
Provided is a light diffusing heat conductive composition having both light diffusibility and light transmissive property, wherein the total light transmittance and haze value measured at a thickness of 500 μm are more than 70% and less than 100%.
Since the total light transmittance and haze value measured at a thickness of 500 μm are more than 70% and less than 100%, it is a light diffusion heat conductive composition excellent in both light diffusibility and light transmittance.
Particularly, at a predetermined temperature T, if the total light transmittance and haze value measured at a thickness of 500 μm are more than 70% and less than 100%, light diffusion excellent in both light diffusibility and light transmittance at the predetermined temperature T It becomes a heat conductive composition.

25℃における10rpmでの粘度は、5000mPa・s〜300000mPa・sとすることができる。25℃における10rpmでの粘度が、5000mPa・s〜300000mPa・sとすれば、光拡散熱伝導性組成物を幅広い用途に適用することができる。例えば、シート状やフィルム状に容易に成形することができる。また発熱体を含む電子部品間の隙間に光拡散熱伝導性組成物を流し込んで成形することができ、入り組んだ隙間であってもその隙間を光拡散熱伝導性成形体で埋めることができる。また、光拡散熱伝導性成形体を発熱体に密着させることができ、熱伝導性能の高まりを期待することができる。粘度が5000mPa・s未満であると、加工性は良好であるが熱伝導性充填材の配合量が少なくなりがちで熱伝導性が低い傾向にあり、粘度が300000mPa・sを超えると、光拡散熱伝導性組成物が流動し難くなり、また製造も困難である。また、光拡散熱伝導性成形体を製造するときに気泡が混入して光透過性が損なわれるおそれがある。   The viscosity at 10 rpm at 25 ° C. can be 5000 mPa · s to 300,000 mPa · s. When the viscosity at 25 ° C. and 10 rpm is 5000 mPa · s to 300,000 mPa · s, the light diffusion thermal conductive composition can be applied to a wide range of uses. For example, it can be easily formed into a sheet or film. In addition, the light diffusion heat conductive composition can be poured into the gaps between the electronic components including the heating element, and even the complicated gaps can be filled with the light diffusion heat conductive moldings. In addition, the light diffusion heat conductive molded body can be brought into close contact with the heating element, and an increase in heat conduction performance can be expected. If the viscosity is less than 5000 mPa · s, the processability is good, but the blending amount of the heat conductive filler tends to decrease, and the thermal conductivity tends to be low, and if the viscosity exceeds 300000 mPa · s, the light diffusion A heat conductive composition becomes difficult to flow, and manufacture is also difficult. Moreover, when manufacturing a light-diffusion heat conductive molded object, there exists a possibility that a bubble may mix and light transmittance may be impaired.

主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率の差を絶対値で0.010〜0.025にする屈折率調整剤を該マトリクス材に含有する光拡散熱伝導性組成物とすることができる。主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率の差を絶対値で0.010〜0.025にする屈折率調整剤を該マトリクス材に含有したため、主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率との差が絶対値で0.025を超えたり、0.010よりも小さいとしても、屈折率調整剤を含むマトリクス材としては、その差を絶対値で0.010〜0.025とすることができる。そのため、主材となる高分子組成物だけでは光拡散性や光透過性が悪い場合であっても屈折率調整剤の添加で光拡散性や光透過性を高くすることができる。
また、屈折率調整剤として低粘度の材料を用いれば、熱伝導性充填剤の充填量を高めやすく、屈折率調整剤として軟化剤として機能する材料を用いれば、光拡散熱伝導性組成物を柔軟にすることができ、熱伝導性を高めることができる。
Light diffusion heat conduction containing in the matrix material a refractive index adjusting agent that makes the difference between the refractive index of the polymer composition as the main material and the refractive index of the heat conductive filler an absolute value of 0.010 to 0.025 Composition. Since the matrix material contains a refractive index adjusting agent that makes the difference between the refractive index of the polymer composition as the main material and the refractive index of the heat conductive filler in an absolute value of 0.010 to 0.025, the main material and Even if the difference between the refractive index of the polymer composition and the refractive index of the thermally conductive filler exceeds 0.025 in absolute value or smaller than 0.010, the matrix material containing the refractive index adjusting agent The difference can be set to 0.010 to 0.025 in absolute value. Therefore, even if only the polymer composition as the main material has poor light diffusibility and light transmittance, the addition of the refractive index adjusting agent can increase the light diffusibility and light transmittance.
Also, if a low-viscosity material is used as the refractive index adjusting agent, the amount of the heat conductive filler can be easily increased, and if a material that functions as a softening agent is used as the refractive index adjusting agent, the light diffusion heat conductive composition is changed. It can be made flexible and heat conductivity can be increased.

熱伝導性充填材の屈折率が等方性である光拡散熱伝導性組成物とすることができる。熱伝導性充填材の屈折率が等方性であるため、熱伝導性充填材の方向によらずマトリクス材の屈折率との差を0.010〜0.025に容易に調整することができ、500μmの厚さで測定した全光線透過率及びヘイズ値を70%を超え100%未満とすることができる。そのため、この光拡散熱伝導性組成物およびこれを用いて形成した光拡散熱伝導性成形体は、光透過性と光拡散性が高く、光学用途の熱伝導性部材として好適に用いることができる。   It can be set as the light-diffusion heat conductive composition whose refractive index of a heat conductive filler is isotropic. Since the refractive index of the thermally conductive filler is isotropic, the difference from the refractive index of the matrix material can be easily adjusted to 0.010 to 0.025 regardless of the direction of the thermally conductive filler. The total light transmittance and haze value measured at a thickness of 500 μm can be more than 70% and less than 100%. Therefore, the light diffusing heat conductive composition and the light diffusing heat conductive molded body formed using the composition have high light transmittance and light diffusibility, and can be suitably used as a heat conductive member for optical applications. .

そして、高分子組成物を主材とする液状のマトリクス材中に熱伝導性充填材を含有し所定温度T(℃)で光拡散性と光透過性とを共に備える光拡散熱伝導性組成物であって、所定温度Tにおいてマトリクス材の屈折率と熱伝導性充填材の屈折率との差が絶対値で0.010〜0.025の範囲にあり、下記数式(1)

Figure 2012083548


(但し、数式(1)において、n’ 25:マトリクス材の25℃における屈折率の中心値、α:マトリクス材の線膨張係数、(dn/dT):熱伝導性充填材の屈折率温度係数、n 25:熱伝導性充填材の25℃における屈折率、T:所定温度、をそれぞれ表す。)によって求められるマトリクス材の25℃における屈折率の中心値n’ 25とマトリクス材の25℃における実際の屈折率の差が絶対値で0.011〜0.025の範囲となる関係を有するマトリクス材と熱伝導性充填材でなる光拡散熱伝導性組成物である。 A light diffusion heat conductive composition containing a heat conductive filler in a liquid matrix material mainly composed of a polymer composition and having both light diffusibility and light transmittance at a predetermined temperature T (° C.). The difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at a predetermined temperature T is in the range of 0.010 to 0.025 in absolute value, and the following formula (1)
Figure 2012083548


(However, in Equation (1), n ′ m 25 is the central value of the refractive index of the matrix material at 25 ° C., α is the linear expansion coefficient of the matrix material, and (dn / dT) f is the refractive index of the thermally conductive filler. The temperature coefficient, n f 25 : Refractive index of the thermally conductive filler at 25 ° C., and T: Predetermined temperature, respectively.) The central value n ′ m 25 of the refractive index at 25 ° C. of the matrix material and the matrix material Is a light diffusion heat conductive composition comprising a matrix material and a heat conductive filler having a relationship in which the difference in the actual refractive index at 25 ° C. is in the range of 0.011 to 0.025 in absolute value.

マトリクス材の25℃における実際の屈折率と数式(1)により求められる25℃におけるマトリクス材の屈折率の中心値(以下、本明細書において単に「中心値」ともいう)との差の絶対値を0.011〜0.025としたため、所定温度Tにおいてマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値を0.010〜0.025とすることができる。なぜなら、所定温度Tにおける熱伝導性充填材の屈折率と同じ値である所定温度Tにおけるマトリクス材の屈折率を基準として数式(1)により求めた25℃におけるマトリクス材の屈折率が屈折率の中心値n’ 25であるからである。よって、中心値n’ 25に対する差の絶対値が0.011〜0.025となる屈折率を有するマトリクス材であれば、中心値の値から数式(1)を逆算して所定温度Tにおける屈折率を求めると、所定温度Tでの熱伝導性充填材の屈折率との差の絶対値を0.010〜0.025とすることができる。 The absolute value of the difference between the actual refractive index of the matrix material at 25 ° C. and the central value of the refractive index of the matrix material at 25 ° C. (hereinafter, also simply referred to as “central value” in this specification) obtained by Equation (1). Since 0.011 to 0.025, the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at a predetermined temperature T can be set to 0.010 to 0.025. This is because the refractive index of the matrix material at 25 ° C. obtained by Equation (1) is based on the refractive index of the matrix material at the predetermined temperature T, which is the same value as the refractive index of the thermally conductive filler at the predetermined temperature T. This is because the center value is n ′ m 25 . Therefore, if the matrix material has a refractive index such that the absolute value of the difference with respect to the center value n ′ m 25 is 0.011 to 0.025, the mathematical expression (1) is calculated backward from the value of the center value at the predetermined temperature T. When the refractive index is obtained, the absolute value of the difference from the refractive index of the thermally conductive filler at the predetermined temperature T can be set to 0.010 to 0.025.

そして、所定温度Tにおいてマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値が0.010〜0.025であると、所定温度Tにおいてマトリクス材中で熱伝導性充填材によって光を適度に拡散することができ、所定温度Tで光拡散性と光透過性の高い光拡散熱伝導性組成物を得ることができる。ここで、所定温度Tを、発熱体が稼動している状態の温度とすれば、発熱体が稼動する温度において光拡散性と光透過性の高い光拡散熱伝導性組成物となる。そしてこの光拡散熱伝導性組成物で成形体を形成すれば、光拡散性と光透過性を維持することができ、光拡散性と光透過性の高い光拡散熱伝導性成形体を得ることができる。
マトリクス材の25℃における屈折率と数式(1)により求められる25℃における屈折率の中心値との差の絶対値は0.011〜0.025の範囲内であるが、0.011〜0.020であることがより好ましい。0.011〜0.020であれば全光線透とヘイズ値がともに高い光拡散熱伝導性組成物及び光拡散熱伝導性成形体となるからである。
所定温度Tを、光拡散熱伝導性組成物及び光拡散熱伝導性成形体を貼付する発熱体の発熱したときの温度、または発熱したと想定したときの想定温度である稼動温度Tとすれば、光拡散熱伝導性組成物及び光拡散熱伝導性成形体が実際に用いられる際の温度、または実際に用いられる温度での光拡散性と光透過性を高くすることができる。即ち、発熱体が稼動している状態のときにマトリクス材中で熱伝導性充填材が光を散乱してヘイズ値を高めながら、後方散乱を抑制して全光線透過率を高めることができる光拡散熱伝導性組成物と光拡散熱伝導性成形体を得ることができる。
When the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler is 0.010 to 0.025 at the predetermined temperature T, the thermally conductive filling is performed in the matrix material at the predetermined temperature T. Light can be appropriately diffused by the material, and a light diffusing heat conductive composition having high light diffusibility and light transmittance at a predetermined temperature T can be obtained. Here, if the predetermined temperature T is a temperature at which the heating element is operating, the light diffusion heat conductive composition having high light diffusibility and light transmission at the temperature at which the heating element operates. And if a molded object is formed with this light diffusion heat conductive composition, light diffusibility and light transmittance can be maintained, and a light diffusion heat conductive molded object with high light diffusibility and light transmission can be obtained. Can do.
The absolute value of the difference between the refractive index at 25 ° C. of the matrix material and the central value of the refractive index at 25 ° C. determined by the formula (1) is in the range of 0.011 to 0.025, but is 0.011 to 0. More preferably, it is .020. It is because it will become a light-diffusion heat conductive composition and a light-diffusion heat conductive molded object with both high total light transmittance and a haze value if it is 0.011-0.020.
If the predetermined temperature T is the operating temperature T, which is the temperature when the heating element to which the light diffusing heat conductive composition and the light diffusing heat conductive molded body are affixed, or the assumed temperature when it is assumed that heat has been generated, is assumed. The light diffusibility and the light transmittance at the temperature at which the light diffusion heat conductive composition and the light diffusion heat conductive molded body are actually used or at the temperature actually used can be increased. That is, light that can increase the total light transmittance by suppressing backscattering while the heat conductive filler scatters light in the matrix material to increase the haze value while the heating element is in operation. A diffusion heat conductive composition and a light diffusion heat conductive molding can be obtained.

マトリクス材の25℃における屈折率の中心値n' 25は、マトリクス材の線膨張係数(α)と、熱伝導性充填材の屈折率温度係数((dn/dT))、熱伝導性充填材の25℃における屈折率が分かれば所定温度(T)の関数として表されるため、所望の温度(T)において光拡散性と光透過性の高い光拡散熱伝導性組成物を得ることができる。
また、この光拡散熱伝導性組成物を得るには、マトリクス材と熱伝導性充填材とを配合し混練と脱泡を行って製造することができるため、加圧や減圧などの煩雑な工程を繰り返す必要がない簡単な工程で製造することができる。
The central value n ′ m 25 of the refractive index of the matrix material at 25 ° C. is the linear expansion coefficient (α) of the matrix material, the refractive index temperature coefficient ((dn / dT) f ) of the thermally conductive filler, and the thermal conductivity. If the refractive index at 25 ° C. of the filler is known, it is expressed as a function of the predetermined temperature (T), so that a light diffusive and thermally conductive composition having high light diffusibility and light transmissivity at the desired temperature (T) is obtained. Can do.
Moreover, in order to obtain this light diffusion heat conductive composition, it can be manufactured by mixing a matrix material and a heat conductive filler, kneading and defoaming, and therefore complicated processes such as pressurization and decompression. Can be manufactured by a simple process that does not need to be repeated.

前記所定温度Tを50℃〜140℃とすることができる。即ち、所定温度Tを50℃〜140℃の範囲内で設定した任意の温度において、光拡散性と光透過性の高い光拡散熱伝導性組成物を得ることができる。50℃より低い温度では、こうした低温で稼動する発熱体は放熱の必要がほとんどなく光拡散熱伝導性組成物及び光拡散熱伝導性成形体を適用する必要が少ないからである。また、140℃を超える温度では、こうした高温まで発熱してしまう発熱体を冷却するには光拡散性と光透過性が劣っても熱伝導率の高い材料を用いる方が好ましく、この場合も光拡散熱伝導性組成物及び光拡散熱伝導性成形体を適用する必要が少ないからである。   The predetermined temperature T can be set to 50 ° C to 140 ° C. That is, a light diffusing heat conductive composition having high light diffusibility and light transmissive property can be obtained at an arbitrary temperature set at a predetermined temperature T within a range of 50 ° C. to 140 ° C. This is because at a temperature lower than 50 ° C., the heating element operating at such a low temperature hardly needs to dissipate heat, and it is less necessary to apply the light diffusion heat conductive composition and the light diffusion heat conductive molded body. In addition, at a temperature exceeding 140 ° C., it is preferable to use a material having high thermal conductivity even if light diffusibility and light transmittance are inferior to cool a heating element that generates heat to such a high temperature. This is because it is less necessary to apply the diffusion heat conductive composition and the light diffusion heat conductive molding.

また、所定温度Tで、主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率の差を絶対値で0.010〜0.025にする屈折率調整剤を該マトリクス材に含有する光拡散熱伝導性組成物とすることができる。屈折率調整剤を含むマトリクス材として、所定温度Tでの屈折率の差を絶対値で0.010〜0.025とすることができるため、所定温度Tで、主材となる高分子組成物だけでは光拡散性や光透過性が悪い場合であっても光拡散性や光透過性を高くすることができる。   In addition, the matrix material includes a refractive index adjusting agent that adjusts the difference between the refractive index of the polymer composition as the main material and the refractive index of the thermally conductive filler at an absolute value of 0.010 to 0.025 at a predetermined temperature T. The light diffusing heat conductive composition contained in As a matrix material containing a refractive index adjusting agent, the difference in refractive index at a predetermined temperature T can be set to 0.010 to 0.025 in absolute value. Even if the light diffusibility and the light transmittance are poor, the light diffusibility and the light transmittance can be increased.

そしてこの光拡散熱伝導性組成物で成形体を形成すれば、光透過性と光拡散性が高い光拡散熱伝導性成形体を得ることができる。より好ましくは25℃におけるマトリクス材の屈折率の中心値と実際の屈折率との差の絶対値が0.011〜0.020である。
また、この光拡散熱伝導性組成物を得る際には、加圧や減圧などの煩雑な工程を繰り返す必要がなく、マトリクス材と熱伝導性充填材とを配合し混練と脱泡の簡単な工程にて製造することができる。
そして、この光拡散熱伝導組成物は、高い熱伝導性を有し、光透過性と光拡散性の高い固化体を得ることができ、光学用途の熱伝導性部材として好適に用いることができる。
And if a molded object is formed with this light diffusion heat conductive composition, the light diffusion heat conductive molded object with high light transmittance and light diffusibility can be obtained. More preferably, the absolute value of the difference between the center value of the refractive index of the matrix material at 25 ° C. and the actual refractive index is 0.011 to 0.020.
In addition, when obtaining this light diffusion heat conductive composition, it is not necessary to repeat complicated steps such as pressurization and decompression, and a matrix material and a heat conductive filler are blended to facilitate kneading and defoaming. It can be manufactured in a process.
And this light-diffusion heat conductive composition has high heat conductivity, can obtain the solidified body with high light transmittance and light diffusibility, and can be used suitably as a heat conductive member for optical uses. .

本発明の光拡散熱伝導性組成物及び光拡散熱伝導性成形体によれば、光透過性と光拡散性及び熱伝導性が高い光拡散熱伝導性組成物を実現することができる。そしてこの光拡散熱伝導性成形体は、光学用途の熱伝導性部材として好適に用いることができる。
また、この光拡散熱伝導性組成物は、加圧や減圧などの煩雑な工程を繰り返して製造する必要がなく、マトリクス材と熱伝導性充填材とを配合し混練と脱泡を行う簡単な工程で製造することができる。
According to the light diffusing heat conductive composition and the light diffusing heat conductive molded body of the present invention, a light diffusing heat conductive composition having high light permeability, light diffusibility, and heat conductivity can be realized. And this light-diffusion heat conductive molded object can be used suitably as a heat conductive member for optical uses.
Further, the light diffusing heat conductive composition does not need to be manufactured by repeating complicated processes such as pressurization and decompression, and a simple mixing and defoaming is performed by mixing a matrix material and a heat conductive filler. It can be manufactured in a process.

本発明の光拡散熱伝導性組成物及び光拡散熱伝導性成形体を具体的な実施形態に基づいて説明する。なお、以下の説明において稼動温度Tとは、光拡散熱伝導性組成物及び光拡散熱伝導性成形体を用いる発熱体の発熱したときの温度、または発熱したと想定したときの想定温度を示す。換言すれば、光拡散熱伝導性組成物及び光拡散熱伝導性成形体が実際に用いられる際の温度、または実際に用いられる温度と想定される温度を示す。   The light-diffusion heat conductive composition and light-diffusion heat conductive molded object of this invention are demonstrated based on specific embodiment. In the following description, the operating temperature T indicates the temperature when the heating element using the light diffusing heat conductive composition and the light diffusing heat conductive molded body generates heat, or the assumed temperature when it is assumed that heat is generated. . In other words, it indicates the temperature at which the light diffusion heat conductive composition and the light diffusion heat conductive molded body are actually used, or the temperature assumed to be the temperature actually used.

光拡散熱伝導性組成物
光拡散熱伝導性組成物は、高分子組成物を主材とした液状で透明性の高いマトリクス材中に熱伝導性充填材を含有している。
マトリクス材は、熱伝導性充填材を包含するバインダーの役割を果すものであり、液状で透明または半透明である。このマトリクス材は、主材となる高分子組成物を含んでいる。
マトリクス材の屈折率は、熱伝導性充填材の屈折率との差が絶対値で0.010〜0.025であることが要求されている。マトリクス材と熱伝導性充填材との屈折率差がその絶対値で0.010〜0.025とすれば、光拡散性と光透過性の高い光拡散熱伝導性組成物を実現することができる。そしてこの光拡散熱伝導性組成物で成形体を形成すれば、光拡散性と光透過性を維持することができ、光拡散性と光透過性が共に優れた光拡散熱伝導性成形体を得ることができる。
なお、光透過性が高いとは全光線透過率が高いことに、光拡散性が高いとはヘイズ値が高いことにそれぞれ置き換えて規定することができる。
絶対値の差が0.010未満であると、マトリクス材中を透過する光がマトリクス材と熱伝導性充填材の界面で散乱せず、光拡散性の低い透明な組成物となってしまう。一方、0.025を超えると、後方散乱が増えてしまい、光透過性が損なわれる。
Light diffusion thermal conductive composition :
The light diffusion heat conductive composition contains a heat conductive filler in a liquid and highly transparent matrix material mainly composed of a polymer composition.
The matrix material plays the role of a binder including a thermally conductive filler, and is liquid and transparent or translucent. This matrix material contains a polymer composition as a main material.
The refractive index of the matrix material is required to have a difference between the refractive index of the thermally conductive filler and the absolute value of 0.010 to 0.025. If the difference in refractive index between the matrix material and the thermally conductive filler is 0.010 to 0.025 in absolute value, a light diffusing and highly light diffusing thermally conductive composition can be realized. it can. And if a molded object is formed with this light diffusive heat conductive composition, light diffusibility and light transmittance can be maintained, and a light diffusive heat conductive molded object excellent in both light diffusibility and light transmittance can be obtained. Obtainable.
Note that high light transmittance can be defined by replacing the high total light transmittance, and high light diffusivity by high haze value.
If the difference between the absolute values is less than 0.010, the light transmitted through the matrix material is not scattered at the interface between the matrix material and the thermally conductive filler, resulting in a transparent composition with low light diffusibility. On the other hand, if it exceeds 0.025, backscattering increases and light transmittance is impaired.

特に所定温度Tでマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値の値を0.010〜0.025にするためには、25℃におけるマトリクス材の実際の屈折率を、以下に説明するマトリクス材の屈折率の中心値n' 25に対してその差の絶対値を0.011〜0.025の範囲にすれば良い。以下、このマトリクス材の屈折率の中心値n' 25について説明する。 In particular, in order to set the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at a predetermined temperature T to 0.010 to 0.025, the actual refraction of the matrix material at 25 ° C. The absolute value of the difference may be set in the range of 0.011 to 0.025 with respect to the central value n ′ m 25 of the refractive index of the matrix material described below. Hereinafter, the center value n ′ m 25 of the refractive index of the matrix material will be described.

光拡散熱伝導性組成物及び光拡散熱伝導性成形体は、電子機器の発熱体に貼付される放熱部材であるから室温より高い温度で用いられる。しかし、マトリクス材の屈折率温度係数と熱伝導性充填材の屈折率温度係数は異なるため、室温でのマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値が0.011〜0.025の範囲であっても、稼動温度Tではマトリクス材と熱伝導性充填剤の屈折率に差が出てしまう。その結果、稼動温度Tでの光拡散熱伝導性組成物及び光拡散熱伝導性成形体の光拡散性または光透過性が損なわれてしまう。稼動温度Tで光拡散性と光透過性を高くするためには、稼動温度Tでのマトリクス材の屈折率と熱伝導性充填材の屈折率の差の絶対値を0.010〜0.025にする必要がある。   Since the light diffusing heat conductive composition and the light diffusing heat conductive molded body are heat radiating members attached to a heat generating body of an electronic device, they are used at a temperature higher than room temperature. However, since the refractive index temperature coefficient of the matrix material and the refractive index temperature coefficient of the thermally conductive filler are different, the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at room temperature is 0. Even in the range of 011 to 0.025, at the operating temperature T, there is a difference in the refractive index between the matrix material and the thermally conductive filler. As a result, the light diffusibility or light transmittance of the light diffusion heat conductive composition and the light diffusion heat conductive molding at the operating temperature T is impaired. In order to increase the light diffusibility and light transmittance at the operating temperature T, the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at the operating temperature T is set to 0.010 to 0.025. It is necessary to.

熱伝導性充填材の稼動温度Tでの屈折率をn 、25℃での屈折率をn 25とすると、熱伝導性充填材の屈折率温度係数(dn/dT)は、次の数式(2)で表せる。
(dn/dT) =(n T−n 25)/(T−25)・・・(2)
When the refractive index at the operating temperature T of the thermally conductive filler is n f T and the refractive index at 25 ° C. is n f 25 , the refractive index temperature coefficient (dn / dT) f of the thermally conductive filler is (2).
(Dn / dT) f = ( n f T -n f 25) / (T-25) ··· (2)

これを変形すると、次の数式(3)となる。
=n 25+(T−25)(dn/dT)・・・・・(3)
即ち、熱伝導性充填材の25℃における屈折率n 25と屈折率温度係数(dn/dT)から稼動温度Tにおける熱伝導性充填材の屈折率n を計算することができる。
熱伝導性充填材の屈折率温度係数(dn/dT)は、温度調整機能の付属する屈折率測定装置(例えばSAIRON TECHNOLOGY社製の「プリズムカプラSPAシリーズ」)で測定することができる。例えばシリカでは(dn/dT)=10×10−6である。また、熱伝導性充填材の25℃における屈折率n 25は、ベッケ法などの測定手法により測定することができる。例えばシリカではn 25=1.4585である。
When this is transformed, the following formula (3) is obtained.
n f T = n f 25 + (T−25) (dn / dT) f (3)
That is, it is possible to calculate the refractive index n f T of the heat-conducting filler in operating temperature T from the refractive index n f 25 and the refractive index temperature coefficient (dn / dT) f at 25 ° C. of the thermally conductive filler.
The refractive index temperature coefficient (dn / dT) f of the thermally conductive filler can be measured with a refractive index measuring apparatus (for example, “Prism Coupler SPA Series” manufactured by SAIRON TECHNOLOGY) with a temperature adjustment function. For example, in silica, (dn / dT) f = 10 × 10 −6 . Further, the refractive index n f 25 at 25 ° C. of the thermally conductive filler can be measured by a measuring method such as the Becke method. For example, n f 25 = 1.4585 for silica.

一方、マトリクス材の屈折率温度係数(dn/dT)は、次の数式(4)で表すことができる。
(dn/dT)=(n' 25−1)×(−3α)・・・・・(4)
ここで、αはマトリクス材の線膨張係数、n' 25はマトリクス材の25℃での屈折率の中心値と定義するが、数式(4)はマトリクス材の屈折率温度係数(dn/dT)をマトリクス材の線膨張係数とマトリクス材の25℃の屈折率に基づいて求め得ることを示す。
On the other hand, the refractive index temperature coefficient (dn / dT) m of the matrix material can be expressed by the following mathematical formula (4).
(Dn / dT) m = (n ′ m 25 −1) × (−3α) (4)
Here, α is defined as the linear expansion coefficient of the matrix material, and n ′ m 25 is defined as the central value of the refractive index of the matrix material at 25 ° C., but Equation (4) is the refractive index temperature coefficient (dn / dT) of the matrix material. ) Indicates that m can be obtained based on the linear expansion coefficient of the matrix material and the refractive index of the matrix material at 25 ° C.

また、マトリクス材の屈折率温度係数(dn/dT)は、熱伝導性充填材の屈折率温度係数を表す数式(2)と同様に次の数式(5)で表すことができる。
(dn/dT)=(n −n 25)/(T−25)・・・・(5)
Further, the refractive index temperature coefficient (dn / dT) m of the matrix material can be expressed by the following mathematical formula (5), similarly to the mathematical formula (2) representing the refractive index temperature coefficient of the thermally conductive filler.
(Dn / dT) m = (n m T −n m 25 ) / (T−25) (5)

数式(4)と数式(5)から、次の数式(6)を導くことができる。
(n −n 25)/(T−25)=(n' 25−1)×(−3α)・・・(6)
数式(6)を変形すると次の数式(7)になる。
n' 25={n −3α(T−25)}/{1−3α(T−25)}・・・(7)
From the equations (4) and (5), the following equation (6) can be derived.
(N m T −n m 25 ) / (T−25) = (n ′ m 25 −1) × (−3α) (6)
When formula (6) is transformed, the following formula (7) is obtained.
n ′ m 25 = {n m T −3α (T−25)} / {1−3α (T−25)} (7)

ここで、稼動温度Tでの熱伝導性充填材の屈折率n とマトリクス材の屈折率n の差が0となる場合を考える。即ち、n =n として、数式(7)のn にn である数式(3)の右辺を代入すると、次の数式(1)を導くことができる。数式(1)で導かれる25℃におけるマトリクス材の屈折率の中心値n' 25は稼動温度Tでマトリクス材と熱伝導性充填材の屈折率が等しくなるときのマトリクス材の25℃での屈折率ということもできる。

Figure 2012083548

Here, a case where the difference in refractive index n m T of the refractive index n f T and the matrix material of the heat-conducting filler in the operating temperature T is 0. That is, when n m T = n f T and substituting the right side of equation (3), which is n f T , into n m T of equation (7), the following equation (1) can be derived. The central value n ′ m 25 of the refractive index of the matrix material at 25 ° C. derived by the formula (1) is the matrix material at 25 ° C. when the refractive index of the matrix material and the thermally conductive filler becomes equal at the operating temperature T. It can also be called a refractive index.
Figure 2012083548

この数式(1)の中で、マトリクス材の線膨張係数αは熱機械分析装置などでその値を容易に測定することができる。例えば、シリコーンゴムでは290×10−6/℃程度である。
したがって、稼動温度Tで稼動する発熱体に用いるマトリクス材の中心値n’ 25とした値は、マトリクス材の線膨張係数α、熱伝導性充填剤の25℃における屈折率n 25、熱伝導性充填剤の屈折率温度係数(dn/dT)から数式(1)を用いて計算で求めることができる。
そして、25℃におけるマトリクス材の実際の屈折率を、中心値n’ 25からの差が絶対値で0.011〜0.025の範囲とすることで、稼動温度Tにおけるマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値を0.010〜0.025の範囲とすることができる。
In this mathematical formula (1), the value of the linear expansion coefficient α of the matrix material can be easily measured with a thermomechanical analyzer or the like. For example, with silicone rubber, it is about 290 × 10 −6 / ° C.
Therefore, the value of the matrix material used for the heating element operating at the operating temperature T as the center value n ′ m 25 is the linear expansion coefficient α of the matrix material, the refractive index n f 25 of the thermally conductive filler at 25 ° C., the heat The refractive index temperature coefficient (dn / dT) of the conductive filler can be obtained by calculation using Formula (1) from f .
Then, the actual refractive index of the matrix material at 25 ° C. is such that the difference from the central value n ′ m 25 is in the range of 0.011 to 0.025 in absolute value, so that the refractive index of the matrix material at the operating temperature T And the absolute value of the difference between the refractive index of the thermally conductive filler can be in the range of 0.010 to 0.025.

換言すると、数式(1)を用いることにより、稼動温度Tの下でマトリクス材と熱伝導性充填材の屈折率が等しくなる場合の25℃におけるマトリクス材の屈折率(25℃におけるマトリクス材の中心値n’ 25とした値)を求めることができ、中心値n’ 25の値からの差の絶対値が0.011〜0.025の範囲にある25℃での屈折率を有するマトリクス材を設定すれば、稼動温度Tの下でマトリクス材の屈折率を測定することなく稼動温度Tにおけるマトリクス材の屈折率と熱伝導性充填材の屈折率との差の絶対値を0.010〜0.025の範囲とすることができるのである。よって、光拡散熱伝導性組成物を製造する場合に、25℃での屈折率がわかれば稼動温度Tの下でのマトリクス材の屈折率を測定する必要がなくなり、光拡散熱伝導性組成物の設計効率を大幅に高めることができる。 In other words, by using Equation (1), the refractive index of the matrix material at 25 ° C. (the center of the matrix material at 25 ° C.) when the refractive index of the matrix material and the thermally conductive filler becomes equal under the operating temperature T. matrix 'can obtain a value) obtained by the m 25, the central value n' value n absolute value of the difference between the value of m 25 has a refractive index at 25 ° C. in the range of 0.011 to 0.025 If the material is set, the absolute value of the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at the operating temperature T is measured at 0.010 without measuring the refractive index of the matrix material at the operating temperature T. It can be made into the range of -0.025. Therefore, when manufacturing the light diffusion heat conductive composition, if the refractive index at 25 ° C. is known, it is not necessary to measure the refractive index of the matrix material under the operating temperature T, and the light diffusion heat conductive composition The design efficiency can be greatly increased.

液状のマトリクス材の主材となる高分子組成物には、液状樹脂材料のほか、樹脂前駆体も含んでも良いものとし、この樹脂前駆体には、反応して樹脂材料となるモノマーやオリゴマーが含まれる。さらに高分子組成物は熱伝導性充填材を多量に配合するため、液状で低粘度であることが好ましい。
また、このマトリクス材には、主材となる高分子組成物以外にこの高分子組成物との間で硬化反応に寄与する硬化剤や、架橋剤、反応開始剤、可塑剤、溶剤などの更なる添加材を含んでいても良い。また、後述する屈折率調整剤を含んでいても良い。
例えば、主材である高分子組成物の粘度が高い場合や成形後の成形体の硬度を小さくしたい場合に可塑剤を添加したり、主材となる高分子組成物を可溶な溶剤で希釈したりすることができる。こうした添加材は光拡散性と光透過性が高い方が好ましく、光拡散性と光透過性がマトリクス材に近いことが好ましい。
なお、上記添加材は、マトリクス材の25℃における屈折率の中心値との差の絶対値が0.010〜0.025となる範囲で添加されている必要がある。
In addition to the liquid resin material, the polymer composition that is the main material of the liquid matrix material may include a resin precursor, and the resin precursor includes monomers and oligomers that react to become a resin material. included. Furthermore, since the polymer composition contains a large amount of a heat conductive filler, it is preferably liquid and has a low viscosity.
In addition to the main polymer composition, the matrix material further includes a curing agent that contributes to the curing reaction with the polymer composition, a crosslinking agent, a reaction initiator, a plasticizer, a solvent, and the like. The additive which becomes may be included. Moreover, the refractive index adjusting agent mentioned later may be included.
For example, when the viscosity of the polymer composition as the main material is high or when it is desired to reduce the hardness of the molded product after molding, a plasticizer is added, or the polymer composition as the main material is diluted with a soluble solvent. You can do it. Such an additive preferably has high light diffusibility and light transmittance, and preferably has light diffusibility and light transmittance close to a matrix material.
In addition, the said additive needs to be added in the range from which the absolute value of the difference with the central value of the refractive index in 25 degreeC of a matrix material will be 0.010-0.025.

高分子組成物の材質としては、例えば、ビニル基を有する液状シリコーン、官能基を有する(メタ)アクリレート、2つ以上のエポキシ基を持つエポキシモノマーなどが挙げられる。また、硬化剤には、高分子組成物との間で硬化反応を起こす種々の硬化剤を用いることができる。例えば、Si−H基を有するシリコーン、無水フタル酸化合物などが挙げられる。硬化剤も透明または半透明の硬化剤を用いることが好ましい。
そして、紫外線や電子線などの活性エネルギー線による方法、熱をかけて熱重合させる方法など、またこれらを併用して、液状の高分子組成物を架橋、硬化させることができる。
Examples of the material of the polymer composition include liquid silicone having a vinyl group, (meth) acrylate having a functional group, and an epoxy monomer having two or more epoxy groups. Various curing agents that cause a curing reaction with the polymer composition can be used as the curing agent. For example, silicone having a Si—H group, a phthalic anhydride compound, and the like can be given. It is preferable to use a transparent or translucent curing agent as the curing agent.
Then, a liquid polymer composition can be crosslinked and cured by using a method using active energy rays such as ultraviolet rays and electron beams, a method of performing thermal polymerization by applying heat, and the like.

屈折率調整剤は、主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率との差が大きい際や小さい際に、マトリクス材の屈折率と熱伝導性充填材の屈折率との差を絶対値で0.010〜0.025に調整するものである。
そして、光拡散熱伝導性組成物の調製時においては、25℃におけるマトリクス材の屈折率の中心値との差の絶対値が0.010未満である場合や0.025を超える場合に添加して、25℃におけるマトリクス材の実際の屈折率と屈折率の中心値の差が絶対値で0.011〜0.025の範囲にするものである。
The refractive index adjuster is used when the difference between the refractive index of the main polymer composition and the refractive index of the thermally conductive filler is large or small, and the refractive index of the matrix material and the refractive index of the thermally conductive filler. The difference from the rate is adjusted to 0.010 to 0.025 in absolute value.
At the time of preparing the light diffusion heat conductive composition, it is added when the absolute value of the difference from the central value of the refractive index of the matrix material at 25 ° C. is less than 0.010 or more than 0.025. Thus, the difference between the actual refractive index of the matrix material at 25 ° C. and the central value of the refractive index is in the range of 0.011 to 0.025 in absolute value.

主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率との差が0.010〜0.025となるような材料の組合せは選択肢が少ないので、屈折率調整剤を用いれば、主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率との差が大きい組合せであっても小さい組合せであっても光拡散性と光透過性の高い光拡散熱伝導性組成物を実現することができる。   Since there are few choices for the combination of materials in which the difference between the refractive index of the main polymer composition and the refractive index of the thermally conductive filler is 0.010 to 0.025, a refractive index adjusting agent is used. For example, light diffusion heat with high light diffusivity and light transmission, regardless of whether the difference between the refractive index of the main polymer composition and the refractive index of the thermally conductive filler is large or small. A conductive composition can be realized.

このような屈折率調整剤は、高分子組成物と均質に混ざり合う必要がある。そして、主材となる高分子組成物の屈折率が熱伝導性充填材の屈折率より0.025を超えて大きい場合には、屈折率調整剤の屈折率が熱伝導性充填材の屈折率より小さいものを選定する。また、主材となる高分子組成物の屈折率が熱伝導性充填材の屈折率より0.025を超えて小さい場合には、屈折率調整剤の屈折率が熱伝導性充填材の屈折率より大きいものを選定する。
なお、屈折率調整剤は、高分子組成物と反応する官能基を持っていてもよい。また、硬化剤を屈折率調整剤として用いることもできる。
屈折率調整剤は、例えば、高分子組成物がシリコーン樹脂の場合にそのシリコーン樹脂とは別のシリコーン樹脂やシリコーンオイル等が挙げられる。
Such a refractive index adjusting agent needs to be homogeneously mixed with the polymer composition. When the refractive index of the polymer composition as the main material is larger than the refractive index of the thermally conductive filler by more than 0.025, the refractive index of the refractive index adjusting agent is the refractive index of the thermally conductive filler. Choose a smaller one. In addition, when the refractive index of the polymer composition as the main material is smaller than the refractive index of the thermally conductive filler by more than 0.025, the refractive index of the refractive index adjusting agent is the refractive index of the thermally conductive filler. Choose a larger one.
The refractive index adjuster may have a functional group that reacts with the polymer composition. A curing agent can also be used as a refractive index adjusting agent.
Examples of the refractive index adjuster include silicone resins and silicone oils other than the silicone resin when the polymer composition is a silicone resin.

以下に一例として、主材となる高分子組成物に液状シリコーン樹脂、熱伝導性充填剤にシリカ、そして屈折率調整剤を適用した光拡散熱伝導性組成物において、上記数式(1)を用いてマトリクス材の25℃における屈折率の中心値を求めてマトリクス材の屈折率を決定する例を示す。
稼動温度Tを100℃の発熱体に貼付するものとしてT=100とする。マトリクス材の線膨張係数α=290×10−6/℃(主材となる液状シリコーン樹脂の線膨張係数と略同一であるため主材となる高分子組成物である液状シリコーン樹脂の線膨張係数で代替)、熱伝導性充填剤の25℃における屈折率n 25=1.4585、熱伝導性充填剤の屈折率温度係数(dn/dT)=10×10−6であるから、これを上記数式(1)に代入してマトリクス材の屈折率の中心値n' 25を計算すると、1.4913となる。
そこで、液状シリコーン樹脂に屈折率調整剤としてシリコーンオイル等を添加して、25℃における実際のマトリクス材の屈折率を1.4913±0.011〜0.025に調整すれば、100℃で屈折率の差の絶対値が略0.010〜0.025の範囲となる光拡散性と光透過性が高い光拡散熱伝導性組成物が得られることになる。
As an example, a light diffusion heat conductive composition in which a liquid silicone resin is applied to a polymer composition as a main material, silica is used as a heat conductive filler, and a refractive index adjusting agent is used. An example in which the center value of the refractive index of the matrix material at 25 ° C. is determined to determine the refractive index of the matrix material will be described.
Assuming that the operating temperature T is affixed to a heating element of 100 ° C., T = 100. Linear expansion coefficient of matrix material α = 290 × 10 −6 / ° C. (The linear expansion coefficient of the liquid silicone resin, which is a polymer composition that is the main material because it is substantially the same as the linear expansion coefficient of the liquid silicone resin that is the main material) Because the refractive index n f 25 = 1.4585 of the thermally conductive filler at 25 ° C. and the refractive index temperature coefficient of the thermally conductive filler (dn / dT) f = 10 × 10 −6 When the center value n ′ m 25 of the refractive index of the matrix material is calculated by substituting ## EQU1 ## into the above formula (1), it is 1.4913.
Therefore, if silicone oil or the like is added to the liquid silicone resin as a refractive index adjusting agent and the refractive index of the actual matrix material at 25 ° C. is adjusted to 1.4913 ± 0.011 to 0.025, it is refracted at 100 ° C. A light diffusing heat conductive composition having high light diffusibility and high light transmittance in which the absolute value of the difference in rate is in the range of about 0.010 to 0.025 is obtained.

同様の計算を各温度に対して行うと、稼動温度が50℃のときは25℃での屈折率を1.4689±0.011〜0.025に、60℃のときは1.4733±0.011〜0.025に、70℃のときは1.4776±0.011〜0.025に、80℃のときは1.4821±0.011〜0.025に、90℃のときは1.4821±0.011〜0.025に、110℃のときは1.4960±0.011〜0.025に、120℃のときは1.5008±0.011〜0.025に、130℃のときは1.5058±0.011〜0.025に、140℃のときは1.5108±0.011〜0.025に、それぞれ調整すれば良い。   When the same calculation is performed for each temperature, the refractive index at 25 ° C. is 1.46889 ± 0.011-0.025 when the operating temperature is 50 ° C., and 1.4733 ± 0 when the operating temperature is 60 ° C. .011 to 0.025, 1.776 ± 0.011 to 0.025 at 70 ° C., 1.4821 ± 0.011 to 0.025 at 80 ° C., 1 at 90 ° C. 4821 ± 0.011-0.025, 110 ° C. at 1.4960 ± 0.011-0.025, 120 ° C. at 1.5008 ± 0.011-0.025, 130 ° C. Is adjusted to 1.5058 ± 0.011-0.025, and at 140 ° C., it is adjusted to 1.5108 ± 0.011-0.025.

熱伝導性充填材としては、無機物や有機物でなる充填材を用いることができる。なかでも熱伝導率が高いことから無機物充填材を用いることが好ましいが、光を透過しない金属製の無機物充填材を用いることは難しい。
熱伝導性充填材としての無機物充填材は、その25℃での屈折率が1.38〜1.65であることが好ましく、1.42〜1.60であることがより好ましい。25℃での屈折率が1.65より大きい無機物充填材や1.38より小さい無機物充填材を用いると、屈折率の差の絶対値を0.010〜0.025にするように調整できるマトリクス材がある程度決まってくるため、マトリクス材の選択範囲が狭まり、また光拡散熱伝導性組成物の調製が困難になる。25℃で屈折率1.42〜1.60の無機物充填材であれば、主材となる高分子組成物や屈折率調整剤の選択が容易になる。
As the thermally conductive filler, a filler made of an inorganic substance or an organic substance can be used. Among them, it is preferable to use an inorganic filler because of its high thermal conductivity, but it is difficult to use a metallic inorganic filler that does not transmit light.
The inorganic filler as the thermally conductive filler preferably has a refractive index at 25 ° C. of 1.38 to 1.65, more preferably 1.42 to 1.60. A matrix that can be adjusted so that the absolute value of the difference in refractive index is 0.010 to 0.025 when an inorganic filler with a refractive index at 25 ° C. of greater than 1.65 or an inorganic filler of less than 1.38 is used. Since the material is determined to some extent, the selection range of the matrix material is narrowed, and the preparation of the light diffusion heat conductive composition becomes difficult. If it is an inorganic filler with a refractive index of 1.42 to 1.60 at 25 ° C., the selection of the polymer composition and refractive index adjuster as the main material becomes easy.

25℃で屈折率が1.42〜1.60である無機物充填材としては、水酸化アルミニウムや、水酸化マグネシウム、シリカなどが挙げられる。ここで、水酸化アルミニウムおよび水酸化マグネシウムは、それらを熱伝導性成形体の熱伝導率値から推定して8W/m・K程度の熱伝導率を有すると予想されている。シリカは、結晶性のもので8W/m・K程度(結晶c軸方向で10.4W/m・K、c軸に垂直方向で6.2W/m・K)、非結晶性のものでは1.38W/m・Kの熱伝導率を有する。   Examples of the inorganic filler having a refractive index of 1.42 to 1.60 at 25 ° C. include aluminum hydroxide, magnesium hydroxide, and silica. Here, aluminum hydroxide and magnesium hydroxide are expected to have a thermal conductivity of about 8 W / m · K when they are estimated from the thermal conductivity value of the thermally conductive molded body. Silica is crystalline and is about 8 W / m · K (10.4 W / m · K in the crystal c-axis direction, 6.2 W / m · K in the direction perpendicular to the c-axis), and 1 is non-crystalline. It has a thermal conductivity of 38 W / m · K.

熱伝導性充填材の屈折率は、異方性が小さいほど好ましく、屈折率の異方性が無いこと、即ち、屈折率が等方性であることがより好ましい。熱伝導性充填材の屈折率が等方性であれば、熱伝導性充填材の方向によらずマトリクス材の屈折率との差を0.010〜0.025とすることができる。また、熱伝導性充填剤に屈折率の異方性がある場合には、屈折率の最大値と屈折率の最小値の両屈折率値から屈折率差が0.010〜0.025の範囲になるようにマトリクス材の屈折率を調整する。
熱伝導性充填材の形状は、略球状であることが好ましい。表面が滑らかでない破砕されたままの熱伝導性充填材を用いると、界面の気泡が抜けずに残ってしまい、光透過性を低下させるおそれがある。こうした観点から球状シリカの方が破砕状シリカに比べて好ましい。
The refractive index of the thermally conductive filler is preferably as the anisotropy is small, and it is more preferable that there is no anisotropy of the refractive index, that is, the refractive index is isotropic. If the refractive index of the thermally conductive filler is isotropic, the difference from the refractive index of the matrix material can be set to 0.010 to 0.025 regardless of the direction of the thermally conductive filler. Further, when the thermally conductive filler has an anisotropy of refractive index, the refractive index difference is in the range of 0.010 to 0.025 from both refractive index values of the maximum refractive index and the minimum refractive index. The refractive index of the matrix material is adjusted so that
The shape of the heat conductive filler is preferably substantially spherical. When a thermally conductive filler with a crushed surface having a smooth surface is used, bubbles at the interface remain without being lost, and the light transmittance may be reduced. From this point of view, spherical silica is more preferable than crushed silica.

熱伝導性充填材の平均粒径は、1μm以上であることが好ましい。平均粒径が小さい熱伝導性充填材は比表面積が大きいため、平均粒径が大きい熱伝導性充填材と比較して得られる光拡散熱伝導性組成物の粘度が高くなり、熱伝導性充填材の高充填が困難になる。より好ましい熱伝導性充填材の平均粒径は4μm以上である。
また、熱伝導性充填材の最大粒子の粒径は15μm以下であることが好ましい。形状が略球状である充填材は、粗大粒子に気泡を含有していることが多いため、マトリクス材に配合した際に光透過性が低下するおそれがある。より好ましくは、10μm以下である。
The average particle size of the thermally conductive filler is preferably 1 μm or more. The heat conductive filler with a small average particle size has a large specific surface area, so that the viscosity of the light diffusion heat conductive composition obtained compared with the heat conductive filler with a large average particle size becomes high, and the heat conductive filling High filling of material becomes difficult. A more preferable average particle diameter of the thermally conductive filler is 4 μm or more.
Moreover, it is preferable that the largest particle diameter of a heat conductive filler is 15 micrometers or less. Since the filler having a substantially spherical shape often contains bubbles in coarse particles, there is a risk that the light transmittance may be reduced when blended with a matrix material. More preferably, it is 10 μm or less.

熱伝導性充填材の含有量は、光拡散熱伝導性組成物全体に対して50体積%〜70体積%であることが好ましい。熱伝導性充填材が50体積%未満では、光拡散熱伝導性組成物による成形体の熱伝導性を高め難い。熱伝導性充填材の含有量が70体積%を超えると、光拡散熱伝導性組成物の粘度が上昇し、また気泡が入り易くなって、光拡散熱伝導性組成物の製造が困難になるからである。また、熱伝導率を高める観点からは、熱伝導性充填材を60体積%〜70体積%含有することが好ましい。   It is preferable that content of a heat conductive filler is 50 volume%-70 volume% with respect to the whole light-diffusion heat conductive composition. When the heat conductive filler is less than 50% by volume, it is difficult to increase the heat conductivity of the molded body by the light diffusion heat conductive composition. When the content of the heat conductive filler exceeds 70% by volume, the viscosity of the light diffusing heat conductive composition is increased, and air bubbles easily enter, making it difficult to produce the light diffusing heat conductive composition. Because. Moreover, it is preferable to contain 60 volume%-70 volume% of heat conductive fillers from a viewpoint of improving heat conductivity.

以上のような光拡散熱伝導性組成物の製造当初の粘度は、25℃で回転速度10rpmの条件において、5000mPa・s〜300000mPa・sであることが好ましい。粘度が5000mPa・s未満である場合、熱伝導性組成物が流れ易く加工性が悪く、また熱伝導性も高くなりにくい。粘度が300000mPa・sを超えると、光拡散熱伝導性組成物の流動性が劣り、攪拌し難く、脱泡し難いためにこの光拡散熱伝導性組成物から得られる光拡散熱伝導性成形体に気泡が入り易くなる。さらに光拡散熱伝導性成形体が硬く脆くなり易い。粘度が5000mPa・s〜300000mPa・sの範囲であれば、容易にシート状やフィルム状に成形することができ、また発熱体を含む電子部品間の隙間に光拡散熱伝導性組成物を流し込んで成形することもできるなど、光拡散熱伝導性組成物を幅広い用途に用いることができる。   The initial viscosity of the light diffusing thermally conductive composition as described above is preferably 5000 mPa · s to 300,000 mPa · s at 25 ° C. and a rotation speed of 10 rpm. When the viscosity is less than 5000 mPa · s, the heat conductive composition tends to flow, the workability is poor, and the heat conductivity is difficult to increase. When the viscosity exceeds 300,000 mPa · s, the light diffusion heat conductive composition is inferior in fluidity, difficult to stir, and difficult to defoam, so that the light diffusion heat conductive molded product obtained from this light diffusion heat conductive composition is obtained. It becomes easy for bubbles to enter. Furthermore, the light diffusion heat conductive molded body tends to be hard and brittle. If the viscosity is in the range of 5000 mPa · s to 300,000 mPa · s, it can be easily formed into a sheet or film, and the light diffusion heat conductive composition is poured into the gap between the electronic components including the heating element. The light diffusing heat conductive composition can be used for a wide range of applications, such as being able to be molded.

光拡散熱伝導性成形体
上記の光拡散熱伝導性組成物から形成される光拡散熱伝導性成形体は、稼動温度Tで厚さ500μmにおけるヘイズ値(曇価)が70%を超えるものであることが好ましい。ヘイズ値は、光拡散熱伝導性成形体の内部又は表面の不明瞭な曇り様の外観の度合いを意味し、ヘイズ値が高い程この曇り様の外観の度合いが強く表れており、光拡散性が高いことを示す。
一方、この光拡散熱伝導性成形体は、全光線透過率も70%を超える値を示すことが好ましい。全光線透過率が高いということは、光拡散熱伝導性成形体に入射した光のほとんどが、光拡散熱伝導性成形体を透過することを示し、光拡散熱伝導性成形体による光の吸収や後方散乱が少ないことを示す。ヘイズ値および全光線透過率が70%を越える光拡散熱伝導性成形体は、光拡散性と光透過性に優れ、光学用途の熱伝導性部材として好適に用いることができる。
Light diffusion heat conductive molding :
The light diffusion heat conductive molded body formed from the above light diffusion heat conductive composition preferably has a haze value (haze value) of more than 70% at an operating temperature T and a thickness of 500 μm. The haze value means the degree of unclear cloudy appearance inside or on the surface of the light diffusion heat conductive molded body. The higher the haze value, the stronger the degree of cloudy appearance is. Is high.
On the other hand, it is preferable that this light diffusion heat conductive molded object also shows the value which total light transmittance exceeds 70%. A high total light transmittance means that most of the light incident on the light diffusing thermally conductive molded body is transmitted through the light diffusing thermally conductive molded body, and light absorption by the light diffusing thermally conductive molded body. And less backscatter. A light diffusion heat conductive molded body having a haze value and a total light transmittance exceeding 70% is excellent in light diffusibility and light transmission, and can be suitably used as a heat conductive member for optical applications.

光拡散熱伝導性成形体の製造方法について説明する。
まず、マトリクス材と熱伝導性充填材とを混合して光拡散熱伝導性組成物を調製する。次に真空下で攪拌することにより脱泡する。そして、光拡散熱伝導性組成物を金型等に注入し固化させることで光拡散熱伝導性成形体を得る。
また、高分子組成物が溶剤に可溶な熱可塑性樹脂である場合には、熱可塑性樹脂を溶剤に溶かし、屈折率調整剤と熱伝導性充填材を添加して撹拌したのち、キャストしてシート状やフィルム状に成形することもできる。
さらにまた、ディスプレイの表面や照明の光源の表面に光拡散熱伝導性組成物を塗布したり、発熱体を含む電子部品等の隙間に光拡散熱伝導性組成物を流し込んだりした後、この光拡散熱伝導性組成物を硬化させて光拡散熱伝導性成形体を形成することができる。
The manufacturing method of a light diffusion thermal conductive molded object is demonstrated.
First, a light diffusion heat conductive composition is prepared by mixing a matrix material and a heat conductive filler. Next, it deaerates by stirring under vacuum. And a light-diffusion heat conductive molded object is obtained by inject | pouring a light-diffusion heat conductive composition into a metal mold | die etc. and solidifying.
If the polymer composition is a thermoplastic resin that is soluble in a solvent, dissolve the thermoplastic resin in the solvent, add a refractive index adjusting agent and a thermally conductive filler, stir and cast. It can also be formed into a sheet or film.
Furthermore, the light diffusing heat conductive composition is applied to the surface of the display or the light source of the illumination, or the light diffusing heat conductive composition is poured into a gap of an electronic component including a heating element, and then the light. The diffusion heat conductive composition can be cured to form a light diffusion heat conductive molding.

次に実験例から本発明を説明する。
[1.試料の調製] 本実験例では、マトリクス材に以下の液状シリコーンAを用い、熱伝導性充填材に以下の非晶性球状シリカを用いて、稼動温度Tを100℃としたときの上記数式(1)に基づいてマトリクス材の屈折率の中心値を計算した。そして、この屈折率の中心値の値に対する屈折率値の差が種々に変化するように、さらに屈折率調整剤を調整添加した以下に示す試料1〜試料5を作製した。
実験に用いた液状シリコーンAの硬化物の線膨張係数はα=290×10−6/℃であり、シリカの25℃における屈折率はn 25=1.4585、非晶性球状シリカの屈折率温度係数は(dn/dT)=10×10−6である。これを数式(1)に代入するとマトリクス材の屈折率の中心値がn' 25=1.4913と計算される。なお、液状シリコーンB、C、D、E、Fの硬化物についても線膨張率の値は略同じであったため、それらの混合物の最適屈折率も同じ値であるとした。
Next, the present invention will be described from experimental examples.
[1. Sample Preparation] In this experimental example, the following liquid silicone A is used as the matrix material, the following amorphous spherical silica is used as the thermally conductive filler, and the above equation (when the operating temperature T is 100 ° C.) Based on 1), the center value of the refractive index of the matrix material was calculated. Then, Samples 1 to 5 shown below were prepared, in which a refractive index adjusting agent was further adjusted and added so that the difference in refractive index value with respect to the central value of the refractive index varied.
The linear expansion coefficient of the cured product of liquid silicone A used in the experiment is α = 290 × 10 −6 / ° C., the refractive index of silica at 25 ° C. is n f 25 = 1.4585, and the refractive index of amorphous spherical silica. The rate temperature coefficient is (dn / dT) f = 10 × 10 −6 . By substituting this into Equation (1), the center value of the refractive index of the matrix material is calculated as n ′ m 25 = 1.4913. In addition, since the value of the linear expansion coefficient was also substantially the same for the cured products of liquid silicones B, C, D, E, and F, the optimum refractive index of the mixture was also assumed to be the same value.

試料1: 高分子組成物として液状シリコーンB(Gelest社製、商品名:PDV−1625)90.0重量部に、屈折率調整剤として液状シリコーンC(Gelest社製、商品名:HDP−111)4重量部と、液状シリコーンE(Gelest社製、商品名:DMS−H03)4重量部と、液状シリコーンF(Gelest社製、商品名:HQM−105)2重量部と、さらに硬化触媒(Gelest社製、商品名SIP6832.2)0.005重量部とを加えてマトリクス材を調製した。次にこのマトリクス材に、熱伝導性充填材として上記非晶性球状シリカ(株式会社龍森製、PLV−6、平均粒径4.3μm、屈折率1.4585)413重量部を加え、攪拌と真空脱泡を行い、光拡散熱伝導性組成物を調製した。なお、光拡散熱伝導性組成物において前記熱伝導性充填剤は66.7vol%である。
この光拡散熱伝導性組成物を樹脂フィルム上に塗布して、もう一枚の樹脂フィルムで挟み、気泡を生じないようにして一定の厚さとなるようにロールで延伸し、それを120℃の恒温槽で20分間放置して光拡散熱伝導性組成物を硬化させ、シート状の光拡散熱伝導性成形体を製造した。
一定の厚さとしては、全光線透過率及びヘイズ値の測定用試験片として500μmと、熱伝導率測定用の試験片として5mmと、の2種類とした。
こうして得た光拡散熱伝導性組成物及び光拡散熱伝導性成形体を試料1とした。
Sample 1 : 90.0 parts by weight of liquid silicone B (manufactured by Gelest, product name: PDV-1625) as a polymer composition, and liquid silicone C (manufactured by Gelest, product name: HDP-111) as a refractive index adjusting agent 4 parts by weight, 4 parts by weight of liquid silicone E (manufactured by Gelest, trade name: DMS-H03), 2 parts by weight of liquid silicone F (manufactured by Gelest, trade name: HQM-105), and further a curing catalyst (Gelest A matrix material was prepared by adding 0.005 part by weight, manufactured by the company, trade name SIP6832.2). Next, 413 parts by weight of the above amorphous spherical silica (manufactured by Tatsumori Co., Ltd., PLV-6, average particle size 4.3 μm, refractive index 1.4585) is added to this matrix material as a thermally conductive filler, and stirred. And vacuum degassing to prepare a light diffusion heat conductive composition. In the light diffusion heat conductive composition, the heat conductive filler is 66.7 vol%.
This light diffusion heat conductive composition is applied onto a resin film, sandwiched between another resin film, stretched with a roll so as to have a constant thickness so as not to generate bubbles, The light diffusing heat conductive composition was cured by leaving it in a thermostat for 20 minutes to produce a sheet-like light diffusing heat conductive molding.
As the constant thickness, two types were used: 500 μm as a test piece for measuring total light transmittance and haze value, and 5 mm as a test piece for measuring thermal conductivity.
The light diffusing heat conductive composition and the light diffusing heat conductive molding thus obtained were used as Sample 1.

試料2: 高分子組成物として液状シリコーンA(主剤であるモメンティブ・パフォーマンス・マテリアルズ社製、商品名:XE5844(A))40重量部と、その硬化剤A(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:XE5844(B))40重量部の液状混合物80重量部と、屈折率調整剤として上記液状シリコーンB:18.2重量部と、上記液状シリコーンC:1.8重量部とを加えてマトリクス材を調製した。次にこのマトリクス材に、熱伝導性充填材として前記シリカを413重量部加え、攪拌と真空脱泡を行い、光拡散熱伝導性組成物を調製した。
この光拡散熱伝導性組成物を試料1と同様にして、光拡散熱伝導性成形体を製造した。こうして得られた光拡散熱伝導性組成物及び光拡散熱伝導性成形体を試料2とした。
Sample 2 : Liquid silicone A (manufactured by Momentive Performance Materials, the main ingredient, trade name: XE5844 (A)) 40 parts by weight as a polymer composition and curing agent A (made by Momentive Performance Materials) , Trade name: XE5844 (B)) 80 parts by weight of a liquid mixture, 18.2 parts by weight of the above liquid silicone B as a refractive index adjusting agent, and 1.8 parts by weight of the above liquid silicone C are added. A matrix material was prepared. Next, 413 parts by weight of the silica as a heat conductive filler was added to the matrix material, and stirring and vacuum degassing were performed to prepare a light diffusion heat conductive composition.
A light diffusion heat conductive molded body was produced in the same manner as Sample 1 using this light diffusion heat conductive composition. The light diffusing heat conductive composition and the light diffusing heat conductive molding thus obtained were used as Sample 2.

試料3: 高分子組成物として上記液状シリコーンA:10重量部と、その上記硬化剤A:10重量部の液状混合物20重量部と、屈折率調整剤として上記液状シリコーンB:72.7重量部、上記液状シリコーンC:7.3重量部、さらに上記硬化触媒:0.004重量部とを加えてマトリクス材を調製した。次にこのマトリクス材に、熱伝導性充填材として上記シリカ:413重量部を加え、攪拌と真空脱泡を行い、光拡散熱伝導性組成物を調製した。
この光拡散熱伝導性組成物を試料1と同様にして、光拡散熱伝導性成形体を製造した。こうして得た光拡散熱伝導性組成物及び光拡散熱伝導性成形体を試料3とした。
Sample 3 : 10 parts by weight of the above liquid silicone A as a polymer composition, 20 parts by weight of a liquid mixture of 10 parts by weight of the curing agent A, and 72.7 parts by weight of the above liquid silicone B as a refractive index adjusting agent. The matrix material was prepared by adding 7.3 parts by weight of the liquid silicone C and 0.004 parts by weight of the curing catalyst. Next, 413 parts by weight of the above silica as a heat conductive filler was added to the matrix material, and stirring and vacuum degassing were performed to prepare a light diffusion heat conductive composition.
A light diffusion heat conductive molded body was produced in the same manner as Sample 1 using this light diffusion heat conductive composition. The light diffusing heat conductive composition and the light diffusing heat conductive molding thus obtained were used as Sample 3.

試料4: 高分子組成物として上記液状シリコーンA:45重量部と、その上記硬化剤A:45重量部の液状混合物90重量部と、屈折率調整剤として液状シリコーンD(東レダウコーニング社製、商品名:OE−6520A)5重量部と、その硬化剤D(東レダウコーニング社製、商品名:OE−6520B)5重量部とを加えてマトリクス材を調製した。次にこのマトリクス材に、熱伝導性充填材として上記シリカを413重量部加え、攪拌と真空脱泡を行い、光拡散熱伝導性組成物を調製した。
この光拡散熱伝導性組成物を試料1と同様にして、光拡散熱伝導性成形体を製造した。こうして得た光拡散熱伝導性組成物及び光拡散熱伝導性成形体を試料4とした。
Sample 4 : 45 parts by weight of the above liquid silicone A as a polymer composition, 90 parts by weight of a liquid mixture of the above curing agent A: 45 parts by weight, and liquid silicone D (manufactured by Toray Dow Corning, A matrix material was prepared by adding 5 parts by weight of a trade name: OE-6520A) and 5 parts by weight of the curing agent D (manufactured by Toray Dow Corning, trade name: OE-6520B). Next, 413 parts by weight of the silica as a heat conductive filler was added to the matrix material, and stirring and vacuum defoaming were performed to prepare a light diffusion heat conductive composition.
A light diffusion heat conductive molded body was produced in the same manner as Sample 1 using this light diffusion heat conductive composition. The light diffusing heat conductive composition and the light diffusing heat conductive molding thus obtained were used as Sample 4.

試料5: 高分子組成物として上記液状シリコーンA:25重量部と、その上記硬化剤A:25重量部の液状混合物50重量部と、屈折率調整剤として上記液状シリコーンB:45.5重量部、上記液状シリコーンC:4.5重量部、上記硬化触媒:0.0025重量部を加えマトリクス材を調製した。次にこのマトリクス材に、熱伝導性充填材として上記シリカ:413重量部を加えて、攪拌と真空脱泡を行い、光拡散熱伝導性組成物を調製した。
この光拡散熱伝導性組成物を試料1と同様にして、光拡散熱伝導性成形体を製造した。こうして得た光拡散熱伝導性組成物及び光拡散熱伝導性成形体を試料5とした。
Sample 5 : 25 parts by weight of the above liquid silicone A as a polymer composition, 50 parts by weight of a liquid mixture of the above curing agent A: 25 parts by weight, and 45.5 parts by weight of the above liquid silicone B as a refractive index adjusting agent. The liquid silicone C: 4.5 parts by weight and the curing catalyst: 0.0025 parts by weight were added to prepare a matrix material. Next, 413 parts by weight of the silica as a heat conductive filler was added to the matrix material, and stirring and vacuum defoaming were performed to prepare a light diffusion heat conductive composition.
A light diffusion heat conductive molded body was produced in the same manner as Sample 1 using this light diffusion heat conductive composition. The light diffusing heat conductive composition and the light diffusing heat conductive molding thus obtained were used as Sample 5.

Figure 2012083548
Figure 2012083548

Figure 2012083548
Figure 2012083548

[2.試験方法] 試料1〜試料5について、光拡散熱伝導性組成物の「粘度」と、マトリクス材の「25℃での屈折率」、光拡散熱伝導性成形体の「温度Tでの全光線透過率」、「温度Tでのヘイズ値」、「熱伝導率」を測定した。その結果を表1及び表2に示す。
なお温度Tとは以下に示す全線透過率及びヘイズを測定する試験での測定温度である。
[2. Test Method] For samples 1 to 5, “viscosity” of the light diffusion heat conductive composition, “refractive index at 25 ° C.” of the matrix material, “total light at temperature T” of the light diffusion heat conductive molded body "Transmissivity", "Haze value at temperature T", and "Thermal conductivity" were measured. The results are shown in Tables 1 and 2.
The temperature T is a measurement temperature in a test for measuring total line transmittance and haze described below.

粘度: 試料1〜試料5の光拡散熱伝導性組成物の回転速度10rpm、25℃での粘度を回転粘度計(ブルックフィールド社製、商品名:DV−E型、スピンドルNo.14)を用いて測定した。
25℃での屈折率: 熱伝導性充填材を添加する前の試料1〜試料5のマトリクス材を硬化させ、マトリクス材のみでなる成形体を製造した後、25℃での波長589nmにおける屈折率を屈折計(株式会社アタゴ製、アッベ屈折計DR−M2)を用いて測定した。
温度Tでの全光線透過率および温度Tでのヘイズ: 厚さ500μmの光拡散熱伝導性成形体である試料1〜試料5で全光線透過率及びヘイズ値測定用の試験片を作製した。そして、スガ試験機株式会社製TMダブルビーム方式ヘイズコンピューターHZ−2を用いて、発熱体の稼動温度を想定した36℃、65℃、88℃、100℃の中から選択した温度で全光線透過率及びヘイズ(曇価)を測定した。なお、上記温度条件を除いてJIS K7136記載の条件とした。
より具体的には、試料1から作製した65℃で測定する試験片を成形体A、試料2から作製した100℃で測定する試験片を成形体B、試料3から作製した100℃で測定する試験片を成形体C、試料1から作製した88℃で測定する試験片を成形体D、試料3から作製した36℃で測定する試験片を成形体E、試料4から作製した100℃で測定する試験片を成形体F、試料1から作製した100℃で測定する試験片を成形体G、
試料5から作製した36℃で測定する試験片を成形体H、試料4から作製した65℃で測定する試験片を成形体Iとして測定を行った。
熱伝導率: 光拡散熱伝導性組成物である試料1〜試料5から厚さ5mmの熱伝導率測定用の試験片を作製し、各試験片について、京都電子工業株式会社製迅速熱伝導率計QTM−500を用いて薄膜測定法にて熱伝導率を測定した。
Viscosity : Using a rotational viscometer (Brookfield, trade name: DV-E type, spindle No. 14), the viscosity at 25 ° C. of the light diffusion thermal conductive compositions of Sample 1 to Sample 5 was measured. Measured.
Refractive index at 25 ° C . : After the matrix materials of Sample 1 to Sample 5 before adding the thermally conductive filler are cured to produce a molded body made only of the matrix material, the refractive index at a wavelength of 589 nm at 25 ° C. Was measured using a refractometer (manufactured by Atago Co., Ltd., Abbe refractometer DR-M2).
Total light transmittance at temperature T and haze at temperature T : Test specimens for measuring total light transmittance and haze value were prepared from Sample 1 to Sample 5 which are light diffusion heat conductive molded bodies having a thickness of 500 μm. Then, using a TM double beam type haze computer HZ-2 manufactured by Suga Test Instruments Co., Ltd., all light transmission is performed at a temperature selected from 36 ° C., 65 ° C., 88 ° C. and 100 ° C. assuming the operating temperature of the heating element. The rate and haze (cloudiness value) were measured. In addition, it was set as the conditions of JISK7136 except the said temperature conditions.
More specifically, the test piece prepared from Sample 1 measured at 65 ° C. is measured at 100 ° C. prepared from Molded Product A, and the test piece measured at 100 ° C. prepared from Sample 2 is measured at 100 ° C. Test piece prepared from molded body C, sample 1 measured at 88 ° C., molded body D, sample 3 prepared from sample 3 measured at 36 ° C. Test piece measured from molded body E, sample 4 measured at 100 ° C. The test piece to be measured is molded body F, and the test piece prepared from sample 1 and measured at 100 ° C. is molded body G.
The measurement was performed using the test piece prepared from Sample 5 measured at 36 ° C. as the molded product H and the test piece prepared from Sample 4 measured at 65 ° C. as the molded product I.
Thermal conductivity : 5 mm thick test pieces for measuring thermal conductivity were prepared from Samples 1 to 5 which are light diffusion thermal conductive compositions, and each test piece was subjected to rapid thermal conductivity manufactured by Kyoto Electronics Industry Co., Ltd. Thermal conductivity was measured by a thin film measuring method using a total of QTM-500.

[3.試験結果]
成形体Aである光拡散熱伝導性成形体は、65℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0059と小さく、65℃において、高い全光線透過率と低いヘイズ値を有しており、かつ高い熱伝導率を示している。
成形体Bである光拡散熱伝導性成形体は、100℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0087と0.010より小さく、100℃において、高い全光線透過率と低いヘイズ値を有しており、かつ高い熱伝導率を示している。成形体Aと比較すると若干曇りが見られ、ヘイズ値が上昇している。
[3. Test results]
The light diffusing thermally conductive molded body as the molded body A has a small absolute value of the refractive index difference between the matrix material and the thermally conductive filler at 65 ° C. as small as 0.0059, and a high total light transmittance and low at 65 ° C. It has a haze value and exhibits high thermal conductivity.
The light diffusing thermally conductive molded body, which is the molded body B, has an absolute value of the difference in refractive index between the matrix material and the thermally conductive filler at 100 ° C. of less than 0.0087 and 0.010. It has a transmittance and a low haze value, and exhibits a high thermal conductivity. Compared with the molded product A, it is slightly cloudy and the haze value is increased.

成形体Cである光拡散熱伝導性成形体は、100℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0103であり、100℃において、高い全光線透過率と高いヘイズ値を有しており、かつ高い熱伝導率を示している。
成形体Dである光拡散熱伝導性成形体は、88℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0156であり、88℃において、高い全光線透過率と高いヘイズ値を有しており、かつ高い熱伝導率を示している。
成形体Eである光拡散熱伝導性成形体は、36℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0171であり、36℃において、高い全光線透過率と高いヘイズ値を有しており、かつ高い熱伝導率を示している。
The light diffusing thermally conductive molded body, which is the molded body C, has an absolute value of the refractive index difference between the matrix material and the thermally conductive filler at 100 ° C. of 0.0103, and has a high total light transmittance and high at 100 ° C. It has a haze value and exhibits high thermal conductivity.
The light diffusion thermal conductive molded body, which is the molded body D, has an absolute value of the refractive index difference of 0.0156 at 88 ° C. and a high total light transmittance and high at 88 ° C. It has a haze value and exhibits high thermal conductivity.
The light diffusing thermally conductive molded body, which is the molded body E, has an absolute value of a difference in refractive index of 0.0171 between the matrix material and the thermally conductive filler at 36 ° C., and has a high total light transmittance and high at 36 ° C. It has a haze value and exhibits high thermal conductivity.

成形体Fである光拡散熱伝導性成形体は、100℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0182であり、100℃において、高い全光線透過率と高いヘイズ値を有しており、かつ高い熱伝導率を示している。
成形体Gである光拡散熱伝導性成形体は、100℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0206であり、100℃ににおいて、高い全光線透過率と高いヘイズ値を有しており、かつ高い熱伝導率を示している。成形体Fと比較して屈折差が少し大きいため、全光線透過率の値が74.9%と少し低くなっている。
The light diffusing thermally conductive molded body, which is the molded body F, has an absolute value of the difference in refractive index between the matrix material and the thermally conductive filler at 100 ° C. of 0.0182, and has a high total light transmittance and high at 100 ° C. It has a haze value and exhibits high thermal conductivity.
The light diffusion thermal conductive molded body, which is the molded body G, has an absolute value of the difference in refractive index between the matrix material and the thermal conductive filler at 100 ° C. of 0.0206. It has a high haze value and a high thermal conductivity. Since the refractive difference is a little larger than that of the molded product F, the value of the total light transmittance is a little as low as 74.9%.

成形体Hである光拡散熱伝導性成形体は、36℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0261と0.0250より大きく、36℃において、高いヘイズ値を有しており、かつ高い熱伝導率を示しているが、全光線透過率が低い。
成形体Iである光拡散熱伝導性成形体は、65℃におけるマトリクス材と熱伝導性充填剤の屈折率差の絶対値が0.0341と大きく、65℃において、高いヘイズ値を有しており、かつ高い熱伝導率を示しているが、成形体Hよりもさらに全光線透過率が低い。
The light diffusing thermally conductive molded body which is the molded body H has an absolute value of the refractive index difference between the matrix material and the thermally conductive filler at 36 ° C. larger than 0.0261 and 0.0250, and a high haze value at 36 ° C. And has a high thermal conductivity, but the total light transmittance is low.
The light diffusing thermally conductive molded body, which is molded body I, has a large refractive index difference of 0.0341 at 65 ° C. between the matrix material and the thermally conductive filler, and has a high haze value at 65 ° C. In addition, although the thermal conductivity is high, the total light transmittance is lower than that of the molded body H.

以上より、成形体C〜成形体Gは、優れた光拡散性と光透過性を有しているが、成形体Aと成形体Bは光透過性は優れているがヘイズ値が低く光拡散性に劣っていた。また、成形体Hと成形体Iは、ヘイズ値が高く光拡散性に優れているが、全線透過率が低く光透過性に劣っていた。   As described above, the molded bodies C to G have excellent light diffusibility and light transmittance, but the molded bodies A and B have excellent light transmittance but low haze value. It was inferior. Moreover, although the molded object H and the molded object I were high in haze value and excellent in light diffusibility, the total line transmittance was low and it was inferior to light transmittance.

Claims (7)

高分子組成物を主材とする液状のマトリクス材中に熱伝導性充填材を含有し、光拡散性と光透過性とを共に備える光拡散熱伝導性組成物であって、
前記マトリクス材の屈折率と前記熱伝導性充填材の屈折率の差が絶対値で0.010〜0.025の範囲にある関係を有するマトリクス材と熱伝導性充填材でなる光拡散熱伝導性組成物。
A light diffusion heat conductive composition comprising a heat conductive filler in a liquid matrix material mainly composed of a polymer composition, and having both light diffusibility and light transmittance,
Light diffusion heat conduction comprising a matrix material and a thermally conductive filler having a relationship that the difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler is in the range of 0.010 to 0.025 in absolute value. Sex composition.
熱伝導性充填材の含有量が50体積%〜70体積%である請求項1記載の光拡散熱伝導性組成物。   The light-diffusing thermally conductive composition according to claim 1, wherein the content of the thermally conductive filler is 50% by volume to 70% by volume. 厚さ500μmで測定した全光線透過率およびヘイズ値が70%を超え100%未満である光拡散性と光透過性とを共に備える請求項1または請求項2記載の光拡散熱伝導性組成物。   The light diffusive heat conductive composition according to claim 1 or 2, comprising both light diffusivity and light transmissive properties having a total light transmittance and a haze value of more than 70% and less than 100% measured at a thickness of 500 µm. . 主材となる高分子組成物の屈折率と熱伝導性充填材の屈折率の差を絶対値で0.010〜0.025にする屈折率調整剤を該マトリクス材に含有する請求項1〜請求項3何れか1項記載の光拡散熱伝導性組成物。   The matrix material contains a refractive index adjuster that makes the difference between the refractive index of the polymer composition as the main material and the refractive index of the thermally conductive filler 0.010 to 0.025 in absolute value. The light diffusion thermal conductive composition according to claim 3. 高分子組成物を主材とする液状のマトリクス材中に熱伝導性充填材を含有し所定温度T(℃)で光拡散性と光透過性とを共に備える光拡散熱伝導性組成物であって、
所定温度Tにおいてマトリクス材の屈折率と熱伝導性充填材の屈折率との差が絶対値で0.010〜0.025の範囲にあり、
下記数式(1)
Figure 2012083548


但し、数式(1)において、
n’ 25:マトリクス材の25℃における屈折率の中心値
α:マトリクス材の線膨張係数
(dn/dT):熱伝導性充填材の屈折率温度係数
25:熱伝導性充填材の25℃における屈折率
T:所定温度、をそれぞれ表す。
によって求められるマトリクス材の25℃における屈折率の中心値n’ 25とマトリクス材の25℃における実際の屈折率の差が絶対値で0.011〜0.025の範囲となる関係を有するマトリクス材と熱伝導性充填材でなる請求項1〜請求項4何れか1項記載の光拡散熱伝導性組成物。
A light diffusion heat conductive composition containing a heat conductive filler in a liquid matrix material mainly composed of a polymer composition and having both light diffusibility and light transmittance at a predetermined temperature T (° C.). And
The difference between the refractive index of the matrix material and the refractive index of the thermally conductive filler at a predetermined temperature T is in the range of 0.010 to 0.025 in absolute value,
The following mathematical formula (1)
Figure 2012083548


However, in Formula (1),
n ′ m 25 : center value of refractive index of matrix material at 25 ° C. α: linear expansion coefficient of matrix material
(dn / dT) f : Refractive index temperature coefficient of thermally conductive filler n f 25 : Refractive index of thermally conductive filler at 25 ° C. T: Predetermined temperature, respectively.
The matrix having a relationship in which the difference between the central value n ′ m 25 of the refractive index at 25 ° C. of the matrix material and the actual refractive index at 25 ° C. of the matrix material is in the range of 0.011 to 0.025 in absolute value. The light-diffusion heat conductive composition of any one of Claims 1-4 which consists of a material and a heat conductive filler.
前記所定温度Tが、50℃〜140℃である請求項5記載の光拡散熱伝導性組成物。   The light diffusion heat conductive composition according to claim 5, wherein the predetermined temperature T is 50 ° C. to 140 ° C. 請求項1〜請求項6何れか1項記載の光拡散熱伝導性組成物の固化体である光拡散熱伝導性成形体。   The light-diffusion heat conductive molded object which is a solidified body of the light-diffusion heat conductive composition in any one of Claims 1-6.
JP2010229589A 2010-10-12 2010-10-12 Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article Withdrawn JP2012083548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229589A JP2012083548A (en) 2010-10-12 2010-10-12 Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229589A JP2012083548A (en) 2010-10-12 2010-10-12 Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article

Publications (1)

Publication Number Publication Date
JP2012083548A true JP2012083548A (en) 2012-04-26

Family

ID=46242483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229589A Withdrawn JP2012083548A (en) 2010-10-12 2010-10-12 Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article

Country Status (1)

Country Link
JP (1) JP2012083548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092196A1 (en) * 2012-12-11 2014-06-19 東レ・ダウコーニング株式会社 High-refractive index heat-conductive composition of exceptional transparence, heat-conductive grease comprising same, cured heat-conductive material, thermal-softening heat-conductive composition, and applications for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092196A1 (en) * 2012-12-11 2014-06-19 東レ・ダウコーニング株式会社 High-refractive index heat-conductive composition of exceptional transparence, heat-conductive grease comprising same, cured heat-conductive material, thermal-softening heat-conductive composition, and applications for same

Similar Documents

Publication Publication Date Title
Shi et al. Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites
CN102307939A (en) Acrylic thermal conductive sheet and method for producing the same
JP3263795B2 (en) Light-diffusing polycarbonate resin composition
TWI332103B (en) Light-diffusing film
KR20110005290A (en) (meth)acrylic pressure-sensitive adhesive foam and method for producing the same
CN107286901A (en) A kind of touch-screen is fitted frame glue and preparation method thereof entirely
Lei et al. Silicone hybrid materials useful for the encapsulation of light-emitting diodes
JP5572936B2 (en) Thermosetting light reflecting resin composition, optical semiconductor element mounting substrate using the same, method for producing the same, and optical semiconductor device
JPWO2020050334A1 (en) Thermal conductivity sheet
US20200317979A1 (en) Thermally conductive composition and thermally conductive molded body
JPWO2020149335A1 (en) Thermal conductivity sheet
WO2018105578A1 (en) Cell porous body and method for producing same
JP2010248311A (en) Transparent thermoconductive composition, and transparent thermoconductive molded item
CN109471212B (en) High-brightness optical diffusion film
JP2012083548A (en) Light-diffusing thermally conductive composition and light-diffusing thermally conductive molded article
JP6316592B2 (en) Addition-curing silicone rubber composition used for light transmission from a light source in a lighting fixture
JP7390548B2 (en) Thermal conductive silicone compositions and thermally conductive silicone materials
CN104592931B (en) High power LED package glue composition
KR20170043841A (en) Manufacturing method of silicone adhesive and silicone adhesive using the same
JP2012082314A (en) Transparent thermally conductive composition and transparent thermally conductive molding
JP2007297582A (en) Adhesive for optical display device and optical display element
US20030100669A1 (en) Curable silicone compositions, methods and articles made therefrom
Kim et al. Characteristics of optical diffusers for light-emitting diodes backlight unit prepared by melt-extrusion process
Kim et al. Enhancement of physical and optical performances of polycarbonate‐based diffusers for direct‐lit LED backlight unit by incorporation of nanoclay platelets
JP2017078122A (en) Thermally conductive filler and transparent thermally conductive resin composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107