JP2012083488A - Opto-electric composite substrate, circuit substrate, and opto-electric composite device - Google Patents

Opto-electric composite substrate, circuit substrate, and opto-electric composite device Download PDF

Info

Publication number
JP2012083488A
JP2012083488A JP2010228901A JP2010228901A JP2012083488A JP 2012083488 A JP2012083488 A JP 2012083488A JP 2010228901 A JP2010228901 A JP 2010228901A JP 2010228901 A JP2010228901 A JP 2010228901A JP 2012083488 A JP2012083488 A JP 2012083488A
Authority
JP
Japan
Prior art keywords
optical
optical element
element mounting
substrate
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010228901A
Other languages
Japanese (ja)
Other versions
JP5691368B2 (en
Inventor
Makoto Fujiwara
誠 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010228901A priority Critical patent/JP5691368B2/en
Publication of JP2012083488A publication Critical patent/JP2012083488A/en
Application granted granted Critical
Publication of JP5691368B2 publication Critical patent/JP5691368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an opto-electric composite substrate for achieving both of ease of mounting and repair of an optical element and reduction in optical coupling loss of optical element and an optical waveguide.SOLUTION: An opto-electric composite substrate 10 comprises: an optical element mounting substrate 20 including an optical element mounting area 22 on which an optical element 110 is mounted; an electric circuit substrate 30 including an opening 32 larger than the optical element mounting substrate 20; and an optical circuit substrate 40 including an optical waveguide 42 provided with an optical path switching section 44. In the opto-electric composite substrate 10, the optical circuit substrate 40 and the electric circuit substrate 30 are stacked so that the optical path switching section 44 is arranged at a position facing the opening 32, and the optical path switching section 44 and the optical element mounting area 22 are arranged while facing each other by fitting the optical element mounting substrate 20 into the opening 32.

Description

本発明は、光素子および電気素子をともに搭載するための光電気複合基板、これに用いられる回路基板、および光素子および電気素子が搭載された光電気複合デバイスに関する。   The present invention relates to an opto-electric composite substrate for mounting both an optical element and an electric element, a circuit board used therefor, and an opto-electric composite device on which the optical element and the electric element are mounted.

この種の技術に関し、特許文献1には、光導波路が形成された光回路基板と電気素子が搭載される電気配線基板とをシート状の接着剤で接着して、光導波路つきの電気配線板を作製する光電気複合基板の製造方法が記載されている。また、特許文献2には、光導波路が形成された光回路基板と電気回路基板とを接合するとともに、光路変換ミラーの上部を開口させて光透過性樹脂を充填し、光素子を光路変換ミラーと光学的に連結した状態で位置決めして光回路基板にハンダ実装することが記載されている。   With regard to this type of technology, Patent Document 1 discloses that an electrical circuit board with an optical waveguide is bonded to an optical circuit board on which an optical waveguide is formed and an electrical wiring board on which an electrical element is mounted with a sheet-like adhesive. A manufacturing method of the photoelectric composite substrate to be manufactured is described. Further, in Patent Document 2, an optical circuit board on which an optical waveguide is formed and an electric circuit board are joined, and an upper portion of the optical path conversion mirror is opened and filled with a light-transmitting resin, and the optical element is converted into an optical path conversion mirror. And positioning in an optically connected state and solder mounting on the optical circuit board.

このように、従来の光電気複合基板においては、光回路基板と電気回路基板とを接合したうえで、電気回路基板の開口を通じて光導波路の位置を確認しながら、光導波路の光路変換部と光素子の受光部とを位置合わせして当該光素子を実装していた。   As described above, in the conventional photoelectric composite substrate, the optical circuit board and the electrical circuit board are joined, and the position of the optical waveguide is confirmed through the opening of the electrical circuit board. The optical element is mounted in alignment with the light receiving portion of the element.

しかしながら、たとえば大型計算機システムのマザーボードのように多数の光素子と電気素子が搭載される光電気複合基板(以下、基板と略記する場合がある)の場合、素子が個々に故障するたびに基板全体を筐体から取り外して改修することは困難を伴う。また、搭載される光素子や電気素子が多数となるため、その実装作業に長時間を要することが問題となる。   However, in the case of an opto-electric composite substrate (hereinafter sometimes abbreviated as a substrate) on which a large number of optical elements and electrical elements are mounted, such as a mother board of a large computer system, for example, the entire board every time an element fails It is difficult to remove and renovate the housing. In addition, since a large number of optical elements and electric elements are mounted, it takes a long time to perform the mounting operation.

これに対し、特許文献3には、光素子とその駆動回路や増幅回路を共通の基板上に搭載した光通信モジュールを、電気回路基板の開口を覆うようにしてハンダ実装することが記載されている。この光通信モジュールは、電気回路基板の下方にある光回路基板に形成された光導波路との間で、開口を通じて光を授受する。このように光素子とその電気素子とを共通の基板に実装してモジュール化することで、光素子の実装作業や改修作業が容易となる。   On the other hand, Patent Document 3 describes that an optical communication module in which an optical element and its drive circuit and amplifier circuit are mounted on a common substrate is solder-mounted so as to cover the opening of the electric circuit substrate. Yes. This optical communication module transmits and receives light to and from an optical waveguide formed on an optical circuit board below the electric circuit board. By mounting the optical element and the electric element on a common substrate in this way to make a module, the mounting and repairing work of the optical element is facilitated.

特開2009−58923号公報JP 2009-58923 A 特開2008−216712号公報JP 2008-216712 A 特開2009−283712号公報JP 2009-283712 A

しかしながら、特許文献3のように光素子が搭載されたモジュール基板(以下、光素子搭載基板)を電気回路基板にハンダ実装した場合、光素子の実装および改修作業は効率化するものの、光素子と光導波路との厚み方向の距離が大きくなることが問題となる。光素子搭載基板やハンダ実装部分の厚み寸法だけ、光素子の受発光部と光導波路(光路変換ミラー)との光路長が長くなって光結合損失が増加するためである。   However, when a module substrate on which an optical element is mounted (hereinafter referred to as an optical element mounting substrate) is solder-mounted on an electric circuit board as in Patent Document 3, the mounting and repair work of the optical element is made more efficient. The problem is that the distance in the thickness direction from the optical waveguide is increased. This is because the optical path length between the light receiving and emitting part of the optical element and the optical waveguide (optical path conversion mirror) is increased by the thickness dimension of the optical element mounting substrate and the solder mounting portion, and the optical coupling loss is increased.

本発明は上述のような課題に鑑みてなされたものであり、光素子の実装および改修作業の容易さと、光素子と光導波路との光結合損失の低減と、をともに実現することのできる光電気複合基板および光電気複合デバイス、ならびに光電気複合基板に用いられる回路基板を提供するものである。   The present invention has been made in view of the above-described problems, and is an optical device that can realize both the mounting and repair work of an optical element and the reduction of optical coupling loss between the optical element and the optical waveguide. The present invention provides an electric composite substrate and a photoelectric composite device, and a circuit board used for the photoelectric composite substrate.

本発明の光電気複合基板は、光素子が搭載される光素子搭載領域を備える光素子搭載基板と、前記光素子搭載基板よりも大きな開口部を備える電気回路基板と、光路変換部が設けられた光導波路を備える光回路基板と、を含み、前記光路変換部が前記開口部から臨む位置に配置されるように前記光回路基板と前記電気回路基板とが積層され、前記開口部に前記光素子搭載基板を嵌め込むことで前記光路変換部と前記光素子搭載領域とが対向配置される。   The optoelectric composite substrate of the present invention is provided with an optical element mounting substrate having an optical element mounting region on which an optical element is mounted, an electric circuit substrate having an opening larger than the optical element mounting substrate, and an optical path changing unit. An optical circuit board provided with an optical waveguide, wherein the optical circuit board and the electric circuit board are stacked such that the optical path conversion unit is disposed at a position facing the opening, and the optical circuit board is stacked in the opening. By fitting the element mounting substrate, the optical path changing portion and the optical element mounting area are arranged to face each other.

また、本発明の回路基板は、光路変換部が設けられた光導波路を備える光回路基板に積層して用いられる電気回路基板と、光素子が搭載される光素子搭載領域を備える光素子搭載基板と、を含み、前記電気回路基板に、前記光素子搭載基板が嵌め込み可能な開口部が貫通形成されていることを特徴とする。   Further, the circuit board of the present invention is an optical circuit board including an electric circuit board used by being laminated on an optical circuit board provided with an optical waveguide provided with an optical path conversion unit, and an optical element mounting area on which the optical element is mounted. And an opening into which the optical element mounting substrate can be fitted is formed through the electric circuit substrate.

また、本発明の光電気複合デバイスは、光素子が搭載された光素子搭載基板と、前記光素子搭載基板よりも大きな開口部を備え電気素子が搭載された電気回路基板と、光路変換部が設けられた光導波路を備え前記電気回路基板に積層された光回路基板と、を含み、前記光素子搭載基板が前記開口部に嵌め込まれて前記光素子と前記光路変換部とが対向配置されている。   The photoelectric composite device of the present invention includes an optical element mounting substrate on which an optical element is mounted, an electric circuit substrate having an opening larger than the optical element mounting substrate, and an optical path conversion unit. An optical circuit board provided with an optical waveguide provided and laminated on the electric circuit board, wherein the optical element mounting substrate is fitted into the opening, and the optical element and the optical path conversion unit are arranged to face each other. Yes.

上記発明によれば、光素子搭載基板が電気回路基板に嵌め込まれることで光素子搭載領域と光導波路との厚み方向の距離である光路長が近くなる。このため、搭載される光素子と光路変換部との光結合損失を低減しつつ、光素子搭載基板による光素子のモジュール化のメリットを享受することができる。   According to the above invention, the optical path length which is the distance in the thickness direction between the optical element mounting region and the optical waveguide is reduced by fitting the optical element mounting board into the electric circuit board. For this reason, the merit of modularization of the optical element by the optical element mounting board | substrate can be enjoyed, reducing the optical coupling loss of the optical element mounted and the optical path conversion part.

なお、本発明の各種の構成要素は、個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。   Note that the various components of the present invention do not have to be individually independent, that a plurality of components are formed as one member, and one component is formed of a plurality of members. That a certain component is a part of another component, a part of a certain component overlaps a part of another component, and the like.

本発明によれば、光素子の実装および改修作業が容易であるとともに、光素子と光導波路との光結合損失を低減することが可能である。   According to the present invention, it is possible to easily mount and modify the optical element, and to reduce the optical coupling loss between the optical element and the optical waveguide.

(a)は第一実施形態にかかる光電気複合基板を模式的に示す斜視図であり、(b)は光素子搭載基板を示す斜視図である。(A) is a perspective view which shows typically the photoelectric composite board | substrate concerning 1st embodiment, (b) is a perspective view which shows an optical element mounting substrate. 第一実施形態にかかる光電気複合基板の分解斜視図である。It is a disassembled perspective view of the photoelectric composite board | substrate concerning 1st embodiment. 第一実施形態にかかる光電気複合デバイスの斜視図である。1 is a perspective view of a photoelectric composite device according to a first embodiment. 第一実施形態にかかる光素子搭載基板を開口部に嵌め込む状態を示す正面図である。It is a front view which shows the state which inserts the optical element mounting substrate concerning 1st embodiment in an opening part. 開口部および光素子搭載基板の近傍を模式的に示す平面図である。It is a top view which shows typically the vicinity of an opening part and an optical element mounting substrate. (a)は第二実施形態にかかる光素子搭載基板を開口部に嵌め込む状態を示す正面図であり、(b)は第二実施形態にかかる光電気複合デバイスの正面図である。(A) is a front view which shows the state which inserts the optical element mounting substrate concerning 2nd embodiment in an opening part, (b) is a front view of the photoelectric composite device concerning 2nd embodiment. 第二実施形態の変形例にかかる光素子搭載基板の正面図である。It is a front view of the optical element mounting substrate concerning the modification of 2nd embodiment.

以下、本発明の実施形態を図面に基づいて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
なお、本実施形態では上下方向を規定して説明するが、これは構成要素の相対関係を説明するために便宜的に規定するものであり、本実施形態にかかる製品の製造時や使用時の方向を限定するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
In the present embodiment, the vertical direction is defined and described. However, this is provided for convenience in order to explain the relative relationship between the components, and the product according to the present embodiment is manufactured or used. It does not limit the direction.

<第一実施形態>
図1(a)は、本発明の第一実施形態にかかる光電気複合基板10を模式的に示す斜視図であり、同図(b)は光素子搭載基板20を示す斜視図である。図2は、本実施形態にかかる光電気複合基板10の分解斜視図である。図3は、本実施形態にかかる光電気複合デバイス14の斜視図である。
<First embodiment>
FIG. 1A is a perspective view schematically showing an optoelectric composite substrate 10 according to the first embodiment of the present invention, and FIG. 1B is a perspective view showing an optical element mounting substrate 20. FIG. 2 is an exploded perspective view of the photoelectric composite substrate 10 according to the present embodiment. FIG. 3 is a perspective view of the photoelectric composite device 14 according to the present embodiment.

はじめに、本実施形態の光電気複合基板10、回路基板12および光電気複合デバイス14の概要について説明する。   First, the outline | summary of the photoelectric composite board | substrate 10, the circuit board 12, and the photoelectric composite device 14 of this embodiment is demonstrated.

光電気複合基板10は、光素子110が搭載される光素子搭載領域22を備える光素子搭載基板20と、光素子搭載基板20よりも大きな開口部32を備える電気回路基板30と、光路変換部44が設けられた光導波路42を備える光回路基板40と、を含む。
光電気複合基板10は、光路変換部44が開口部32から臨む位置に配置されるように光回路基板40と電気回路基板30とが積層され、開口部32に光素子搭載基板20を嵌め込むことで光路変換部44と光素子搭載領域22とが対向配置される。
The optoelectric composite substrate 10 includes an optical element mounting substrate 20 including an optical element mounting region 22 on which the optical element 110 is mounted, an electric circuit substrate 30 including an opening 32 larger than the optical element mounting substrate 20, and an optical path conversion unit. And an optical circuit board 40 including an optical waveguide 42 provided with 44.
In the optoelectric composite substrate 10, the optical circuit board 40 and the electric circuit board 30 are laminated so that the optical path changing unit 44 is disposed at a position facing the opening 32, and the optical element mounting substrate 20 is fitted into the opening 32. As a result, the optical path changing unit 44 and the optical element mounting region 22 are arranged to face each other.

かかる構成によれば、光路変換部44と光素子110とを出入りする光L(図2を参照)が拡散することなく、光素子110が光素子搭載基板20でモジュール化されて実装および改修の作業性が向上する。仮に光素子110が故障した場合には、電気回路基板30やこれに搭載される電気素子120に干渉することなく、光素子搭載基板20を開口部32から取り外して容易に修理または交換することが可能である。   According to such a configuration, the optical element 110 is modularized by the optical element mounting substrate 20 without being diffused, and the light L entering and exiting the optical path changing unit 44 and the optical element 110 (see FIG. 2) is mounted and modified. Workability is improved. If the optical element 110 fails, the optical element mounting board 20 can be easily repaired or replaced by removing the optical element mounting board 20 from the opening 32 without interfering with the electric circuit board 30 or the electric element 120 mounted thereon. Is possible.

光電気複合基板10を構成する光素子搭載基板20と電気回路基板30とをあわせて回路基板12と総称する。
すなわち、本実施形態の回路基板12は、光路変換部44が設けられた光導波路42を備える光回路基板40に積層して用いられる電気回路基板30と、光素子110が搭載される光素子搭載領域22を備える光素子搭載基板20と、を含む。そして、本実施形態の回路基板12において電気回路基板30は、光素子搭載基板20が嵌め込み可能な開口部32が貫通形成されている。
The optical element mounting board 20 and the electric circuit board 30 constituting the optoelectric composite board 10 are collectively referred to as a circuit board 12.
That is, the circuit board 12 of the present embodiment is mounted on the optical circuit board 40 that is used by being laminated on the optical circuit board 40 including the optical waveguide 42 provided with the optical path conversion unit 44, and the optical element mounting on which the optical element 110 is mounted. And an optical element mounting substrate 20 having a region 22. In the circuit board 12 of the present embodiment, the electric circuit board 30 has an opening 32 through which the optical element mounting board 20 can be fitted.

さらに、光電気複合基板10に光素子110と電気素子120とを搭載したものを光電気複合デバイス14と総称する。
すなわち、本実施形態の光電気複合デバイス14は、光素子110が搭載された光素子搭載基板20と、光素子搭載基板20よりも大きな開口部32を備え電気素子120が搭載された電気回路基板30と、光路変換部44が設けられた光導波路42を備え電気回路基板30に積層された光回路基板40と、を含む。そして、本実施形態の光電気複合デバイス14においては、光素子搭載基板20が開口部32に嵌め込まれて光素子110と光路変換部44とが対向配置されている。
Further, a substrate in which the optical element 110 and the electric element 120 are mounted on the photoelectric composite substrate 10 is collectively referred to as a photoelectric composite device 14.
That is, the photoelectric composite device 14 according to the present embodiment includes an optical element mounting substrate 20 on which the optical element 110 is mounted, and an electric circuit substrate on which the electric element 120 is mounted with an opening 32 larger than the optical element mounting substrate 20. 30 and an optical circuit board 40 provided with an optical waveguide 42 provided with an optical path changing unit 44 and laminated on the electric circuit board 30. In the photoelectric composite device 14 of the present embodiment, the optical element mounting substrate 20 is fitted into the opening 32, and the optical element 110 and the optical path changing unit 44 are disposed to face each other.

次に、本実施形態の光電気複合基板10および光電気複合デバイス14について詳細に説明する。   Next, the photoelectric composite substrate 10 and the photoelectric composite device 14 of this embodiment will be described in detail.

光電気複合基板10は、光素子110およびその駆動素子112、ならびに電気素子120が搭載される基板である。光電気複合基板10は、電気回路基板30と光素子搭載基板20とで構成される回路基板12に対して光回路基板40を接合してなる。光素子110としては、面発光レーザー(VCSEL)などの発光素子や、フォトダイオード(PD、APD)などの受光素子等が例示される。駆動素子112は、一例として、トランスインピーダンスアンプ(TIA)やリミッティングアンプ(LA)などの増幅器と制御用のドライバICとを組み合わせてなる。
電気素子120としては、LSIやICなどの半導体装置のほか、抵抗器やコンデンサ、インダクタなど各種を用いることができる。
The optoelectric composite substrate 10 is a substrate on which the optical element 110, its driving element 112, and the electric element 120 are mounted. The optoelectric composite substrate 10 is formed by bonding an optical circuit substrate 40 to a circuit substrate 12 composed of an electric circuit substrate 30 and an optical element mounting substrate 20. Examples of the optical element 110 include a light emitting element such as a surface emitting laser (VCSEL), a light receiving element such as a photodiode (PD, APD), and the like. For example, the drive element 112 is a combination of an amplifier such as a transimpedance amplifier (TIA) or a limiting amplifier (LA) and a driver IC for control.
As the electric element 120, various devices such as a resistor, a capacitor, and an inductor can be used in addition to a semiconductor device such as an LSI or an IC.

光素子搭載基板20および電気回路基板30は、ガラスエポキシ基板などの硬質材料を基材とするリジッド基板でもよく、またはポリイミドやポリエステルなどの可撓性フィルムを基材とするフレキシブル基板でもよい。このうち、光素子搭載基板20の嵌め込みの容易性とアライメント精度の良好さから、光素子搭載基板20および電気回路基板30は所定の厚みをもつリジッド基板が好ましい。   The optical element mounting substrate 20 and the electric circuit substrate 30 may be a rigid substrate based on a hard material such as a glass epoxy substrate, or may be a flexible substrate based on a flexible film such as polyimide or polyester. Among these, the optical element mounting board 20 and the electric circuit board 30 are preferably rigid boards having a predetermined thickness from the viewpoint of easy fitting of the optical element mounting board 20 and good alignment accuracy.

本実施形態の光電気複合基板10は、光素子搭載基板20から外方に突出形成された端子部24と、電気回路基板30の表面に設けられた電極パッド34と、をさらに備えている。開口部32に光素子搭載基板20を嵌め込むことで、端子部24の先端は電極パッド34と接続される。   The optoelectric composite substrate 10 of this embodiment further includes a terminal portion 24 that protrudes outward from the optical element mounting substrate 20 and an electrode pad 34 provided on the surface of the electric circuit substrate 30. By fitting the optical element mounting substrate 20 into the opening 32, the tip of the terminal portion 24 is connected to the electrode pad 34.

かかる構成により、光素子搭載基板20を開口部32に嵌め込むだけで光素子搭載基板20と電気回路基板30とを容易に電気接続することが可能であり、多数の光素子110を電気回路基板30に対して個別にボンディングする必要がない。   With this configuration, it is possible to easily electrically connect the optical element mounting substrate 20 and the electric circuit board 30 only by fitting the optical element mounting board 20 into the opening 32, and the large number of optical elements 110 can be connected to the electric circuit board. There is no need to bond to 30 individually.

図1(b)に示すように、光素子搭載基板20は、光素子搭載領域22に形成されて光素子110を実装する第一電極26と、駆動素子搭載領域23に形成されて光素子110を駆動する駆動素子112を実装する第二電極27と、第一電極26および第二電極27と端子部24とを接続する駆動回路部28と、を含んでいる。駆動回路部28は光素子搭載基板20の内部に形成されている。端子部24の基端側は駆動回路部28に接続されている。端子部24の先端部24aは、電気回路基板30の表面にパターン形成された電極パッド34に接続される。   As shown in FIG. 1B, the optical element mounting substrate 20 is formed in the optical element mounting region 22 to mount the optical element 110, and is formed in the driving element mounting region 23 to form the optical element 110. The second electrode 27 for mounting the driving element 112 for driving the first electrode 26, and the driving circuit unit 28 for connecting the first electrode 26 and the second electrode 27 to the terminal unit 24 are included. The drive circuit unit 28 is formed inside the optical element mounting substrate 20. The base end side of the terminal portion 24 is connected to the drive circuit portion 28. The distal end portion 24 a of the terminal portion 24 is connected to an electrode pad 34 that is patterned on the surface of the electric circuit board 30.

光素子搭載領域22は、光素子搭載基板20に対して光素子110が搭載される予定領域であり、第一電極26の少なくとも一部を含む光素子搭載基板20の部分領域である。駆動素子搭載領域23は、光素子搭載基板20に対して駆動素子112が搭載される予定領域であり、第二電極27の少なくとも一部を含む光素子搭載基板20の部分領域である。   The optical element mounting region 22 is a region where the optical element 110 is to be mounted on the optical element mounting substrate 20, and is a partial region of the optical element mounting substrate 20 including at least a part of the first electrode 26. The drive element mounting region 23 is a region where the drive element 112 is to be mounted on the optical element mounting substrate 20, and is a partial region of the optical element mounting substrate 20 including at least a part of the second electrode 27.

電気回路基板30は、図示しない配線層を含み、多数の電気素子120および光コネクタ114がそれぞれ電極パッドに個別に実装されて互いに回路接続されている。配線層は導電性材料、たとえばCu、Ni、Al、Au、Ptなどの金属材料からなる。光コネクタ114は、光素子110との間で光信号を授受する部材である。図2に示すように光コネクタ114を電気回路基板30に搭載してもよく、または光素子110と同様に光素子搭載基板20に搭載して電気回路基板30に嵌め込んで電気回路基板30に接続してもよい。   The electric circuit board 30 includes a wiring layer (not shown), and a large number of electric elements 120 and optical connectors 114 are individually mounted on electrode pads and connected to each other. The wiring layer is made of a conductive material, for example, a metal material such as Cu, Ni, Al, Au, or Pt. The optical connector 114 is a member that exchanges optical signals with the optical element 110. As shown in FIG. 2, the optical connector 114 may be mounted on the electric circuit board 30, or similarly to the optical element 110, the optical connector 114 may be mounted on the optical element mounting board 20 and fitted into the electric circuit board 30. You may connect.

開口部32は、電気回路基板30に穿設された貫通孔である。電気回路基板30の表面には、開口部32の近傍に電極パッド34が配置されている。開口部32の開口形状は特に限定されないが、光素子搭載基板20を内包するとともに光素子搭載基板20に略一致した形状をなすとよい。本実施形態では、ともに平面視矩形状の光素子搭載基板20および開口部32を例示している。   The opening 32 is a through hole formed in the electric circuit board 30. An electrode pad 34 is disposed in the vicinity of the opening 32 on the surface of the electric circuit board 30. The opening shape of the opening 32 is not particularly limited, but it is preferable that the opening portion 32 includes the optical element mounting substrate 20 and has a shape that substantially matches the optical element mounting substrate 20. In the present embodiment, the optical element mounting substrate 20 and the opening 32 both having a rectangular shape in plan view are illustrated.

光回路基板40は、電気回路基板30に対して略全面に被着される基材部48の表面または内部に光導波路42が形成された基板である。
光導波路42には、その端部または中間部に光路変換部44が設けられている。光路変換部44は、基材部48の平面内を進行する光と、基材部48に対して交差方向(代表的には面直方向)に進行する光とが相互に変換される領域である。光路変換部44には、反射面が傾斜した光路変換ミラー46が配置されることが一般的である。本実施形態では、光導波路42に対して光路変換ミラー46が埋設されている態様を例示する。また、後述する第二実施形態では、光路変換ミラー46が光素子搭載基板20の下面に固定されていて光導波路42に着脱可能に装着される態様を説明する。なお、図1(a)および図2では、説明のため、光路変換ミラー46を光導波路42の上方に露出させた状態を図示している。
The optical circuit board 40 is a board in which an optical waveguide 42 is formed on the surface or inside of a base material portion 48 that is attached to substantially the entire surface of the electric circuit board 30.
The optical waveguide 42 is provided with an optical path conversion unit 44 at an end or an intermediate part thereof. The optical path conversion unit 44 is an area in which light traveling in the plane of the base material portion 48 and light traveling in the crossing direction (typically in the perpendicular direction) with respect to the base material portion 48 are mutually converted. is there. The optical path conversion unit 44 is generally provided with an optical path conversion mirror 46 having a reflecting surface inclined. In the present embodiment, an example in which the optical path conversion mirror 46 is embedded in the optical waveguide 42 is illustrated. In the second embodiment to be described later, a mode in which the optical path conversion mirror 46 is fixed to the lower surface of the optical element mounting substrate 20 and is detachably attached to the optical waveguide 42 will be described. 1A and 2 illustrate a state in which the optical path conversion mirror 46 is exposed above the optical waveguide 42 for the sake of explanation.

図4は、本実施形態にかかる光素子搭載基板20を電気回路基板30の開口部32に嵌め込む状態を示す正面図である。   FIG. 4 is a front view showing a state in which the optical element mounting board 20 according to the present embodiment is fitted into the opening 32 of the electric circuit board 30.

本実施形態の光路変換ミラー46は、光導波路42の延在方向に対して斜め45度に傾斜する反射面をもち、光導波路42の内部を基材部48に平行に進行する光を、基材部48に対して垂直上方に反射する。上方とは、光回路基板40から電気回路基板30(または光素子搭載基板20)に向かう光電気複合基板10の法線方向である。光回路基板40は、光路変換部44が開口部32の内部に収容されるように位置合わせされて電気回路基板30に接合される。そして、光路変換部44に設けられた光路変換ミラー46と、光素子110の受発光部111とが光電気複合基板10の平面方向に一致するように両者を位置合わせして、光素子搭載基板20を開口部32に装着する。なお、図2に示すように電気回路基板30に搭載された光コネクタ114の直下、かつ光導波路42の端部には、他の光路変換ミラー46が設けられている。   The optical path conversion mirror 46 of the present embodiment has a reflecting surface inclined at an angle of 45 degrees with respect to the extending direction of the optical waveguide 42, and the light traveling inside the optical waveguide 42 parallel to the base material portion 48 is reflected on the base. Reflects vertically upward with respect to the material part 48. The upward direction is the normal direction of the photoelectric composite substrate 10 from the optical circuit substrate 40 toward the electric circuit substrate 30 (or the optical element mounting substrate 20). The optical circuit board 40 is aligned and joined to the electric circuit board 30 so that the optical path changing unit 44 is accommodated in the opening 32. Then, the optical path conversion mirror 46 provided in the optical path conversion section 44 and the light emitting / receiving section 111 of the optical element 110 are aligned so that they coincide with the planar direction of the optoelectric composite substrate 10, and the optical element mounting substrate 20 is attached to the opening 32. As shown in FIG. 2, another optical path conversion mirror 46 is provided immediately below the optical connector 114 mounted on the electric circuit board 30 and at the end of the optical waveguide 42.

光導波路42は、線状のコア部42aと、コア部42aの周囲を囲む鞘状のクラッド部42bとを有している。コア部42aとクラッド部42bとは、互いに光の屈折率が異なる。光回路基板40は、コア部42aの端部または中間部に入射された光を、コア部42aとクラッド部42bとの界面で全反射させながら伝搬する光学部材である。コア部42aを複数本設けて、互いにクラッド部42bで隔離してもよい。光導波路42の厚さは、15〜200μmが好ましく、30〜100μmがより好ましい。
以下、光導波路42、コア部42aおよびクラッド部42bの長さ方向とは図4の左右方向をいい、これらの厚み方向は同図の上下方向、幅方向は同図の紙面前後方向をいう。
The optical waveguide 42 has a linear core portion 42a and a sheath-like clad portion 42b surrounding the core portion 42a. The core part 42a and the clad part 42b have different light refractive indexes. The optical circuit board 40 is an optical member that propagates light incident on the end portion or the intermediate portion of the core portion 42a while totally reflecting it at the interface between the core portion 42a and the clad portion 42b. A plurality of core parts 42a may be provided and separated from each other by the clad part 42b. The thickness of the optical waveguide 42 is preferably 15 to 200 μm, and more preferably 30 to 100 μm.
Hereinafter, the length direction of the optical waveguide 42, the core portion 42a, and the clad portion 42b refers to the left-right direction in FIG. 4, the thickness direction thereof refers to the up-down direction in FIG.

コア部42aの幅寸法は1〜200μmが好ましく、5〜100μmがより好ましく、10〜60μmがさらに好ましい。コア部42aの厚み寸法は、5〜100μmが好ましく、25〜80μmがより好ましい。一方、クラッド部42bの厚みは3〜50μmが好ましく、5〜30μmがより好ましい。   The width of the core part 42a is preferably 1 to 200 μm, more preferably 5 to 100 μm, and further preferably 10 to 60 μm. 5-100 micrometers is preferable and, as for the thickness dimension of the core part 42a, 25-80 micrometers is more preferable. On the other hand, the thickness of the clad portion 42b is preferably 3 to 50 μm, and more preferably 5 to 30 μm.

コア部42aとクラッド部42bの各構成材料は、屈折率差が生じる材料であれば特に限定されない。具体的には、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料の他、石英ガラス、ホウケイ酸ガラスのようなガラス材料を選択して用いることができる。   Each constituent material of the core part 42a and the clad part 42b is not particularly limited as long as it is a material that causes a difference in refractive index. Specifically, acrylic resins, methacrylic resins, polycarbonate, polystyrene, epoxy resins, polyamides, polyimides, polybenzoxazoles, polysilanes, polysilazanes, and cyclic olefin resins such as benzocyclobutene resins and norbornene resins In addition to such various resin materials, glass materials such as quartz glass and borosilicate glass can be selected and used.

光回路基板40の基材部48も上記の材料より選択して用いることができる。基材部48は、クラッド部42bと同種の材料でもよい。   The base material portion 48 of the optical circuit board 40 can also be selected from the above materials. The base material portion 48 may be made of the same material as that of the clad portion 42b.

また、本実施形態の光路変換ミラー46は、光導波路42の光路変換部44の内部に形成されて、傾斜した反射面における屈折率がコア部42aと異なる。本実施形態の光路変換ミラー46は、光導波路42にレーザ加工または研削加工等を施すことにより形成することができる。なお、光路変換ミラー46の反射面(ミラー面)には、必要に応じて反射膜を成膜してもよい。反射膜としては、Au、Ag、Al等の金属膜が用いられる。   Further, the optical path conversion mirror 46 of the present embodiment is formed inside the optical path conversion section 44 of the optical waveguide 42, and the refractive index on the inclined reflecting surface is different from that of the core section 42a. The optical path conversion mirror 46 of this embodiment can be formed by subjecting the optical waveguide 42 to laser processing or grinding processing. A reflective film may be formed on the reflective surface (mirror surface) of the optical path conversion mirror 46 as necessary. As the reflective film, a metal film such as Au, Ag, or Al is used.

図4に示す本実施形態では、光回路基板40の表面側に電気回路基板30が接合され、裏面側にマザーボード130が接合されている。マザーボード130は多層のプリント基板である。マザーボード130は、図示しない他の光電気複合基板10を積層の内部に包含してもよい。言い換えると、本実施形態の光電気複合基板10は多段に構成されてもよい。本実施形態の光電気複合基板10は光素子搭載基板20と電気回路基板30とが嵌め合わされて略同一平面内にあるため、全体に厚み寸法が抑えられている。このため、光電気複合基板10を多段に積層することで、マザーボード130の厚み寸法を抑制しつつ、光素子110および電気素子120の高い実装効率を実現することができる。   In the present embodiment shown in FIG. 4, the electric circuit board 30 is bonded to the front surface side of the optical circuit board 40, and the motherboard 130 is bonded to the back surface side. The mother board 130 is a multilayer printed circuit board. The mother board 130 may include another photoelectric composite substrate 10 (not shown) in the stack. In other words, the photoelectric composite substrate 10 of the present embodiment may be configured in multiple stages. Since the optoelectric composite substrate 10 of the present embodiment is in the substantially same plane with the optical element mounting substrate 20 and the electric circuit substrate 30 fitted together, the thickness dimension is suppressed as a whole. For this reason, by stacking the photoelectric composite substrates 10 in multiple stages, high mounting efficiency of the optical element 110 and the electric element 120 can be realized while suppressing the thickness dimension of the mother board 130.

図5は、電気回路基板30の開口部32および光素子搭載基板20の近傍を模式的に示す平面図である。   FIG. 5 is a plan view schematically showing the vicinity of the opening 32 of the electric circuit board 30 and the optical element mounting board 20.

ここで、本実施形態の光電気複合基板10および光電気複合デバイス14の更なる効果について説明する。光素子110や電気素子120を光電気複合基板10に実装する場合、たとえば一般的なリフローハンダを採用すると、光回路基板40と電気回路基板30との線膨張係数の相違に起因して熱歪が発生し、光素子110の搭載領域と光路変換部44との相対位置が大きくずれることが問題となる。また、電気回路基板30と光回路基板40とを積層する際の位置精度の高低差による個体差の問題もある。電気回路基板30や光回路基板40は数十センチメートル(10万μmオーダー)のスケールであるのに対して、従来のたとえば特許文献2や3の光電気複合基板では、光が電気回路基板を通過する開口は直径が高々100μm程度の小孔であった。これは、従来の光電気複合基板では光素子を電気回路基板に直接に実装する必要があることから、開口を光素子より大きくすることはできず、開口は受発光部の直下に小孔として形成する必要があったためである。このため、従来の光電気複合基板では、電気素子のハンダ実装時の熱変形により光回路基板40の光路変換部44(光路変換ミラー46)が電気回路基板30に対して相対移動して容易に小孔から外れてしまい、光素子110のアライメント調整や実装が困難となっていた。
これに対し、本実施形態の光電気複合基板10および光電気複合デバイス14では、光素子110が搭載された光素子搭載基板20を嵌め込み可能な程度(例えばセンチメートルオーダー)の大きな開口部32を電気回路基板30に形成する。このため、かりに光回路基板40が熱変形したとしても光路変換部44(光路変換ミラー46)を開口部32から確実に目視することができる。したがって、光素子搭載基板20の嵌め込み実装時における光路変換部44(光路変換ミラー46)の目視位置から、光電気複合デバイス14の使用温度環境における予測位置を判定して、光素子搭載基板20(光素子110)を電気回路基板30に対してアライメント調整および実装することができる。
Here, further effects of the photoelectric composite substrate 10 and the photoelectric composite device 14 of the present embodiment will be described. When the optical element 110 or the electric element 120 is mounted on the optoelectric composite substrate 10, for example, when a general reflow solder is used, the thermal distortion is caused by the difference in the linear expansion coefficient between the optical circuit substrate 40 and the electric circuit substrate 30. Occurs, and the relative position between the mounting area of the optical element 110 and the optical path changing unit 44 becomes a problem. In addition, there is a problem of individual difference due to a difference in position accuracy when the electric circuit board 30 and the optical circuit board 40 are stacked. Whereas the electric circuit board 30 and the optical circuit board 40 have a scale of several tens of centimeters (on the order of 100,000 μm), in the conventional photoelectric composite boards of Patent Documents 2 and 3, for example, light is transmitted through the electric circuit board. The passing aperture was a small hole having a diameter of about 100 μm at most. This is because the conventional photoelectric composite substrate needs to mount the optical element directly on the electric circuit board, so that the opening cannot be made larger than the optical element, and the opening is formed as a small hole directly under the light emitting / receiving section. This is because it was necessary to form. For this reason, in the conventional photoelectric composite substrate, the optical path conversion unit 44 (optical path conversion mirror 46) of the optical circuit board 40 is relatively moved with respect to the electric circuit board 30 due to thermal deformation at the time of solder mounting of the electric elements. The optical element 110 is difficult to adjust and mount because of being out of the small hole.
On the other hand, in the photoelectric composite substrate 10 and the photoelectric composite device 14 according to the present embodiment, the large opening portion 32 that can fit the optical element mounting substrate 20 on which the optical element 110 is mounted (for example, centimeter order) is provided. It is formed on the electric circuit board 30. For this reason, even if the optical circuit board 40 is thermally deformed, the optical path conversion unit 44 (optical path conversion mirror 46) can be reliably viewed from the opening 32. Therefore, the predicted position of the photoelectric composite device 14 in the operating temperature environment is determined from the visual position of the optical path conversion unit 44 (optical path conversion mirror 46) when the optical element mounting board 20 is fitted and mounted, and the optical element mounting board 20 ( The optical element 110) can be aligned and mounted on the electric circuit board 30.

図5に示すように、本実施形態の電極パッド34は、開口部32と光素子搭載基板20との間の空隙部36の幅寸法(ΔX、ΔY)に対応して、端子部24に対する接離方向(X方向)およびその交差方向(Y方向)に端子部24よりも大きく形成されている。ここで、電極パッド34が端子部24よりも大きいとは、電極パッド34の包絡域が端子部24の実装部(先端部24aを含む)の包絡域よりも大きいことをいう。
なお、図5において電極パッド34と端子部24はそれぞれ多数設けられており、繰り返しの一部は図示を省略している。同図に示すように端子部24が複数本の端子からなる端子群である場合、電極パッド34が端子部24よりも大きいとは、個々の端子に対応する複数の電極パッド34がそれぞれ各先端部24aを包含するとともに、端子部24(端子群)の全体を電気回路基板30に対して所定長さだけ移動させた場合にも各先端部24aが電極パッド34に接続可能であることをいう。
また、電極パッド34が空隙部36の幅寸法(ΔX、ΔY)に対応して端子部24よりも大きく形成されているとは、電気回路基板30と光素子搭載基板20とを位置合わせした状態(基準状態)で生じる帯状の空隙部36の、光素子搭載基板20からみた位置(空隙の向き)および幅(図5の場合、+X方向にΔX、−Y方向にΔY)だけ、先端部24aを電極パッド34に対して相対移動可能であることをいう。光素子搭載基板20に対する−X方向および+Y方向の空隙部36の幅寸法に関しても同様である。
As shown in FIG. 5, the electrode pad 34 of the present embodiment is in contact with the terminal portion 24 in accordance with the width dimension (ΔX, ΔY) of the gap portion 36 between the opening portion 32 and the optical element mounting substrate 20. It is formed larger than the terminal portion 24 in the separating direction (X direction) and its intersecting direction (Y direction). Here, the electrode pad 34 being larger than the terminal portion 24 means that the envelope region of the electrode pad 34 is larger than the envelope region of the mounting portion (including the tip portion 24a) of the terminal portion 24.
In FIG. 5, a large number of electrode pads 34 and terminal portions 24 are provided, and a part of repetition is not shown. As shown in the figure, when the terminal portion 24 is a terminal group composed of a plurality of terminals, the electrode pad 34 is larger than the terminal portion 24. The plurality of electrode pads 34 corresponding to the individual terminals are respectively connected to the tips. In addition to including the portion 24 a, each tip portion 24 a can be connected to the electrode pad 34 even when the entire terminal portion 24 (terminal group) is moved by a predetermined length with respect to the electric circuit board 30. .
In addition, the electrode pad 34 is formed to be larger than the terminal portion 24 corresponding to the width dimension (ΔX, ΔY) of the gap portion 36 when the electric circuit board 30 and the optical element mounting board 20 are aligned. The tip portion 24a of the band-shaped gap portion 36 generated in the (reference state) by the position (direction of the gap) and width (ΔX in the + X direction and ΔY in the −Y direction) as viewed from the optical element mounting substrate 20 Is movable relative to the electrode pad 34. The same applies to the width dimension of the gap portion 36 in the −X direction and the + Y direction with respect to the optical element mounting substrate 20.

このように、電極パッド34が空隙部36の幅寸法(ΔX、ΔY)の分だけ端子部24よりも大きく形成されていることで、開口部32の中で光素子搭載基板20の位置が種々に変動しても端子部24の先端部24aと電極パッド34との接続が可能である。このため、光素子搭載基板20は開口部32に対する嵌め込み位置の選択に自由度を有する。よって、電気回路基板30と光回路基板40との接合位置の誤差や両者の熱歪などによる開口部32と光路変換部44との位置ずれが生じた場合でも、光素子搭載基板20の嵌め込み位置を変化させることで、光素子110の受発光部111と光路変換部44の光路変換ミラー46とを高精度にアライメント調整することができる。   As described above, since the electrode pad 34 is formed larger than the terminal portion 24 by the width dimension (ΔX, ΔY) of the gap portion 36, the position of the optical element mounting substrate 20 in the opening portion 32 is various. Even if it fluctuates, the tip 24a of the terminal portion 24 and the electrode pad 34 can be connected. For this reason, the optical element mounting substrate 20 has a degree of freedom in selecting a fitting position with respect to the opening 32. Therefore, even when the positional deviation between the opening 32 and the optical path conversion unit 44 due to an error in the bonding position between the electric circuit board 30 and the optical circuit board 40 or thermal distortion between the two occurs, the fitting position of the optical element mounting board 20 Thus, the alignment of the light emitting / receiving unit 111 of the optical element 110 and the optical path conversion mirror 46 of the optical path conversion unit 44 can be adjusted with high accuracy.

電極パッド34は端子部24よりも大きく形成され、光素子搭載基板20は開口部32に対して遊嵌される。ここで、光素子搭載基板20が開口部32に遊嵌されるとは、開口部32が平面内の少なくとも一方向に関して光素子搭載基板20よりも大きく形成されていることをいう。すなわち、光電気複合デバイス14の状態では、空隙部36に樹脂材料38が充填されているなど、開口部32の内部での光素子搭載基板20の移動が拘束されていてもよい。この場合も、光素子搭載基板20は開口部32に遊嵌されているという。   The electrode pad 34 is formed larger than the terminal portion 24, and the optical element mounting substrate 20 is loosely fitted into the opening 32. Here, the optical element mounting substrate 20 being loosely fitted into the opening 32 means that the opening 32 is formed larger than the optical element mounting substrate 20 in at least one direction in the plane. That is, in the state of the photoelectric composite device 14, the movement of the optical element mounting substrate 20 inside the opening 32 may be restricted, for example, the gap 36 is filled with the resin material 38. Also in this case, the optical element mounting substrate 20 is said to be loosely fitted in the opening 32.

本実施形態の光電気複合デバイス14においては、開口部32と光素子搭載基板20との間(空隙部36)に、熱可塑性または光可塑性の樹脂材料38が充填されている。   In the photoelectric composite device 14 of this embodiment, a thermoplastic or thermoplastic resin material 38 is filled between the opening 32 and the optical element mounting substrate 20 (gap 36).

かかる構成により、光素子搭載基板20を加熱するか、または光素子搭載基板20に対して局所的に紫外線などの光を照射することで、充填された樹脂材料38が軟化して、この光素子搭載基板20が電気回路基板30から取り外し可能となる。このため、光電気複合デバイス14の通常の使用時には光素子搭載基板20を電気回路基板30に対して固定しておくことができるとともに、仮に光素子110が故障した場合には光素子搭載基板20を容易に取り外して修理または交換することが可能である。   With such a configuration, the resin material 38 filled is softened by heating the optical element mounting substrate 20 or locally irradiating the optical element mounting substrate 20 with light such as ultraviolet rays. The mounting board 20 can be detached from the electric circuit board 30. For this reason, the optical element mounting substrate 20 can be fixed to the electric circuit board 30 during normal use of the opto-electric composite device 14, and if the optical element 110 fails, the optical element mounting substrate 20 Can be easily removed and repaired or replaced.

本実施形態の光電気複合デバイス14において、光回路基板40はアライメントマーク66を備えている。光素子搭載基板20は光回路基板40に対して位置決めピン60により固定されている。   In the photoelectric composite device 14 of the present embodiment, the optical circuit board 40 includes an alignment mark 66. The optical element mounting substrate 20 is fixed to the optical circuit substrate 40 by positioning pins 60.

かかる構成により、アライメントマーク66を用いて、光素子搭載基板20を光回路基板40の光路変換部44(光路変換ミラー46)に対してアライメント調整することができる。そして、アライメント調整された状態で位置決めピン60を光回路基板40または光素子搭載基板20に固定する。これにより、光素子搭載基板20を電気回路基板30からひとたび取り外して光素子110の修理や交換などをおこなった場合などにも、高いアライメント精度にて光素子搭載基板20を容易に開口部32に再び嵌め込むことができる。   With this configuration, the alignment mark 66 can be used to align the optical element mounting substrate 20 with respect to the optical path conversion unit 44 (optical path conversion mirror 46) of the optical circuit board 40. Then, the positioning pins 60 are fixed to the optical circuit board 40 or the optical element mounting board 20 with the alignment adjusted. As a result, even when the optical element mounting substrate 20 is once removed from the electric circuit substrate 30 and repair or replacement of the optical element 110 is performed, the optical element mounting substrate 20 can easily be placed in the opening 32 with high alignment accuracy. It can be fitted again.

本実施形態では、たとえば十字形状などの複数のアライメントマーク66が光素子搭載基板20に設けられている。これらのアライメントマーク66と、開口部32から臨む光路変換ミラー46(または光回路基板40に設けられた他のアライメントマーク)とをアライメント装置(図示せず)で観察して、光素子搭載基板20と光導波路42との位置合わせを行う。そして、所望の位置精度で光素子搭載基板20が光導波路42と位置合わせされた状態で、光回路基板40に対して位置決めピン60を立設する。光素子搭載基板20には、たとえば3箇所にピン孔64が穿設されており、光素子搭載基板20のピン孔64を通じて位置決めピン60を光回路基板40に立設する。これにより、光回路基板40に留置された位置決めピン60をピン孔64に挿入するだけで、光素子搭載基板20と光回路基板40との位置合わせが自動的に行われる。本実施形態の場合、ピン孔64の一つは位置決めピン60と嵌め合いの開口径をもつ円孔であり、他の二つは、それぞれX方向またはY方向の一方が長径に形成された長孔である。   In the present embodiment, for example, a plurality of alignment marks 66 such as a cross shape are provided on the optical element mounting substrate 20. These alignment marks 66 and the optical path conversion mirror 46 (or another alignment mark provided on the optical circuit board 40) facing the opening 32 are observed with an alignment device (not shown), and the optical element mounting substrate 20 is observed. And the optical waveguide 42 are aligned. Then, the positioning pins 60 are erected with respect to the optical circuit board 40 in a state where the optical element mounting board 20 is aligned with the optical waveguide 42 with desired position accuracy. For example, pin holes 64 are formed in three places on the optical element mounting substrate 20, and positioning pins 60 are erected on the optical circuit substrate 40 through the pin holes 64 of the optical element mounting substrate 20. As a result, only by inserting the positioning pins 60 placed on the optical circuit board 40 into the pin holes 64, the alignment between the optical element mounting board 20 and the optical circuit board 40 is automatically performed. In the case of this embodiment, one of the pin holes 64 is a circular hole having an opening diameter that fits with the positioning pin 60, and the other two are lengths in which one of the X direction and the Y direction is formed with a long diameter, respectively. It is a hole.

空隙部36のX方向およびY方向の幅寸法(ΔX、ΔY)は、素子の実装プロセスにおける熱歪による光回路基板40と電気回路基板30との相対変位量の予想値と、電気回路基板30と光回路基板40との積層時の位置合わせ精度と、の和よりも大きい。そして、開口部32の内部のいずれの位置に光素子搭載基板20を取り付ける場合にも端子部24が電極パッド34に対して実装できるよう、電極パッド34は十分な大きさに形成されている。   The width dimension (ΔX, ΔY) of the gap 36 in the X direction and the Y direction is the expected value of the relative displacement between the optical circuit board 40 and the electric circuit board 30 due to thermal strain in the element mounting process, and the electric circuit board 30. Greater than the sum of the alignment accuracy when the optical circuit board 40 and the optical circuit board 40 are stacked. The electrode pad 34 is formed to have a sufficient size so that the terminal portion 24 can be mounted on the electrode pad 34 when the optical element mounting substrate 20 is attached to any position inside the opening 32.

言い換えると、本実施形態の回路基板12は、光素子搭載基板20から外方に突出形成された端子部24と、電気回路基板30の表面に端子部24に対する接離方向(X方向)およびその交差方向(Y方向)に端子部24よりも大きく形成された電極パッド34と、をさらに備えている。そして、開口部32に光素子搭載基板20を遊嵌することで端子部24の先端が電極パッド34と接続される。   In other words, the circuit board 12 of the present embodiment includes the terminal portion 24 that is formed to protrude outward from the optical element mounting substrate 20, the contact / separation direction (X direction) with respect to the terminal portion 24 on the surface of the electric circuit board 30, and And an electrode pad 34 formed larger than the terminal portion 24 in the intersecting direction (Y direction). Then, the tip of the terminal portion 24 is connected to the electrode pad 34 by loosely fitting the optical element mounting substrate 20 into the opening 32.

そして、光素子搭載基板20から延出する端子部24は、光素子搭載基板20からX方向およびY方向にいずれも引き出されている。すなわち、端子部24の幅寸法W(図5におけるY方向寸法)は、光素子搭載基板20の幅寸法よりも大きい。ここで、端子部24の幅寸法Wとは、光素子搭載基板20の任意の一辺に沿って設けられた複数本の端子からなる端子群のすべてを包絡する領域の寸法である。そして、光素子搭載基板20を開口部32の中心に位置合わせした状態を基準状態として、各端子の先端部24aは、各電極パッド34の中心にそれぞれ位置するとよい。さらに、かかる基準状態から、光素子搭載基板20が開口部32に対してX方向またはY方向に位置ずれ(最大で±ΔX、±ΔY)した場合でも各端子が電極パッド34に接続不良とならないよう、各電極パッド34の接離方向(X方向)寸法は2・ΔX以上であり、幅方向(Y方向)寸法は2・ΔY以上であることが好ましい(図5を参照)。なお、本実施形態では端子部24(端子群)が光素子搭載基板20の一辺(図5における左辺)のみに設けられている態様を例示したが、本発明はこれに限られない。光素子搭載基板20のうち互いに隣接または対向する複数の辺に沿って端子部24(端子群)をそれぞれ設けてもよい。   The terminal portion 24 extending from the optical element mounting substrate 20 is drawn from the optical element mounting substrate 20 in both the X direction and the Y direction. That is, the width dimension W (Y direction dimension in FIG. 5) of the terminal portion 24 is larger than the width dimension of the optical element mounting substrate 20. Here, the width dimension W of the terminal portion 24 is a dimension of an area that envelops all of the terminal group including a plurality of terminals provided along any one side of the optical element mounting substrate 20. Then, using the state where the optical element mounting substrate 20 is aligned with the center of the opening 32 as a reference state, the distal end portion 24a of each terminal may be positioned at the center of each electrode pad 34, respectively. Further, even if the optical element mounting substrate 20 is displaced in the X direction or the Y direction with respect to the opening 32 from the reference state (± ΔX, ± ΔY at the maximum), each terminal does not cause poor connection to the electrode pad 34. Thus, the contact / separation direction (X direction) dimension of each electrode pad 34 is preferably 2 · ΔX or more, and the width direction (Y direction) dimension is preferably 2 · ΔY or more (see FIG. 5). In the present embodiment, the terminal portion 24 (terminal group) is exemplified only on one side (the left side in FIG. 5) of the optical element mounting substrate 20, but the present invention is not limited to this. Terminal portions 24 (terminal groups) may be provided along a plurality of sides adjacent to or facing each other in the optical element mounting substrate 20.

光電気複合デバイス14は、開口部32に嵌め込まれた光素子搭載基板20を電気回路基板30に対して脱離可能に固定する固定手段を備えている。   The optoelectric composite device 14 includes a fixing unit that removably fixes the optical element mounting substrate 20 fitted in the opening 32 to the electric circuit substrate 30.

かかる構成により、開口部32の内部で光素子搭載基板20が不測に位置ずれを起こすことがなく、光路変換部44と光素子110との高いアライメントを維持することができる。そして、光素子搭載基板20の固定が脱離可能であることで、光素子110の修理や交換などの作業性が損なわれることもない。   With this configuration, the optical element mounting substrate 20 does not unexpectedly shift in the opening 32, and high alignment between the optical path conversion unit 44 and the optical element 110 can be maintained. And since the fixation of the optical element mounting substrate 20 can be detached, workability such as repair and replacement of the optical element 110 is not impaired.

固定手段としては、テープ62のような剥離可能な粘着性部材や、光素子搭載基板20の上面を閂のように着脱可能に押圧する押圧部材などが例示される。図5では、説明のためテープ62を二点鎖線で図示している。本実施形態の固定手段(テープ62)は、光素子搭載基板20の一辺または複数片を電気回路基板30に対して固定している。
また、テープ62は、先端部24aを電極パッド34に固定するための固定手段としても用いられている。このように、光素子搭載基板20と電気回路基板30、および端子部24と電極パッド34とを、それぞれ脱離可能に固定することで、光素子搭載基板20を電気回路基板30から取り外して光素子110や駆動素子112の交換または改修する作業が容易である。
Examples of the fixing means include a peelable adhesive member such as the tape 62, and a pressing member that detachably presses the upper surface of the optical element mounting substrate 20 like a ridge. In FIG. 5, the tape 62 is illustrated by a two-dot chain line for explanation. The fixing means (tape 62) of the present embodiment fixes one side or a plurality of pieces of the optical element mounting substrate 20 to the electric circuit substrate 30.
The tape 62 is also used as a fixing means for fixing the distal end portion 24 a to the electrode pad 34. In this way, the optical element mounting substrate 20 and the electric circuit board 30, and the terminal portion 24 and the electrode pad 34 are detachably fixed, so that the optical element mounting board 20 is detached from the electric circuit board 30 and light is emitted. The work of exchanging or refurbishing the element 110 and the driving element 112 is easy.

<第二実施形態>
図6(a)は本実施形態にかかる光素子搭載基板20を電気回路基板30の開口部32に嵌め込む状態を示す正面図である。同図(b)は本実施形態にかかる光電気複合デバイス14の正面図である。
<Second embodiment>
FIG. 6A is a front view showing a state in which the optical element mounting board 20 according to the present embodiment is fitted into the opening 32 of the electric circuit board 30. FIG. 2B is a front view of the photoelectric composite device 14 according to the present embodiment.

本実施形態は、光素子搭載基板20の一方面側に突出して光路変換ミラー46が設けられており、開口部32に光素子搭載基板20を嵌め込むことで光路変換ミラー46が光導波路42における光路変換部44に貫入することを特徴とする。   In the present embodiment, an optical path conversion mirror 46 is provided so as to protrude to one surface side of the optical element mounting substrate 20, and the optical path conversion mirror 46 is fitted in the optical waveguide 42 by fitting the optical element mounting substrate 20 into the opening 32. It is characterized by penetrating into the optical path conversion unit 44.

かかる構成により、光路変換ミラー46と光素子搭載領域22とは一体に設けられて相対位置が変わらないため、電気回路基板30と光回路基板40との位置ずれの有無によらず、光路変換部44と光素子110との間で高精度の受発光が可能となる。   With this configuration, since the optical path conversion mirror 46 and the optical element mounting region 22 are integrally provided and the relative position does not change, the optical path conversion unit regardless of whether the electric circuit board 30 and the optical circuit board 40 are misaligned. High-accuracy light emission / reception between the optical element 44 and the optical element 110 is possible.

より具体的には、光素子搭載基板20の表面と電気回路基板30の表面とが一致する面一の高さとした場合に、光路変換ミラー46は光導波路42に貫入してコア部42aよりも深い位置に至る。ここで、光路変換ミラー46がコア部42aよりも深い位置に至るとは、光路変換ミラー46の少なくとも下端の一部がコア部42aよりも深い位置に至ることをいう。   More specifically, when the surface of the optical element mounting substrate 20 and the surface of the electric circuit substrate 30 are flush with each other, the optical path conversion mirror 46 penetrates into the optical waveguide 42 and exceeds the core portion 42a. It reaches a deep position. Here, that the optical path conversion mirror 46 reaches a position deeper than the core part 42a means that at least a part of the lower end of the optical path conversion mirror 46 reaches a position deeper than the core part 42a.

本実施形態の光路変換ミラー46は樹脂材料からなる。この場合、光路変換ミラー46は熱負荷により熱歪が生じやすいところ、光路変換ミラー46と光素子搭載領域22とのアライメント精度が低下することがない。これは、たとえば電気回路基板30に対する電気素子120のハンダ接合時などに光回路基板40に大きな熱負荷が作用する場合であっても、光路変換ミラー46が光素子搭載基板20の方に設けられていることで、熱負荷が光路変換ミラー46に作用することがないためである。   The optical path conversion mirror 46 of this embodiment is made of a resin material. In this case, the optical path conversion mirror 46 is likely to be thermally distorted by a thermal load, and the alignment accuracy between the optical path conversion mirror 46 and the optical element mounting region 22 does not deteriorate. This is because the optical path conversion mirror 46 is provided on the optical element mounting substrate 20 even when a large thermal load acts on the optical circuit board 40 at the time of soldering the electric element 120 to the electric circuit board 30, for example. This is because the heat load does not act on the optical path conversion mirror 46.

本実施形態の光導波路42もまた、互いに屈折率が異なるコア部42aおよびクラッド部42bを含んでいる。
そして、光路変換ミラー46の表面に、コア部42aと同等の屈折率をもつ樹脂材料からなる樹脂連結部50が装着されており、開口部32に光素子搭載基板20を嵌め込むことで光路変換部44において樹脂連結部50と光導波路42のコア部42aとが光学的に連結される。
The optical waveguide 42 of this embodiment also includes a core portion 42a and a cladding portion 42b having different refractive indexes.
A resin coupling portion 50 made of a resin material having a refractive index equivalent to that of the core portion 42 a is attached to the surface of the optical path conversion mirror 46, and optical path conversion is performed by fitting the optical element mounting substrate 20 into the opening 32. In the portion 44, the resin connecting portion 50 and the core portion 42a of the optical waveguide 42 are optically connected.

光路変換ミラー46は、上述のように、光導波路42のコア部42aを面内方向(図6の左右方向)に進行する光と、光路変換部44と光素子110との間を面直方向(図6の上下方向)に進行する光と、を反射して互いに切り替える。ここで、かりにコア部42aと光路変換ミラー46との間に空気界面が存在した場合には、当該空気界面で光が不測に反射または散乱して信号ノイズとなる。これに対して、本実施形態の上記構成によれば、樹脂連結部50を介在させてコア部42aと光路変換ミラー46とが光学的に連結されるため、高い信号雑音比(SN比)を得ることができる。   As described above, the optical path conversion mirror 46 is light that travels in the in-plane direction (left-right direction in FIG. 6) through the core portion 42 a of the optical waveguide 42, and between the optical path conversion unit 44 and the optical element 110. The light traveling in the vertical direction (FIG. 6) is reflected and switched to each other. Here, when an air interface exists between the core part 42a and the optical path conversion mirror 46, light is unexpectedly reflected or scattered at the air interface and becomes signal noise. On the other hand, according to the above-described configuration of the present embodiment, the core portion 42a and the optical path conversion mirror 46 are optically coupled with the resin coupling portion 50 interposed therebetween, so that a high signal noise ratio (SN ratio) is achieved. Obtainable.

なお、樹脂連結部50とコア部42aとの屈折率が同等とは、樹脂連結部50とコア部42aとが同一材料からなり屈折率が同一である場合のほか、樹脂連結部50とコア部42aとの屈折率の差が、コア部42aとクラッド部42bとの屈折率の差よりも小さい場合を含む。   Note that the refractive indexes of the resin connecting portion 50 and the core portion 42a are equivalent to the case where the resin connecting portion 50 and the core portion 42a are made of the same material and have the same refractive index, as well as the resin connecting portion 50 and the core portion. The case where the difference in refractive index from 42a is smaller than the difference in refractive index between the core part 42a and the cladding part 42b is included.

また、光素子搭載基板20には受発光部111の直下に開口が形成されて、光路変換ミラー46で反射した光が受発光部111に向かって電気回路基板30を通過可能に設けられている。この開口には樹脂充填部52が設けられている。樹脂充填部52は、たとえば、アクリル系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、シリコーン系樹脂またはノルボルネン系樹脂を用いることができる。樹脂充填部52は光透過性(透明性)を有する。樹脂充填部52は、光路変換ミラー46の反射面から受発光部111に至る光路の全体に亘って充填されている。   In addition, an opening is formed in the optical element mounting substrate 20 immediately below the light emitting / receiving unit 111 so that the light reflected by the optical path conversion mirror 46 can pass through the electric circuit substrate 30 toward the light receiving / emitting unit 111. . A resin filling portion 52 is provided in this opening. For example, acrylic resin, polycarbonate resin, epoxy resin, silicone resin, or norbornene resin can be used for the resin filling portion 52. The resin filling part 52 has light transmittance (transparency). The resin filling unit 52 is filled over the entire optical path from the reflection surface of the optical path conversion mirror 46 to the light emitting / receiving unit 111.

これにより、光回路基板40の中間部に光導波路42の空隙として形成された光路変換部44に対して、光路変換ミラー46と樹脂連結部50を嵌め合いに嵌合することで、図6(b)に示すように光回路基板40と受発光部111との間の光路が光路変換ミラー46を介して光学的に連結される。   Accordingly, the optical path conversion mirror 46 and the resin coupling portion 50 are fitted and fitted to the optical path conversion portion 44 formed as a gap of the optical waveguide 42 in the intermediate portion of the optical circuit board 40, thereby FIG. As shown in b), the optical path between the optical circuit board 40 and the light emitting / receiving unit 111 is optically coupled via the optical path conversion mirror 46.

同図に示すように、光素子搭載基板20と電気回路基板30との間には樹脂材料38が充填され、また端子部24と電極パッド34とがテープ62で固定されることにより、光素子搭載基板20と光回路基板40とは相対的に固定されて光Lの光路が安定する。   As shown in the figure, a resin material 38 is filled between the optical element mounting substrate 20 and the electric circuit board 30, and the terminal portion 24 and the electrode pad 34 are fixed with a tape 62. The mounting substrate 20 and the optical circuit substrate 40 are relatively fixed, and the optical path of the light L is stabilized.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の目的が達成される限りにおける種々の変形、改良等の態様も含む。   The present invention is not limited to the above-described embodiment, and includes various modifications and improvements as long as the object of the present invention is achieved.

図7は、第二実施形態の変形例にかかる光素子搭載基板20の正面図である。
同図に示すように、光素子搭載基板20に複数の光素子110が搭載されたり、または一つの光素子110が複数の受発光部111を備えたりしてもよい。この場合、複数の反射面を有する光路変換ミラー46を用いることが有効である。本変形例では、光路変換ミラー46の二つの反射面のそれぞれを覆うように樹脂連結部50および樹脂充填部52を装着している。これにより、光素子搭載基板20の外部との受発光に加え、複数の光素子110同士の間での受発光を行う場合にも、光導波路42(図7では図示せず)と受発光部111との間の光路に空気界面が介在せず、樹脂連結部50および樹脂充填部52により光路が連続する。
FIG. 7 is a front view of an optical element mounting substrate 20 according to a modification of the second embodiment.
As shown in the figure, a plurality of optical elements 110 may be mounted on the optical element mounting substrate 20, or one optical element 110 may include a plurality of light emitting / receiving units 111. In this case, it is effective to use an optical path conversion mirror 46 having a plurality of reflecting surfaces. In this modification, the resin coupling part 50 and the resin filling part 52 are mounted so as to cover each of the two reflecting surfaces of the optical path conversion mirror 46. As a result, in addition to light reception / emission with the outside of the optical element mounting substrate 20, the light waveguide 42 (not shown in FIG. 7) and the light reception / emission unit are also provided when light reception / emission is performed between the plurality of optical elements 110. No air interface is present in the optical path to the optical path 111, and the optical path is continued by the resin connecting part 50 and the resin filling part 52.

10 光電気複合基板
12 回路基板
14 光電気複合デバイス
20 光素子搭載基板
22 光素子搭載領域
23 駆動素子搭載領域
24 端子部
24a 先端部
26 第一電極
27 第二電極
28 駆動回路部
30 電気回路基板
32 開口部
34 電極パッド
36 空隙部
38 樹脂材料
40 光回路基板
42 光導波路
42a コア部
42b クラッド部
44 光路変換部
46 光路変換ミラー
48 基材部
50 樹脂連結部
52 樹脂充填部
60 位置決めピン
62 テープ
64 ピン孔
66 アライメントマーク
110 光素子
111 受発光部
112 駆動素子
114 光コネクタ
120 電気素子
130 マザーボード
L 光
W 幅寸法
DESCRIPTION OF SYMBOLS 10 Photoelectric composite board | substrate 12 Circuit board 14 Photoelectric composite device 20 Optical element mounting board 22 Optical element mounting area 23 Drive element mounting area 24 Terminal part 24a Tip part 26 First electrode 27 Second electrode 28 Driving circuit part 30 Electric circuit board 32 Opening 34 Electrode Pad 36 Gap 38 Resin Material 40 Optical Circuit Board 42 Optical Waveguide 42a Core 42b Cladding 44 Optical Path Conversion 46 Optical Path Conversion Mirror 48 Base Material 50 Resin Connecting Portion 52 Resin Filling Portion 60 Positioning Pin 62 Tape 64 pin hole 66 alignment mark 110 optical element 111 light emitting / receiving unit 112 driving element 114 optical connector 120 electric element 130 motherboard L light W width dimension

Claims (12)

光素子が搭載される光素子搭載領域を備える光素子搭載基板と、前記光素子搭載基板よりも大きな開口部を備える電気回路基板と、光路変換部が設けられた光導波路を備える光回路基板と、を含み、
前記光路変換部が前記開口部から臨む位置に配置されるように前記光回路基板と前記電気回路基板とが積層され、前記開口部に前記光素子搭載基板を嵌め込むことで前記光路変換部と前記光素子搭載領域とが対向配置される光電気複合基板。
An optical element mounting substrate including an optical element mounting region on which an optical element is mounted, an electric circuit substrate including an opening larger than the optical element mounting substrate, and an optical circuit substrate including an optical waveguide provided with an optical path changing unit, Including,
The optical circuit board and the electric circuit board are stacked so that the optical path conversion unit is disposed at a position facing the opening, and the optical element mounting substrate is fitted into the opening to thereby form the optical path conversion unit. An optoelectric composite substrate on which the optical element mounting region is arranged to face.
前記光素子搭載基板から外方に突出形成された端子部と、前記電気回路基板の表面に設けられた電極パッドと、をさらに備え、前記開口部に前記光素子搭載基板を嵌め込むことで前記端子部の先端が前記電極パッドと接続されることを特徴とする請求項1に記載の光電気複合基板。   A terminal portion projecting outward from the optical element mounting substrate; and an electrode pad provided on a surface of the electric circuit substrate; and by fitting the optical element mounting substrate into the opening, The photoelectric composite substrate according to claim 1, wherein a tip of the terminal portion is connected to the electrode pad. 前記電極パッドが、前記開口部と前記光素子搭載基板との間の空隙部の幅寸法に対応して、前記端子部に対する接離方向およびその交差方向に前記端子部よりも大きく形成されていることを特徴とする請求項2に記載の光電気複合基板。   The electrode pad is formed to be larger than the terminal portion in the contact / separation direction with respect to the terminal portion and in the intersecting direction corresponding to the width of the gap between the opening and the optical element mounting substrate. The optoelectric composite substrate according to claim 2. 前記光素子搭載基板の一方面側に突出して光路変換ミラーが設けられており、前記開口部に前記光素子搭載基板を嵌め込むことで前記光路変換ミラーが前記光導波路における前記光路変換部に貫入することを特徴とする請求項1から3のいずれか一項に記載の光電気複合基板。   An optical path conversion mirror is provided so as to protrude to one surface side of the optical element mounting substrate, and the optical path conversion mirror penetrates into the optical path conversion portion in the optical waveguide by fitting the optical element mounting substrate into the opening. The optoelectric composite substrate according to claim 1, wherein: 前記光路変換ミラーが樹脂材料からなる請求項4に記載の光電気複合基板。   The photoelectric composite substrate according to claim 4, wherein the optical path conversion mirror is made of a resin material. 前記光導波路が、互いに屈折率が異なるコア部およびクラッド部を含み、
前記光路変換ミラーの表面に、前記コア部と同等の屈折率をもつ樹脂材料からなる樹脂連結部が装着されており、前記開口部に前記光素子搭載基板を嵌め込むことで前記光路変換部において前記樹脂連結部と前記光導波路の前記コア部とが光学的に連結されることを特徴とする請求項4または5に記載の光電気複合基板。
The optical waveguide includes a core part and a clad part having different refractive indexes,
A resin coupling portion made of a resin material having a refractive index equivalent to that of the core portion is mounted on the surface of the optical path conversion mirror, and the optical element mounting substrate is fitted into the opening portion so that the optical path conversion portion 6. The photoelectric composite substrate according to claim 4, wherein the resin connecting portion and the core portion of the optical waveguide are optically connected.
光路変換部が設けられた光導波路を備える光回路基板に積層して用いられる電気回路基板と、光素子が搭載される光素子搭載領域を備える光素子搭載基板と、を含み、
前記電気回路基板に、前記光素子搭載基板が嵌め込み可能な開口部が貫通形成されていることを特徴とする回路基板。
An electric circuit board used by being laminated on an optical circuit board including an optical waveguide provided with an optical path conversion unit, and an optical element mounting substrate including an optical element mounting region on which the optical element is mounted,
The circuit board, wherein an opening into which the optical element mounting board can be fitted is formed through the electric circuit board.
前記光素子搭載基板から外方に突出形成された端子部と、
前記電気回路基板の表面に前記端子部に対する接離方向およびその交差方向に前記端子部よりも大きく形成された電極パッドと、をさらに備え、前記開口部に前記光素子搭載基板を遊嵌することで前記端子部の先端が前記電極パッドと接続されることを特徴とする請求項7に記載の回路基板。
A terminal part formed to protrude outward from the optical element mounting substrate;
An electrode pad formed on the surface of the electric circuit board that is larger than the terminal part in the direction of contact with and separating from the terminal part and in the direction intersecting the terminal part, and loosely fitting the optical element mounting board in the opening. The circuit board according to claim 7, wherein a tip of the terminal portion is connected to the electrode pad.
光素子が搭載された光素子搭載基板と、前記光素子搭載基板よりも大きな開口部を備え電気素子が搭載された電気回路基板と、光路変換部が設けられた光導波路を備え前記電気回路基板に積層された光回路基板と、を含み、前記光素子搭載基板が前記開口部に嵌め込まれて前記光素子と前記光路変換部とが対向配置されている光電気複合デバイス。   An optical element mounting board on which an optical element is mounted, an electric circuit board having an opening larger than the optical element mounting board and on which an electric element is mounted, and an optical waveguide on which an optical path conversion unit is provided. And an optical circuit board laminated on the optical device, wherein the optical element mounting substrate is fitted into the opening, and the optical element and the optical path conversion unit are arranged to face each other. 前記開口部と前記光素子搭載基板との間に、熱可塑性または光可塑性の樹脂材料が充填されている請求項9に記載の光電気複合デバイス。   The photoelectric composite device according to claim 9, wherein a thermoplastic or thermoplastic resin material is filled between the opening and the optical element mounting substrate. 前記光回路基板がアライメントマークを備えるとともに、前記光素子搭載基板が前記光回路基板に対して位置決めピンにより固定されている請求項9または10に記載の光電気複合デバイス。   The photoelectric composite device according to claim 9 or 10, wherein the optical circuit board includes an alignment mark, and the optical element mounting board is fixed to the optical circuit board by a positioning pin. 前記開口部に嵌め込まれた前記光素子搭載基板を前記電気回路基板に対して脱離可能に固定する固定手段をさらに備える請求項9から11のいずれか一項に記載の光電気複合デバイス。   The optoelectric composite device according to any one of claims 9 to 11, further comprising a fixing unit that removably fixes the optical element mounting substrate fitted in the opening to the electric circuit substrate.
JP2010228901A 2010-10-08 2010-10-08 Photoelectric composite substrate, circuit board, and optoelectric composite device Expired - Fee Related JP5691368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228901A JP5691368B2 (en) 2010-10-08 2010-10-08 Photoelectric composite substrate, circuit board, and optoelectric composite device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228901A JP5691368B2 (en) 2010-10-08 2010-10-08 Photoelectric composite substrate, circuit board, and optoelectric composite device

Publications (2)

Publication Number Publication Date
JP2012083488A true JP2012083488A (en) 2012-04-26
JP5691368B2 JP5691368B2 (en) 2015-04-01

Family

ID=46242439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228901A Expired - Fee Related JP5691368B2 (en) 2010-10-08 2010-10-08 Photoelectric composite substrate, circuit board, and optoelectric composite device

Country Status (1)

Country Link
JP (1) JP5691368B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121592A (en) * 2013-12-20 2015-07-02 京セラ株式会社 Substrate for optical device, optical device, and optical module
US20150323754A1 (en) * 2012-04-30 2015-11-12 Kevin B. Leigh Optical base layer
JP2016180920A (en) * 2015-03-25 2016-10-13 株式会社フジクラ Method of manufacturing optical module, receptacle for optical module, and optical module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266071A (en) * 1998-03-17 1999-09-28 Hokuriku Electric Ind Co Ltd Circuit module
JP2002305284A (en) * 2001-02-05 2002-10-18 Mitsubishi Electric Corp Semiconductor-device stacked structure
JP2005017394A (en) * 2003-06-23 2005-01-20 Sharp Corp Photoelectric circuit board and manufacturing method therefor
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP2009003253A (en) * 2007-06-22 2009-01-08 Hitachi Ltd Structure of photo-electric hybrid substrate and photo-electric package
JP2010107558A (en) * 2008-10-28 2010-05-13 Nitto Denko Corp Manufacturing method of optoelectrical hybrid module and optoelectrical hybrid module obtained by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266071A (en) * 1998-03-17 1999-09-28 Hokuriku Electric Ind Co Ltd Circuit module
JP2002305284A (en) * 2001-02-05 2002-10-18 Mitsubishi Electric Corp Semiconductor-device stacked structure
JP2005017394A (en) * 2003-06-23 2005-01-20 Sharp Corp Photoelectric circuit board and manufacturing method therefor
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP2009003253A (en) * 2007-06-22 2009-01-08 Hitachi Ltd Structure of photo-electric hybrid substrate and photo-electric package
JP2010107558A (en) * 2008-10-28 2010-05-13 Nitto Denko Corp Manufacturing method of optoelectrical hybrid module and optoelectrical hybrid module obtained by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323754A1 (en) * 2012-04-30 2015-11-12 Kevin B. Leigh Optical base layer
US9465179B2 (en) * 2012-04-30 2016-10-11 Hewlett Packard Enterprise Development Lp Optical base layer
JP2015121592A (en) * 2013-12-20 2015-07-02 京セラ株式会社 Substrate for optical device, optical device, and optical module
JP2016180920A (en) * 2015-03-25 2016-10-13 株式会社フジクラ Method of manufacturing optical module, receptacle for optical module, and optical module
US10451822B2 (en) 2015-03-25 2019-10-22 Fujikura Ltd. Optical module manufacturing method, optical module receptacle and optical module

Also Published As

Publication number Publication date
JP5691368B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5102815B2 (en) Photoelectric composite wiring module and manufacturing method thereof
JP5439080B2 (en) Optical I / O array module
JP5779855B2 (en) Optical module and manufacturing method
JP2004085913A (en) Optical connector
JP2010286777A (en) Optoelectronic interconnection film and optoelectronic interconnection module
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
US20090208167A1 (en) Manufacturing method of opto-electric hybrid board and opto-electric hybrid board obtained thereby
JP5692334B2 (en) Circuit board device and photoelectric composite device
EP2802910A1 (en) Apparatus and method for optical communications
KR100871252B1 (en) Photoelectronic wired flexible printed circuit board using optical fiber
JP5691368B2 (en) Photoelectric composite substrate, circuit board, and optoelectric composite device
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP2009122290A (en) Opto-electronic hybrid package and optical connector, and opto-electronic hybrid module equipped with these
US7519243B2 (en) Substrate, substrate adapted for interconnecting optical elements and optical module
JP4775284B2 (en) Optical transmission module
JP5349192B2 (en) Optical wiring structure and optical module having the same
JP2011053717A (en) Optical path changing connector
CN115113349B (en) Photonic system and method of manufacturing the same
JP2009053280A (en) Optical module
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP4800409B2 (en) Manufacturing method of optical path conversion connector
JP2009223340A (en) Optical component and optical path changing device used for the same
JP4659082B2 (en) Opto-electric composite wiring component and electronic device using the same
JP2006030916A (en) Optical coupling component
JP2009053279A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees