JP2012081765A - Thermoplastic resin foamed molding, and method of manufacturing the same - Google Patents

Thermoplastic resin foamed molding, and method of manufacturing the same Download PDF

Info

Publication number
JP2012081765A
JP2012081765A JP2011279941A JP2011279941A JP2012081765A JP 2012081765 A JP2012081765 A JP 2012081765A JP 2011279941 A JP2011279941 A JP 2011279941A JP 2011279941 A JP2011279941 A JP 2011279941A JP 2012081765 A JP2012081765 A JP 2012081765A
Authority
JP
Japan
Prior art keywords
less
expanded particles
porosity
thermoplastic
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011279941A
Other languages
Japanese (ja)
Other versions
JP5234169B2 (en
Inventor
Masahiko Samejima
昌彦 鮫島
Kenji Yamaguchi
健二 山口
Kenji Yamada
憲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011279941A priority Critical patent/JP5234169B2/en
Publication of JP2012081765A publication Critical patent/JP2012081765A/en
Application granted granted Critical
Publication of JP5234169B2 publication Critical patent/JP5234169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin foamed molding having a high porosity, and excelling in shape retaining properties, and a mechanical strength using thermoplastic resin preliminarily foamed particles capable of manufacturing conveniently and economically.SOLUTION: A thermoplastic resin in-mold foamed molding in which a part where the porosity in the molding is not greater than 10%, and a part where the porosity is not less than 10% and not greater than 60% are found so as to be approximately comparted, and the porosity in the molding is uneven is obtained by in-mold foam molding using thermoplastic resin preliminarily foamed particles in which the part where the porosity in the molding is not greater than 10% has a L/D of not less than 0.8 and not greater than 1.2, and using thermoplastic resin preliminarily foamed particles in which the part where the porosity is not less than 10% and not greater than 60% has a L/D of not less than 2 and not greater than 10, wherein, in L/D, L is a length of the longest part of a formed particle, and D is an average value of the longest diameter Dand the shortest diameter Din a sectional face perpendicular to the L direction, and L/D is calculated by the following formula: D=(D+D)/2.

Description

本発明は、成形体内の空隙率が不均一である熱可塑性樹脂型内発泡成形体及びその製造方法に関する。   The present invention relates to a thermoplastic resin in-mold foam molded product having a non-uniform porosity in a molded product and a method for producing the same.

熱可塑性樹脂予備発泡粒子を成形してなる連通した空隙を有する発泡成形体の製造方法として、球形状のポリスチレン発泡粒子を接着剤で固めて連続空隙を設けた構造の成形品が知られている(特許文献1)。しかし、この成形体は発泡粒子の接着が接着剤の接着性のみに依存し、十分な接着性が得られず破壊されやすい問題がある。   As a method for producing a foamed molded article having continuous voids formed by molding thermoplastic resin pre-foamed particles, a molded product having a structure in which spherical polystyrene foam particles are solidified with an adhesive and provided with continuous voids is known. (Patent Document 1). However, this molded article has a problem that the adhesion of the expanded particles depends only on the adhesiveness of the adhesive, and sufficient adhesiveness cannot be obtained and is easily broken.

ポリオレフィン系樹脂についても、L/Dが2〜10の柱状ポリオレフィン系樹脂発泡粒子を、金型内に充填率40〜55%で、且つ、粒子相互が不規則な方向を向くように充填させた後、蒸気で加熱する成形体(特許文献2)、中空円筒ないし中空異形状、あるいは断面形状が十字形のような凹凸を有するポリプロピレン系樹脂発泡粒子を加熱成形する方法(特許文献3、特許文献4)が開示されている。さらには、鼓形状の予備発泡粒子を用い、10〜60%の空隙率を有する発泡成形体もある(特許文献5)。これらの方法は、何れも、透水性、通気性、吸音性を得るために、異形の予備発泡粒子あるいはL/Dを大きくした予備発泡粒子を使用することで、発泡成形体の内部に空隙を設けるものである。しかしながら、このような構成の発泡成形体は空隙を多く含むため、空隙のない成形体に比べ、圧縮強度等の機械的特性が低下する、あるいは予備発泡粒子同士の融着強度が低下するために、発泡成形品の端面部分で予備発泡粒子が剥離しやすい、即ち形状保持性に劣るという課題を有していた。融着強度は成形加熱温度を上げる等で改善されるが、その反面で空隙率が低下して透水性、吸音性等が低下する。即ち、通気性、透水性、吸音性能を維持しつつ、端面の剥離防止や成形体強度の改善が望まれている。   Also for the polyolefin resin, columnar polyolefin resin foamed particles having an L / D of 2 to 10 were filled in the mold so that the filling rate was 40 to 55% and the particles faced in irregular directions. Thereafter, a molded body to be heated with steam (Patent Document 2), a method of thermoforming polypropylene resin expanded particles having irregularities such as a hollow cylinder or hollow irregular shape or a cross-shaped cross section (Patent Document 3, Patent Document) 4) is disclosed. Furthermore, there is a foamed molded article having a porosity of 10 to 60% using drum-shaped pre-expanded particles (Patent Document 5). In any of these methods, in order to obtain water permeability, air permeability, and sound absorption, a pre-expanded particle having an irregular shape or a pre-expanded particle having a large L / D is used to form voids in the foam molded body. It is to be provided. However, since the foamed molded article having such a structure contains many voids, mechanical properties such as compressive strength are reduced or the fusion strength between the pre-expanded particles is reduced as compared with a molded article having no voids. The pre-expanded particles are easy to peel off at the end surface portion of the foam molded product, that is, the shape retainability is poor. The fusing strength is improved by increasing the molding heating temperature, but on the other hand, the porosity is lowered and water permeability, sound absorption, etc. are lowered. That is, it is desired to prevent end face peeling and improve the strength of the molded product while maintaining air permeability, water permeability, and sound absorption performance.

特開平4−153026号公報JP-A-4-153026 特開平3−224724号公報JP-A-3-224724 特開平7−138399号公報JP 7-138399 A 特開平7−138400号公報JP 7-138400 A 特開2000−302909号公報JP 2000-302909 A

本発明の課題は、簡便で経済的に製造可能な熱可塑性樹脂予備発泡粒子を用いて、高い空隙率を有し、かつ、形状保持性、或いは、機械的強度の優れた熱可塑性樹脂発泡成形体及びその製造方法を提供することにある。   An object of the present invention is to use thermoplastic resin pre-expanded particles that can be easily and economically produced, and has a high porosity and has a shape retention property or excellent mechanical strength. It is in providing a body and its manufacturing method.

本発明者らは、上記課題を解決すべく鋭意研究を重ね、成形体全体を見た場合圧縮強度等の機械的強度、剥離・割れ等の特性を要求される成形体部分は限定され、係る成形体部分の透水性、通気性、吸音性等の特性を低下させても成形体全体の吸音性等の特性低下は軽微であり、成形体として強度等の特性と吸音性等の特性を両立させうることを見出した。すなわち、成形体内に異なった空隙率を不均一になるように型内発泡成形を行うことで適度な空隙率を保持しながら、形状保持性を有する成形体が得られ、かつ幅広い吸音域において吸音特性を発現することを見出し本発明の完成に至った。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and when looking at the entire molded body, the molded body parts required for properties such as mechanical strength such as compressive strength and peeling / cracking are limited. Even if the properties of the molded body, such as water permeability, air permeability, and sound absorption, are reduced, the overall properties of the molded body, such as sound absorption, are only slightly reduced. I found out that I could make it. In other words, by performing in-mold foam molding so that different void ratios in the molded body become non-uniform, a molded body having shape retention can be obtained while maintaining an appropriate void ratio, and sound absorption is achieved in a wide sound absorption range. As a result, the present invention was completed.

即ち、本発明の第1は、成形体内の空隙率が10%未満の部位と、空隙率10%以上60%以下の部位が略区画状に存在し、成形体内の空隙率が不均一である熱可塑性樹脂型内発泡成形体であって、前記空隙率が10%未満の部位が、L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子を使用し、前記空隙率10%以上60%以下の部位が、L/Dが2以上10以下の熱可塑性予備発泡粒子を使用して型内発泡成形されてなることを特徴とする熱可塑性樹脂発泡成形体に関する。
ここで、L/Dとは、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。
D=(Dmax+Dmin)/2
That is, according to the first aspect of the present invention, a portion having a porosity of less than 10% and a portion having a porosity of 10% or more and 60% or less exist in a substantially partitioned shape, and the porosity in the molded body is not uniform. A thermoplastic resin-in-mold foam-molded article, wherein the part having a porosity of less than 10% uses thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less, and the porosity is 10%. The thermoplastic resin foam-molded article is characterized in that the portion of 60% or less is formed by in-mold foam molding using thermoplastic pre-expanded particles having an L / D of 2 or more and 10 or less.
Here, L / D is L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and is calculated by the following equation.
D = (D max + D min ) / 2

また、本発明の第2は、成形体内の空隙率が10%未満の部位と、空隙率10%以上60%以下の部位が略区画状に存在し、成形体内の空隙率が不均一である熱可塑性樹脂型内発泡成形体の製造方法であって、区画化された金型を使用し、前記成形体内の空隙率が10%未満の部位に対応する金型区画に、L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子を充填し、前記空隙率10%以上60%以下の部位に対応する金型区画に、L/Dが2以上10以下の熱可塑性予備発泡粒子を充填し、加熱成形することを特徴とする熱可塑性樹脂発泡成形体の製造方法に関する。
ここで、L/Dとは、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。
D=(Dmax+Dmin)/2
In the second aspect of the present invention, a portion having a porosity of less than 10% and a portion having a porosity of 10% or more and 60% or less exist in a substantially partitioned shape, and the porosity in the molded body is not uniform. A method for producing a foamed molded article in a thermoplastic resin mold, wherein a sectioned mold is used, and a L / D is 0 in a mold section corresponding to a portion having a porosity of less than 10% in the molded body. .8 or more and 1.2 or less thermoplastic pre-expanded particles, and L / D is 2 or more and 10 or less thermoplastic pre-expanded particles in the mold section corresponding to the portion having the porosity of 10% or more and 60% or less It is related with the manufacturing method of the thermoplastic resin foaming molding characterized by filling and heat-molding.
Here, L / D is L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and is calculated by the following equation.
D = (D max + D min ) / 2

好ましい実施態様では、前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のセル径が200μm以上400μm以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のセル径が30μm以上150μm以下である。   In a preferred embodiment, the thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less have a cell diameter of 200 μm or more and 400 μm or less, and the L / D is 2 or more and 10 or less. The cell diameter is 30 μm or more and 150 μm or less.

また、別の好ましい実施態様では、前記熱可塑性予備発泡粒子が、示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたとき、前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のβ/(α+β)値が0.15以上0.35以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のβ/(α+β)値が、0.35以上0.75以下である。   In another preferred embodiment, the thermoplastic pre-expanded particles have two melting peaks in a DSC curve obtained by differential scanning calorimetry, and the low-temperature peak melting heat α (J / g), The β / (α + β) value of the thermoplastic pre-expanded particles having the L / D of 0.8 or more and 1.2 or less is 0.15 or more and 0.35, when the heat of fusion β (J / g) of the high temperature side peak is used. The β / (α + β) value of the thermoplastic pre-expanded particles having L / D of 2 or more and 10 or less is 0.35 or more and 0.75 or less.

また、好ましい実施態様では、前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子が球状予備発泡粒子であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子が棒状予備発泡粒子である。   In a preferred embodiment, the thermoplastic pre-expanded particles having an L / D of 0.8 to 1.2 are spherical pre-expanded particles, and the thermoplastic pre-expanded particles having an L / D of 2 to 10 are It is a rod-shaped pre-expanded particle.

また、好ましい実施態様では、成形体外周部を空隙率10%未満とし、それ以外を空隙率10%以上60%以下で構成してなる。   In a preferred embodiment, the outer peripheral portion of the molded body has a porosity of less than 10%, and the other is constituted by a porosity of 10% or more and 60% or less.

また、好ましい実施態様では、前記発泡成形体が、自動車用の嵩上げ材、ティビアパッド、ラゲージボックス、側突材のいずれかである。   Moreover, in a preferred embodiment, the foamed molded product is any one of an automotive raising material, a tibia pad, a luggage box, and a side projection material.

本発明においては、一つの成形体内の空隙率を不均一にすることで、透水性、通気性、吸音性等の空隙率に依存する特性を持ちながら、かつ、剥離・割れが起こりにくく、機械的強度を維持する成形体を安定的に、経済的に得ることが可能となる。また、空隙率が不均一であるため、幅広い吸音域において吸音特性を発現しうる。   In the present invention, by making the porosity in one molded body non-uniform, it has properties depending on the porosity such as water permeability, air permeability, sound absorption, etc., and peeling and cracking hardly occur. It becomes possible to stably and economically obtain a molded product that maintains the desired strength. Further, since the porosity is not uniform, sound absorption characteristics can be expressed in a wide sound absorption range.

この発泡成形体は、自動車部材、土木・建築資材、産業用資材等において吸音材、通水材等に好適に使用し得る。特に、嵩上げ材、ティビアパッド、ラゲージボックス、側突材等の自動車部材に吸音性能を付与する場合に好適に使用し得る。   This foamed molded article can be suitably used as a sound-absorbing material, a water-permeable material, etc. in automobile members, civil engineering / building materials, industrial materials and the like. In particular, it can be suitably used when sound absorbing performance is imparted to automobile members such as a raising material, a tibia pad, a luggage box, and a side projection material.

本発明に使用する熱可塑性樹脂予備発泡粒子のL/Dについて示した図である。It is the figure shown about L / D of the thermoplastic resin pre-expanded particle used for this invention. 示差走査熱量計を用い、本発明記載の熱可塑性樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側がα、高温側がβである。It is an example of the DSC curve obtained when measuring the thermoplastic resin pre-expanded particle of this invention using a differential scanning calorimeter. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The low temperature side is α and the high temperature side is β.

以下、本発明に関し詳しく説明する。   Hereinafter, the present invention will be described in detail.

本発明において用いられる熱可塑性樹脂とは、型内発泡成形に用いられる熱可塑性樹脂であれば使用でき、例えばポリスチレン系樹脂、ポリオレフィン系樹脂、ポリメチルメタクリレート樹脂等が挙げられる。   The thermoplastic resin used in the present invention can be used as long as it is a thermoplastic resin used for in-mold foam molding, and examples thereof include polystyrene resins, polyolefin resins, and polymethyl methacrylate resins.

本発明に用いることができるポリスチレン系樹脂としては一般的な発泡性ポリスチレン樹脂だけでなく、例えば、スチレン、又はメチルスチレンを50%以上含有してなるポリスチレン系樹脂、ハイインパクトポリスチレン系樹脂、スチレンとブタジエン、スチレン−エチレン共重合体、メチルメタクリレート、無水マレイン酸等との共重合樹脂等が挙げられ、これらは、単独、又は2種以上の組み合わせとして用いられる。   Examples of polystyrene resins that can be used in the present invention include not only general foamable polystyrene resins, but also, for example, polystyrene resins containing 50% or more of styrene or methylstyrene, high impact polystyrene resins, styrene, Examples thereof include copolymer resins such as butadiene, styrene-ethylene copolymer, methyl methacrylate, and maleic anhydride, and these are used alone or in combination of two or more.

本発明に用いることができるポリオレフィン系樹脂としては、低・中・高密度ポリエチレン、線状低・超低密度ポリエチレン、エチレン−酢酸ビニル共重合体で代表されるポリエチレン系樹脂、ポリプロピレン、エチレン−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体で代表されるポリプロピレン系樹脂が挙げられる。   Examples of polyolefin resins that can be used in the present invention include low / medium / high density polyethylene, linear low / ultra low density polyethylene, polyethylene resins represented by ethylene-vinyl acetate copolymer, polypropylene, and ethylene-propylene. Examples thereof include a polypropylene resin represented by a random copolymer and an ethylene-propylene block copolymer.

これらの中でも、ポリオレフィン系樹脂が好適に用いられ、中でもポリプロピレン系樹脂がより好適に使用される。   Among these, polyolefin resin is preferably used, and polypropylene resin is more preferably used.

本発明おいて使用されうるポリプロピレン系樹脂は、プロピレンモノマー単位が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上からなる重合体であり、中でもチーグラー型塩化チタン系触媒またはメタロセン触媒で重合された、立体規則性の高いものが好ましい。具体例としては、例えば、プロピレン単独共重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、無水マレイン酸−プロピレンランダム共重合体、無水マレイン酸−プロピレンブロック共重合体、プロピレン−無水マレイン酸グラフト共重合体等が挙げられ、これらは単独あるいは混合して用いられる。特に、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体が好適に使用し得る。また、これらのポリプロピレン系樹脂は無架橋のものが好ましいが、架橋したものも使用できる。   The polypropylene resin that can be used in the present invention is a polymer comprising propylene monomer units of 50% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more, and among them, a Ziegler type titanium chloride catalyst or Those having high stereoregularity polymerized with a metallocene catalyst are preferred. Specific examples include, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene-butene random copolymer, ethylene-propylene block copolymer, maleic anhydride -A propylene random copolymer, a maleic anhydride-propylene block copolymer, a propylene-maleic anhydride graft copolymer, etc. are mentioned, These are used individually or in mixture. In particular, an ethylene-propylene random copolymer, a propylene-butene random copolymer, and an ethylene-propylene-butene random copolymer can be suitably used. Further, these polypropylene resins are preferably non-crosslinked, but crosslinked resins can also be used.

本発明において熱可塑性樹脂としてポリプロピレン系樹脂を使用する場合は、JIS K7210に準拠し、温度230℃、荷重2.16kgで測定したメルトインデックス(以下、MI)が0.1g/10分以上7g/10分以下であることが好ましく、更に好ましくは2g/10分以上6g/10分以下である。MIが0.1g/10分未満では、予備発泡粒子を製造する際の発泡力が低く、高発泡倍率の予備発泡粒子を得るのが難しくなる傾向がある。また、発泡成形体としたときの予備発泡粒子間の融着強度を確保することが難しくなる傾向にある。MIが7g/10分を超えると、発泡成形体としたときの空隙率を安定した値で制御することが難しくなる傾向がある。   When a polypropylene resin is used as the thermoplastic resin in the present invention, the melt index (hereinafter referred to as MI) measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210 is 0.1 g / 10 min or more and 7 g / min. It is preferably 10 minutes or less, more preferably 2 g / 10 minutes or more and 6 g / 10 minutes or less. When MI is less than 0.1 g / 10 min, the foaming force when producing pre-expanded particles is low, and it tends to be difficult to obtain pre-expanded particles with a high expansion ratio. Moreover, it tends to be difficult to ensure the fusion strength between the pre-expanded particles when a foamed molded body is obtained. When MI exceeds 7 g / 10 minutes, it tends to be difficult to control the porosity of the foamed molded product with a stable value.

また、前記ポリプロピレン系樹脂は、機械的強度、耐熱性に優れた発泡成形体を得るために、融点は、好ましくは130℃以上168℃以下、更に好ましくは135℃以上160℃以下、特に好ましくは140℃以上155℃以下である。融点が当該範囲内である場合、成形性と機械的強度、耐熱性のバランスが取り易い傾向が強い。ここで、前記融点とは、示差走査熱量計によって樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The polypropylene resin preferably has a melting point of 130 ° C. or higher and 168 ° C. or lower, more preferably 135 ° C. or higher and 160 ° C. or lower, particularly preferably, in order to obtain a foamed molded article having excellent mechanical strength and heat resistance. 140 ° C. or higher and 155 ° C. or lower. When the melting point is within this range, there is a strong tendency to easily balance moldability, mechanical strength, and heat resistance. Here, the melting point means that 1 to 10 mg of resin is heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, then cooled to 40 ° C. at a rate of 10 ° C./min, and again The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased to 220 ° C. at a rate of 10 ° C./min.

本発明に用いる予備発泡粒子は、上記熱可塑性樹脂を基材樹脂とするものであり、その形状に特に限定はなく、任意の形状の予備発泡粒子を採用することができる。例えば、略球形やL/Dが2以上10以下の棒状粒子、円筒型の粒子等所謂異形予備発泡粒子を使用することができる。   The pre-expanded particles used in the present invention have the above thermoplastic resin as a base resin, and the shape thereof is not particularly limited, and pre-expanded particles having any shape can be employed. For example, so-called deformed pre-expanded particles such as substantially spherical shapes, rod-shaped particles having an L / D of 2 or more and 10 or less, and cylindrical particles can be used.

ここで、本発明にいうL/Dとは、図1に示すように、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。
D=(Dmax+Dmin)/2
Here, L / D referred to in the present invention is, as shown in FIG. 1, L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction. And is calculated by the following formula.
D = (D max + D min ) / 2

熱可塑性予備発泡粒子のL方向に垂直な断面形状は、円、楕円等の凹部のない閉じた曲線であり、DmaxおよびDminはL方向に沿って略一定の値をとる。予備発泡粒子の具体例としては、円柱形状、楕円柱形状が挙げられる。L/Dの調整は、原料樹脂を押出機で溶融し、多数の細孔を有するダイより押し出し、延伸・冷却してストランドとし、切断してペレット化する時の延伸比及び切断長さで容易に調整できる。しかし、これらペレットから予備発泡粒子を作製する場合、加熱により延伸歪みが緩和されて長さ方向が収縮する傾向にあるため、必要な長さの2〜3倍程度長く作成しておくことが好ましい。   The cross-sectional shape perpendicular to the L direction of the thermoplastic pre-expanded particles is a closed curve without a concave portion such as a circle or an ellipse, and Dmax and Dmin take substantially constant values along the L direction. Specific examples of the pre-expanded particles include a cylindrical shape and an elliptical column shape. L / D can be adjusted easily by melting the raw material resin with an extruder, extruding it from a die with many pores, drawing and cooling it into a strand, cutting it into pellets, and cutting length. Can be adjusted. However, when preparing the pre-expanded particles from these pellets, it is preferable that the pre-expanded particles are prepared to be about 2 to 3 times longer than the required length because the stretching strain tends to be relaxed by heating and the length direction shrinks. .

本発明の熱可塑性樹脂型内発泡成形体は、成形体内の空隙率が不均一であることを特徴とする。本発明において空隙率が不均一であるとは、表面スキン層を含まないように成形体から30mm×30mm×30mmの複数の立方体を切り出してそれぞれについて空隙率を測定した場合、5%以上の差がある部位を有することを言う。ここで空隙率とは、発泡体から所定の大きさ(例えば、30×30×30mm)の直方体試料を、表面スキン層を含まないように切り出し、外形寸法より見掛け体積を求め、更に、直方体試料を一定量のエタノールを入れたメスシリンダー中に浸漬し、その時の増加容積(真の体積)を測定し、見掛け体積と真の体積の差を、見掛け体積で除算した値をいう。   The thermoplastic resin in-mold foam molded product of the present invention is characterized in that the porosity in the molded product is not uniform. In the present invention, the porosity is non-uniform, when a plurality of cubes of 30 mm × 30 mm × 30 mm are cut out from the molded body so as not to include the surface skin layer, and the porosity is measured for each, a difference of 5% or more Says having a part. Here, the porosity means that a rectangular solid sample having a predetermined size (for example, 30 × 30 × 30 mm) is cut out from the foam so as not to include the surface skin layer, the apparent volume is obtained from the outer dimensions, and further the rectangular parallelepiped sample. Is immersed in a graduated cylinder containing a certain amount of ethanol, the increased volume (true volume) at that time is measured, and the difference between the apparent volume and the true volume is divided by the apparent volume.

不均一な部位は、どのような態様で配されていても良いが、好ましくは、異なる空隙率を有する部位が略区画状に存在しており、更には、成形体内の空隙率が10%未満、好ましくは7%未満の部位と、空隙率10%以上60%以下、好ましくは15%以上55%以下の部位が略区画状に存在することが好ましい。もっとも好ましくは、成形体外周部を空隙率10%未満、とし、それ以外を空隙率10%以上60%以下で構成することである。このように成形体内の空隙率が不均一に存在することにより、吸音性能の場合、幅広い吸音域での吸音効果が得られる。また、異なる空隙率を有する部位が略区画状に存在することにより、強度や形状保持性を付与したい部位を低い空隙率とし、透水性や吸音性を付与したい部位を高い空隙率とする設計が容易となる。さらには成形体外周部を空隙率10%未満とし、それ以外を空隙率10%以上60%以下で構成することで、より透水や吸音のための空隙を有しながらも強度あるいは形状保持することが可能となる。   The non-uniform portions may be arranged in any manner, but preferably, the portions having different void ratios are present in a substantially partitioned shape, and the void ratio in the molded body is less than 10%. In addition, it is preferable that a site of less than 7% and a site of porosity of 10% to 60%, preferably 15% to 55% are present in a substantially partitioned shape. Most preferably, the outer peripheral portion of the molded body is made with a porosity of less than 10%, and the other is constituted with a porosity of 10% or more and 60% or less. As described above, the non-uniform porosity in the molded body provides a sound absorption effect in a wide sound absorption range in the case of sound absorption performance. In addition, because there are parts having different porosity in a substantially partitioned shape, the part that wants to give strength and shape retention is set to a low porosity, and the part that wants to give water permeability and sound absorption is set to a high porosity. It becomes easy. Furthermore, by forming the outer periphery of the molded body with a porosity of less than 10% and configuring the other with a porosity of 10% or more and 60% or less, the strength or shape can be maintained while having more voids for water permeability and sound absorption. Is possible.

本発明において、空隙率を不均一となすには、使用する熱可塑性樹脂予備発泡粒子において、異なる樹脂種を使用する、融点が異なる樹脂を使用する、β/(α+β)値が異なる予備発泡粒子を使用する、形状の異なる予備発泡粒子を使用する等の手法が挙げられ、これら手法を2種以上併用してもよい。   In the present invention, in order to make the porosity non-uniform, in the thermoplastic resin pre-expanded particles to be used, use different resin types, use resins having different melting points, and pre-expanded particles having different β / (α + β) values. Or a method of using pre-expanded particles having different shapes, and two or more of these methods may be used in combination.

ここで、β/(α+β)値とは、発泡粒子の示差走査熱量測定において発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線(図2)において、極大点Aを通る直線とDSC曲線との低温側の接点をB、高温側の接点をCとした場合、線分ABとDSC曲線で囲まれた面積から低温側ピークの融解熱量α(J/g)、線分ACとDSC曲線で囲まれた面積から高温側ピークの融解熱量β(J/g)として算出される値である。   Here, the β / (α + β) value means that 1 to 10 mg of foamed particles are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min with a differential scanning calorimeter in differential scanning calorimetry of the foamed particles. In the DSC curve obtained in Fig. 2 (B), when the low temperature side contact between the straight line passing through the maximum point A and the DSC curve is B and the high temperature side contact is C, the area surrounded by the line segment AB and the DSC curve To the low-temperature side peak heat of fusion α (J / g), and from the area surrounded by the line segment AC and DSC curve, the high-temperature side peak heat of fusion β (J / g).

本発明においては、L/Dが2以上10以下の熱可塑性樹脂予備発泡粒子(以下、棒状予備発泡粒子と称す場合がある)とL/Dが0.8以上1.2の熱可塑性樹脂予備発泡粒子(以下、球状予備発泡粒子と称す場合がある)を使用することが好ましい。   In the present invention, pre-expanded thermoplastic resin particles having an L / D of 2 or more and 10 or less (hereinafter sometimes referred to as rod-shaped pre-expanded particles) and pre-cured thermoplastic resins having an L / D of 0.8 or more and 1.2. It is preferable to use expanded particles (hereinafter sometimes referred to as spherical pre-expanded particles).

これらの予備発泡粒子を使用した場合の態様について以下に詳述する。   An embodiment in which these pre-expanded particles are used will be described in detail below.

L/Dが2以上10以下の棒状予備発泡粒子を採用することにより、発泡粒子同士の適度な接触面積を保って、高い空隙を形成しやすい。   By employing rod-shaped pre-expanded particles having an L / D of 2 or more and 10 or less, it is easy to form a high void while maintaining an appropriate contact area between the expanded particles.

棒状予備発泡粒子は、セル径が好ましくは30μm以上150μm以下、更に好ましくは、50μm以上100μm以下である。セル径がこの範囲にあると、金型への充填の際に生じた空隙を保持して、発泡粒子間を強固に融着させ易い。セル径が30μm未満の場合には、発泡成形体とした時に、ヒケ、収縮が発生し易くなり、形状保持性が悪化する場合がある。セル径が150μmを超えると、発泡成形体とした時の空隙率が低くなる傾向となる。特に、金型面と接触した表面層において空隙率が低下し易い傾向にある。   The rod-shaped pre-expanded particles preferably have a cell diameter of 30 μm to 150 μm, and more preferably 50 μm to 100 μm. When the cell diameter is within this range, it is easy to firmly fuse the foamed particles while maintaining the voids generated when filling the mold. When the cell diameter is less than 30 μm, sinking and shrinkage are likely to occur when the foamed molded article is formed, and the shape retainability may deteriorate. When the cell diameter exceeds 150 μm, the porosity of the foamed molded product tends to be low. In particular, the porosity tends to decrease in the surface layer in contact with the mold surface.

更に、棒状予備発泡粒子は、示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)値が、0.35以上0.75以下であることが好ましく、更に好ましくは0.40以上0.70以下である。β/(α+β)値が0.35未満の場合、発泡成形体の空隙率を高くすることが困難となる場合がある。これは、発泡粒子の二次発泡力が高くなるため、成形の際に空隙率が低下するためと思われる。β/(α+β)が0.75を超えると発泡粒子間の融着が困難となる場合がある。融着を促進するために成形に用いる蒸気の温度を上げると、発泡成形体の空隙率が低下するため、空隙率の確保と融着の両立が困難となる恐れがある。   Further, the rod-shaped pre-expanded particles have two melting peaks in the DSC curve obtained by differential scanning calorimetry, the heat of fusion α (J / g) of the low temperature side peak, and the heat of fusion β (J of the high temperature side peak) / G), the β / (α + β) value is preferably 0.35 or more and 0.75 or less, and more preferably 0.40 or more and 0.70 or less. When the β / (α + β) value is less than 0.35, it may be difficult to increase the porosity of the foam molded article. This is presumably because the secondary foaming power of the foamed particles is increased and the porosity is reduced during molding. If β / (α + β) exceeds 0.75, fusion between the expanded particles may be difficult. When the temperature of the steam used for molding is increased in order to promote fusion, the porosity of the foamed molded product is lowered, and there is a risk that it is difficult to ensure both porosity and fusion.

上記要件を満たした棒状予備発泡粒子を用いることにより、好ましくは空隙率25%以上50%以下の空隙率を有する熱可塑性樹脂発泡成形部位を作製することが容易になる。発泡成形体の空隙率は吸音特性と強く関係しており、空隙率は、更に好ましくは30%以上45%以下である。空隙率が25%未満となると、ピーク周波数における吸音率が低下し、十分な吸音特性が得られない場合がある。空隙率が50%を超えると、発泡粒子間の接触面積が低下して発泡成形体の割れが生じ易く、機械強度が低下する恐れがある。   By using rod-shaped pre-expanded particles satisfying the above requirements, it becomes easy to produce a thermoplastic resin foam-molded part having a porosity of preferably 25% or more and 50% or less. The porosity of the foamed molded product is strongly related to the sound absorption characteristics, and the porosity is more preferably 30% or more and 45% or less. When the porosity is less than 25%, the sound absorption rate at the peak frequency is lowered, and sufficient sound absorption characteristics may not be obtained. If the porosity exceeds 50%, the contact area between the foamed particles is reduced, the foamed molded product is likely to be cracked, and the mechanical strength may be reduced.

L/Dが0.8以上1.2以下の略球状の予備発泡粒子は、セル径が200μm以上400μm以下、且つ示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)値が0.15以上0.35以下であることが好ましい。これらの要件を満たすことにより、倍率バラツキが小さく、高い強度を有し、且つ空隙率の低い熱可塑性樹脂発泡成形部位を安定的に製造出来る傾向にある。ここで、予備発泡粒子のL/Dは、金型内への該粒子の充填性並びに成形後の融着性、機械的強度保持の観点から、できる限り球状、好ましくはL/Dが0.9以上1.1以下、つまりL/Dが1に近いことが好ましい。   A substantially spherical pre-expanded particle having an L / D of 0.8 or more and 1.2 or less has a cell diameter of 200 μm or more and 400 μm or less, and has two melting peaks in a DSC curve obtained by differential scanning calorimetry. It is preferable that β / (α + β) value is 0.15 or more and 0.35 or less when the heat of fusion α (J / g) of the side peak and the heat of fusion β (J / g) of the high temperature side peak are used. By satisfying these requirements, there is a tendency that a thermoplastic resin foam-molded portion having a small magnification variation, high strength, and low porosity can be stably produced. Here, the L / D of the pre-expanded particles is as spherical as possible from the viewpoints of filling of the particles into the mold, fusion property after molding, and maintaining mechanical strength, and the L / D is preferably 0.00. It is preferably 9 or more and 1.1 or less, that is, L / D is close to 1.

本発明においては、例えばこのような棒状予備発泡粒子と球状予備発泡粒子を併用することにより、透水性、通気性或いは、吸音性が依存する空隙率と、成形体の形状維持、或いは、機械強度保持を可能とすることができる。吸音率は棒状予備発泡粒子の発泡倍率には大きく依存していないため、任意の発泡倍率を選択することが可能である。また、適用される用途により異なるが、予備発泡粒子の発泡倍率は、5倍以上60倍以下のものが好適に適用される。特に、自動車用途の嵩上げ材、ラゲージボックス、ティビアパッド等には、15倍以上45倍以下のものがより好ましい。   In the present invention, for example, by using such rod-shaped pre-expanded particles and spherical pre-expanded particles in combination, the porosity depending on water permeability, air permeability or sound absorption, shape maintenance of the molded product, or mechanical strength Holding can be possible. Since the sound absorption rate does not greatly depend on the expansion ratio of the rod-shaped pre-expanded particles, any expansion ratio can be selected. Moreover, although it changes with the applications to be applied, the expansion ratio of the pre-expanded particles is preferably 5 to 60 times. In particular, a bulking material for automobile use, a luggage box, a tibia pad, and the like are more preferably 15 times or more and 45 times or less.

適用の具体例としては、主に吸音性能が要求されフロアスペーサーで組立ラインでの原料剥離を防止したい場合には、外周を球状予備発泡粒子、それ以外の部位を、吸音性能を有する棒状予備発泡粒子で構成すればよい。また、吸音性能と曲げ剛性が要求されるツールボックスなどには、曲げ剛性を必要としない部位には吸音性能を有する棒状予備発泡粒子で構成し、曲げ剛性を必要とする部位には球状予備発泡粒子にて構成、あるいは海島状に棒状予備発泡粒子と球状予備発泡粒子を混在させるなどでの対応が可能である。また、主に吸音あるいは透水用途である成形体に支持部、あるいは他部品との組立上で融着強度が部分的に必要な場合にも、本発明が適用される。以上のように吸音性、透水性、通気性と製品で融着強度が必要とする部位での強度との両立が図れ、幅広い用途に適用可能である。   As a specific example of application, when the sound absorption performance is mainly required and it is desired to prevent the peeling of the raw material in the assembly line with the floor spacer, the spherical pre-foamed particles are used for the outer periphery, and the other parts are rod-shaped pre-foams having sound absorption performance. What is necessary is just to comprise with particle | grains. In addition, toolboxes that require sound absorption performance and bending rigidity are composed of rod-shaped pre-expanded particles that have sound absorption performance in parts that do not require bending rigidity, and spherical pre-expanded parts that require bending rigidity. It is possible to cope with the structure by using particles, or by mixing rod-shaped pre-expanded particles and spherical pre-expanded particles in a sea-island shape. Further, the present invention is also applied to a case where a fusion strength is partially required for assembling with a support part or other parts in a molded body mainly used for sound absorption or water permeation. As described above, it is possible to achieve both sound absorption, water permeability, air permeability and strength at the site where fusion strength is required in the product, and it can be applied to a wide range of applications.

異なる空隙率を有する部位を不均一に存在させるような成形方法は特に限定はなく、公知の方法が使用可能である。例えば、特開2001−96559号公報記載の方法が挙げられる。具体的には、金型内に予備発泡粒子を通さないが、異なる特性、例えば、樹脂種、融点、β/(α+β)、形状等の特性、をもつ熱可塑性樹脂予備発泡粒子同士が接触可能な間隔で櫛状の細棒を設置して金型を区画化し、その区画に対応する予備発泡粒子の充填フィダーを設置した金型を使用し、必要区画に必要な予備発泡粒子を充填して成形する事で達成される。   There is no particular limitation on the molding method that causes the portions having different porosity to be non-uniformly present, and a known method can be used. For example, the method of Unexamined-Japanese-Patent No. 2001-96559 is mentioned. Specifically, the pre-expanded particles do not pass through the mold, but the thermoplastic resin pre-expanded particles having different characteristics such as resin type, melting point, β / (α + β), shape and the like can contact each other. Comb-shaped rods are placed at appropriate intervals to partition the mold, and a mold with a pre-expanded particle filling feeder corresponding to the section is used to fill the necessary compartment with the pre-expanded particles. This is achieved by molding.

異なる空隙率を有する部位を略区画状に配する場合、各区画の設定は特に限定しないが、強度、剥離性、融着性等を必要とする部位を空隙率が低くなるように設定し、その他の部位を空隙率が高くなるように設定することが好ましい。尚、予備発泡粒子を金型に充填して成形するにあたり、公知の予備発泡粒子をそのまま金型に充填して水蒸気で加熱成形する方法、及び、予備発泡粒子に無機ガスを加圧処理して発泡粒子内に含浸させて所定の発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱成形させる方法が適用できるが、無機ガスの加圧処理により予備発泡粒子に絶対圧力で0.12MPa以上0.27MPa以下の内圧を付与して加熱成形するのが好ましい。特に、高い空隙率を有する部位は絶対圧力で0.12MPa以上0.19MPa以下に、空隙率が低い部位は0.20MPa以上0.27MPa以下に設定することが好ましい。   When the parts having different porosity are arranged in a substantially partitioned shape, the setting of each section is not particularly limited, but the part that requires strength, peelability, fusibility, etc. is set so that the porosity is low, It is preferable to set other portions so as to increase the porosity. In filling the mold with pre-expanded particles, a method of filling the mold with known pre-expanded particles as they are and heat-molding with water vapor, and pressurizing inorganic gas to the pre-expanded particles A method in which the foamed particles are impregnated to give a predetermined foamed particle internal pressure and then filled into a mold and heat-molded with water vapor can be applied. It is preferable to heat mold by applying an internal pressure of 12 MPa or more and 0.27 MPa or less. In particular, it is preferable that the portion having a high porosity is set to 0.12 MPa or more and 0.19 MPa or less in absolute pressure, and the portion having a low porosity is set to 0.20 MPa or more and 0.27 MPa or less.

以上のようにして得られた成形体は、優れた吸音効果、透水効果を有するとともに、成形体としての要望される機械的強度、形状安定性を有する事が出来、吸音材、ドレン材等としての様々な目的で、例えば、フロアスペーサー、ティビアパッド、ピラー内部の衝撃吸収材、ドアリム内部の衝撃吸収材、等の車両用内装材、コンサートホール、一般住宅等の建築物の床材(床材を構成する芯材も含む)や壁材(壁材を構成する芯材も含む)に好適に使用することができる。   The molded body obtained as described above has excellent sound absorption effect and water permeability effect, and can have the required mechanical strength and shape stability as a molded body, as a sound absorbing material, drain material, etc. For various purposes, for example, floor spacers, tibia pads, shock absorbers inside pillars, shock absorbers inside door rims, etc. It can be suitably used for wall materials (including core materials constituting wall materials) and wall materials (including core materials constituting the wall materials).

以下、本発明を実施例にてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

(予備発泡粒子Aの製造)
基材樹脂として、MI:4.5g/10分、融点:144℃、エチレン含量:2.8%、ブテン含量:1.3%を用い、セル造核剤としてタルク300ppmを添加して押出機内で溶融混練した後、円形ダイよりストランド状に押出し、水冷後、カッターで切断し、一粒の重量が1.8mg/粒、該円柱形状で、L/Dが6.3である樹脂粒子を得た。
(Production of pre-expanded particles A)
Using MI: 4.5 g / 10 min, melting point: 144 ° C., ethylene content: 2.8%, butene content: 1.3% as the base resin, adding 300 ppm of talc as the cell nucleating agent, and in the extruder After being melt-kneaded in, extruded into a strand from a circular die, cooled with water, cut with a cutter, and a resin particle having a weight of 1.8 mg / grain, a cylindrical shape, and L / D of 6.3 is obtained. Obtained.

得られた樹脂粒子100重量部(65kg)、水200重量部、塩基性第三リン酸カルシウム0.5重量部、アルキルスルフォン酸ソーダ0.01重量部を容量0.35m3の耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを16部添加した後、オートクレーブ内容物を135℃の発泡温度まで加熱した。その後、イソブタンを追加圧入して2.2MPaの発泡圧力まで昇圧し、該発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、4.4mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して予備発泡粒子Aを得た。得られた予備発泡粒子は、L/D:2.2、セル径:103μm、β/(α+β):0.60、嵩密度:0.019g/cm3であった。 100 parts by weight (65 kg) of the obtained resin particles, 200 parts by weight of water, 0.5 parts by weight of basic tricalcium phosphate and 0.01 parts by weight of sodium alkyl sulfonate are charged into a pressure-resistant autoclave having a capacity of 0.35 m 3 . Under stirring, 16 parts of isobutane was added as a blowing agent, and then the autoclave contents were heated to a foaming temperature of 135 ° C. Thereafter, isobutane was additionally injected and the pressure was increased to a foaming pressure of 2.2 MPa. After maintaining the foaming temperature and the foaming pressure for 30 minutes, the valve at the bottom of the autoclave was opened and the autoclave contents were passed through a 4.4 mmφ orifice. Release under atmospheric pressure to obtain pre-expanded particles A. The obtained pre-expanded particles had L / D: 2.2, cell diameter: 103 μm, β / (α + β): 0.60, and bulk density: 0.019 g / cm 3 .

(予備発泡粒子Bの製造)
予備発泡粒子Aを製造したのと同じ樹脂粒子を使用し、オートクレーブ内容物を130℃の発泡温度まで加熱してイソブタンを追加圧入して2.4MPaの発泡圧力まで昇圧した以外は、予備発泡粒子Aと同様にして、L/D:2.2、β/(α+β):0.70、嵩密度:0.019g/cm3である、発泡粒子Bを得た。
(Production of pre-expanded particles B)
Pre-expanded particles, except that the same resin particles as used to produce pre-expanded particles A were used, except that the autoclave contents were heated to a foaming temperature of 130 ° C. and isobutane was additionally injected to increase the foaming pressure to 2.4 MPa. In the same manner as A, expanded particles B having L / D: 2.2, β / (α + β): 0.70, and bulk density: 0.019 g / cm 3 were obtained.

(予備発泡粒子C)
市販されている(株)カネカ製のDBS45(45倍品)(以下、発泡粒子C(L/D:1.05、β/(α+β):0.25)を使用した。
(Pre-expanded particles C)
DBS45 (45 times product) manufactured by Kaneka Co., Ltd. (hereinafter, expanded particles C (L / D: 1.05, β / (α + β): 0.25)) was used.

(実施例1)
予備発泡粒子Aと予備発泡粒子Cを使用した。300×400×50mmのブロック形状の金型を使用し、予備発泡粒子に空気加圧処理により空気を含浸させ、予備発泡粒子Aを絶対圧力で0.13MPa、予備発泡粒子Cを0.21MPaの内圧を付与した。
Example 1
Pre-expanded particles A and pre-expanded particles C were used. Using a block-shaped mold of 300 × 400 × 50 mm, the pre-expanded particles were impregnated with air by air pressure treatment, the pre-expanded particles A were 0.13 MPa in absolute pressure, and the pre-expanded particles C were 0.21 MPa. Internal pressure was applied.

充填工程は金型を2mm開いた状態で発泡粒子C、発泡粒子Aの順に充填し、続いて金型を完全に閉じ、ゲージ圧で0.22MPaの蒸気にて予備発泡粒子の加熱融着を行う。その後、水冷を60秒間行い、発泡体を離型した。ここで得られた発泡成形体は多くの空隙を有し、蒸気・冷却水による含水を多量に含むため、常温で1時間放置し、その後75℃、24時間の乾燥、24時間の常温養生を行うことで、空隙率が不均一な発泡成形体を得た。   In the filling process, the foamed particles C and foamed particles A are filled in this order with the mold opened 2 mm, and then the mold is completely closed, and the pre-foamed particles are heated and fused with steam at a gauge pressure of 0.22 MPa. Do. Thereafter, water cooling was performed for 60 seconds to release the foam. The foamed molding obtained here has many voids and contains a large amount of water content by steam / cooling water, so it is left at room temperature for 1 hour, then dried at 75 ° C. for 24 hours and then cured at room temperature for 24 hours. As a result, a foamed molded article having non-uniform porosity was obtained.

(実施例2)
実施例1において使用する金型を、300×400×50mmのブロック形状で、且つ略外周端部50mmと内部を櫛部材で区画化し、櫛部はステンレスバネ鋼を素材とし、櫛長さ49mm、櫛径φ2.5mm、櫛間隔2.5mmのものを用いた以外は実施例1と同様にして空隙率の確保と形状保持性を両立させた発泡成形体を得た。
(Example 2)
The mold used in Example 1 has a block shape of 300 × 400 × 50 mm, and is partitioned with a substantially outer peripheral end portion 50 mm and the inside by a comb member. The comb portion is made of stainless spring steel, and the comb length is 49 mm. A foamed molded article having both a sufficient porosity and a shape retaining property was obtained in the same manner as in Example 1 except that one having a diameter of 2.5 mm and a comb spacing of 2.5 mm was used.

(実施例3)
実施例2において、予備発泡粒子Cを予備発泡粒子Bに代えた以外は実施例2と同様にして、空隙率の確保と形状保持性を両立させた発泡成形体を得た。
(Example 3)
In Example 2, except that the pre-expanded particles C were replaced with the pre-expanded particles B, a foam-molded product having both the ensured porosity and shape retention was obtained in the same manner as Example 2.

(比較例1)
実施例1で用いた発泡粒子Aに、空気加圧処理により空気を含浸させ、絶対圧力で0.13MPaの内圧を付与した予備発泡粒子を得た。これを300×400×50mmのブロック形状金型に充填し、ゲージ圧0.22MPaの蒸気で加熱、水冷60秒を行い、発泡粒子Aのみで形成された発泡体を得た。これを常温で1時間放置し、その後75℃、24時間の乾燥、24時間の常温養生を行った。
(Comparative Example 1)
The foamed particles A used in Example 1 were impregnated with air by air pressure treatment to obtain pre-foamed particles having an internal pressure of 0.13 MPa as an absolute pressure. This was filled in a 300 × 400 × 50 mm block-shaped mold, heated with steam having a gauge pressure of 0.22 MPa, and water-cooled for 60 seconds to obtain a foam formed only with expanded particles A. This was left to stand at room temperature for 1 hour, and then subjected to drying at 75 ° C. for 24 hours and curing at room temperature for 24 hours.

得られた成形体評価の結果を表1に示す。   Table 1 shows the results of evaluation of the obtained molded body.

Figure 2012081765
Figure 2012081765

空隙率は前記したように、発泡体から30×30×30mmの立方体試料を、表面スキン層を含まないように切り出し、外形寸法より見掛け体積を求めた。更に、直方体試料を一定量のエタノールを入れたメスシリンダー中に浸漬し、その時の増加容積(真の体積)を測定し、見掛け体積と真の体積の差を、見掛け体積で除算した値を空隙率と定義した。   As described above, as for the porosity, a cubic sample of 30 × 30 × 30 mm was cut out from the foam so as not to include the surface skin layer, and the apparent volume was determined from the external dimensions. Furthermore, a rectangular parallelepiped sample is immersed in a graduated cylinder containing a certain amount of ethanol, the volume increased (true volume) at that time is measured, and the value obtained by dividing the difference between the apparent volume and the true volume by the apparent volume is a gap. Defined as rate.

吸音率測定は、垂直入射式測定と、残響室を用いた測定方法の2種の方法で行った。表中の数値は最高値を示す。垂直入射式測定はASTME1050に準拠し、試料厚み40mmで500〜6400Hzでの垂直入射吸音率を測定した。試料は得られた発泡成形体より、表面スキン層を有する面が音波入射面となるように、厚み40mmで切り出した。測定は、音波を反射する剛体壁と試料が密着した状態、つまり背後空気が無い状態でおこなった。測定には小野測器社製の垂直入射吸音率測定装置SR−4100を用いた。残響室による測定は、JIS A1409に従い、9m3の残響室(日東紡音響エンジニアリング製)、サンプルサイズ700×700mmを用いて500〜5000Hzでの測定を行った。ここで、残響室測定に用いたサンプルは、実施例あるいは比較例で示す金型にて成形した成形体を張り合わせたものを用いた。 The sound absorption coefficient was measured by two methods, ie, a normal incidence measurement and a measurement method using a reverberation chamber. The numbers in the table represent the highest values. The normal incidence type measurement was based on ASTME1050, and the normal incidence sound absorption coefficient at 500 to 6400 Hz was measured with a sample thickness of 40 mm. The sample was cut out from the obtained foamed molded article with a thickness of 40 mm so that the surface having the surface skin layer became the sound wave incident surface. The measurement was performed in a state where the sample was in close contact with the rigid wall that reflects sound waves, that is, in the absence of air behind. For the measurement, a normal incidence sound absorption measuring device SR-4100 manufactured by Ono Sokki Co., Ltd. was used. The reverberation chamber was measured according to JIS A1409 using a 9 m 3 reverberation chamber (manufactured by Nittobo Acoustic Engineering) and a sample size of 700 × 700 mm at 500 to 5000 Hz. Here, the sample used for the reverberation chamber measurement was a laminate of molded bodies molded with the molds shown in the examples or comparative examples.

剥離評価は、高さ1mの位置から成形体を角部が床面に当たるように10回落下させ、成形体から予備発泡粒子が剥離するか否かで評価した。評価基準は剥離なし:○、2回以下の剥離:△、3回以上の剥離:×とした。   Peeling evaluation was performed by dropping the molded body 10 times from a position having a height of 1 m so that the corners hit the floor surface, and evaluating whether or not the pre-expanded particles were peeled from the molded body. Evaluation criteria were as follows: No peeling: ○, 2 times or less peeling: Δ, 3 times or more peeling: x.

Claims (12)

成形体内の空隙率が10%未満の部位と、空隙率10%以上60%以下の部位が略区画状に存在し、成形体内の空隙率が不均一である熱可塑性樹脂型内発泡成形体であって、
前記空隙率が10%未満の部位が、L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子を使用し、前記空隙率10%以上60%以下の部位が、L/Dが2以上10以下の熱可塑性予備発泡粒子を使用して型内発泡成形されてなることを特徴とする熱可塑性樹脂発泡成形体。
ここで、L/Dとは、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。
D=(Dmax+Dmin)/2
A thermoplastic resin-in-mold foam-molded article in which a portion having a porosity of less than 10% and a portion having a porosity of 10% or more and 60% or less exist in a substantially partitioned shape, and the porosity in the molded body is non-uniform. There,
The part where the porosity is less than 10% uses thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less, and the part where the porosity is 10% or more and 60% or less is L / D. A thermoplastic resin foam-molded article obtained by in-mold foam molding using 2 or more and 10 or less thermoplastic pre-foamed particles.
Here, L / D is L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and is calculated by the following equation.
D = (D max + D min ) / 2
前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のセル径が200μm以上400μm以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のセル径が30μm以上150μm以下であることを特徴とする、請求項1記載の熱可塑性樹脂発泡成形体。   The cell diameter of the thermoplastic pre-expanded particles having an L / D of 0.8 to 1.2 is 200 μm to 400 μm, and the cell diameter of the thermoplastic pre-expanded particles having an L / D of 2 to 10 is 30 μm. The thermoplastic resin foam molded article according to claim 1, wherein the thermoplastic resin foam molded article is 150 µm or less. 前記熱可塑性予備発泡粒子が、示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたとき、前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のβ/(α+β)値が0.15以上0.35以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のβ/(α+β)値が、0.35以上0.75以下であるであることを特徴とする、請求項1又は2に記載の熱可塑性樹脂発泡成形体。   The thermoplastic pre-expanded particles have two melting peaks in the DSC curve obtained by differential scanning calorimetry, the heat of fusion α (J / g) of the low temperature side peak, and the heat of fusion β (J of the high temperature side peak) / G), the β / (α + β) value of the thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less is 0.15 or more and 0.35 or less, and the L / D is The thermoplastic resin foam molding according to claim 1 or 2, wherein the β / (α + β) value of the thermoplastic pre-expanded particles of 2 or more and 10 or less is 0.35 or more and 0.75 or less. body. 前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子が球状予備発泡粒子であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子が棒状予備発泡粒子である請求項1〜3のいずれか1項に記載の熱可塑性樹脂発泡成形体。   The thermoplastic pre-expanded particles having an L / D of 0.8 to 1.2 are spherical pre-expanded particles, and the thermoplastic pre-expanded particles having an L / D of 2 to 10 are rod-shaped pre-expanded particles. Item 4. The thermoplastic resin foam molded article according to any one of Items 1 to 3. 成形体外周部を空隙率10%未満とし、それ以外を空隙率10%以上60%以下で構成したことを特徴とする請求項1〜4のいずれか1項に記載の熱可塑性樹脂発泡成形体。   The thermoplastic resin foam molded article according to any one of claims 1 to 4, wherein the outer peripheral portion of the molded article has a porosity of less than 10%, and the other is constituted by a porosity of 10% or more and 60% or less. . 前記発泡成形体が、自動車用の嵩上げ材、ティビアパッド、ラゲージボックス、側突材のいずれかである請求項1〜5のいずれか1項に記載の熱可塑性樹脂発泡成形体。   The thermoplastic foam-molded article according to any one of claims 1 to 5, wherein the foam-molded article is any one of an automotive raising material, a tibia pad, a luggage box, and a side projection material. 成形体内の空隙率が10%未満の部位と、空隙率10%以上60%以下の部位が略区画状に存在し、成形体内の空隙率が不均一である熱可塑性樹脂型内発泡成形体の製造方法であって、
区画化された金型を使用し、
前記成形体内の空隙率が10%未満の部位に対応する金型区画に、L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子を充填し、
前記空隙率10%以上60%以下の部位に対応する金型区画に、L/Dが2以上10以下の熱可塑性予備発泡粒子を充填し、
加熱成形することを特徴とする熱可塑性樹脂発泡成形体の製造方法。
ここで、L/Dとは、Lは発泡粒子の最長部の長さ、DはL方向と垂直な断面における最大径Dmaxと最小径Dminの平均値であり、下記式にて計算される。
D=(Dmax+Dmin)/2
A thermoplastic resin in-mold foam molded article in which a portion having a porosity of less than 10% and a portion having a porosity of 10% or more and 60% or less exist in a substantially partitioned shape, and the porosity in the molded body is not uniform. A manufacturing method comprising:
Using compartmentalized molds,
Filling a mold section corresponding to a portion having a porosity of less than 10% in the molded body with thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less,
Filling a mold section corresponding to the portion having a porosity of 10% or more and 60% or less with thermoplastic pre-expanded particles having an L / D of 2 or more and 10 or less,
A method for producing a thermoplastic resin foam-molded article, characterized by heat molding.
Here, L / D is L is the length of the longest part of the expanded particles, D is an average value of the maximum diameter Dmax and the minimum diameter Dmin in a cross section perpendicular to the L direction, and is calculated by the following equation.
D = (D max + D min ) / 2
前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のセル径が200μm以上400μm以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のセル径が30μm以上150μm以下であることを特徴とする、請求項7記載の熱可塑性樹脂発泡成形体の製造方法。   The cell diameter of the thermoplastic pre-expanded particles having an L / D of 0.8 to 1.2 is 200 μm to 400 μm, and the cell diameter of the thermoplastic pre-expanded particles having an L / D of 2 to 10 is 30 μm. The method for producing a thermoplastic resin foam molded article according to claim 7, wherein the thermoplastic resin foam molded article has a thickness of 150 µm or less. 前記熱可塑性予備発泡粒子が、示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、該低温側ピークの融解熱量α(J/g)、該高温側ピークの融解熱量β(J/g)としたとき、前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子のβ/(α+β)値が0.15以上0.35以下であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子のβ/(α+β)値が、0.35以上0.75以下であるであることを特徴とする、請求項7又は8に記載の熱可塑性樹脂発泡成形体の製造方法。   The thermoplastic pre-expanded particles have two melting peaks in the DSC curve obtained by differential scanning calorimetry, the heat of fusion α (J / g) of the low temperature side peak, and the heat of fusion β (J of the high temperature side peak) / G), the β / (α + β) value of the thermoplastic pre-expanded particles having an L / D of 0.8 or more and 1.2 or less is 0.15 or more and 0.35 or less, and the L / D is The thermoplastic resin foam molding according to claim 7 or 8, wherein the β / (α + β) value of the thermoplastic pre-expanded particles of 2 or more and 10 or less is 0.35 or more and 0.75 or less. Body manufacturing method. 前記L/Dが0.8以上1.2以下の熱可塑性予備発泡粒子が球状予備発泡粒子であり、前記L/Dが2以上10以下の熱可塑性予備発泡粒子が棒状予備発泡粒子である請求項7〜9のいずれか1項に記載の熱可塑性樹脂発泡成形体の製造方法。   The thermoplastic pre-expanded particles having an L / D of 0.8 to 1.2 are spherical pre-expanded particles, and the thermoplastic pre-expanded particles having an L / D of 2 to 10 are rod-shaped pre-expanded particles. Item 10. The method for producing a thermoplastic resin foam molded article according to any one of Items 7 to 9. 成形体外周部を空隙率10%未満とし、それ以外を空隙率10%以上60%以下で構成したことを特徴とする請求項7〜10のいずれか1項に記載の熱可塑性樹脂発泡成形体の製造方法。   The thermoplastic resin foam molded article according to any one of claims 7 to 10, wherein the outer peripheral portion of the molded article has a porosity of less than 10%, and the other is constituted by a porosity of 10% or more and 60% or less. Manufacturing method. 前記発泡成形体が、自動車用の嵩上げ材、ティビアパッド、ラゲージボックス、側突材のいずれかである請求項7〜11のいずれか1項に記載の熱可塑性樹脂発泡成形体の製造方法。   The method for producing a thermoplastic resin foam-molded body according to any one of claims 7 to 11, wherein the foam-molded body is any one of an automotive raising material, a tibia pad, a luggage box, and a side projection material.
JP2011279941A 2005-02-01 2011-12-21 Thermoplastic resin foam molding and method for producing the same Expired - Fee Related JP5234169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279941A JP5234169B2 (en) 2005-02-01 2011-12-21 Thermoplastic resin foam molding and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005025194 2005-02-01
JP2005025194 2005-02-01
JP2011279941A JP5234169B2 (en) 2005-02-01 2011-12-21 Thermoplastic resin foam molding and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005292800A Division JP4984482B2 (en) 2005-02-01 2005-10-05 Thermoplastic resin foam molding

Publications (2)

Publication Number Publication Date
JP2012081765A true JP2012081765A (en) 2012-04-26
JP5234169B2 JP5234169B2 (en) 2013-07-10

Family

ID=46241119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279941A Expired - Fee Related JP5234169B2 (en) 2005-02-01 2011-12-21 Thermoplastic resin foam molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP5234169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066758B2 (en) 2016-07-22 2021-07-20 Ricoh Company, Ltd. Resin powder having pillar shape and specific circularity for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413980U (en) * 1977-06-30 1979-01-29
JPS6135240A (en) * 1984-07-27 1986-02-19 新東工業株式会社 Foamed molded shape for full mold
JPH08156000A (en) * 1994-12-12 1996-06-18 Jsp Corp Manufacture of foaming mold with air gap
JP2002242428A (en) * 2001-02-16 2002-08-28 Nkk Corp Plastic composite panel and method of manufacture
JP2006240285A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413980U (en) * 1977-06-30 1979-01-29
JPS6135240A (en) * 1984-07-27 1986-02-19 新東工業株式会社 Foamed molded shape for full mold
JPH08156000A (en) * 1994-12-12 1996-06-18 Jsp Corp Manufacture of foaming mold with air gap
JP2002242428A (en) * 2001-02-16 2002-08-28 Nkk Corp Plastic composite panel and method of manufacture
JP2006240285A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066758B2 (en) 2016-07-22 2021-07-20 Ricoh Company, Ltd. Resin powder having pillar shape and specific circularity for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
US11926931B2 (en) 2016-07-22 2024-03-12 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object

Also Published As

Publication number Publication date
JP5234169B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5727210B2 (en) Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2016111017A1 (en) Propylene resin foam particles and foam particle molded article
JP2004068016A (en) Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
JP2022127578A (en) Foamed particle and method for producing the same
JP2805286B2 (en) Polyolefin-based resin foam molded article having communicating voids and method for producing the same
JP2003039565A (en) Foamed particle molded object
JP6628374B1 (en) Laminate
JP6961607B2 (en) Foamed particle molded product
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP4984482B2 (en) Thermoplastic resin foam molding
JP4837356B2 (en) Thermoplastic resin in-mold foam molding and production method
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP6253427B2 (en) Car article storage member
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JP6026814B2 (en) Polyolefin resin expanded particles and molded articles thereof
JP5510510B2 (en) Method for producing foamed molded article in thermoplastic resin mold
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JP5032366B2 (en) Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding.
JP7323852B2 (en) Expanded polypropylene resin particles, method for producing the same, and expanded polypropylene resin bead molded product
JP7329639B1 (en) Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution
JP7299555B2 (en) POLYPROPYLENE RESIN EXPANDED BEET MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
US20240017451A1 (en) Method for manufacturing laminate
JP2023048463A (en) Multilayer foam particle
JP2022167218A (en) Multilayer foamed particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Ref document number: 5234169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees