JP2012081619A - Method of manufacturing member having unevenly patterned surface - Google Patents

Method of manufacturing member having unevenly patterned surface Download PDF

Info

Publication number
JP2012081619A
JP2012081619A JP2010228573A JP2010228573A JP2012081619A JP 2012081619 A JP2012081619 A JP 2012081619A JP 2010228573 A JP2010228573 A JP 2010228573A JP 2010228573 A JP2010228573 A JP 2010228573A JP 2012081619 A JP2012081619 A JP 2012081619A
Authority
JP
Japan
Prior art keywords
ionizing radiation
mold
curable resin
radiation curable
convex pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010228573A
Other languages
Japanese (ja)
Inventor
Katsuhiro Fujita
勝洋 藤田
Shinji Hiramatsu
慎二 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010228573A priority Critical patent/JP2012081619A/en
Publication of JP2012081619A publication Critical patent/JP2012081619A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shape forming method using an ionization radiation curing resin, which hardly causes imperfect shapes in desired fine uneven patterns, even if a viscosity of the ionization radiation curing resin is very high.SOLUTION: The method of manufacturing a sheet-like or film-like member having an unevenly patterned surface includes steps of: applying a liquid 8 obtained by diluting the ionization radiation curing resin with solvent to a surface with fine uneven patterns of a shape forming die 2 or a shape forming die 14; drying the applied liquid 8; feeding a base material 7 to a portion where the applied liquid 8 is dried, of the shape forming die 2 or the shape forming die 14 and pressing the base material 7 to the shape forming die 2 or the shape forming die 14 by using a roll 5 facing the shape forming die 2 or the shape forming die 14: curing the ionization radiation curing resin by irradiating it with ionization radiation; and releasing a shape formed product composed of an ionization radiation cured resin layer and the base material, the shape formed product having a surface with the uneven patterns, from the shape forming die 2 or the shape forming die 14.

Description

本発明は、表面に微細な凹凸形状を有するフィルムを製造するための製造方法に関する。   The present invention relates to a production method for producing a film having a fine uneven shape on the surface.

近年、液晶等の電子ディスプレイ用途で光拡散シート、輝度向上シート、光導波路シート、プリズムシート等の表面に微細な凹凸パターンのついたシートが使用されている。このような微細凹凸パターンを形成する手法としては、従来各種の方法が知られている。
例えば、図6に示されるような構成の装置において、連続走行される基材シート7の表面に予め電離放射線硬化樹脂81を塗布しておき、この基材シート7を微細凹凸パターンが形成されているロール状成形型2とニップローラー5とで挟み、ロール状成形型2の凹凸パターンを樹脂に転写させた状態で、電離放射線を樹脂に照射して硬化させ、その後基材シート7を剥離ロール6に巻きつけてロール状成形型2より剥離させる内容が開示されている。
In recent years, a sheet having a fine concavo-convex pattern on its surface, such as a light diffusion sheet, a brightness enhancement sheet, an optical waveguide sheet, and a prism sheet, has been used for electronic display applications such as liquid crystal. Conventionally, various methods are known as a method for forming such a fine uneven pattern.
For example, in an apparatus having a configuration as shown in FIG. 6, ionizing radiation curable resin 81 is applied in advance to the surface of a continuously running base sheet 7, and the base sheet 7 is formed with a fine uneven pattern. The roll-shaped mold 2 and the nip roller 5 sandwiched between the roll-shaped mold 2 and the concavo-convex pattern of the roll-shaped mold 2 are transferred to the resin, and the resin is irradiated with ionizing radiation to cure. The content which is wound around 6 and peeled off from the roll-shaped mold 2 is disclosed.

しかしながら、従来の製造装置によって所望の微細凹凸パターンを電離放射線硬化樹脂に転写する場合、転写する微細凹凸パターンの形状や、電離放射線硬化樹脂の粘度などの条件によって、電離放射線硬化樹脂に気泡が含まれたり、欠けが生じたりして微細凹凸パターンの形状が不完全になることがあった。そのような不完全形状が発生する条件を調べたところ、形成する微細凹凸パターン形状がロール周長方向に連続な溝形状に比較して、連続性のない例えばフライアイレンズなどの形状、特にレンズの幅に対する深さ寸法が0.5を超えるような高アスペクト比のレンズになると、不完全形状が顕著に発生する。このような微細凹凸パターンの不完全形状は、成形品が光学用の部材である場合には光学性能の致命的な欠陥になるばかりが、外観品位も損なうことになり意匠部材としても問題となる。   However, when a desired fine concavo-convex pattern is transferred to the ionizing radiation curable resin by a conventional manufacturing apparatus, bubbles are included in the ionizing radiation curable resin depending on conditions such as the shape of the fine concavo-convex pattern to be transferred and the viscosity of the ionizing radiation curable resin. In some cases, the shape of the fine concavo-convex pattern may be incomplete due to cracking or chipping. As a result of investigating the conditions under which such an incomplete shape occurs, the shape of the fine uneven pattern to be formed is not continuous compared to the groove shape continuous in the circumferential direction of the roll, for example, a shape such as a fly-eye lens, particularly a lens. When the lens has a high aspect ratio such that the depth dimension with respect to the width of the lens exceeds 0.5, an incomplete shape is remarkably generated. Such an incomplete shape of the fine concavo-convex pattern not only becomes a fatal defect in optical performance when the molded product is an optical member, but also deteriorates the appearance quality and becomes a problem as a design member. .

特許文献1では、図6に示されるように連続走行されるフィルム状の基材7の表面に予め電離放射線硬化樹脂を塗布しておき、この基材7を微細凹凸パターンが形成されているロール状成形型2とニップローラー5とで挟む方法において、電離放射線硬化樹脂が塗布された基材とロール状成形型が接触する部分に電離放射線硬化樹脂の滞留部が生じるように成形することで、微細凹凸パターンの不完全形状の発生を押さえる方法が開示されている。また、特許文献2では、電離放射線硬化樹脂の粘度を限定すること、さらには、金型ロール、ニップローラーなどを加温することで樹脂の粘度を下げる方法などが開示されている。   In Patent Document 1, an ionizing radiation curable resin is applied in advance to the surface of a film-like substrate 7 that is continuously run as shown in FIG. 6, and the substrate 7 is formed with a fine uneven pattern. In the method of sandwiching between the shaped mold 2 and the nip roller 5, by molding so that a staying part of the ionizing radiation curable resin is generated at a portion where the base coated with the ionizing radiation curable resin and the roll shaped mold are in contact with each other, A method for suppressing the occurrence of an incomplete shape of a fine uneven pattern is disclosed. Patent Document 2 discloses a method of reducing the viscosity of the resin by limiting the viscosity of the ionizing radiation curable resin, and further heating the mold roll, nip roller, and the like.

しかしながら、最終的な成形品は、その用途や必要機能によっては硬化した電離放射線硬化樹脂の硬さ、屈折率等を調整する必要があり、結果として未硬化状態で非常に高粘度とならざるを得ない場合がある。例えば、通常、硬化した樹脂の屈折率を上げるために酸化ジルコニウムなどの金属微粒子を高比率で含有させることがあるが、そのような電離放射線硬化樹脂では溶剤希釈して粘度を下げて基材に塗工しても、乾燥により粘度が大幅に上昇するため加熱等の手段を講じても十分な粘度までは低下しない。このような場合では前記の方法では、不完全形状の発生を押さえることができない。   However, the final molded product needs to adjust the hardness, refractive index, etc. of the cured ionizing radiation curable resin depending on its application and required functions. As a result, it must have a very high viscosity in an uncured state. You may not get. For example, metal fine particles such as zirconium oxide are usually contained in a high ratio in order to increase the refractive index of the cured resin. In such an ionizing radiation curable resin, the solvent is diluted to lower the viscosity to form a substrate. Even if the coating is applied, the viscosity increases significantly due to drying, so even if a means such as heating is taken, the viscosity does not decrease to a sufficient level. In such a case, the above method cannot suppress the occurrence of an incomplete shape.

特許第4108211号 公報Japanese Patent No. 4108211 特開2008−074021号 公報JP 2008-074021 A

本発明は、電離放射線硬化樹脂を用いて微細凹凸パターンを成形するに際して、前記電離放射線硬化樹脂の粘度が非常に高粘度な場合であっても所望の微細凹凸パターンに不完全形状が生じにくい成形方法を提供することを目的とする。   In the present invention, when forming a fine concavo-convex pattern using an ionizing radiation curable resin, even if the ionizing radiation curable resin has a very high viscosity, the desired fine concavo-convex pattern does not easily form an incomplete shape. It aims to provide a method.

本発明は、凹凸パターンを有する成形型面に電離放射線硬化樹脂を溶剤希釈した液を塗工する工程と、該塗工した液を乾燥する工程と、該成形型上の塗工した液が乾燥した部分に基材を供給し、成形型に対向するロールにて成形型の基材を押し当てる工程と、電離放射線を照射して電離放射線硬化樹脂を硬化する工程と、該成形型から電離放射線硬化樹脂の層と基材とからなり凹凸パターンを有する成形品を離型する工程と、からなる表面凹凸パターンを有する部材の製造方法であることを特徴とする。   The present invention includes a step of applying a solution obtained by diluting an ionizing radiation curable resin to a mold surface having a concavo-convex pattern, a step of drying the applied solution, and a step of drying the applied solution on the mold. Supplying the base material to the part, pressing the base material of the mold with a roll facing the mold, curing the ionizing radiation curable resin by irradiating with ionizing radiation, and ionizing radiation from the mold And a step of releasing a molded article having a concavo-convex pattern comprising a cured resin layer and a substrate, and a method for producing a member having a surface concavo-convex pattern.

また、前記の発明において成形型に基材を押し当てる工程の前に、基材側にも、電離放射線硬化樹脂を塗工する工程、または、電離放射線硬化樹脂を溶剤希釈した液を塗工し乾燥する工程を有していても良い。
また、前記の発明において成形型が凹凸パターンを有するベルト状のものであっても良い。
In addition, before the step of pressing the substrate against the mold in the above-described invention, the step of applying the ionizing radiation curable resin to the substrate side or the solution obtained by diluting the ionizing radiation curable resin with a solvent is applied. You may have the process of drying.
Moreover, in the said invention, the shaping | molding die may be a belt-shaped thing which has an uneven | corrugated pattern.

また、本発明は、前記した表面微細凹凸パターンを有する部材の製造方法で製造された表面に微細凹凸パターンを有する部材であり前記表面に微細凹凸パターンを有する部材は、電離放射線硬化樹脂が硬化後の状態で酸化物微粒子を30体積%以上含んでいても良い。   Moreover, this invention is a member which has a fine unevenness | corrugation pattern on the surface manufactured with the manufacturing method of the member which has an above described surface fine unevenness | corrugation pattern, and the member which has a fine unevenness | corrugation pattern on the said surface is after ionizing radiation hardening resin hardens | cures. In this state, 30% by volume or more of oxide fine particles may be included.

本発明によれば高粘度な電離放射線硬化樹脂であっても比較的アスペクト比の高いフライアイレンズなどの形状であっても形状の欠けなどを発生させることなく成形することが可能である。   According to the present invention, even a high-viscosity ionizing radiation curable resin can be molded without causing a chipping or the like even in the shape of a fly-eye lens or the like having a relatively high aspect ratio.

本発明で使用される表面微細凹凸パターンを有する部材の製造方法にかかる一例の概念図である。It is a conceptual diagram of an example concerning the manufacturing method of the member which has a surface fine concavo-convex pattern used by the present invention. 本発明で使用される表面微細凹凸パターンを有する部材の製造方法にかかる他の一例の概念図である。It is a conceptual diagram of the other example concerning the manufacturing method of the member which has the surface fine unevenness | corrugation pattern used by this invention. 本発明で使用される表面微細凹凸パターンを有する部材の製造方法にかかる他一例の概念図である。It is a conceptual diagram of another example concerning the manufacturing method of the member which has the surface fine unevenness | corrugation pattern used by this invention. 本発明で使用される表面微細凹凸パターンを有する部材の製造方法にかかる他一例の概念図である。It is a conceptual diagram of another example concerning the manufacturing method of the member which has the surface fine unevenness | corrugation pattern used by this invention. 本発明で使用される表面微細凹凸パターンを有する部材の製造方法にかかる他一例の概念図である。It is a conceptual diagram of another example concerning the manufacturing method of the member which has the surface fine unevenness | corrugation pattern used by this invention. 従来例の表面微細凹凸パターンを有する部材の製造方法にかかる例である。It is an example concerning the manufacturing method of the member which has the surface fine unevenness | corrugation pattern of a prior art example.

以下本発明を図面に従って説明する。
<実施の形態1>
本発明にかかる第1の実施の形態による表面微細凹凸パターンを有する部材の製造方法にかかる一例の概念図を図1に示す。図1において、シート状成形型14にはフライアイレンズなどの微細凹凸パターンが形成されている。このシート状成形型14としては、アルミニウム、黄銅、銅、ニッケル等金属や、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、ポリメチルペンタン樹脂などの合成樹脂から作製したもの、またステンレスなどの板の表面にアルミニウム、黄銅、銅、ニッケル等金属や、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、ポリメチルペンタン樹脂などの合成樹脂などの表面に微細凹凸パターンを付与したフィルム、シートを積層したもの等を用いることができる。図1で示される本実施の形態において電離放射線硬化樹脂層が形成された前記シート状成形型14に押圧される基材7は、枚様のシート状またはフィルム状であり、アクリル樹脂、ポリポリカーボネート樹脂、塩化ビニル樹脂、トリ酢酸セルロース樹脂、ポリエステル樹脂、ガラスなどからなる枚葉のシートまたはフィルムを用いることができる。
The present invention will be described below with reference to the drawings.
<Embodiment 1>
FIG. 1 shows a conceptual diagram of an example according to a method of manufacturing a member having a surface fine concavo-convex pattern according to the first embodiment of the present invention. In FIG. 1, a fine uneven pattern such as a fly-eye lens is formed on a sheet-shaped mold 14. The sheet-shaped mold 14 is made of a metal such as aluminum, brass, copper, nickel, or a synthetic resin such as silicon resin, urethane resin, epoxy resin, fluorine resin, polymethylpentane resin, or a plate made of stainless steel. A film or sheet with a fine concavo-convex pattern on the surface of a metal such as aluminum, brass, copper or nickel, or a synthetic resin such as silicon resin, urethane resin, epoxy resin, fluororesin or polymethylpentane resin was laminated on the surface of A thing etc. can be used. In the present embodiment shown in FIG. 1, the substrate 7 pressed against the sheet-shaped mold 14 on which the ionizing radiation curable resin layer is formed is a sheet-like sheet or film, and is an acrylic resin or polypolycarbonate. A single sheet or film made of resin, vinyl chloride resin, cellulose triacetate resin, polyester resin, glass, or the like can be used.

本発明においては、図1に示すように塗布装置1からベルトコンベア13で搬送されるシート状成形型14に電離放射線硬化樹脂が溶剤により希釈低粘度化された液8が適量塗布される。塗布装置1としてはダイコーター、各種ロールコーター、スプレーコーターなどが使用可能であるが、成形型表面の微細凹凸パターンを破損しないことが必要となる。塗布された液8は、乾燥装置3によって乾燥される。この際に、溶剤が蒸発して成形型14の微細凹凸パターンに電離放射線硬化樹脂が充填され、さらに成形型全体が電離放射線硬化樹脂に覆われた状態となる。そして、枚葉の基材7がニップローラー5を用いてシート状成形型14に押圧され、さらに、電離放射線照射装置4によって電離放射線が照射される。電離放射線が照射されることによって、電離放射硬化樹脂はシート状成形型14に圧接した状態で硬化されるので、シート状成形型の微細凹凸パターンが高い精度で転写される。前記基材7は、剥離ロール6により前記シート状成形型14から前記電離放射線硬化樹脂層とともに離型される。   In the present invention, as shown in FIG. 1, an appropriate amount of a liquid 8 in which an ionizing radiation curable resin is diluted with a solvent and reduced in viscosity is applied to a sheet-shaped mold 14 conveyed by a belt conveyor 13 from a coating apparatus 1. A die coater, various roll coaters, a spray coater, or the like can be used as the coating apparatus 1, but it is necessary that the fine uneven pattern on the surface of the mold is not damaged. The applied liquid 8 is dried by the drying device 3. At this time, the solvent evaporates to fill the fine uneven pattern of the mold 14 with the ionizing radiation curable resin, and the entire mold is covered with the ionizing radiation curable resin. Then, the single-wafer substrate 7 is pressed against the sheet-shaped mold 14 by using the nip roller 5, and further ionizing radiation is irradiated by the ionizing radiation irradiation device 4. By irradiating with ionizing radiation, the ionizing radiation curable resin is cured in a state of being pressed against the sheet-shaped mold 14, so that the fine uneven pattern of the sheet-shaped mold is transferred with high accuracy. The substrate 7 is released from the sheet-shaped mold 14 together with the ionizing radiation curable resin layer by the peeling roll 6.

本発明にかかる第1の実施の形態による表面微細凹凸パターンを有する部材の製造方法については図2に示す概念図のような形態でもよい。図2においては、基材7としては連続したシート状またはフィルム状のものが用いられ、成形型としてはロール状のものが用いられる。ロール状成形型2にはフライアイレンズなどの微細凹凸パターンが形成されている。このロール状成形型2としてはアルミニウム、黄銅、銅、ニッケル等金属や、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、ポリメチルペンタン樹脂などの合成樹脂から作製したもの、またステンレスなどの筒体の表面にアルミニウム、黄銅、銅、ニッケル等金属や、シリコン樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、ポリメチルペンタン樹脂などの合成樹脂などの表面に微細凹凸パターンを付与したフィルム、シートを積層したもの等を用いることができる。電離放射線硬化樹脂層が形成されて前記ロール状成形型2に押圧される連続の基材7としてはアクリル樹脂、ポリポリカーボネート樹脂、塩化ビニル樹脂、トリ酢酸セルロース樹脂、ポリエステル樹脂などからなる連続のシートまたはフィルムを用いることができる。   About the manufacturing method of the member which has the surface fine unevenness | corrugation pattern by 1st Embodiment concerning this invention, a form like the conceptual diagram shown in FIG. 2 may be sufficient. In FIG. 2, a continuous sheet or film is used as the substrate 7, and a roll is used as the mold. The roll-shaped mold 2 is formed with a fine uneven pattern such as a fly-eye lens. The roll-shaped mold 2 is made of a metal such as aluminum, brass, copper, nickel, or a synthetic resin such as silicon resin, urethane resin, epoxy resin, fluorine resin, polymethylpentane resin, or a cylindrical body such as stainless steel. A film or sheet with a fine concavo-convex pattern on the surface of a metal such as aluminum, brass, copper, nickel, or a synthetic resin such as silicon resin, urethane resin, epoxy resin, fluororesin, or polymethylpentane resin was laminated on the surface of A thing etc. can be used. As a continuous base material 7 on which an ionizing radiation curable resin layer is formed and pressed against the roll-shaped mold 2, a continuous sheet made of acrylic resin, polypolycarbonate resin, vinyl chloride resin, cellulose triacetate resin, polyester resin or the like is used. Alternatively, a film can be used.

本形態においては、図2に示すように塗布装置1からロール状成形型2に電離放射線硬化樹脂が溶剤により希釈低粘度化された液8が適量塗布される。塗布装置1としてはダイコーター、各種ロールコーター、スプレーコーターなどが使用可能であるが、成形型表面の微細凹凸パターンを破損しないことが必要となる。塗布された液は、乾燥装置3によって乾燥される。この際に、溶剤が蒸発して成形型2の微細凹凸パターンに電離放射線硬化樹脂が充填され、さらに成形型全体が、電離放射線硬化樹脂に覆われた状態となる。そして、連続の基材7がニップローラー5を用いてロール状成形型2に押圧され、さらに、電離放射線照射装置4によって電離放射線が照射される。電離放射線が照射されることによって、電離放射硬化樹脂はロール状成形型2に圧接した状態で硬化されるので、ロール状成形型2の微細凹凸パターンが高い精度で転写される。前記基材7は、剥離ロール6により前記ロール状成形型から前記電離放射線硬化樹脂層とともに離型される。   In this embodiment, as shown in FIG. 2, an appropriate amount of a liquid 8 in which an ionizing radiation curable resin is diluted and reduced in viscosity with a solvent is applied from the coating apparatus 1 to the roll-shaped mold 2. A die coater, various roll coaters, a spray coater, or the like can be used as the coating apparatus 1, but it is necessary that the fine uneven pattern on the surface of the mold is not damaged. The applied liquid is dried by the drying device 3. At this time, the solvent evaporates to fill the fine uneven pattern of the mold 2 with the ionizing radiation curable resin, and the entire mold is covered with the ionizing radiation curable resin. And the continuous base material 7 is pressed by the roll-shaped shaping | molding die 2 using the nip roller 5, and also ionizing radiation is irradiated by the ionizing radiation irradiation apparatus 4. FIG. By irradiating with ionizing radiation, the ionizing radiation curable resin is cured while being pressed against the roll-shaped mold 2, so that the fine uneven pattern of the roll-shaped mold 2 is transferred with high accuracy. The base material 7 is released from the roll-shaped mold together with the ionizing radiation curable resin layer by a peeling roll 6.

<実施の形態2>
次に、本発明にかかる第2の実施の形態による表面微細凹凸パターンを有する部材の製造方法の一例の概念図を図3に示す。
第2の実施の形態の製造方法では、まず、図3のように電離放射線硬化樹脂を溶剤希釈した液8を塗布装置1によって連続の基材7およびロール状成形型2の双方に塗工する。次いで、乾燥装置3により前記電離放射線硬化樹脂を溶剤希釈した液8を乾燥させた基材7を、電離放射線硬化樹脂を溶剤希釈した液8の塗布後乾燥されたロール状成形型2にニップローラー5を用いて押圧し、さらに電離放射線照射装置4によって電離放射線を照射する。電離放射線が照射されることによって、電離放射硬化樹脂はロール状成形型2に圧接した状態で硬化されるので、ロール状成形型の微細凹凸パターンが高い精度で転写される。前記基材7は、剥離ロール6により前記ロール状成形型2から前記2つの電離放射線硬化樹脂層とともに離型される。
<Embodiment 2>
Next, FIG. 3 shows a conceptual diagram of an example of a method for producing a member having a surface fine concavo-convex pattern according to the second embodiment of the present invention.
In the manufacturing method of the second embodiment, first, as shown in FIG. 3, a liquid 8 obtained by diluting an ionizing radiation curable resin with a solvent is applied to both the continuous base material 7 and the roll-shaped mold 2 by the coating apparatus 1. . Next, the substrate 7 obtained by drying the solution 8 obtained by diluting the ionizing radiation curable resin with the drying device 3 is applied to the roll-shaped mold 2 dried after the application of the solution 8 obtained by diluting the ionizing radiation curable resin with the solvent. Then, the ionizing radiation irradiation device 4 irradiates the ionizing radiation. By irradiating with ionizing radiation, the ionizing radiation curable resin is cured in a state of being pressed against the roll-shaped mold 2, so that the fine uneven pattern of the roll-shaped mold is transferred with high accuracy. The substrate 7 is released from the roll-shaped mold 2 together with the two ionizing radiation curable resin layers by a peeling roll 6.

<実施の形態3>
次に、本発明にかかる第3の実施の形態による表面微細凹凸パターンを有する部材の製造方法の一例の概念図を図4に示す。
第3の実施の形態の製造方法は、図4のように電離放射線硬化樹脂81を塗布装置1によって塗工した連続の基材7を、電離放射線硬化樹脂を溶剤希釈した液8を塗布後、乾燥装置3により乾燥させたロール状成形型にニップローラー5を用いて押圧し、さらに電離放射線照射装置4によって電離放射線を照射する。電離放射線が照射されることによって、電離放射硬化樹脂はロール状成形型2に圧接した状態で硬化されるので、ロール状成形型の微細凹凸パターンが高い精度で転写される。前記基材7は、剥離ロール6により前記ロール状成形型2から前記2つの電離放射線硬化樹脂層とともに離型される。
<Embodiment 3>
Next, FIG. 4 shows a conceptual diagram of an example of a method for manufacturing a member having a surface fine unevenness pattern according to the third embodiment of the present invention.
In the manufacturing method of the third embodiment, as shown in FIG. 4, after applying the base material 7 coated with the ionizing radiation curable resin 81 by the coating apparatus 1 and the liquid 8 obtained by diluting the ionizing radiation curable resin with the solvent, A roll-shaped mold dried by the drying device 3 is pressed using a nip roller 5, and further ionizing radiation is irradiated by an ionizing radiation irradiation device 4. By irradiating with ionizing radiation, the ionizing radiation curable resin is cured in a state of being pressed against the roll-shaped mold 2, so that the fine uneven pattern of the roll-shaped mold is transferred with high accuracy. The substrate 7 is released from the roll-shaped mold 2 together with the two ionizing radiation curable resin layers by a peeling roll 6.

<実施の形態4>
次に、本発明にかかる第4の実施の形態による表面微細凹凸パターンを有する部材の製造方法の一例の概念図を図5に示す。図5に示すように、塗布装置1からベルト状の成形型11に電離放射線硬化樹脂が溶剤により希釈、低粘度化された液8が適量塗布される。塗布された液8は、乾燥装置3によって乾燥される。この際に、成形型の微細凹凸パターンに電離放射線硬化樹脂が充填され、さらに成形型全体が電離放射線硬化樹脂に覆われた状態となる。そして、連続の基材7をニップローラー5とバックロール12を用いてベルト状成形型11に押圧し、その後、電離放射線照射装置4によって電離放射線を照射する。電離放射線が照射されることによって、電離放射硬化樹脂はベルト状成形型11に圧接した状態で硬化されるので、ベルト状成形型の微細凹凸パターンが高い精度で転写される。前記基材7は、剥離ロール6により前記ロール状成形型から前記2つの電離放射線硬化樹脂層とともに離型される。
<Embodiment 4>
Next, the conceptual diagram of an example of the manufacturing method of the member which has the surface fine unevenness | corrugation pattern by 4th Embodiment concerning this invention is shown in FIG. As shown in FIG. 5, an appropriate amount of a liquid 8 in which an ionizing radiation curable resin is diluted with a solvent and reduced in viscosity is applied from a coating device 1 to a belt-shaped mold 11. The applied liquid 8 is dried by the drying device 3. At this time, the fine concavo-convex pattern of the mold is filled with the ionizing radiation curable resin, and the entire mold is covered with the ionizing radiation curable resin. Then, the continuous base material 7 is pressed against the belt-shaped mold 11 using the nip roller 5 and the back roll 12, and then the ionizing radiation irradiation device 4 irradiates the ionizing radiation. By irradiating with ionizing radiation, the ionizing radiation curable resin is cured in a state of being pressed against the belt-shaped mold 11, so that the fine uneven pattern of the belt-shaped mold is transferred with high accuracy. The base material 7 is released from the roll-shaped mold together with the two ionizing radiation curable resin layers by a peeling roll 6.

<実施の形態5>
本発明にかかる第5の実施の形態による表面微細凹凸パターンを有する部材は、前記実施の形態1〜4のいずれかの製造方法により製造された、表面に微細凹凸パターンを有するシート状またはフィルム状の部材である。
<Embodiment 5>
A member having a surface fine concavo-convex pattern according to the fifth embodiment of the present invention is manufactured by the manufacturing method according to any of Embodiments 1 to 4, and is a sheet or film having a fine concavo-convex pattern on the surface. It is a member.

<実施の形態6>
本発明にかかる第6の実施の形態による表面微細凹凸パターンを有するシート状またはフィルム状の部材は、電離放射線硬化樹脂が硬化後の状態で酸化物微粒子を30体積%以上含む。酸化物微粒子は二酸化珪素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化亜鉛、酸化錫などを用いることができる。また、酸化物微粒子の粒径についても特に限定されるものではないが、表面微細凹凸パターンを有する部材を特に光学的な用途に使用する場合は重量平均粒径が数百nm以下であることが望ましい。
<Embodiment 6>
The sheet-like or film-like member having the surface fine unevenness pattern according to the sixth embodiment of the present invention contains 30% by volume or more of oxide fine particles in a state after the ionizing radiation curable resin is cured. As the oxide fine particles, silicon dioxide, titanium oxide, zirconium oxide, aluminum oxide, zinc oxide, tin oxide, or the like can be used. Further, the particle diameter of the oxide fine particles is not particularly limited, but when a member having a surface fine unevenness pattern is used for an optical application in particular, the weight average particle diameter may be several hundred nm or less. desirable.

以上、本発明に係る表面微細凹凸パターンを有するシート状またはフィルム状の部材の製造方法にかかる実施形態例について説明したが、本発明は前記実施形態の例に限定されるものではなく、各種の態様が採り得る。たとえば、本実施の形態の例では、ロール状の成形型、ベルト状の成形型を使用する態様を採用したが、シート状の成形型をベルトコンベアなどの輸送手段上に配置し使用する態様も採用できる。このようなシート状体であっても、ロール状、ベルト状と同様に作用し、同様の効果が得られるからである。   As mentioned above, although the embodiment example concerning the manufacturing method of the sheet-like or film-like member which has the surface fine unevenness pattern concerning the present invention was described, the present invention is not limited to the example of the above-mentioned embodiment, Embodiments can be taken. For example, in the example of the present embodiment, a mode in which a roll-shaped mold and a belt-shaped mold are used is adopted. However, a mode in which a sheet-shaped mold is arranged on a transportation means such as a belt conveyor is also used. Can be adopted. This is because even such a sheet-like body acts in the same manner as the roll shape and the belt shape, and the same effect can be obtained.

以下に、本発明を実施例を用いて具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described using examples, but the present invention is not limited to these examples.

<実施例1>
20μm径、20μm高さのマイクロレンズが複数配置されたニッケル製の成形型(面積は105mm×105mm)に電離放射線硬化樹脂と酸化物微粒子とが溶剤希釈分散された電離放射線硬化樹脂液(東洋インキ製造株式会社製リオデュラスTYZ74−01)を約80μmの厚みで塗布し、室温で3分、さらに室温で3分、80℃で5分乾燥させ、ニップローラーにてPETフィルム(東洋紡績株式会社製コスモシャインA4300;厚み100μm)を0.3MPaの圧力にて押圧し、そのまま電離放射線を照射し硬化させた後、離型したところ、欠けなどが発生することなく所望のマイクロレンズがPETフィルム上に成形できた。
<実施例2>
20μm径、20μm高さのマイクロレンズが複数配置されたニッケル製の成形型(面積は105mm×105mm)に電離放射線硬化樹脂と酸化物微粒子が溶剤希釈分散された電離放射線硬化樹脂液(東洋インキ製造株式会社製リオデュラスTYZ74−01)を約80μmの厚みで塗布した後、室温で3分、80℃で5分乾燥させ、PETフィルム(東洋紡績株式会社製コスモシャインA4300;厚み100μm)に電離放射線硬化樹脂液(東洋インキ製造株式会社製リオデュラスTYZ74−01)を50μm厚で塗工した後、室温で2分、80℃で1分乾燥させ、前記PETフィルムをニップローラーにて0.3MPaの圧力にて前記成形型に押圧し、そのまま電離放射線を照射し硬化させた後、離型したところ、欠けなどが発生することなく所望のマイクロレンズがPETフィルム上に成形できた。
<Example 1>
An ionizing radiation curable resin liquid (Toyo Ink Co., Ltd.) in which ionizing radiation curable resin and oxide fine particles are diluted with a solvent in a nickel mold (area: 105 mm × 105 mm) in which a plurality of microlenses having a diameter of 20 μm and a height of 20 μm are arranged. Ryoduras TYZ74-01 manufactured by Manufacturing Co., Ltd. was applied to a thickness of about 80 μm, dried at room temperature for 3 minutes, further at room temperature for 3 minutes, and then at 80 ° C. for 5 minutes, and PET film (Cosmo manufactured by Toyobo Co., Ltd.) with a nip roller. Shine A4300 (thickness: 100 μm) is pressed at a pressure of 0.3 MPa, irradiated with ionizing radiation as it is, and then cured to form a desired microlens on the PET film without chipping. did it.
<Example 2>
An ionizing radiation curable resin liquid (Toyo Ink Manufacturing Co., Ltd.) in which ionizing radiation curable resin and oxide fine particles are diluted and dispersed in a nickel mold (area: 105 mm x 105 mm) in which a plurality of microlenses having a diameter of 20 μm and a height of 20 μm are arranged. After applying Rio Duras TYZ74-01 (made by Co., Ltd.) at a thickness of about 80 μm, it was dried at room temperature for 3 minutes and at 80 ° C. for 5 minutes, and ionized radiation curing to PET film (Toyobo Co., Ltd. Cosmo Shine A4300; thickness 100 μm) A resin liquid (Rioduras TYZ74-01 manufactured by Toyo Ink Manufacturing Co., Ltd.) was applied at a thickness of 50 μm, and then dried at room temperature for 2 minutes and at 80 ° C. for 1 minute, and the PET film was brought to a pressure of 0.3 MPa with a nip roller. When the mold is pressed and cured with ionizing radiation as it is, chipping occurs when the mold is released. Desired microlens was formed on the PET film without the.

<比較例>
PETフィルム(東洋紡績株式会社製コスモシャインA4300;厚み100μm)上に実施例1で用いた電離放射線硬化樹脂液(東洋インキ製造株式会社製リオデュラスTYZ74−01)を約80μmの厚みで塗布し、室温で3分、80℃で5分乾燥させた後、20μm径、20μm高さのマイクロレンズが複数配置されたニッケル製の成形型(面積は105mm×105mm)にニップローラーにて0.3MPaの圧力で押圧し、そのまま電離放射線を照射して硬化させた後、離型したところ、高さ数μm程度のマイクロレンズしか得られなかった。これは、乾燥後の溶剤成分が揮発した電離放射線硬化樹脂は非常に粘度が高いため、成形型の微細凹凸に電離放射線硬化樹脂が十分に充填されないためである。
<Comparative example>
On the PET film (Toyobo Co., Ltd. Cosmo Shine A4300; thickness 100 μm), the ionizing radiation curable resin liquid (Ryoduras TYZ74-01 manufactured by Toyo Ink Manufacturing Co., Ltd.) used in Example 1 was applied at a thickness of about 80 μm, and room temperature was applied. 3 minutes at 80 ° C. for 5 minutes, and then a pressure of 0.3 MPa with a nip roller on a nickel mold (area is 105 mm × 105 mm) in which a plurality of microlenses having a diameter of 20 μm and a height of 20 μm are arranged. After pressing and curing with ionizing radiation as it was, only a micro lens having a height of about several μm was obtained. This is because the ionizing radiation curable resin, in which the solvent component after drying has volatilized, has a very high viscosity, so that the ionizing radiation curable resin is not sufficiently filled in the fine irregularities of the mold.

1 ・・・塗布装置
2 ・・・ロール状成形型
3 ・・・乾燥装置
4 ・・・電離放射線照射装置
5 ・・・ニップローラー
6 ・・・剥離ロール
7 ・・・基材
8 ・・・電離放射線硬化樹脂を溶剤希釈した液
81・・・電離放射線硬化樹脂
9 ・・・塗布装置用バックロール
10・・・第2ニップローラー
11・・・ベルト状成形型
12・・・バックロール
13・・・ベルトコンベア
14・・・シート状成形型
DESCRIPTION OF SYMBOLS 1 ... Coating apparatus 2 ... Roll-shaped shaping | molding die 3 ... Drying apparatus 4 ... Ionizing radiation irradiation apparatus 5 ... Nip roller 6 ... Stripping roll 7 ... Base material 8 ... Liquid 81 in which ionizing radiation curable resin is diluted with solvent ... Ionizing radiation curable resin 9 ... Back roll 10 for coating apparatus ... Second nip roller 11 ... Belt-shaped mold 12 ... Back roll 13 ..Belt conveyor 14 ... Sheet mold

Claims (6)

凹凸パターンを有する成形型面に電離放射線硬化樹脂を溶剤希釈した液を塗工する工程と、該塗工した液を乾燥する工程と、該成形型上の塗工した液が乾燥した部分に基材を供給し、成形型に対向するロールにて成形型に基材を押圧する工程と、電離放射線を照射して電離放射線硬化樹脂を硬化する工程と、該成形型から電離放射線硬化樹脂の層と基材とからなり凹凸パターンを有する成形品を離型する工程と、からなる表面凹凸パターンを有する部材の製造方法。   A step of applying a solution obtained by diluting an ionizing radiation curable resin to a mold surface having a concavo-convex pattern, a step of drying the applied solution, and a portion where the applied solution on the mold is dried. Supplying the material, pressing the substrate against the mold with a roll facing the mold, curing the ionizing radiation curable resin by irradiating with ionizing radiation, and a layer of ionizing radiation curable resin from the mold And a step of releasing a molded product having a concavo-convex pattern comprising a substrate and a substrate, and a method for producing a member having a surface concavo-convex pattern. 成形型に基材を押圧する工程の前に、基材側にも電離放射線硬化樹脂を溶剤希釈した液を塗工し乾燥する工程を有する請求項1に記載の表面凹凸パターンを有する部材の製造方法。   The production of a member having a surface concavo-convex pattern according to claim 1, further comprising a step of applying and drying a solution obtained by diluting an ionizing radiation curable resin with a solvent on the substrate side before the step of pressing the substrate against the mold. Method. 成形型に基材を押圧する工程の前に、基材側にも電離放射線硬化樹脂を塗工する工程を有する請求項1に記載の表面凹凸パターンを有する部材の製造方法。   The manufacturing method of the member which has a surface uneven | corrugated pattern of Claim 1 which has the process of coating ionizing radiation hardening resin also to a base material side before the process of pressing a base material to a shaping | molding die. 成形型が凹凸パターンを有するベルト状のものであることを特徴とする請求項1〜3のいずれか1項に記載の表面凹凸パターンを有する部材の製造方法。   The method for producing a member having a surface concavo-convex pattern according to any one of claims 1 to 3, wherein the mold is a belt having a concavo-convex pattern. 請求項1〜4のいずれか1項に記載の表面凹凸パターンを有する部材の製造方法で製造されたことを特徴とする、表面凹凸パターンを有するシート状またはフィルム状の部材。   A sheet-like or film-like member having a surface concavo-convex pattern, produced by the method for producing a member having a surface concavo-convex pattern according to any one of claims 1 to 4. 電離放射線硬化樹脂が、硬化後の状態で酸化物微粒子を30体積%以上含むことを特徴とする請求項5に記載の表面凹凸パターンを有するシート状またはフィルム状の部材。   6. The sheet-like or film-like member having a surface unevenness pattern according to claim 5, wherein the ionizing radiation curable resin contains 30% by volume or more of oxide fine particles in a state after curing.
JP2010228573A 2010-10-08 2010-10-08 Method of manufacturing member having unevenly patterned surface Pending JP2012081619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228573A JP2012081619A (en) 2010-10-08 2010-10-08 Method of manufacturing member having unevenly patterned surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228573A JP2012081619A (en) 2010-10-08 2010-10-08 Method of manufacturing member having unevenly patterned surface

Publications (1)

Publication Number Publication Date
JP2012081619A true JP2012081619A (en) 2012-04-26

Family

ID=46241020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228573A Pending JP2012081619A (en) 2010-10-08 2010-10-08 Method of manufacturing member having unevenly patterned surface

Country Status (1)

Country Link
JP (1) JP2012081619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119398A1 (en) * 2016-01-04 2017-07-13 株式会社クラレ Method for manufacturing three-dimensional molding with microstructure
WO2017126200A1 (en) * 2016-01-18 2017-07-27 東レ株式会社 Method and apparatus for manufacturing surface structure film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659109A (en) * 1992-08-07 1994-03-04 Dainippon Printing Co Ltd Production of light control film
JPH11156869A (en) * 1997-12-01 1999-06-15 Kuraray Co Ltd Production of surface embossed part
JP2003305736A (en) * 2002-04-17 2003-10-28 Toppan Printing Co Ltd Manufacturing method for optical article and microlens array sheet
JP2008137282A (en) * 2006-12-01 2008-06-19 Fujifilm Corp Method for manufacturing uneven sheet and optical film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659109A (en) * 1992-08-07 1994-03-04 Dainippon Printing Co Ltd Production of light control film
JPH11156869A (en) * 1997-12-01 1999-06-15 Kuraray Co Ltd Production of surface embossed part
JP2003305736A (en) * 2002-04-17 2003-10-28 Toppan Printing Co Ltd Manufacturing method for optical article and microlens array sheet
JP2008137282A (en) * 2006-12-01 2008-06-19 Fujifilm Corp Method for manufacturing uneven sheet and optical film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119398A1 (en) * 2016-01-04 2017-07-13 株式会社クラレ Method for manufacturing three-dimensional molding with microstructure
WO2017126200A1 (en) * 2016-01-18 2017-07-27 東レ株式会社 Method and apparatus for manufacturing surface structure film

Similar Documents

Publication Publication Date Title
KR102502784B1 (en) Method for producing relief patterned body, device for producing same, and sticker
JP6322871B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
KR101241963B1 (en) Pattern Film and Method of Fabricating the Same
JP2014133335A (en) Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel
JP2008194977A (en) Manufacturing method and manufacturing device of molding
WO2014190689A1 (en) Printing plate, scattering film layer and manufacturing methods thereof, and display device
TW201440992A (en) Optical element and method for making same
JP2012081619A (en) Method of manufacturing member having unevenly patterned surface
KR102303873B1 (en) Replica disc, method for manufacturing replica disc, article and method for manufacturing object
US20120037016A1 (en) Light guide plate and manufacturing method thereof
JP2010115804A (en) Method of manufacturing plate, lens array, backlight unit, and display
JP2013226667A (en) Method of manufacturing sheet-shaped member including fine irregular pattern and sheet-shaped member
JP7360064B2 (en) Filler-filled film, sheet film, laminated film, laminate, and method for producing filler-filled film
WO2015071943A1 (en) Optical film and method for fabricating same
JP2001062853A (en) Manufacture of part with irregular surface
JP6395301B2 (en) Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element
TW201838784A (en) Coating material and manufacturing method thereof
JP6249587B2 (en) Manufacturing method of optical sheet
KR101576659B1 (en) Threshold patterned optical sheet
JP2005205683A (en) Resin substrate and its manufacturing method
KR101501989B1 (en) Optical film using release film and method of producing the same
TW201441050A (en) Manufacturing apparatus and method for optical compound film
TW202016181A (en) Porous thin film and method for fabricating the same
JP5732622B2 (en) Optical member manufacturing equipment
TW201309468A (en) Method of manufacturing rolling shaped decorative machine board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125