JP2012081557A - Formed rotary cutting tool - Google Patents

Formed rotary cutting tool Download PDF

Info

Publication number
JP2012081557A
JP2012081557A JP2010229965A JP2010229965A JP2012081557A JP 2012081557 A JP2012081557 A JP 2012081557A JP 2010229965 A JP2010229965 A JP 2010229965A JP 2010229965 A JP2010229965 A JP 2010229965A JP 2012081557 A JP2012081557 A JP 2012081557A
Authority
JP
Japan
Prior art keywords
groove
cutting
outer peripheral
tool
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229965A
Other languages
Japanese (ja)
Other versions
JP5645333B2 (en
Inventor
Kosuke Mori
講介 森
Kiyoshi Tsuzuki
清志 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2010229965A priority Critical patent/JP5645333B2/en
Publication of JP2012081557A publication Critical patent/JP2012081557A/en
Application granted granted Critical
Publication of JP5645333B2 publication Critical patent/JP5645333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cutting resistance and vibration by improving sharpness and improve cutting accuracy by suppressing tilt of a flute wall and an expanded machining amount.SOLUTION: In a christmas tree-formed milling cutter 10 for finish processing, a chip discharge flute 16 is provided linearly to incline at a constant inclination angle θ1 within a range of 1°-8° with respect to an axis S in a direction opposite to a cutter rotating direction seen from a shank 12 side. Therefore, compared with a conventional product having a straight flute parallel to the axis S, a tilt amount of the flute wall, an expanded machining amount, and cutting resistance are reduced, and vibration and cutting noise are reduced. Cutting performance as a whole is improved, superior cutting accuracy can be achieved, and further high efficiency machining can be performed.

Description

本発明は総形回転切削工具に係り、特に、切りくず排出溝が軸心に対して一定の傾斜角で傾斜するように直線的に設けられている総形回転切削工具に関するものである。   The present invention relates to a general rotary cutting tool, and more particularly to a general rotary cutting tool in which a chip discharge groove is linearly provided so as to incline at a fixed inclination angle with respect to an axis.

切りくず排出溝に沿って外周切れ刃が設けられているとともに、その外周切れ刃の径寸法が工具軸方向において変化しており、軸心Sまわりに回転駆動されつつ被加工物に対して軸心Sと直角な方向へ相対移動させられることにより、溝深さ方向において溝幅が変化している所定形状の溝を切削加工する総形回転切削工具が知られている。特許文献1に記載のクリスマスカッタはその一例で、逆クリスマスツリーのように溝中心に対して左右対称で溝深さ方向において溝幅が増減しながら溝底側程狭くなっているツリー形溝を切削加工するものであり、外周切れ刃の径寸法が溝幅の変化に対応して工具先端側へ向かうに従って増減しながら徐々に小径とされている。また、特許文献2には、外周切れ刃の径寸法が工具先端側へ向かうに従って小さくなるテーパエンドミルに関し、シャンク側から見た工具回転方向と反対方向へねじれたねじれ溝を切りくず排出溝として設けたものが提案されている。   An outer peripheral cutting edge is provided along the chip discharge groove, and the diameter dimension of the outer peripheral cutting edge is changed in the tool axis direction, and is rotated with respect to the workpiece while being rotated about the axis S. A general-purpose rotary cutting tool that cuts a groove having a predetermined shape whose groove width changes in the groove depth direction by being relatively moved in a direction perpendicular to the center S is known. The Christmas cutter described in Patent Document 1 is an example thereof, and a tree-shaped groove that is symmetrical with respect to the groove center and narrows toward the groove bottom side while increasing or decreasing the groove width in the groove depth direction as in an inverted Christmas tree. Cutting is performed, and the diameter of the outer peripheral cutting edge is gradually reduced to a smaller diameter while increasing or decreasing toward the tip of the tool in response to a change in the groove width. Further, Patent Document 2 relates to a tapered end mill in which the diameter dimension of the outer peripheral cutting edge becomes smaller toward the tool tip side, and a twisted groove twisted in the direction opposite to the tool rotation direction viewed from the shank side is provided as a chip discharge groove. Have been proposed.

特開2009−226533号公報JP 2009-226533 A 特開平7−9237号公報Japanese Patent Laid-Open No. 7-9237

しかしながら、このような従来の総形回転切削工具の切りくず排出溝は、軸心Sと平行なストレート溝または軸心Sに対して所定のねじれ角でねじれたねじれ溝であるため、必ずしも十分に満足できる切れ味が得られず、切削抵抗が大きいとともに振動や溝の倒れが発生することがあるなど、未だ改善の余地があった。   However, the chip discharge groove of such a conventional general-purpose rotary cutting tool is a straight groove parallel to the shaft center S or a twist groove twisted at a predetermined twist angle with respect to the shaft center S. There was still room for improvement, such as the fact that satisfactory sharpness could not be obtained, the cutting resistance was great, and vibrations and groove collapse could occur.

本発明は以上の事情を背景として為されたもので、その目的とするところは、切れ味を向上させて切削抵抗や振動を低減し、溝の倒れや加工拡大量を抑制して加工精度を向上させることにある。   The present invention has been made against the background of the above circumstances. The purpose of the present invention is to improve the cutting accuracy and reduce cutting resistance and vibration, and to improve the machining accuracy by suppressing the collapse of the groove and the amount of machining expansion. There is to make it.

かかる目的を達成するために、第1発明は、切りくず排出溝に沿って外周切れ刃が設けられているとともに、その外周切れ刃の径寸法が工具軸方向において変化しており、軸心Sまわりに回転駆動されつつ被加工物に対して軸心Sと直角な方向へ相対移動させられることにより、溝深さ方向において溝幅が変化している所定形状の溝を切削加工する総形回転切削工具において、前記切りくず排出溝は、シャンク側から見た工具回転方向と反対方向へ軸心Sに対して1°〜8°の範囲内の一定の傾斜角で傾斜するように直線的に設けられていることを特徴とする。   In order to achieve such an object, according to the first invention, an outer peripheral cutting edge is provided along the chip discharge groove, and the diameter dimension of the outer peripheral cutting edge changes in the tool axis direction. Gross rotation for cutting a groove of a predetermined shape whose groove width changes in the groove depth direction by being driven to rotate around and being moved relative to the workpiece in a direction perpendicular to the axis S In the cutting tool, the chip discharge groove is linearly inclined at a constant inclination angle within a range of 1 ° to 8 ° with respect to the axis S in a direction opposite to the tool rotation direction seen from the shank side. It is provided.

第2発明は、第1発明の総形回転切削工具において、その総形回転切削工具は、逆クリスマスツリーのように溝中心に対して左右対称で溝深さ方向において溝幅が増減しながら溝底側程狭くなっているツリー形溝を切削加工するために、前記外周切れ刃の径寸法がその溝幅の変化に対応して工具先端側へ向かうに従って増減しながら徐々に小径とされているクリスマスカッタであることを特徴とする。   The second aspect of the present invention is the total rotary cutting tool according to the first aspect, wherein the total rotary cutting tool is symmetrical with respect to the center of the groove as in an inverted Christmas tree and the groove width increases and decreases in the groove depth direction. In order to cut a tree-shaped groove that is narrower toward the bottom side, the diameter of the outer peripheral cutting edge is gradually reduced to a smaller diameter while increasing or decreasing toward the tool tip side in response to the change in the groove width. It is a Christmas cutter.

第3発明は、第1発明または第2発明の総形回転切削工具において、前記外周切れ刃は、径寸法が目的とする溝形状の溝幅寸法より小さいとともに細かく増減している波形状を成しており、且つ、複数の外周切れ刃の波形状の位相が互いにずれているラフィング切れ刃で、荒加工または中仕上げ加工に用いられることを特徴とする。   According to a third aspect of the present invention, in the overall rotary cutting tool according to the first or second aspect of the invention, the outer peripheral cutting edge has a corrugated shape in which the diameter is smaller than the desired groove width and is finely increased or decreased. And a roughing cutting edge in which the wave shapes of the plurality of outer peripheral cutting edges are out of phase with each other, and is used for roughing or intermediate finishing.

第4発明は、第1発明または第2発明の総形回転切削工具において、前記外周切れ刃は、径寸法が目的とする溝形状の溝幅寸法と略同じ寸法とされており、仕上げ加工に用いられることを特徴とする。   According to a fourth aspect of the present invention, in the overall rotary cutting tool according to the first aspect or the second aspect, the outer peripheral cutting edge has a diameter that is substantially the same as a groove width dimension of a target groove shape. It is used.

このような総形回転切削工具においては、切りくず排出溝がシャンク側から見た工具回転方向と反対方向へ軸心Sに対して1°〜8°の範囲内の一定の傾斜角で傾斜するように直線的に設けられているため、本発明者等の実験によればストレート溝やねじれ溝の場合に比較して溝倒れ量や加工拡大量、切削抵抗が低減された。また、振動や切削音、加工面についても、ストレート溝の場合に比較して改善され、ねじれ溝と比較しても同等以上の結果が得られた。このように切削性能が全体として向上し、優れた加工精度が得られるようになり、更なる高能率加工を行うことが可能となった。   In such a general rotary cutting tool, the chip discharge groove is inclined at a constant inclination angle within the range of 1 ° to 8 ° with respect to the axis S in the direction opposite to the tool rotation direction seen from the shank side. Therefore, according to the experiments by the present inventors, the amount of groove collapse, the amount of processing expansion, and the cutting resistance were reduced as compared with the case of straight grooves and twisted grooves. In addition, vibration, cutting sound, and machined surface were improved as compared with the straight groove, and the same or better results were obtained when compared with the twisted groove. Thus, the cutting performance is improved as a whole, and excellent machining accuracy can be obtained, so that it is possible to perform further highly efficient machining.

また、例えば工具素材を一定の姿勢に固定したまま、工具素材の軸心Sに対して一定の傾斜角で傾斜する方向へ研削砥石を相対的に直線移動させるだけで切りくず排出溝を加工することが可能で、ねじれ溝のように工具素材を軸心Sまわりに回転させながら研削砥石を軸方向へ相対移動させる場合に比較して、切りくず排出溝を加工するための装置が簡単且つ安価に構成されるとともに、干渉研削による溝断面の形状変化が無いため溝断面形状の設定が容易になる。   Further, for example, the chip discharge groove is machined by moving the grinding wheel relatively linearly in a direction inclined at a constant inclination angle with respect to the axis S of the tool material while the tool material is fixed in a fixed posture. Compared to the case where the grinding wheel is moved relative to the axial direction while rotating the tool material around the axis S like a torsion groove, the device for machining the chip discharge groove is simple and inexpensive. In addition, since there is no change in the shape of the groove cross-section due to interference grinding, setting of the groove cross-sectional shape becomes easy.

第2発明は、外周切れ刃の径寸法が工具先端側へ向かうに従って増減しながら徐々に小径とされているクリスマスカッタに関するもので、第1発明の効果が適切に得られる。   The second invention relates to a Christmas cutter in which the diameter of the outer peripheral cutting edge is gradually reduced as it goes toward the tool tip, and the effect of the first invention can be appropriately obtained.

第3発明は荒加工用または中仕上げ加工用の総形回転切削工具に関するもので、溝の倒れや加工拡大量が改善されることから、より仕上げ寸法に近い寸法で荒加工や中仕上げ加工を行うことが可能で、仕上げ加工の際の切削寸法(仕上げ代)を小さくして、より安定した精度の高い仕上げ加工を行うことができるようになる。すなわち、荒加工や中仕上げ加工用の総形回転切削工具は、切削性能を重視して一般に軸心Sまわりにねじれたねじれ溝(ねじれ刃)が採用されるが、本発明の傾斜タイプの切りくず排出溝によれば、切れ味等の切削性能を維持しつつ加工精度を向上させることができたのである。   The third invention relates to a general-purpose rotary cutting tool for roughing or semi-finishing, which improves the tilting of the groove and the amount of enlargement of machining. Therefore, it is possible to reduce the cutting dimension (finishing allowance) at the time of finishing and to perform more stable and highly accurate finishing. That is, a general-purpose rotary cutting tool for roughing and semi-finishing machining generally employs a twisted groove (twisted blade) twisted around the axis S with an emphasis on cutting performance. According to the waste discharge groove, it was possible to improve the machining accuracy while maintaining the cutting performance such as sharpness.

第4発明は仕上げ加工用の総形回転切削工具に関するもので、溝の倒れや加工面、加工拡大量が改善されることから、より高い寸法精度で仕上げ加工を行うことができる。すなわち、仕上げ加工用の総形回転切削工具は、加工精度を重視して一般に軸心Sと平行なストレート溝(ストレート刃)が採用されるが、本発明の傾斜タイプの切りくず排出溝によれば、切れ味等の切削性能の向上により振動や切削抵抗が低減されることから、加工精度を更に向上させることができたのである。   The fourth invention relates to a complete rotary cutting tool for finishing, and since the tilting of the groove, the processed surface, and the amount of processing expansion are improved, finishing can be performed with higher dimensional accuracy. In other words, a general-purpose rotary cutting tool for finishing machining generally adopts a straight groove (straight blade) parallel to the axis S with an emphasis on machining accuracy, but according to the inclined type chip discharge groove of the present invention. In this case, since the vibration and cutting resistance are reduced by improving the cutting performance such as sharpness, the processing accuracy can be further improved.

本発明が仕上げ加工用のクリスマスカッタに適用された場合を説明する図で、(a) は一部を切り欠いた正面図、(b) は刃部の拡大図、(c) は(b) におけるIC−IC断面図である。It is a figure explaining the case where the present invention is applied to a Christmas cutter for finishing, (a) is a front view with a part cut away, (b) is an enlarged view of the blade, (c) is (b) It is IC-IC sectional drawing in. 従来のストレート溝およびねじれ溝と、本発明の傾斜溝との相違を比較して説明する図である。It is a figure which compares and demonstrates the difference with the conventional straight groove | channel and the twist groove | channel, and the inclination groove | channel of this invention. 傾斜溝の場合に、先端からの距離によって変化する溝断面形状を説明する図である。In the case of an inclined groove, it is a figure explaining the groove cross-sectional shape which changes with the distance from a front-end | tip. 径寸法が変化しているクリスマスカッタについて、本発明の傾斜溝、従来のねじれ溝、ストレート溝に関して各部のすくい角を具体的に求めた結果を説明する図である。It is a figure explaining the result of having calculated | required the rake angle of each part concretely regarding the inclination groove | channel of this invention, the conventional twist groove | channel, and the straight groove | channel about the Christmas cutter from which the diameter dimension is changing. 本発明品、従来品、比較品を用いて、(a) の切削条件で切削加工を行ってカッタ性能を調べた結果を説明する図で、(b) は中仕上げカッタの場合、(c) は仕上げカッタの場合である。The figure explaining the result of examining the cutter performance by cutting under the cutting conditions of (a) using the product of the present invention, the conventional product, and the comparative product, (b) is the case of the intermediate finish cutter, (c) Is the case of a finishing cutter. 本発明が中仕上げ加工用のクリスマスカッタに適用された場合を説明する図で、(a) は一部を切り欠いた正面図、(b) は外周切れ刃の拡大図、(c) は(a) における VIC−VIC 断面の拡大図である。FIG. 3 is a diagram for explaining a case where the present invention is applied to a Christmas cutter for intermediate finishing, in which (a) is a front view with a part cut away, (b) is an enlarged view of an outer peripheral cutting edge, and (c) is ( It is an enlarged view of the VIC-VIC cross section in a). 図5の性能試験で用いた中仕上げカッタおよび仕上げカッタの寸法の違い(仕上げカッタの仕上げ代)を説明する図である。It is a figure explaining the difference (finishing allowance of a finishing cutter) of the dimension of the finishing cutter used in the performance test of FIG. 5, and a finishing cutter. 図5の性能試験で調べた溝倒れ量、加工拡大量、および切削抵抗を具体的に説明する図である。FIG. 6 is a diagram for specifically explaining the groove collapse amount, the processing expansion amount, and the cutting resistance examined in the performance test of FIG. 5.

本発明は、ツリー形溝を切削加工するクリスマスカッタに好適に適用されるが、外周切れ刃の径寸法が増減しているクリスマスカッタ以外の総形回転切削工具や、外周切れ刃の径寸法が一定の変化率で変化しているテーパエンドミルなど、他の総形回転切削工具にも適用され得る。また、中仕上げ加工および仕上げ加工の2段階で所定形状の溝を切削加工する場合の中仕上げ加工用、仕上げ加工用の総形回転切削工具に好適に適用されるが、その中仕上げ加工の前に荒加工を行う場合の中仕上げ加工用、荒加工用の総形回転切削工具にも適用され得る。第3発明の荒加工用、中仕上げ加工用の総形回転切削工具は波形状のラフィング切れ刃が設けられているが、ニックが設けられた荒加工用、中仕上げ加工用の総形回転切削工具にも本発明は適用され得る。これ等の総形回転切削工具は、外周切れ刃の他に工具先端に底刃を有して構成される。   The present invention is suitably applied to a Christmas cutter that cuts a tree-shaped groove, but the overall rotary cutting tool other than the Christmas cutter in which the diameter dimension of the outer peripheral cutting edge is increased or decreased, or the diameter dimension of the outer peripheral cutting edge is It can also be applied to other general rotary cutting tools such as a tapered end mill that is changing at a constant rate of change. In addition, it is suitable for medium-finishing and finishing rotary cutting tools for cutting a predetermined shape in two stages of intermediate finishing and finishing. The present invention can also be applied to an overall rotary cutting tool for intermediate finishing and roughing when roughing is performed. Although the rough rotary cutting tool for roughing and intermediate finishing according to the third aspect of the invention is provided with a wave-shaped roughing cutting edge, the rough rotary cutting tool for roughing and intermediate finishing with a nick is provided. The present invention can also be applied to tools. These general rotary cutting tools have a bottom blade at the tip of the tool in addition to the outer peripheral cutting blade.

荒加工用や中仕上げ加工用の総形回転切削工具は例えば3枚刃で、仕上げ加工用の総形回転切削工具は例えば4枚刃であるが、これ等の外周切れ刃の枚数は径寸法等を考慮して適宜定めることができる。例えば、荒加工用や中仕上げ加工用の総形回転切削工具の外周切れ刃を4枚以上設けたり、仕上げ加工用の総形回転切削工具の外周切れ刃を3枚、或いは5枚以上設けたりすることも可能である。   The general rotary cutting tool for roughing and semi-finishing has, for example, three blades, and the total rotary cutting tool for finishing has, for example, four blades. Etc. can be determined as appropriate. For example, four or more peripheral cutting edges of a rough rotary cutting tool for roughing or semi-finishing are provided, or three or five peripheral cutting edges of a complete rotary cutting tool for finishing are provided. It is also possible to do.

切りくず排出溝は、シャンク側から見た工具回転方向と反対方向へ軸心Sに対して1°〜8°の範囲内の一定の傾斜角で傾斜するように直線的に設けられ、例えばシャンク側から見て右まわりに回転駆動して切削加工を行う場合、切りくず排出溝は手前から前方へ向かうに従って左方向へ傾斜するように設けられる。また、シャンク側から見て左まわりに回転駆動して切削加工を行う場合、切りくず排出溝は手前から前方へ向かうに従って右方向へ傾斜するように設けられる。   The chip discharge groove is provided linearly so as to incline at a constant inclination angle within a range of 1 ° to 8 ° with respect to the axis S in the direction opposite to the tool rotation direction as viewed from the shank side. When cutting by rotating clockwise when viewed from the side, the chip discharge groove is provided so as to incline in the left direction from the front to the front. Further, when cutting is performed by rotationally driving counterclockwise as viewed from the shank side, the chip discharge groove is provided so as to incline in the right direction from the front toward the front.

切りくず排出溝の傾斜角が1°より小さいと、ストレート溝の場合と差が無くなり、切削性能や加工精度の向上効果が十分に得られない一方、傾斜角が8°を超えると、刃欠けが発生したり溝の倒れが大きくなったり切削抵抗が大きくなったりして、切削性能や加工精度の向上効果が十分に得られない。すなわち、傾斜角が1°〜8°の範囲内でないと、ストレート溝やねじれ溝に比較して切削性能や加工精度の向上効果が適切に得られないのであり、3°〜5°程度の範囲内が望ましい。   If the inclination angle of the chip discharge groove is smaller than 1 °, there will be no difference from the case of the straight groove, and the effect of improving cutting performance and machining accuracy cannot be obtained sufficiently. Or the falling of the groove increases or the cutting resistance increases, and the effect of improving the cutting performance and processing accuracy cannot be obtained sufficiently. That is, if the inclination angle is not within the range of 1 ° to 8 °, the effect of improving the cutting performance and machining accuracy cannot be appropriately obtained as compared with the straight groove or the twisted groove, and the range of about 3 ° to 5 °. The inside is desirable.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である仕上げ加工用のクリスマスカッタ10を説明する図で、図6は中仕上げ加工用のクリスマスカッタ30を説明する図であり、何れも図8の(b) 、(c) に示すように被加工物52に対してツリー形溝50を切削加工するためのものである。被加工物52はテスト用のもので、実際には例えばタービン軸等の回転軸に対してツリー形溝50を加工する場合に用いられる。クリスマスカッタ10、30は、何れも軸心Sまわりに回転駆動されつつ被加工物52に対してその軸心Sと直角な方向へ相対移動させられることにより、逆クリスマスツリーのように溝中心に対して左右対称で溝深さ方向において溝幅が増減しながら溝底側程狭くなっているツリー形溝50を切削加工するもので、その溝幅の変化に対応して径寸法が工具先端側へ向かうに従って3山、3谷で増減しながら徐々に小径とされている複数の外周切れ刃18、38を備えている。仕上げ加工用のクリスマスカッタ10は、中仕上げ加工用のクリスマスカッタ30によって形成されたツリー形溝50に対して、所定の仕上げ代(例えば0.3mm)で仕上げ加工を行うもので、外周切れ刃18、38の径寸法すなわち回転軌跡形状(加工形状に対応)は図7に示すように仕上げ代分だけ相違し、ツリー形溝50も仕上げ代分だけ溝幅寸法が相違する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a finishing Christmas cutter 10 according to an embodiment of the present invention, and FIG. 6 is a diagram illustrating an intermediate finishing Christmas cutter 30, both of which are illustrated in FIG. ) And (c) for cutting the tree-shaped groove 50 on the workpiece 52. The workpiece 52 is used for testing, and is actually used when machining the tree-shaped groove 50 with respect to a rotating shaft such as a turbine shaft. Each of the Christmas cutters 10 and 30 is driven to rotate about the axis S while being moved relative to the workpiece 52 in a direction perpendicular to the axis S, so that the Christmas cutters 10 and 30 are centered on the groove like an inverted Christmas tree. A tree-shaped groove 50 that is symmetrical to the left and right and that is narrower toward the groove bottom while increasing or decreasing in the groove depth direction, the diameter dimension corresponding to the change in the groove width is the tool tip side. A plurality of outer peripheral cutting edges 18 and 38 that are gradually reduced in diameter while increasing / decreasing in three peaks and three valleys as they go to are provided. The finishing Christmas cutter 10 performs finishing processing with a predetermined finishing allowance (for example, 0.3 mm) on the tree-shaped groove 50 formed by the intermediate finishing Christmas cutter 30. As shown in FIG. 7, the diameter dimensions of 18, 38, that is, the rotation trajectory shape (corresponding to the machining shape) are different by the finishing allowance, and the tree-shaped groove 50 is also different in the groove width dimension by the finishing allowance.

図1の(a) は、仕上げ加工用のクリスマスカッタ10を軸心Sと直角な方向から見た一部を切り欠いた正面図で、(b) はこのクリスマスカッタ10の刃部14の拡大図、(c) は(b) におけるIC−IC断面図である。クリスマスカッタ10は、シャンク12および刃部14を一体に備えており、刃部14は、加工すべきツリー形溝50の凹凸形状に対応する逆クリスマスツリー形状を成しており、工具先端側(図の下方向)へ向かうに従って径寸法が滑らかに増減しながら徐々に小径とされている。刃部14には、軸心Sまわりに等角度間隔で4本の切りくず排出溝16が設けられ、その切りくず排出溝16に沿って4枚の外周切れ刃18、およびその外周切れ刃18に連続する底刃20が設けられている。それ等の外周切れ刃18および底刃20は、クリスマスカッタ10がシャンク12側(図1(a) 、(b) における上方)から見て右まわりに回転駆動されることにより切削加工を行うように設けられており、切りくず排出溝16は、軸心Sに対して1°〜8°の範囲内の一定の傾斜角θ1で左方向へ傾斜するように直線的に設けられている。このように切りくず排出溝16が一定の傾斜角θ1で設けられていることから、外周切れ刃18の軸心Sに対して直角な断面におけるすくい角γ1は、軸方向において連続的に変化している。このすくい角γ1は、外周切れ刃18の径寸法によっても変化する。   FIG. 1A is a front view of the finishing Christmas cutter 10 as seen from a direction perpendicular to the axis S, and FIG. 1B is an enlarged view of the blade 14 of the Christmas cutter 10. Fig. 3 (c) is a cross-sectional view of IC-IC in (b). The Christmas cutter 10 is integrally provided with a shank 12 and a blade portion 14, and the blade portion 14 has an inverted Christmas tree shape corresponding to the concavo-convex shape of the tree-shaped groove 50 to be machined. The diameter is gradually made smaller with increasing and decreasing smoothly as it goes downward (downward in the figure). The blade portion 14 is provided with four chip discharge grooves 16 at equiangular intervals around the axis S, and four outer peripheral cutting edges 18 along the chip discharge groove 16 and the outer peripheral cutting edges 18. The bottom blade 20 is provided continuously. The outer peripheral cutting edge 18 and the bottom cutting edge 20 are cut by rotating the Christmas cutter 10 clockwise when viewed from the shank 12 side (above in FIGS. 1 (a) and 1 (b)). The chip discharge groove 16 is linearly provided so as to incline to the left with a constant inclination angle θ1 within the range of 1 ° to 8 ° with respect to the axis S. Thus, since the chip discharge groove 16 is provided at a constant inclination angle θ1, the rake angle γ1 in the cross section perpendicular to the axis S of the outer peripheral cutting edge 18 continuously changes in the axial direction. ing. The rake angle γ1 also varies depending on the diameter of the outer peripheral cutting edge 18.

図6の(a) は、中仕上げ加工用のクリスマスカッタ30を軸心Sと直角な方向から見た一部を切り欠いた正面図で、(b) は外周切れ刃38の拡大図、(c) は(a) における VIC−VI断面の拡大図である。クリスマスカッタ30は、シャンク32および刃部34を一体に備えており、刃部34は、加工すべきツリー形溝50の凹凸形状に対応する逆クリスマスツリー形状を成しており、工具先端側(図の下方向)へ向かうに従って径寸法が滑らかに増減しながら徐々に小径とされている。刃部34には、軸心Sまわりに等角度間隔で3本の切りくず排出溝36が設けられ、その切りくず排出溝36に沿って3枚の外周切れ刃38、およびその外周切れ刃38に連続する底刃40が設けられている。3枚の外周切れ刃38は、逃げ面に細かな波形状の凹凸が設けられることによって径寸法が細かく増減しているとともに、その波形状の位相が互いにずれているラフィング切れ刃にて構成されている。外周切れ刃38および底刃40は、クリスマスカッタ30がシャンク32側(図6(a) における上方)から見て右まわりに回転駆動されることにより切削加工を行うように設けられており、切りくず排出溝36は、軸心Sに対して1°〜8°の範囲内の一定の傾斜角θ2で左方向へ傾斜するように直線的に設けられている。このように切りくず排出溝36が一定の傾斜角θ2で設けられていることから、外周切れ刃38の軸心Sに対して直角な断面におけるすくい角γ2は軸方向において連続的に変化している。このすくい角γ2は、外周切れ刃38の径寸法によっても変化する。なお、上記傾斜角θ2は前記傾斜角θ1と同じでも良いし、異なっていても良い。   6A is a front view in which a part of the Christmas cutter 30 for intermediate finishing is viewed from a direction perpendicular to the axis S, and FIG. 6B is an enlarged view of the outer peripheral cutting edge 38. c) is an enlarged view of the VIC-VI cross section in (a). The Christmas cutter 30 is integrally provided with a shank 32 and a blade portion 34, and the blade portion 34 has an inverted Christmas tree shape corresponding to the concavo-convex shape of the tree-shaped groove 50 to be machined. The diameter is gradually made smaller with increasing and decreasing smoothly as it goes downward (downward in the figure). The blade portion 34 is provided with three chip discharge grooves 36 at equiangular intervals around the axis S, and the three outer peripheral cutting edges 38 and the outer peripheral cutting edges 38 along the chip discharge grooves 36. A bottom blade 40 that is continuous is provided. The three outer peripheral cutting edges 38 are composed of roughing cutting edges whose diameters are finely increased or decreased by providing fine corrugations on the flank and whose corrugated phases are shifted from each other. ing. The outer peripheral cutting edge 38 and the bottom cutting edge 40 are provided so as to perform cutting by rotating the Christmas cutter 30 clockwise when viewed from the shank 32 side (upper side in FIG. 6A). The waste discharge groove 36 is linearly provided so as to incline to the left with a constant inclination angle θ2 within a range of 1 ° to 8 ° with respect to the axis S. Since the chip discharge groove 36 is thus provided at a constant inclination angle θ2, the rake angle γ2 in the cross section perpendicular to the axis S of the outer peripheral cutting edge 38 changes continuously in the axial direction. Yes. The rake angle γ2 also varies depending on the diameter of the outer peripheral cutting edge 38. The inclination angle θ2 may be the same as or different from the inclination angle θ1.

ここで、上記切りくず排出溝16、36のように、軸心Sに対して一定の傾斜角θで左方向へ傾斜する左傾斜溝60は、例えば図2の(c) に示すように、軸心Oまわりに回転駆動される研削砥石62を工具素材64の軸心Sに対して所定の姿勢(図では軸心Sに対して傾斜角θとほぼ同一の角度で傾斜する姿勢)で配置するとともに、工具素材64を傾斜角θと平行な方向(白抜き矢印で示す方向)Cへ相対的に直線移動させることによって形成することができる。図2(c) の下側の断面図は、4本の左傾斜溝60を加工した後の状態のII−II断面図である。これに対し、従来の軸心Sと平行なストレート溝66は、図2の(a) に示すように研削砥石62を軸心Sとほぼ平行に配置するとともに、工具素材64を軸心Sと平行な方向Aへ相対的に直線移動させることによって形成される。また、軸心Sのまわりに所定のねじれ角λで右まわりにねじれたねじれ溝68は、図2の(b) に示すように研削砥石62を軸心Sに対して所定のねじれ角λとほぼ同一の角度で傾斜する姿勢で配置するとともに、工具素材64を軸心Sと平行な方向Bへ相対的に直線移動させながら軸心Sまわりに回転させることによって形成される。その場合に、(a) のストレート溝66および(c) の左傾斜溝60の溝断面は、研削砥石62の研削部の断面形状に対応する形状で、研削砥石62の姿勢によって相違するものの、互いに近似した断面形状になる。これに対し、(b) のねじれ溝68の溝断面は、研削砥石62の干渉により研削砥石62の断面形状とは異なった形状となり、ストレート溝66や左傾斜溝60の断面形状とは大きく相違する。また、この図2は、従来のストレート溝66およびねじれ溝68と左傾斜溝60との相違を説明するためのもので、工具素材64は一定の径寸法の円柱形状である。   Here, like the chip discharge grooves 16 and 36, the left inclined groove 60 inclined leftward with respect to the axis S at a constant inclination angle θ is, for example, as shown in FIG. The grinding wheel 62 that is driven to rotate around the axis O is arranged in a predetermined posture with respect to the axis S of the tool material 64 (in the drawing, the posture is inclined at substantially the same angle as the inclination angle θ with respect to the axis S). In addition, the tool material 64 can be formed by linearly moving in a direction C (direction indicated by a hollow arrow) C parallel to the inclination angle θ. The lower cross-sectional view of FIG. 2 (c) is a cross-sectional view taken along the line II-II after the four left inclined grooves 60 are processed. On the other hand, the straight groove 66 parallel to the conventional shaft center S arranges the grinding wheel 62 substantially parallel to the shaft center S and the tool material 64 to the shaft center S as shown in FIG. It is formed by relatively linearly moving in the parallel direction A. Further, the twist groove 68 twisted clockwise around the axis S with a predetermined twist angle λ has a predetermined twist angle λ with respect to the axis S with respect to the grinding wheel 62 as shown in FIG. The tool material 64 is arranged in a posture inclined at substantially the same angle, and is rotated by rotating around the axis S while relatively moving the tool material 64 in a direction B parallel to the axis S. In this case, the groove cross section of the straight groove 66 of (a) and the left inclined groove 60 of (c) is a shape corresponding to the cross-sectional shape of the grinding portion of the grinding wheel 62, although it differs depending on the posture of the grinding wheel 62. The cross-sectional shapes approximate to each other. On the other hand, the cross-sectional shape of the twisted groove 68 of (b) is different from the cross-sectional shape of the grinding wheel 62 due to the interference of the grinding wheel 62 and is greatly different from the cross-sectional shapes of the straight groove 66 and the left inclined groove 60. To do. Further, FIG. 2 is for explaining the difference between the conventional straight groove 66 and the twisted groove 68 and the left inclined groove 60, and the tool material 64 has a cylindrical shape with a fixed diameter.

また、(a) のストレート溝66および(b) のねじれ溝68は、工具素材64の外径寸法が一定の場合、軸方向において一定の溝断面形状で形成され、軸心Sに対して直角な断面のすくい角も一定であるが、(c) の左傾斜溝60は、軸方向において溝断面形状が連続的に変化する。図3は、この左傾斜溝60の溝断面形状の変化を説明する図で、(b) 、(c) 、(d) はそれぞれ(a) におけるIIIB−IIIB視の先端面図、IIIC−IIIC断面図、IIID−IIID断面図で、先端からの距離が長くなる程溝幅が狭くなり、それ等のすくい角はγb>γc>γdの関係となる。図3では、すくい角γdは負である。なお、(d) に示す一点鎖線は、(b) における溝形状を比較のために図示したもので、溝幅の違いは明らかである。   The straight groove 66 (a) and the twisted groove 68 (b) are formed with a constant groove cross-sectional shape in the axial direction when the outer diameter of the tool material 64 is constant, and are perpendicular to the axis S. Although the rake angle of the cross section is constant, the groove shape of the left inclined groove 60 in (c) changes continuously in the axial direction. FIG. 3 is a diagram for explaining the change in the groove cross-sectional shape of the left inclined groove 60. (b), (c), and (d) are front end views as viewed from IIIB-IIIB in FIG. 3A and IIIC-IIIC, respectively. In the cross-sectional views and IIID-IIID cross-sectional views, the longer the distance from the tip, the narrower the groove width, and the rake angles thereof have a relationship of γb> γc> γd. In FIG. 3, the rake angle γd is negative. The alternate long and short dash line shown in (d) shows the groove shape in (b) for comparison, and the difference in groove width is clear.

上記ストレート溝66、ねじれ溝68、および左傾斜溝60について、その特徴を比較すると、ねじれ溝68の溝断面形状は、研削砥石62がねじれ溝68のリードに沿って相対移動させられるため、干渉によってすくい面がフック(湾曲)する。また、スクエア刃タイプで溝底径比率に変化がない場合、すなわち工具素材64の外径寸法が一定の円柱形状の場合、すくい角および外周刃厚に変化はない。切れ刃長さは刃長よりも長くなり、工具使用時における外周切れ刃接触長は、徐々に最大になり、徐々に最小になる。
ストレート溝66の溝断面形状は、研削砥石62の研削部形状がそのまま転写されるため、すくい面はフックしない。スクエア刃タイプで溝底径比率に変化がない場合、すなわち工具素材64の外径寸法が一定の円柱形状の場合、すくい角および外周刃厚に変化はない。切れ刃長さは刃長と等しく、工具使用時における外周切れ刃接触長は瞬時に最大になり、瞬時に最小になる。したがって、切削抵抗が周期的に大きく変化する。
左傾斜溝60の溝断面形状は、研削砥石62の研削部形状がそのまま転写されるため、すくい面はフックしない。スクエア刃タイプで溝底径比率に変化がない場合、すなわち工具素材64の外径寸法が一定の円柱形状の場合でも、軸方向位置によってすくい角および外周刃厚が変化し、工具先端からの距離が長くなる程すくい角は小さくなるとともに外周刃厚は厚くなる。このため、刃径や刃長、溝底径などによって傾斜角θに制約がある。切れ刃長さは刃長よりも長くなり、工具使用時における外周切れ刃接触長は、徐々に最大になり、徐々に最小になる。
すなわち、左傾斜溝60は、ストレート溝66に近い溝断面形状で、高い加工精度が期待できる一方、工具使用時における外周切れ刃接触長の変動はねじれ溝68に近い特性を持ち、切れ味等の切削性能の向上が期待できる。
Comparing the characteristics of the straight groove 66, the twisted groove 68, and the left inclined groove 60, the groove sectional shape of the twisted groove 68 is such that the grinding wheel 62 is relatively moved along the lead of the twisted groove 68. Causes the rake face to be hooked (curved). Further, when there is no change in the groove bottom diameter ratio in the square blade type, that is, when the tool material 64 has a constant outer diameter, the rake angle and the outer peripheral blade thickness are not changed. The cutting edge length becomes longer than the cutting edge length, and the outer peripheral cutting edge contact length when using the tool gradually becomes maximum and gradually becomes minimum.
As for the cross-sectional shape of the straight groove 66, the shape of the grinding part of the grinding wheel 62 is transferred as it is, so that the rake face is not hooked. When there is no change in the groove bottom diameter ratio in the square blade type, that is, when the outer diameter of the tool material 64 is a constant cylindrical shape, there is no change in the rake angle and the outer peripheral blade thickness. The cutting edge length is equal to the cutting edge length, and the outer peripheral cutting edge contact length when using the tool is instantaneously maximized and instantaneously minimized. Accordingly, the cutting resistance changes greatly periodically.
As for the cross-sectional shape of the left inclined groove 60, the shape of the grinding part of the grinding wheel 62 is transferred as it is, so that the rake face is not hooked. When there is no change in the groove bottom diameter ratio with the square blade type, that is, even when the outer diameter of the tool material 64 is constant, the rake angle and outer peripheral blade thickness change depending on the axial position, and the distance from the tool tip As the length increases, the rake angle decreases and the outer peripheral blade thickness increases. For this reason, the inclination angle θ is limited by the blade diameter, the blade length, the groove bottom diameter, and the like. The cutting edge length becomes longer than the cutting edge length, and the outer peripheral cutting edge contact length when using the tool gradually becomes maximum and gradually becomes minimum.
That is, the left inclined groove 60 has a groove cross-sectional shape close to that of the straight groove 66 and high machining accuracy can be expected. On the other hand, fluctuations in the outer peripheral cutting edge contact length when using a tool have characteristics close to that of the twisted groove 68, such as sharpness. Improvement of cutting performance can be expected.

図4は、径寸法が変化している2山、2谷のクリスマスカッタについて、上記左傾斜溝60、ストレート溝66、およびねじれ溝68の場合に、径寸法が異なる山部や谷部のすくい角を具体的に計算した結果を説明する図で、左傾斜溝60については傾斜角θが左1°、および左8°の2種類について調べた。ねじれ溝68については、ねじれ角λが右5°の場合について調べた。工具素材64の径寸法が一定の場合、左傾斜溝60では図3に示すようにすくい角γb、γc、γdが相違するのに対し、ストレート溝66およびねじれ溝68ではすくい角が一定であるが、クリスマスカッタのように径寸法が変化している場合は、図4の結果から明らかなように、左傾斜溝60、ストレート溝66、ねじれ溝68の何れの場合も径寸法の変化によってすくい角が大きく変化する。但し、ストレート溝66ですくい角0°の場合は除く。   FIG. 4 shows a rake of peaks and valleys having different diameters in the case of the left inclined groove 60, the straight groove 66, and the twisted groove 68 for the two-crest and two-valley Christmas cutters having different diameter dimensions. It is a figure explaining the result of having calculated the angle concretely, About the left inclination groove | channel 60, 2 types of inclination angles (theta) left 1 degree and left 8 degrees were investigated. The twisted groove 68 was examined when the twist angle λ was 5 ° to the right. When the diameter dimension of the tool material 64 is constant, the rake angles γb, γc, and γd are different in the left inclined groove 60 as shown in FIG. 3, whereas the rake angle is constant in the straight groove 66 and the twist groove 68. However, when the diameter dimension is changed as in a Christmas cutter, as is apparent from the result of FIG. 4, any of the left inclined groove 60, the straight groove 66, and the twisted groove 68 is raked due to the change in the diameter dimension. The angle changes greatly. However, this excludes when the straight groove 66 has a rake angle of 0 °.

上記図4に示した結果は、なるべくすくい角の変化の影響が少ないように1山部および2山部におけるすくい角の平均が一定(ここでは8°)になるようにして計算した。実際にクリスマスカッタを使用した際に切削速度が小さい径寸法の小さな1山部および谷部のすくい角に着目すると、左傾斜溝60の場合(図4の(b) 、(c) )、ねじれ溝68(図4の(d) )に比較して強い角度ですくい角を設定でき、切削速度が小さい小径の1山部および谷部における切削性能の向上が期待できる。   The results shown in FIG. 4 were calculated so that the average of the rake angles at one and two peaks was constant (here, 8 °) so that the influence of the change in the rake angle was as small as possible. Focusing on the rake angle of one small ridge and valley where the cutting speed is small when the Christmas cutter is actually used, in the case of the left inclined groove 60 ((b) and (c) in FIG. 4), the twist The rake angle can be set at a stronger angle than the groove 68 (FIG. 4 (d)), and the cutting performance can be expected to improve at a small crest and trough with a small cutting speed.

次に、前記傾斜角θ1、θ2が1°〜8°の範囲内の左傾斜溝(切りくず排出溝)を有する本発明品、傾斜角θ1、θ2が8°より大きい比較品、ストレート溝や右ねじれ溝を有する従来品を用いて、図5の(a) に示す切削条件でツリー形溝50を切削加工し、(b) および(c) に示す切削性能や加工精度等に関するカッタ性能を調べた結果を説明する。図5(a) の「被削材質」の欄のSNCM439は、JISの規定によるニッケルクロムモリブデン鋼鋼材である。また、図5(b) の中仕上げ加工は、下溝等が設けられていない無垢の被加工物52に対して、クリスマスカッタ30と同様にラフィング切れ刃が設けられた3枚刃の中仕上げ加工用のクリスマスカッタを用いてツリー形溝50を切削加工した場合で、「0°傾斜(ストレート溝)」および「右5°ねじれ」は従来のクリスマスカッタ、「左3°傾斜」および「左5°傾斜」は傾斜角θ2が3°、5°の本発明品(クリスマスカッタ30)、「左10°傾斜」は傾斜角θ2=10°の比較品である。図5(c) の仕上げ加工は、上記中仕上げ加工で最も加工精度が優れている「左3°傾斜」の本発明品によって中仕上げ加工されたツリー形溝50に対して、クリスマスカッタ10と同様に構成された4枚刃の仕上げ加工用のクリスマスカッタを用いて仕上げ代0.3mmで仕上げ切削を行った場合で、「0°傾斜(ストレート溝)」は従来のクリスマスカッタ、「左3°傾斜」および「左5°傾斜」は傾斜角θ1が3°、5°の本発明品(クリスマスカッタ10)、「左10°傾斜」は傾斜角θ1=10°の比較品である。なお、仕上げ加工では、従来、ねじれ溝のクリスマスカッタが用いられていないため、今回のテストでは省略した。   Next, the product of the present invention having a left inclined groove (chip discharge groove) in which the inclination angles θ1, θ2 are in the range of 1 ° to 8 °, a comparative product having inclination angles θ1, θ2 larger than 8 °, a straight groove, Using a conventional product with a right-handed twist groove, the tree-shaped groove 50 is cut under the cutting conditions shown in FIG. 5 (a), and the cutting performance and processing accuracy shown in (b) and (c) are shown. The results of the investigation will be described. SNCM439 in the column of “Machining material” in FIG. 5A is a nickel chrome molybdenum steel material according to JIS regulations. In addition, the intermediate finishing process shown in FIG. 5B is a three-blade intermediate finishing process in which a roughing cutting edge is provided in the same manner as the Christmas cutter 30 on a solid workpiece 52 without a lower groove or the like. When the tree-shaped groove 50 is cut using a conventional Christmas cutter, “0 ° tilt (straight groove)” and “right 5 ° twist” are the conventional Christmas cutters, “left 3 ° tilt” and “left 5”. “Inclination” is a product of the present invention (Christmas cutter 30) with an inclination angle θ2 of 3 ° and 5 °, and “Left 10 ° inclination” is a comparative product with an inclination angle θ2 = 10 °. The finishing process of FIG. 5 (c) is the same as that of the Christmas cutter 10 with respect to the tree-shaped groove 50 that has been subjected to the intermediate finishing process according to the product of the present invention having a “left 3 ° inclination” that has the highest processing accuracy in the above-described intermediate finishing process. In the case of finishing cutting at a finishing allowance of 0.3 mm using a 4-blade finishing Christmas cutter configured similarly, “0 ° tilt (straight groove)” is the conventional Christmas cutter, “Left 3 “Inclination of 5 °” and “Inclination of 5 ° to the left” are products of the present invention (Christmas cutter 10) having an inclination angle θ1 of 3 ° and 5 °, and “Inclination of 10 ° to the left” are comparative products having an inclination angle of θ1 = 10 °. In the finishing process, a Christmas cutter with a twisted groove has not been used so far, so it was omitted in this test.

上記図5(b) の「振動」、「切削音」、および「加工面」の欄の評価「◎」は良好、「○」はやや良好、「△」は普通、「×」は悪い、を意味し、試験者の目視または聴覚による感覚的評価で、従来使用されている「右5°ねじれ」を基準として相対的に評価した。図5(c) の「振動」および「切削音」についても同様であるが、この場合は「0°傾斜(ストレート溝)」を基準として相対的に評価した。「0°傾斜(ストレート溝)」の評価が「△」なのは、(b) の中仕上げ加工で基準にした「右5°ねじれ」の場合に比較して悪いためである。   In the column of “vibration”, “cutting sound” and “machined surface” in FIG. 5 (b) above, the evaluation “◎” is good, “◯” is slightly good, “△” is normal, “×” is bad, In the sensory evaluation by the examiner's visual or auditory sense, relative evaluation was made based on the conventionally used “right 5 ° twist”. The same applies to “vibration” and “cutting sound” in FIG. 5 (c), but in this case, relative evaluation was made based on “0 ° inclination (straight groove)”. The reason why the evaluation of “0 ° inclination (straight groove)” is “△” is that it is worse than the case of “right 5 ° twist” which is the standard in the intermediate finishing of (b).

また、図5(b) 、(c) の「溝倒れ量」は、図8の(a) に示す変位量ΔX1、ΔX2の平均値で、図に示すアップカット側への倒れを正として求めた。図8(a) のツリー形溝50は、溝の凹凸を省略して簡略化して示した図である。「加工拡大量」は、図8(b) に示す溝幅と工具径との差(溝幅−工具径)で、図に示すように最大谷径部分で測定した。「切削抵抗」は、図8の(c) に示す主分力Fx、送り分力Fy、および背分力Fzの変位量を三分力計で測定し、その値の合力Fを切削抵抗として算出した。何れも、被加工物52に対する工具の当り始めおよび抜け時を除く加工安定領域で求めた。   In addition, the “groove collapse amount” in FIGS. 5B and 5C is an average value of the displacement amounts ΔX1 and ΔX2 shown in FIG. 8A, and the tilt toward the up-cut side shown in FIG. It was. The tree-shaped groove 50 in FIG. 8 (a) is a simplified view with the groove irregularities omitted. “Processing expansion amount” is the difference between the groove width and tool diameter shown in FIG. 8B (groove width−tool diameter), and was measured at the maximum valley diameter portion as shown in the figure. The “cutting resistance” is obtained by measuring the displacement of the main component force Fx, the feed component force Fy, and the back component force Fz shown in FIG. 8C with a three component force meter, and using the resultant force F as a cutting resistance. Calculated. In any case, the values were obtained in the machining stable region excluding the beginning of contact of the tool with respect to the workpiece 52 and the time when the tool was removed.

そして、中仕上げ加工用のクリスマスカッタに関しては、図5の(b) に示す試験結果から明らかなように、「左3°傾斜」および「左5°傾斜」の本発明品によれば、「0°傾斜(ストレート溝)」の従来品に比較して振動、切削音、および加工面の切削性能が何れも改善され、「右5°ねじれ」の従来品に比較しても同等以上の結果が得られた。切削抵抗については、「左3°傾斜」および「左5°傾斜」の本発明品によれば、「0°傾斜(ストレート溝)」の従来品の43%〜46%で半分以下になった。「右5°ねじれ」に比較しても、13%〜20%程度低減された。溝倒れ量および加工拡大量の加工精度については、「左3°傾斜」および「左5°傾斜」の本発明品によれば、「0°傾斜(ストレート溝)」および「右5°ねじれ」の何れの従来品よりも良好な結果が得られた。「左10°傾斜」の比較品については、「右5°ねじれ」の従来品と比較すると、加工拡大量や切削抵抗については良くなるものの、加工面および溝倒れ量はやや悪化しており、十分な性能向上効果が得られなかった。   And, as is clear from the test results shown in FIG. 5 (b), the Christmas cutter for intermediate finishing processing according to the product of the present invention of “left 3 ° inclination” and “left 5 ° inclination” The vibration, cutting sound, and cutting performance of the machined surface are all improved compared to the conventional product of “0 ° inclination (straight groove)”, and the result is equal to or better than the conventional product of “5 ° right twist”. was gotten. Regarding the cutting resistance, according to the products of the present invention of “Left 3 ° Inclination” and “Left 5 ° Inclination”, it was less than half in 43% to 46% of the conventional product of “0 ° inclination (straight groove)”. . Even compared with the “right 5 ° twist”, it was reduced by about 13% to 20%. Regarding the processing accuracy of the groove collapse amount and the processing enlargement amount, according to the products of the present invention of “left 3 ° inclination” and “left 5 ° inclination”, “0 ° inclination (straight groove)” and “right 5 ° twist” Better results were obtained than any of the conventional products. Compared with the conventional product of “Left 10 ° tilt”, compared to the conventional product of “Right 5 ° twist”, the machining expansion amount and cutting resistance are improved, but the machining surface and the groove collapse amount are slightly deteriorated. A sufficient performance improvement effect could not be obtained.

仕上げ加工用のクリスマスカッタに関しては、図5の(c) に示す試験結果から明らかなように、「左3°傾斜」および「左5°傾斜」の本発明品によれば、振動、切削音、および加工面粗さの切削性能に関し、「0°傾斜(ストレート溝)」の従来品と同程度かそれ以上の結果が得られた。切削抵抗についても、「左3°傾斜」および「左5°傾斜」の本発明品によれば、「0°傾斜(ストレート溝)」の従来品の59%〜71%となり、約2/3に低減された。溝倒れ量および加工拡大量の加工精度についても、「左3°傾斜」および「左5°傾斜」の本発明品によれば、「0°傾斜(ストレート溝)」の従来品よりも良好な結果が得られた。「左10°傾斜」の比較品は、切削音や加工拡大量、切削抵抗については「0°傾斜(ストレート溝)」の従来品より改善されるものの、加工面粗さや溝倒れ量は「0°傾斜(ストレート溝)」の従来品よりも寧ろ悪くなっており、十分な性能向上効果が得られなかった。   As is clear from the test results shown in FIG. 5C, with respect to the Christmas cutter for finishing, according to the products of the present invention of “left 3 ° inclination” and “left 5 ° inclination”, vibration and cutting noise were obtained. Regarding the cutting performance of the processed surface roughness, the result was similar to or better than the conventional product of “0 ° inclination (straight groove)”. The cutting resistance is also 59% to 71% of the conventional product of “0 ° inclination (straight groove)” according to the present invention products of “left 3 ° inclination” and “left 5 ° inclination”, which is about 2/3. Reduced to With respect to the machining accuracy of the groove collapse amount and the machining enlargement amount, according to the products of the present invention of “left 3 ° inclination” and “left 5 ° inclination”, it is better than the conventional product of “0 ° inclination (straight groove)” Results were obtained. The comparative product of “Left 10 ° Inclination” improves the cutting sound, the amount of processing expansion, and the cutting resistance compared to the conventional product of “0 ° Inclination (straight groove)”, but the machining surface roughness and groove collapse amount are “0”. It was rather worse than the conventional product of “° inclination (straight groove)”, and a sufficient performance improvement effect could not be obtained.

このように本実施例のクリスマスカッタ10、30によれば、切りくず排出溝16、36がシャンク12、32側から見た工具回転方向と反対方向へ軸心Sに対して1°〜8°の範囲内の一定の傾斜角θ1、θ2で傾斜するように直線的に設けられているため、ストレート溝やねじれ溝の従来品に比較して溝倒れ量や加工拡大量、切削抵抗が低減された。また、振動や切削音、加工面についても、ストレート溝の場合に比較して改善され、ねじれ溝と比較しても同等以上の結果が得られた。このように切削性能が全体として向上し、優れた加工精度が得られるようになり、更なる高能率加工を行うことが可能となった。   As described above, according to the Christmas cutters 10 and 30 of the present embodiment, the chip discharge grooves 16 and 36 are 1 ° to 8 ° with respect to the axis S in the direction opposite to the tool rotation direction viewed from the shank 12 or 32 side. Since it is provided linearly so as to incline at a constant inclination angle θ1, θ2 within the range, the amount of groove collapse, the amount of processing expansion, and the cutting resistance are reduced compared to the conventional products of straight grooves and twisted grooves. It was. In addition, vibration, cutting sound, and machined surface were improved as compared with the straight groove, and the same or better results were obtained when compared with the twisted groove. Thus, the cutting performance is improved as a whole, and excellent machining accuracy can be obtained, so that it is possible to perform further highly efficient machining.

また、上記切りくず排出溝16、36の加工に際しては、図2(c) に示す左傾斜溝60と同様に軸心Oまわりに回転駆動される研削砥石62を工具素材64の軸心Sに対して所定の傾斜角θ1、θ2とほぼ同一の角度で傾斜する姿勢で配置するとともに、工具素材64を傾斜角θ1、θ2と平行な方向(図2(c) における矢印C方向)へ相対的に直線移動させるだけで良いため、ねじれ溝68のように工具素材64を軸心Sまわりに回転させながら軸方向へ相対移動させる場合に比較して、切りくず排出溝16、36を加工するための装置が簡単且つ安価に構成されるとともに、干渉研削による溝断面の形状変化が無いため溝断面形状の設定が容易になる。   When machining the chip discharge grooves 16 and 36, the grinding wheel 62 that is driven to rotate about the axis O is used as the axis S of the tool material 64 in the same manner as the left inclined groove 60 shown in FIG. In contrast, the tool material 64 is disposed in a posture that is inclined at substantially the same angle as the predetermined inclination angles θ1 and θ2, and the tool material 64 is relative to a direction parallel to the inclination angles θ1 and θ2 (the direction of arrow C in FIG. 2C). In order to process the chip discharge grooves 16 and 36 as compared with the case where the tool material 64 is rotated around the axis S and moved relative to the axial direction as in the case of the twisted groove 68, it is only necessary to move it linearly. This device is simple and inexpensive, and since there is no change in the shape of the groove cross section due to interference grinding, the groove cross section shape can be easily set.

また、中仕上げ加工用のクリスマスカッタ30については、溝の倒れや加工拡大量が改善されることから、より仕上げ寸法に近い寸法で中仕上げ加工を行うことが可能で、仕上げ加工の際の切削寸法(仕上げ代)を小さくして、より安定した精度の高い仕上げ加工を行うことができるようになる。すなわち、中仕上げ加工用のクリスマスカッタは、切削性能を重視して一般に軸心Sまわりにねじれたねじれ溝(ねじれ刃)68が採用されるが、本実施例の傾斜タイプの切りくず排出溝36によれば、切れ味等の切削性能を維持しつつ加工精度を向上させることができたのである。また、3枚刃であるため、比較的大きな溝断面の切りくず排出溝36を設けることが可能で、切りくずの排出性が良好となり、この点でも切削抵抗が低減される。   In addition, with respect to the Christmas cutter 30 for intermediate finishing, since the tilting of the groove and the amount of expansion of processing are improved, it is possible to perform intermediate finishing with dimensions closer to the final dimensions, and cutting during finishing By reducing the size (finishing allowance), it becomes possible to perform more stable and accurate finishing. In other words, the mid-finishing Christmas cutter generally employs a twisted groove (twisted blade) 68 that is twisted around the axis S with emphasis on cutting performance, but the inclined type chip discharge groove 36 of the present embodiment. According to this, it was possible to improve machining accuracy while maintaining cutting performance such as sharpness. In addition, since it has three blades, it is possible to provide a chip discharge groove 36 having a relatively large groove cross section, and the chip discharge performance is improved, and the cutting resistance is also reduced in this respect.

仕上げ加工用のクリスマスカッタ10については、溝の倒れや加工拡大量が改善されることから、より高い寸法精度で仕上げ加工を行うことができる。すなわち、仕上げ加工用のクリスマスカッタ10は、加工精度を重視して一般に軸心Sと平行なストレート溝(ストレート刃)66が採用されるが、本実施例の傾斜タイプの切りくず排出溝16によれば、切れ味等の切削性能の向上により振動や切削抵抗が低減されることから、加工精度を更に向上させることができたのである。また、4枚刃であるため、被加工物52のツリー形溝50の両側面に外周切れ刃18が同時に接触して工具姿勢が安定し、この点でも加工溝の倒れや加工拡大量などの加工精度が向上する。   About the Christmas cutter 10 for finishing, since the fall of a groove | channel and the amount of process expansion are improved, finishing can be performed with higher dimensional accuracy. That is, the Christmas cutter 10 for finishing machining emphasizes machining accuracy and generally employs a straight groove (straight blade) 66 parallel to the axis S, but the tilt type chip discharge groove 16 of this embodiment is used. According to this, since the vibration and cutting resistance are reduced by improving the cutting performance such as sharpness, the processing accuracy can be further improved. Further, since it has four blades, the outer peripheral cutting edge 18 simultaneously contacts both side surfaces of the tree-shaped groove 50 of the workpiece 52 to stabilize the tool posture. Machining accuracy is improved.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

10、30:クリスマスカッタ(総形回転切削工具) 16、36:切りくず排出溝 18、38:外周切れ刃 50:ツリー形溝 52:被加工物 S:軸心 θ1、θ2:傾斜角   10, 30: Christmas cutter (total shape rotary cutting tool) 16, 36: Chip discharge groove 18, 38: Peripheral cutting edge 50: Tree-shaped groove 52: Work piece S: Center axis θ1, θ2: Inclination angle

Claims (4)

切りくず排出溝に沿って外周切れ刃が設けられているとともに、該外周切れ刃の径寸法が工具軸方向において変化しており、軸心Sまわりに回転駆動されつつ被加工物に対して軸心Sと直角な方向へ相対移動させられることにより、溝深さ方向において溝幅が変化している所定形状の溝を切削加工する総形回転切削工具において、
前記切りくず排出溝は、シャンク側から見た工具回転方向と反対方向へ軸心Sに対して1°〜8°の範囲内の一定の傾斜角で傾斜するように直線的に設けられている
ことを特徴とする総形回転切削工具。
An outer peripheral cutting edge is provided along the chip discharge groove, and the diameter dimension of the outer peripheral cutting edge is changed in the tool axis direction. In the overall rotary cutting tool for cutting a groove having a predetermined shape whose groove width is changed in the groove depth direction by being relatively moved in a direction perpendicular to the center S,
The chip discharge groove is linearly provided so as to incline at a constant inclination angle within a range of 1 ° to 8 ° with respect to the axis S in a direction opposite to the tool rotation direction seen from the shank side. A complete rotary cutting tool characterized by that.
前記総形回転切削工具は、逆クリスマスツリーのように溝中心に対して左右対称で溝深さ方向において溝幅が増減しながら溝底側程狭くなっているツリー形溝を切削加工するために、前記外周切れ刃の径寸法が該溝幅の変化に対応して工具先端側へ向かうに従って増減しながら徐々に小径とされているクリスマスカッタである
ことを特徴とする請求項1に記載の総形回転切削工具。
In order to cut a tree-shaped groove that is symmetrical with respect to the groove center and is narrower toward the groove bottom side while increasing or decreasing the groove width in the groove depth direction, such as a reverse Christmas tree, 2. The Christmas cutter according to claim 1, wherein the diameter of the outer peripheral cutting edge is gradually reduced to a small diameter while increasing or decreasing toward the tool tip side corresponding to the change in the groove width. Shaped rotary cutting tool.
前記外周切れ刃は、径寸法が目的とする溝形状の溝幅寸法より小さいとともに細かく増減している波形状を成しており、且つ、複数の外周切れ刃の波形状の位相が互いにずれているラフィング切れ刃で、荒加工または中仕上げ加工に用いられる
ことを特徴とする請求項1または2に記載の総形回転切削工具。
The outer peripheral cutting edge has a corrugated shape in which the diameter dimension is smaller than the desired groove width width and is finely increased and decreased, and the plurality of outer peripheral cutting edges are out of phase with each other. The overall rotary cutting tool according to claim 1 or 2, wherein the roughing cutting edge is used for roughing or semi-finishing.
前記外周切れ刃は、径寸法が目的とする溝形状の溝幅寸法と略同じ寸法とされており、仕上げ加工に用いられる
ことを特徴とする請求項1または2に記載の総形回転切削工具。
3. The overall rotary cutting tool according to claim 1, wherein the outer peripheral cutting edge has a diameter that is substantially the same as a groove width dimension of a target groove shape, and is used for finishing. .
JP2010229965A 2010-10-12 2010-10-12 Christmas cutter Active JP5645333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229965A JP5645333B2 (en) 2010-10-12 2010-10-12 Christmas cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229965A JP5645333B2 (en) 2010-10-12 2010-10-12 Christmas cutter

Publications (2)

Publication Number Publication Date
JP2012081557A true JP2012081557A (en) 2012-04-26
JP5645333B2 JP5645333B2 (en) 2014-12-24

Family

ID=46240973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229965A Active JP5645333B2 (en) 2010-10-12 2010-10-12 Christmas cutter

Country Status (1)

Country Link
JP (1) JP5645333B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360303A1 (en) * 2013-02-28 2015-12-17 Mitsubishi Heavy Industries, Ltd. Forming rotary cutting tool
CN105710426A (en) * 2016-04-08 2016-06-29 哈尔滨汽轮机厂有限责任公司 Semi-finishing milling cutter for large wheel groove and machining method of semi-finishing milling cutter
CN106270703A (en) * 2016-09-29 2017-01-04 江苏中晟钻石工具有限公司 PCD forming cutter is used in a kind of belt pulley processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06611U (en) * 1992-06-10 1994-01-11 博夫 田原 Roughing end mill
JP2007175830A (en) * 2005-12-28 2007-07-12 Osg Corp Christmas tree formed milling cutter
JP2008110411A (en) * 2006-10-27 2008-05-15 Osg Corp Cbn end mill
WO2010013319A1 (en) * 2008-07-30 2010-02-04 オーエスジー株式会社 Cutting method for tree-shaped groove and cutting rotary tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06611U (en) * 1992-06-10 1994-01-11 博夫 田原 Roughing end mill
JP2007175830A (en) * 2005-12-28 2007-07-12 Osg Corp Christmas tree formed milling cutter
JP2008110411A (en) * 2006-10-27 2008-05-15 Osg Corp Cbn end mill
WO2010013319A1 (en) * 2008-07-30 2010-02-04 オーエスジー株式会社 Cutting method for tree-shaped groove and cutting rotary tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360303A1 (en) * 2013-02-28 2015-12-17 Mitsubishi Heavy Industries, Ltd. Forming rotary cutting tool
CN105710426A (en) * 2016-04-08 2016-06-29 哈尔滨汽轮机厂有限责任公司 Semi-finishing milling cutter for large wheel groove and machining method of semi-finishing milling cutter
CN106270703A (en) * 2016-09-29 2017-01-04 江苏中晟钻石工具有限公司 PCD forming cutter is used in a kind of belt pulley processing

Also Published As

Publication number Publication date
JP5645333B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP3065020B2 (en) Form rotary cutting tool
JP5722909B2 (en) Optimization of the cutting edge shape of a rounded nose end mill
JP2004223642A (en) Square end mill
JP5526924B2 (en) End mill
CA2679762C (en) End mill
JP2013176842A (en) Rotary cutting tool
JP2007175830A (en) Christmas tree formed milling cutter
KR101277665B1 (en) Helical cutting insert with clearance slash surface
JP5615053B2 (en) Manufacturing method of total cutter and grinding tool for total cutter
WO2015104732A1 (en) End mill
CN102099140A (en) Throw-away cutting rotary tool
JP5346827B2 (en) End mill
JP2008110453A (en) End mill
JP5645333B2 (en) Christmas cutter
JP5492357B2 (en) Christmas cutter
JP2015062978A (en) Ball end mill
JP6993557B2 (en) Cutting tools
JP2010240818A (en) End mill with chip breaker
JP2002273612A (en) Roughing end mill
JP3249601B2 (en) Rotary cutting tool with corrugated blade on cylindrical surface
JPH0825087B2 (en) Throwaway type rolling tool
JP5381132B2 (en) Roughing end mill
JP2005131728A (en) Formed rotary cutting tool
JP7477646B2 (en) End Mills
JP2013208655A (en) End mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141101

R150 Certificate of patent or registration of utility model

Ref document number: 5645333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250