JP5381132B2 - Roughing end mill - Google Patents

Roughing end mill Download PDF

Info

Publication number
JP5381132B2
JP5381132B2 JP2009021909A JP2009021909A JP5381132B2 JP 5381132 B2 JP5381132 B2 JP 5381132B2 JP 2009021909 A JP2009021909 A JP 2009021909A JP 2009021909 A JP2009021909 A JP 2009021909A JP 5381132 B2 JP5381132 B2 JP 5381132B2
Authority
JP
Japan
Prior art keywords
outer peripheral
end mill
angle
rake angle
rake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009021909A
Other languages
Japanese (ja)
Other versions
JP2010173056A (en
Inventor
貴行 畔上
洋光 田中
元基 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009021909A priority Critical patent/JP5381132B2/en
Publication of JP2010173056A publication Critical patent/JP2010173056A/en
Application granted granted Critical
Publication of JP5381132B2 publication Critical patent/JP5381132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/088Cutting edges with a wave form

Landscapes

  • Milling Processes (AREA)

Description

本発明は、軸線回りに回転されるエンドミル本体の先端部外周に、波形をなしてエンドミル回転方向に凹凸する外周刃が形成されて、被削材の中仕上げ加工等に用いられるラフィングエンドミルに関するものである。   The present invention relates to a roughing end mill used for intermediate finishing of a work material, in which an outer peripheral edge that is corrugated in the end mill rotation direction is formed on the outer periphery of a tip end of an end mill body that is rotated around an axis. It is.

この種のラフィングエンドミルとしては、例えば特許文献1に、本体の中心軸線から一様な半径方向距離に位置決めされたほぼらせん状に延びる切れ刃(外周刃)を有し、少なくとも一つの切れ刃はほぼ正弦曲線形状をもち、すくい面には正と負のすくい角部分が交互に設けられているものが提案されている。   As this type of roughing end mill, for example, Patent Document 1 has a substantially spirally extending cutting edge (outer peripheral cutting edge) positioned at a uniform radial distance from the central axis of the main body, and at least one cutting edge is It has been proposed to have a substantially sinusoidal shape and have rake faces alternately provided with positive and negative rake corners.

このようなラフィングエンドミルでは、切れ刃がなす正弦曲線の凸となる部分と凹となる部分とで切屑の厚さが変化するために良好な切屑処理性を得ることができる。また、この特許文献1には、全ての正弦曲線状の刃が切削具の中心軸線から等距離に位置するなら(すなわち、切れ刃に沿って半径上の高さが均一であるなら)工作物は表面が比較的滑らかに成形されるとも記載されている。   In such a luffing end mill, since the thickness of the chip changes between a convex portion and a concave portion of the sine curve formed by the cutting edge, good chip disposability can be obtained. Further, in this Patent Document 1, if all the sinusoidal blades are located at the same distance from the center axis of the cutting tool (that is, if the height on the radius along the cutting blade is uniform), the workpiece Is also described that the surface is molded relatively smoothly.

特開昭62−68217号公報JP-A-62-68217

しかしながら、この特許文献1に記載のラフィングエンドミルでは、上記負のすくい角部分は、切れ刃がなす正弦曲線形状のうち山頂部に位置決めされ、逆に正のすくい角部分は正弦曲線形状の谷部に位置決めされている。このため、切れ刃のうちで厚さの大きな切屑を生成する正弦曲線形状のうちの山頂部すなわち波形の凸となる部分では、切削抵抗が著しく大きくなったり、切れ刃が被削材に食い付く際に衝撃的負荷が生じて、ビビリ振動等が発生したりするおそれがある。   However, in the roughing end mill described in Patent Document 1, the negative rake angle portion is positioned at the peak of the sinusoidal shape formed by the cutting edge, and the positive rake angle portion is conversely a sinusoidal valley. Is positioned. For this reason, cutting resistance is remarkably increased or the cutting edge bites into the work piece at the peak portion of the sinusoidal shape that generates chips with a large thickness among the cutting edges, that is, the convex portion of the waveform. There is a risk that shocking load may occur and chatter vibration or the like may occur.

また、軸線方向の後端側に向かうに従いエンドミルの回転方向に向かうようにらせん状に捩れた切れ刃が正弦曲線形状のように波形に形成されていると、上記軸線方向の後端側に向けて波形の凸となる部分から凹となる部分の間で切れ刃の捩れ角は最大になる一方、逆に凹となる部分から凸となる部分の間では切れ刃の捩れ角は最小になって、切削抵抗は大きくなる。   Further, when the cutting edge that is spirally twisted so as to go in the rotational direction of the end mill as it goes toward the rear end side in the axial direction is formed in a waveform like a sinusoidal shape, it is directed toward the rear end side in the axial direction. In contrast, the torsion angle of the cutting edge is maximized between the convex part and the concave part of the corrugation, while conversely, the torsion angle of the cutting edge is minimum between the concave part and the convex part. The cutting resistance increases.

ところが、上記特許文献1に記載のラフィングエンドミルでは、これら波形が凸から凹になる部分や凹から凸になる部分で、切れ刃のすくい角は負のすくい角部分と正のすくい角部分の中間の0°近辺となる。このため、波形の凹から凸となる部分の間では山頂部に比べて切刃強度が乏しくなって切削抵抗によってチッピングや欠損を生じ易く、一方この波形が凸から凹となる部分の間では谷部に比べて切れ味が鈍く、切削抵抗を効果的に低減することができない。   However, in the roughing end mill described in Patent Document 1, the rake angle of the cutting edge is intermediate between the negative rake angle portion and the positive rake angle portion in a portion where the corrugation becomes convex from concave to convex. Around 0 °. For this reason, the cutting edge strength between the concave and convex portions of the corrugation is less than that of the crest, and chipping and chipping are likely to occur due to the cutting resistance, while the corrugation is between the convex and concave portions. Compared with the part, the sharpness is dull, and the cutting resistance cannot be effectively reduced.

本発明は、このような背景の下になされたもので、外周刃のチッピングや欠損を防ぐとともに切削抵抗自体も低減することができ、さらには外周刃の食い付き時の衝撃的負荷によるビビリ振動の発生なども防止することが可能なラフィングエンドミルを提供することを目的としている。   The present invention has been made under such a background, and can prevent chipping or chipping of the outer peripheral blade and reduce the cutting resistance itself. Further, chatter vibration due to an impact load when the outer peripheral blade bites. An object of the present invention is to provide a luffing end mill capable of preventing the occurrence of the above.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるエンドミル本体の先端部外周に、上記エンドミル本体の先端から後端側に向かうに従いエンドミル回転方向後方側に捩れる切屑排出溝が形成され、この切屑排出溝のエンドミル回転方向を向く壁面をすくい面として、該すくい面の外周側辺稜部に、上記切屑排出溝が捩れる方向に向けて捩れつつ波形をなして上記エンドミル回転方向に凹凸する外周刃が形成されたラフィングエンドミルであって、上記外周刃の外周すくい角は、該外周刃の捩れ角が最大となる位置で最大となり、該外周刃の捩れ角が最小となる位置で最小となるように変化させられていることを特徴とするものである。 In order to solve the above-mentioned problems and achieve such an object, the present invention provides an end mill rotation direction on the outer periphery of the end portion of the end mill body rotated about the axis line from the front end of the end mill body toward the rear end side. A chip discharge groove that twists to the rear side is formed, and a wall surface facing the end mill rotation direction of the chip discharge groove is defined as a rake face, and a ridge portion on the outer peripheral side of the rake face is directed in a direction in which the chip discharge groove is twisted. a roughing end mill peripheral cutting edge is formed for irregularities in the end mill rotating direction forms a waveform while twisting, the outer peripheral rake angle of the peripheral cutting edge is maximized at the position where the helix angle of the outer circumferential edge is maximum, the It is characterized in that it is changed so as to be minimized at a position where the twist angle of the outer peripheral blade is minimized.

すなわち、本発明のラフィングエンドミルでは、このように外周刃の外周すくい角が、軸線方向の後端側に向けて波形をなす外周刃の凸となる部分から凹となる部分の間の捩れ角が最大となる位置で最大となるようにされているので、外周刃の切れ味を向上させることができて切削抵抗の低減を図ることができる。その一方で、逆に外周刃の凹から凸となる部分の間で捩れ角が最小となる位置では、外周すくい角が最小とされて切刃強度が確保されているので、上述のような大きな切削抵抗に対してもチッピングや欠損が生じるのを防ぐことが可能となる。 That is, in the roughing end mill of the present invention, the outer peripheral rake angle of the outer peripheral blade is such that the torsion angle between the convex portion and the concave portion of the outer peripheral blade that forms a waveform toward the rear end side in the axial direction. Since it is set to the maximum at the maximum position, the sharpness of the outer peripheral blade can be improved, and the cutting resistance can be reduced. On the other hand, at the position where the torsion angle is minimized between the concave is convex from the portion of the peripheral cutting edge in the opposite, since the cutting edge strength outer peripheral rake angle is minimized is secured, it size as described above It is possible to prevent chipping and chipping even with respect to cutting resistance.

また、これらすくい角が最大、最小となる部分の間の外周刃の波形が凹となる部分および凸となる部分では、外周すくい角はこれら最大値と最小値の中間の大きさとなる。このため、特に外周刃が凸となる部分においても、外周すくい角が必要以上に負角側に大きくなるのを防いで切削抵抗の増大を抑えることができるとともに、食い付き時に衝撃的負荷が作用するのを抑え、ビビリ振動等の発生を防止することができる。 Further, in the portion where the waveform of the outer peripheral blade between the portions where the rake angle is maximum and minimum is concave and the portion where the rake angle is convex, the outer peripheral rake angle is intermediate between the maximum value and the minimum value. For this reason, it is possible to prevent an increase in the cutting resistance by preventing the outer peripheral rake angle from becoming larger on the negative angle side than necessary, especially in the portion where the outer peripheral blade is convex, and an impact load acts when biting. The occurrence of chatter vibration and the like can be prevented.

ここで、上記外周すくい角は、2〜22°の正のすくい角の範囲内で変化させられているのが望ましい。すなわち、特許文献1に記載のラフィングエンドミルのように、外周すくい角が0°を下回って負角になるまで変化していると、特に外周刃の波形が軸線方向後端側に向けて凹から凸となる部分の間で捩れ角が最小となる位置において、切刃強度は確保できても、切削抵抗が大きくなるおそれがある。 Here, it is desirable that the outer peripheral rake angle is changed within a range of a positive rake angle of 2 to 22 °. That is, as in the roughing end mill described in Patent Document 1, when the outer peripheral rake angle changes from 0 ° to a negative angle, the waveform of the outer peripheral blade is particularly concave from the concave toward the rear end side in the axial direction. Even if the cutting edge strength can be ensured at the position where the twist angle is minimum between the convex portions, the cutting resistance may increase.

以上説明したように、本発明によれば、ビビリ振動の発生や外周刃のチッピング、欠損を防ぐとともに、全体的な切削抵抗も効果的に低減することができて、被削材の中仕上げ加工を安定的かつ円滑に行うことが可能となる。   As described above, according to the present invention, generation of chatter vibration, chipping of the outer peripheral edge, and chipping can be prevented, and the overall cutting resistance can be effectively reduced. Can be performed stably and smoothly.

本発明の一実施形態を示す側面図である。It is a side view which shows one Embodiment of this invention. 図1に示す実施形態における外周刃の捩れ角(破線)と外周すくい角(鎖線)との関係を示す図である。It is a figure which shows the relationship between the twist angle (dashed line) of an outer periphery blade in an embodiment shown in FIG. 1, and an outer periphery rake angle (dashed line).

本実施形態のラフィングエンドミルにおいて、そのエンドミル本体1は、超硬合金等の硬質材料により軸線Oを中心とした概略円柱状に一体形成され、その後端側(図1における右側)部分が当該エンドミル本体1を工作機械の主軸に装着するためのシャンク部2とされるとともに、先端側(図1において左側)は切刃部3とされ、上記工作機械によって軸線O回りに符号Tで示すエンドミル回転方向に回転されつつ送り出されることにより、この切刃部3によってワークに切削加工を施してゆく。   In the luffing end mill of the present embodiment, the end mill body 1 is integrally formed in a substantially cylindrical shape centering on the axis O with a hard material such as cemented carbide, and the rear end side (right side in FIG. 1) is the end mill body. 1 is a shank portion 2 for mounting on a spindle of a machine tool, and a tip end side (left side in FIG. 1) is a cutting edge portion 3, and an end mill rotating direction indicated by a symbol T around an axis O by the machine tool. The workpiece is cut by the cutting blade portion 3 by being fed out while being rotated.

この切刃部3の外周には、その先端から後端側に向けて軸線O回りにエンドミル回転方向Tの後方側に捩れる複数条(本実施形態では4条)の切屑排出溝4が、周方向に等間隔に形成されている。そして、これらの切屑排出溝4のエンドミル回転方向T側を向く壁面と、そのエンドミル回転方向T後方側に連なる切刃部3の外周面(外周逃げ面)との交差稜線部、すなわち上記壁面の外周側辺稜部には、この壁面を外周刃すくい面5とする外周刃6が、切屑排出溝4と同じく後端側に向かうに従い全体的に軸線O回りにエンドミル回転方向Tの後方側に捩れるように形成されている。   On the outer periphery of the cutting blade portion 3, there are a plurality of (four in this embodiment) chip discharge grooves 4 that are twisted to the rear side in the end mill rotation direction T around the axis O from the front end toward the rear end. It is formed at equal intervals in the circumferential direction. And the cross ridgeline part of the wall surface which faces the end mill rotation direction T side of these chip discharge grooves 4 and the outer peripheral surface (outer peripheral flank surface) of the cutting edge part 3 connected to the end mill rotation direction T rear side, that is, the above wall surface An outer peripheral edge 6 having this wall surface as an outer peripheral edge rake face 5 is formed on the outer peripheral side ridge portion, as in the case of the chip discharge groove 4, toward the rear side in the end mill rotation direction T around the axis O as a whole. It is formed to be twisted.

また、この切刃部3の先端部すなわちエンドミル本体1の最先端部においては、各切屑排出溝4の先端側開口部の内周側が削り広げられるようにしてギャッシュ7が形成されており、このギャッシュ7のエンドミル回転方向T側を向く壁面は底刃すくい面8とされている。さらに、この底刃すくい面8を含めた切屑排出溝4のエンドミル回転方向T側を向く壁面の先端側辺稜部には、上記外周刃6の先端から軸線Oに対する径方向に向けて該軸線Oの近傍にまで延びる底刃9が形成されている。   In addition, a gash 7 is formed so that the inner peripheral side of the tip side opening of each chip discharge groove 4 is shaved and widened at the tip of the cutting edge 3, that is, the most distal end of the end mill body 1. A wall surface facing the end mill rotation direction T side of the gasche 7 is a bottom edge rake surface 8. Further, at the tip side ridge portion of the wall surface facing the end mill rotation direction T side of the chip discharge groove 4 including the bottom blade rake face 8, the axis line extends from the tip of the outer peripheral blade 6 toward the axis O in the radial direction. A bottom blade 9 extending to the vicinity of O is formed.

ここで、外周刃6は、上記軸線Oに対して一定の捩れ角(例えば30°)で軸線O方向後端側に向かうに従いエンドミル回転方向Tの後方側に捩れる基準線に対して、例えば正弦曲線をなすようにエンドミル回転方向Tの前方側と後方側とに凹凸するような波形をなしている。ただし、外周刃6の軸線O回りの回転軌跡は該軸線Oを中心とした円筒状をなすようにされていて、すなわち外周刃6の外径は一定とされている。   Here, the outer peripheral blade 6 has a constant twist angle (for example, 30 °) with respect to the axis O, with respect to a reference line that twists toward the rear side in the end mill rotation direction T as it goes toward the rear end in the axis O direction. A waveform is formed on the front side and the rear side in the end mill rotation direction T so as to form a sine curve. However, the rotation trajectory of the outer peripheral blade 6 around the axis O is formed in a cylindrical shape centered on the axis O, that is, the outer diameter of the outer peripheral blade 6 is constant.

従って、この外周刃6の実際の捩れ角θは、図2に破線で示すように上記一定の捩れ角を基準として、外周刃6がなす波形の凹凸の凸部の山頂部6Aから軸線O方向後端側に向けて漸次大きくなり、この山頂部6Aと凹凸の凹部の谷底部6Bとの中間部(中点)6aで最大となる。さらに、この外周刃6の捩れ角θは、この中間部6aから凹部の谷底部6Bに向けて漸次小さくなり、この谷底部6Bで上記一定の捩れ角に達した後、軸線O方向後端側に向けてさらに小さくなって、上記谷底部6Bと、次の凹凸の凸部の山頂部6Aとの中間部(中点)6bで最小となる。   Therefore, the actual twist angle θ of the outer peripheral blade 6 is determined from the peak 6A of the corrugated convex and concave portions formed by the outer peripheral blade 6 in the direction of the axis O with reference to the constant twist angle as shown by a broken line in FIG. The size gradually increases toward the rear end side, and is maximized at an intermediate portion (midpoint) 6a between the peak portion 6A and the valley bottom portion 6B of the concave and convex portions. Further, the torsion angle θ of the outer peripheral blade 6 gradually decreases from the intermediate part 6a toward the valley bottom part 6B of the recess, and after reaching the constant torsion angle at the valley bottom part 6B, the rear end side in the direction of the axis O It becomes further smaller toward the bottom and becomes the minimum at an intermediate portion (midpoint) 6b between the valley bottom portion 6B and the peak portion 6A of the next uneven convex portion.

また、この中間部6bからさらに後端側に向けて捩れ角θは漸次大きくなり、次の山頂部6Aで再び上記一定の捩れ角に戻った後に、この次の山頂部6Aと、さらにその次の凹部の谷底部6Bとの中間部6aで最大となり、これを繰り返してゆく。なお、この外周刃6の捩れ角θの変化は、本実施形態では図2に示すように滑らかな凹凸曲線状をなすようにされている。   Further, the torsion angle θ gradually increases from the intermediate portion 6b toward the rear end side, and after returning to the constant torsion angle again at the next peak portion 6A, the next peak portion 6A and further next It becomes the maximum in the intermediate part 6a with the valley bottom part 6B of the concave part, and this is repeated. In the present embodiment, the change in the twist angle θ of the outer peripheral blade 6 is a smooth uneven curve as shown in FIG.

そして、このような外周刃6の捩れ角θの変化に対して、外周刃6の外周すくい角αは、同図2に一点鎖線で示すように捩れ角θの変化と合わせた凹凸をなすような曲線状をなしている。すなわち、外周すくい角αも一定のすくい角(例えば12°)を基準として増減するようになされている。ただし、本実施形態では、この外周すくい角αは、2〜22°の正のすくい角の範囲内で変化させられている。 Then, with respect to such a change in the twist angle θ of the outer peripheral blade 6, the outer peripheral rake angle α of the outer peripheral blade 6 forms an unevenness combined with the change in the twist angle θ as shown by a one-dot chain line in FIG. It has a curved shape. That is, the outer peripheral rake angle α is also increased or decreased based on a certain rake angle (for example, 12 °). However, in the present embodiment, the outer peripheral rake angle α is changed within a range of a positive rake angle of 2 to 22 °.

従って、この外周すくい角αも、外周刃6がなす波形の凹凸の凸部の山頂部6Aから軸線O方向後端側に向けて漸次大きくなって、この山頂部6Aと、その次の凹部の谷底部6Bとの中間部(中点)6aの位置で最大となる。さらに、この中間部6aから上記次の凹部の谷底部6Bに向けて漸次小さくなって、概ねこの谷底部6Bで上記一定のすくい角となる。 Therefore, the outer peripheral rake angle α also gradually increases from the peak portion 6A of the undulating convex portion formed by the outer peripheral blade 6 toward the rear end side in the axis O direction, and the peak portion 6A and the next concave portion It becomes maximum at the position of the middle part (midpoint) 6a with the valley bottom part 6B. Further, the width gradually decreases from the intermediate portion 6a toward the valley bottom portion 6B of the next concave portion, and approximately reaches the constant rake angle at the valley bottom portion 6B.

続いて、この谷底部6Bから軸線O方向後端側に向けて外周すくい角αはさらに小さくなって、該谷底部6Bと、次の凸部の山頂部6Aとの中間部(中点)6bで最小となり、この中間部6bから後端側に向けては外周すくい角αは漸次大きくなって、上記次の凸部の山頂部6Aで再び上記一定のすくい角に達する。その後、外周すくい角αは、この次の山頂部6Aと、さらにその次の凹部の谷底部6Bとの中間部6aで最大となって、これを繰り返してゆく。 Subsequently, the outer peripheral rake angle α is further reduced from the valley bottom 6B toward the rear end side in the axis O direction, and an intermediate portion (midpoint) 6b between the valley bottom 6B and the peak portion 6A of the next convex portion. The outer peripheral rake angle α gradually increases from the intermediate portion 6b toward the rear end side, and reaches the predetermined rake angle again at the peak portion 6A of the next convex portion. Thereafter, the outer peripheral rake angle α becomes maximum at the intermediate portion 6a between the next peak portion 6A and the valley bottom portion 6B of the next concave portion, and this is repeated.

なお、各外周刃6の凹凸する波形形状や捩れ角θおよび外周すくい角αの変化自体は共通したものであるが、周方向に隣接する外周刃6同士では、両外周刃6がなす波形形状の位相が軸線O方向にずらされている。すなわち、上記山頂部6Aや谷底部6Bおよびその中間部6a、6bが、互いの間隔は同じまま、隣接する外周刃6同士では軸線O方向にずらされている。 The corrugated shape of the outer peripheral blades 6 and the change of the twist angle θ and the outer peripheral rake angle α are common, but the outer peripheral blades 6 adjacent to each other in the circumferential direction form the corrugated shape formed by the outer peripheral blades 6. Are shifted in the direction of the axis O. That is, the peak part 6A, the valley bottom part 6B, and the intermediate parts 6a and 6b are shifted in the direction of the axis O between the adjacent outer peripheral blades 6 with the same interval therebetween.

例えば、4条の外周刃6が周方向に等間隔に形成された本実施形態では、軸線Oを挟んで反対側に位置する外周刃6同士の位相が一致させられるとともに、周方向に隣接する外周刃6同士では、一方の山頂部6Aと他方の谷底部6Bとが、また一方の谷底部6Bと他方の山頂部6Aとが、軸線O方向の位置を同じにするようにされていてもよく、また、それぞれの外周刃6の山頂部6A、谷底部6B、および中間部6a、6bの位置が軸線O方向に同じとなるように、すべての外周刃6の位相がずらされていてもよい。   For example, in the present embodiment in which the four outer peripheral blades 6 are formed at equal intervals in the circumferential direction, the phases of the outer peripheral blades 6 positioned on opposite sides of the axis O are matched and adjacent in the circumferential direction. In the peripheral blades 6, even if one peak top 6 </ b> A and the other valley bottom 6 </ b> B, and one valley bottom 6 </ b> B and the other peak 6 </ b> A have the same position in the axis O direction. Well, even if the phases of all the outer peripheral blades 6 are shifted so that the positions of the peak portions 6A, the valley bottom portions 6B, and the intermediate portions 6a, 6b of the respective outer peripheral blades 6 are the same in the direction of the axis O. Good.

このように構成されたラフィングエンドミルでは、波状に凹凸する外周刃6によって良好な切屑処理性が確保されるのは勿論、この外周刃6の外周すくい角αが、この外周刃6の捩れ角θが最大となる山頂部6Aから谷底部6Bへの上記中間部6aの位置で最大となるため、大きな捩れ角θによって鋭い切れ味が与えられたこの中間部6aにおいて、外周刃6の切れ味をさらに高めることができる。このため、切削抵抗を大幅に低減して円滑な被削材の中仕上げ切削加工を行うことが可能となる。 In the luffing end mill configured as described above, good chip disposal is ensured by the wavyly irregular outer peripheral blade 6, and the outer peripheral rake angle α of the outer peripheral blade 6 is the twist angle θ of the outer peripheral blade 6. Is maximized at the position of the intermediate portion 6a from the peak portion 6A to the valley bottom portion 6B, and the sharpness of the outer peripheral blade 6 is further enhanced in the intermediate portion 6a given a sharpness by a large twist angle θ. be able to. For this reason, it becomes possible to significantly reduce the cutting resistance and perform a smooth intermediate finishing of the work material.

その一方で、捩れ角θが最小となる上記中間部6bでは外周刃6に作用する切削抵抗も大きくなりがちであるのに対し、上記構成のラフィングエンドミルでは、この中間部6bで外周すくい角αが最小となるようにされており、従って外周刃6のうちで最も高い切刃強度を確保することができる。このため、大きな切削抵抗が作用しても外周刃6にチッピングや欠損が生じたりするのを防いで、上述の円滑な被削材の中仕上げ切削加工を安定して行うことができる。 On the other hand, the cutting force acting on the outer peripheral blade 6 tends to increase in the intermediate portion 6b where the twist angle θ is minimum, whereas in the roughing end mill configured as described above, the outer peripheral rake angle α in the intermediate portion 6b. Therefore, the highest cutting edge strength among the outer peripheral blades 6 can be ensured. For this reason, even if a large cutting force acts, it is possible to prevent the outer peripheral blade 6 from being chipped or chipped, and to perform the above-mentioned smooth and intermediate finishing of the work material stably.

さらに、これらの中間部6a、6bの間の、波状をなす外周刃6の山頂部6Aおよび谷底部6Bでは、捩れ角θが基準線の一定捩れ角と等しくされるとともに、外周すくい角αも基準となる一定のすくい角と等しくされて、上記最大、最小のすくい角の中間の大きさとされている。このため、特に厚さの大きな切屑が生成される上記山頂部6Aの周辺で、外周刃6に衝撃的負荷が作用してビビリ振動が引き起こされたりするのを防ぐことができるとともに、切削抵抗が大きくなりすぎるのも防ぐことができて、エンドミル本体1全体に作用する抵抗を一層低減することが可能となる。 Further, at the crest portion 6A and the valley bottom portion 6B of the wavy outer peripheral blade 6 between these intermediate portions 6a and 6b, the torsion angle θ is made equal to the constant torsion angle of the reference line, and the outer peripheral rake angle α is also It is made equal to a fixed rake angle as a reference, and is set to an intermediate size between the maximum and minimum rake angles. For this reason, it is possible to prevent a shocking load from acting on the outer peripheral blade 6 and cause chatter vibration around the peak 6A where particularly thick chips are generated, and the cutting resistance is reduced. It is possible to prevent an excessive increase, and it is possible to further reduce the resistance acting on the entire end mill body 1.

しかも、本実施形態では、外周刃6の外周すくい角αが2〜22°の正のすくい角の範囲内で変化させられており、特許文献1に記載のラフィングエンドミルのようにすくい角が負角になる部分がないので、最小の外周すくい角αとなる上記中間部6bでも、ある程度の切れ味は確保することができる。従って、外周刃6の全長に亙って切削抵抗の低減を図ることができるので、さらに確実に上述のような円滑な切削加工を促すことが可能となる。 Moreover, in the present embodiment, the outer peripheral rake angle α of the outer peripheral blade 6 is changed within a range of 2 to 22 ° positive rake angle, and the rake angle is negative like the roughing end mill described in Patent Document 1. Since there is no corner portion, a certain degree of sharpness can be secured even in the intermediate portion 6b having the minimum outer peripheral rake angle α. Accordingly, the cutting resistance can be reduced over the entire length of the outer peripheral blade 6, so that the smooth cutting process as described above can be promoted more reliably.

すなわち、外周刃6の外周すくい角αが上記範囲を下回るほど小さい部分があって、つまり中間部6bにおける外周すくい角αが負角側に大きくなりすぎると、このような全長に亙る切削抵抗の低減を損なうおそれがある。その一方で、外周刃6の外周すくい角αが上記範囲を上回るほど大きな部分があって、つまり中間部6aにおける外周すくい角αが正角側に大きくなりすぎると、この中間部6aで切刃強度が不十分となってチッピングや欠損を確実に防止することができなくなるおそれが生じる。なお、上記効果を一層確実に奏するには、外周刃6の外周すくい角αは5〜20°の範囲内で変化させられるのがより望ましく、7〜18°の範囲内で変化させられるのがさらに望ましい。 That is, if there is a portion where the outer peripheral rake angle α of the outer peripheral blade 6 is smaller than the above range, that is, if the outer peripheral rake angle α in the intermediate portion 6b becomes too large on the negative angle side, the cutting resistance over the entire length is reduced . There is a risk of reducing the reduction. On the other hand, if the outer peripheral rake angle α of the outer peripheral blade 6 is larger than the above range, that is, if the outer peripheral rake angle α in the intermediate portion 6a becomes too large on the positive side, the intermediate blade 6 There is a risk that the strength becomes insufficient and chipping and chipping cannot be reliably prevented. In order to achieve the above effect more reliably, it is more desirable that the outer peripheral rake angle α of the outer peripheral blade 6 is changed within a range of 5 to 20 °, and more preferably within a range of 7 to 18 °. More desirable.

また、外周刃6の捩れ角θが最大となる位置と外周すくい角αが最大となる位置、捩れ角θが最小となる位置と外周すくい角αが最小となる位置とは、勿論正確に一致させられているのが望ましいのであるが、多少の誤差が生じるのはやむを得ない。ただし、この誤差が大きくなりすぎると上述した効果が損なわれるおそれがあるので、これらの位置の軸線O方向の誤差は、外周刃6がなす波形の波長(例えば、山頂部6Aから後端側に次の山頂部6Aまでの上記基準線に沿った長さ)に対して±10%以下の範囲とされるのが望ましい。 Of course, the position at which the torsion angle θ of the outer peripheral blade 6 is maximized, the position at which the outer periphery rake angle α is maximized, and the position at which the torsion angle θ is minimized and the position at which the outer periphery rake angle α is minimized are exactly the same. Although it is desirable that it be allowed to occur, it is inevitable that some errors will occur. However, if this error becomes too large, the above-described effect may be impaired. Therefore, the error in the direction of the axis O at these positions is caused by the wavelength of the waveform formed by the outer peripheral blade 6 (for example, from the peak 6A to the rear end side). It is desirable that the range is ± 10% or less with respect to (the length along the reference line up to the next peak 6A).

1 エンドミル本体
3 切刃部
4 切屑排出溝
5 外周刃すくい面
6 外周刃
6A 外周刃6がなす波形の山頂部
6B 外周刃6がなす波形の谷底部
6a 軸線O方向後端側に向けて山頂部6Aから谷底部6Bまでの間の中間部(外周刃6の捩れ角θと外周すくい角αが最大となる位置)
6b 軸線O方向後端側に向けて谷底部6Bから山頂部6Aまでの間の中間部(外周刃6の捩れ角θと外周すくい角αが最小となる位置)
9 底刃
O エンドミル本体1の軸線
T エンドミル回転方向
θ 外周刃6の捩れ角
α 外周刃6の外周すくい角
DESCRIPTION OF SYMBOLS 1 End mill main body 3 Cutting edge part 4 Chip discharge groove 5 Peripheral blade scoop surface 6 Outer peripheral blade 6A The corrugated peak part which the outer peripheral blade 6 makes 6B The corrugated trough part 6a which the outer peripheral blade 6 makes 6a Peak toward the rear end side of the axis O direction Intermediate part between the part 6A and the valley bottom part 6B (position where the torsion angle θ and the outer peripheral rake angle α of the outer peripheral blade 6 are maximized)
6b An intermediate part between the valley bottom part 6B and the peak part 6A toward the rear end side in the axis O direction (position where the torsion angle θ of the outer peripheral edge 6 and the outer peripheral rake angle α are minimized)
9 the outer circumference of the end cutting edge O endmill torsional angle α peripheral cutting edge 6 of the axis T end mill rotating direction θ peripheral cutting edge 6 of the main body 1 rake angle

Claims (2)

軸線回りに回転されるエンドミル本体の先端部外周に、上記エンドミル本体の先端から後端側に向かうに従いエンドミル回転方向後方側に捩れる切屑排出溝が形成され、この切屑排出溝のエンドミル回転方向を向く壁面をすくい面として、該すくい面の外周側辺稜部に、上記切屑排出溝が捩れる方向に向けて捩れつつ波形をなして上記エンドミル回転方向に凹凸する外周刃が形成されたラフィングエンドミルであって、上記外周刃の外周すくい角は、該外周刃の捩れ角が最大となる位置で最大となり、該外周刃の捩れ角が最小となる位置で最小となるように変化させられていることを特徴とするラフィングエンドミル。 A chip discharge groove that twists toward the rear side in the end mill rotation direction from the front end of the end mill body toward the rear end side is formed on the outer periphery of the end portion of the end mill main body rotated about the axis. A roughing end mill having a facing wall as a rake face, and an outer peripheral edge that is undulated in the direction of rotation of the end mill by forming a waveform while twisting toward the direction in which the chip discharge groove is twisted at the ridge on the outer peripheral side of the rake face a is, the outer peripheral rake angle of the peripheral cutting edge is maximum at the position where the helix angle of the outer circumferential edge is maximum, are varied to smallest at a position where the helix angle of the outer circumferential edge is minimized Roughing end mill characterized by that. 上記外周すくい角は、2〜22°の正のすくい角の範囲内で変化させられていることを特徴とする請求項1に記載のラフィングエンドミル。 The roughing end mill according to claim 1, wherein the outer peripheral rake angle is changed within a range of a positive rake angle of 2 to 22 °.
JP2009021909A 2009-02-02 2009-02-02 Roughing end mill Expired - Fee Related JP5381132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021909A JP5381132B2 (en) 2009-02-02 2009-02-02 Roughing end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021909A JP5381132B2 (en) 2009-02-02 2009-02-02 Roughing end mill

Publications (2)

Publication Number Publication Date
JP2010173056A JP2010173056A (en) 2010-08-12
JP5381132B2 true JP5381132B2 (en) 2014-01-08

Family

ID=42704489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021909A Expired - Fee Related JP5381132B2 (en) 2009-02-02 2009-02-02 Roughing end mill

Country Status (1)

Country Link
JP (1) JP5381132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930404B2 (en) * 2017-12-06 2021-09-01 三菱マテリアル株式会社 End mill
CN112705770B (en) * 2020-12-01 2022-04-29 珠海市润星泰电器有限公司 Machining surface coarsening milling cutter and machining surface machining method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268217A (en) * 1985-09-17 1987-03-28 テイア−ルダブリユ− インコ−ポレ−テツド End mill
JPS63116215U (en) * 1987-01-20 1988-07-27
JP2515006Y2 (en) * 1993-02-08 1996-10-23 オーエスジー株式会社 End mill with corrugated peripheral blade on cylindrical surface
JPH08112709A (en) * 1994-10-17 1996-05-07 Hitachi Tool Eng Ltd Roughing endmill
EP1894655B1 (en) * 2006-08-28 2012-03-21 Fraisa Holding AG Milling tool for chip removing machining of workpieces

Also Published As

Publication number Publication date
JP2010173056A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5266813B2 (en) End mill
JP5023628B2 (en) Roughing end mill
CA2679026C (en) Rotary cutting tool
JP5526924B2 (en) End mill
JP2004223642A (en) Square end mill
KR20140106538A (en) Cutting insert and interchangeable cutting edge-type cutting tool
JP6384385B2 (en) Roughing end mill
WO2013137021A1 (en) Ball end mill comprising coolant holes
JP6221660B2 (en) Roughing end mill
JP5346827B2 (en) End mill
JP5381132B2 (en) Roughing end mill
CN211360799U (en) High-efficiency drum-shaped profiling end milling cutter
JP2007268648A (en) End mill
JP5585107B2 (en) Roughing end mill
JP7491104B2 (en) Ball End Mill
JP2019177474A (en) Roughing end mill
JP5470880B2 (en) Roughing end mill
JP5895654B2 (en) End mill
JP4992460B2 (en) End mill
JP2006015417A (en) End mill
JP7491105B2 (en) Ball End Mill
JP7495580B2 (en) End Mills
JP7409244B2 (en) ball end mill
JP3335401B2 (en) End mill
JP6303650B2 (en) Roughing end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees