JP2012080700A - Current differential protective relay - Google Patents

Current differential protective relay Download PDF

Info

Publication number
JP2012080700A
JP2012080700A JP2010225106A JP2010225106A JP2012080700A JP 2012080700 A JP2012080700 A JP 2012080700A JP 2010225106 A JP2010225106 A JP 2010225106A JP 2010225106 A JP2010225106 A JP 2010225106A JP 2012080700 A JP2012080700 A JP 2012080700A
Authority
JP
Japan
Prior art keywords
current
phase
relay
amount
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010225106A
Other languages
Japanese (ja)
Other versions
JP5645578B2 (en
Inventor
Shigeto Oda
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010225106A priority Critical patent/JP5645578B2/en
Priority to KR1020110001447A priority patent/KR101129157B1/en
Publication of JP2012080700A publication Critical patent/JP2012080700A/en
Application granted granted Critical
Publication of JP5645578B2 publication Critical patent/JP5645578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/40Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
    • H02H3/407Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current using induction relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/042Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers for current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current differential protective relay which suppresses deterioration of dynamic sensitivity as much as possible and which does not malfunction even if CT induction to the other phase occurs.SOLUTION: The current differential protective relay 1 operates an operation amount and a suppression amount by using terminal currents I1 to In from a plurality of current transformers arranged in respective phases of a power system and protects the power system based on the operation amount and the suppression amount. The relay includes: an induction current information output portion 20 generating an amount KH of induction current flowing to a secondary side of the current transformer of the other phase with current flowing to a primary side of the current transformer of the self-phase based on effective values of the respective terminal currents I1 to In of the self-phase and outputting it to the current differential protective relay 1 of the other phase; and a sensitivity control portion 21 controlling a minimum sensitivity setting value K01 of a small current region of the current differential protective relay 1 of the self-phase based on the induction amount KH from the induction current information output portion 20 of the other phase.

Description

本発明は、電力系統を保護する目的で設置される保護継電器に関し、特に母線および送電線を電流差動原理により保護する電流差動保護継電器に関するものである。   The present invention relates to a protective relay installed for the purpose of protecting a power system, and more particularly to a current differential protective relay that protects a bus and a power transmission line by a current differential principle.

従来の電流差動保護継電器は、電力系統の保護対象(送電線、或いは母線)にて検出された各端子電流を同一時刻、一定周期をもってサンプリングし、AD(アナログ・デジタル変換)後にこれらのサンプリングデータ(端子電流データ)を用いて保護対象区間の内外部事故を識別し、内部事故の場合には保護対象区間を電力系統より切り離すべく、当該保護区間に配設された遮断器(Circuit Breaker:CB)に開放指令を出力する。電流差動保護の動作について説明をすると、各端子に配設された電流変成器(Current Transformer:CTと略称する)から得られる継電器入力電流I1、I2、・・・Inのベクトル和(サンプリングされた瞬時値データの和、即ち差電流Id=I1+I2+・・・+In)を実効値演算したものを動作量IDとし、前記各端子電流のスカラー和(各端子電流を実効値演算した後に加算した値)を抑制量IRとして、動作量IDと抑制量IRが予め設定される動作領域の判定式により内部事故か外部事故かの判定を行う。   The conventional current differential protection relay samples each terminal current detected in the power system protection target (transmission line or bus) at the same time and with a constant period, and samples these after AD (analog / digital conversion) Data (terminal current data) is used to identify internal and external accidents in the protected section, and in the event of an internal accident, the circuit breaker (Circuit Breaker: An open command is output to CB). The operation of the current differential protection will be described. The vector sum (sampled) of the relay input currents I1, I2,... In obtained from current transformers (abbreviated as CT) arranged at each terminal. The sum of the instantaneous value data, that is, the value obtained by calculating the effective value of the difference current Id = I1 + I2 +... + In, is used as the operation amount ID, and the scalar sum of the terminal currents ) As a suppression amount IR, it is determined whether it is an internal accident or an external accident based on a determination formula for an operation region in which the operation amount ID and the suppression amount IR are preset.

一般的には、動作判定式は 次式と設定される。
ID>R1*IR+K01 ---小電流域
ID>R2*IR+K02 ---大電流域
但し、R1<R2、K01>K02
これは、電流が比較的小さい領域では、抑制量を小さくして動作領域を広げ(高感度にし)、電流が大きい領域では、CTの(磁気)飽和などの影響による誤差分の影響を避けるため抑制量を大きくして動作領域を小さくするように(低感度に)している。
In general, the action judgment formula is set as follows.
ID> R1 * IR + K01 --- small current range ID> R2 * IR + K02 --- high current range However, R1 <R2, K01> K02
This is because in a region where the current is relatively small, the amount of suppression is reduced to widen the operation region (high sensitivity), and in a region where the current is large, the effect of errors due to the influence of CT (magnetic) saturation is avoided. The amount of suppression is increased to reduce the operating area (low sensitivity).

さらに、外部事故時のCT(磁気)飽和は、事故電流が1端子のCTに集中するため、事故電流が比較的小さい領域でも発生する可能性がある。そのため、従来の電流差動保護継電器は、抑制量の一定期間過去からの最大値に応じて動作領域設定の最小感度を制御するなどの対策を備えている(例えば、下記特許文献1)。   Furthermore, CT (magnetism) saturation at the time of an external accident may occur even in a region where the accident current is relatively small because the accident current concentrates on a one-terminal CT. Therefore, the conventional current differential protection relay has a countermeasure such as controlling the minimum sensitivity of the operation region setting according to the maximum value of the suppression amount from the past for a certain period (for example, Patent Document 1 below).

特開2000−224755号公報(段落0042)JP 2000-224755 A (paragraph 0042)

しかしながら、上記特許文献1に代表される従来の電流差動保護継電器は、以下のような課題があった。従来の電流差動保護継電器は、外部事故時にCTが磁気飽和により1次電流とは異なる2次電流を継電器に入力することによって生じる差電流(動作量)を、過去一定期間の抑制量の最大値により動作感度(動作領域)の設定を制御する対策を有している。ただし、CTの(磁気)飽和ではなく、CTの相間誘導がある場合、事故相ではない健全相CTにも各相CT間誘導によりCT2次に(CT1次にはない)電流が流れる可能性がある。   However, the conventional current differential protection relay represented by Patent Document 1 has the following problems. The conventional current differential protection relay uses the maximum difference in the amount of suppression for a certain period in the past when the CT is magnetically saturated and a secondary current different from the primary current is input to the relay due to magnetic saturation. There is a measure to control the setting of motion sensitivity (motion area) by value. However, when there is CT phase induction rather than CT (magnetic) saturation, there is a possibility that the current of CT secondary (not CT primary) may also flow in the healthy phase CT that is not the accident phase due to the induction between each phase CT. is there.

このことを説明すると、事故相の差動保護継電要素は、事故電流によるCT飽和などの誤差電流による差電流(動作量)があった場合でも、大きな抑制量が期待できるため動作することはない。しかしながら、健全相の差動保護継電要素は、事故電流が流れていないので抑制量が小さいため、電流差動保護継電器の小電流域の動作域に入るようなCT誘導による動作量が発生した場合、誤動作するという問題点があった。   Explaining this, even if there is a difference current (operation amount) due to error current such as CT saturation due to the accident current, the differential protection relay element of the accident phase can operate because it can expect a large amount of suppression. Absent. However, the differential protection relay element of the healthy phase has a small amount of suppression because no accident current flows, so that an operation amount by CT induction that enters the operation region of the small current region of the current differential protection relay occurred. In this case, there was a problem of malfunction.

上記の各相CT間の誘導については、基本的には発生しないように3相CTを配置すべきであるが、変電設備の小型化を図るために、3相一体型CTを採用するなどのケースでは、CT各相間の距離が近くなるために誘導が生じやすくなる場合がある。そのようなケースでは、最大外部事故電流による誘導量を想定してその誘導量では検出しないよう、電流差動保護継電器の動作感度を低下させる(小電流域のK01を最大外部事故電流時のCT誘導で発生する誘導電流以上に設定する)などの手段が講じられている。しかしながら、これは動作感度の低下をもたらし、微小事故電流に対しては検出ができない(事故を見逃す)という問題点があった。   Regarding the induction between the above-mentioned respective phase CTs, the three-phase CTs should be arranged so as not to occur basically. However, in order to reduce the size of the substation equipment, the three-phase integrated CT is adopted. In the case, induction may easily occur because the distance between the CT phases is close. In such a case, the operation sensitivity of the current differential protection relay is reduced so that the induced amount due to the maximum external accident current is assumed and the induced amount is not detected (K01 in the small current region is changed to the CT at the maximum external accident current. A measure such as setting to an induced current generated by induction) is taken. However, this brings about a problem that the operation sensitivity is lowered, and it is impossible to detect a minute accident current (missing an accident).

本発明は、上記に鑑みてなされたものであって、動作感度の低下を極力抑え、かつ、他相へのCT誘導が発生しても誤動作のない電流差動保護継電器を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a current differential protection relay that suppresses a decrease in operating sensitivity as much as possible and does not malfunction even if CT induction to another phase occurs. To do.

上述した課題を解決し、目的を達成するために、本発明は、電力系統の各相に設けられた複数の変流器からの相電流を用いて動作量と抑制量とを演算し、前記動作量と前記抑制量に基づいて電力系統の保護を行う電流差動保護継電器であって、自相の相電流の実効値に基づいて、自相の変流器の1次側に流れる電流に伴い他相の変流器の2次側に流れる誘導電流の有無または誘導電流量に関する誘導電流情報を生成して他相の電流差動保護継電器へ出力する誘導電流情報出力部と、他相の誘導電流情報出力部からの前記誘導電流情報に基づいて自相の電流差動保護継電器の動作感度を制御する感度制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention calculates an operation amount and a suppression amount using phase currents from a plurality of current transformers provided in each phase of the power system, A current differential protection relay that protects the power system based on the operation amount and the suppression amount, and based on the effective value of the phase current of the own phase, the current flowing to the primary side of the current phase current transformer An induced current information output unit for generating induced current information related to the presence or amount of induced current flowing in the secondary side of the current transformer of the other phase and outputting it to the current differential protection relay of the other phase, And a sensitivity control unit that controls the operation sensitivity of the current-phase current differential protection relay based on the induced current information from the induced current information output unit.

この発明によれば、各端子電流の実効値に応じて他相の電流差動保護要素の小電流域の動作感度を制御することにより、動作感度の低下を極力抑え、かつ、他相へのCT誘導が発生しても誤動作しないという効果を奏する。   According to the present invention, by controlling the operation sensitivity in the small current region of the current differential protection element of the other phase according to the effective value of each terminal current, it is possible to suppress a decrease in the operation sensitivity as much as possible, and to the other phase. Even if CT induction occurs, there is an effect that no malfunction occurs.

図1は、本発明の実施の形態1〜3にかかる電流差動保護継電器を中心とする全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration centering on a current differential protection relay according to first to third embodiments of the present invention. 図2は、本発明の実施の形態1にかかる電流差動保護継電器の構成図である。FIG. 2 is a configuration diagram of the current differential protection relay according to the first exemplary embodiment of the present invention. 図3は、本発明の実施の形態2にかかる電流差動保護継電器の構成図である。FIG. 3 is a configuration diagram of the current differential protection relay according to the second exemplary embodiment of the present invention. 図4は、本発明の実施の形態3にかかる電流差動保護継電器の構成図である。FIG. 4 is a configuration diagram of a current differential protection relay according to the third exemplary embodiment of the present invention.

以下に、本発明にかかる電流差動保護継電器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a current differential protection relay according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、図1は、本発明の実施の形態1〜3に共通する電流差動保護継電器(以下単に「継電器」と称する場合もある)1a、1b、1cを中心とする全体構成を示す図である。図1には、継電器1a、1b、1cの保護対象である3相母線の各相の母線30a、30b、30cが示されている。
Embodiment 1 FIG.
FIG. 1 shows an overall configuration centering on current differential protection relays (hereinafter also simply referred to as “relays”) 1a, 1b, and 1c common to the first to third embodiments of the present invention. FIG. FIG. 1 shows buses 30a, 30b, and 30c of each phase of a three-phase bus that is a protection target of the relays 1a, 1b, and 1c.

各母線からの引き出し線(「回線」と称してもよい)31a、31b、31c、32、33には、遮断器34、35、36と、CT37a、37b、37c、38、39とが設置されている。各CTには、ケーブル40a、40b、40c、41、42の一端が接続され、ケーブル40a、ケーブル41、およびケーブル42の他端は、継電器1aに設置された入力変換器群(図示せず)に接続されている。継電器1bには、ケーブル40bの他端が接続され、継電器1cには、ケーブル40cの他端が接続されている。なお、図1では、継電器1bおよび継電器1cにかかる引き出し線32、33とCT38、39とケーブル41、42とを簡略化して記載している。以下の説明では、特に説明する場合を除き、継電器1a、1b、1cを単に継電器1と称し、また各CTに関しては、N個(Nは2以上の整数)のCTが各母線に配設されているものとして、CTn(n=1、2、・・・N)と称する。   Circuit breakers 34, 35, and 36 and CTs 37a, 37b, 37c, 38, and 39 are installed on lead lines (also referred to as “lines”) 31a, 31b, 31c, 32, and 33 from each bus. ing. One end of cables 40a, 40b, 40c, 41, and 42 is connected to each CT, and the other end of the cable 40a, cable 41, and cable 42 is an input converter group (not shown) installed in the relay 1a. It is connected to the. The other end of the cable 40b is connected to the relay 1b, and the other end of the cable 40c is connected to the relay 1c. In FIG. 1, the lead wires 32 and 33, the CTs 38 and 39, and the cables 41 and 42 related to the relay 1b and the relay 1c are illustrated in a simplified manner. In the following description, unless otherwise specified, the relays 1a, 1b, and 1c are simply referred to as the relay 1, and for each CT, N (N is an integer of 2 or more) CTs are arranged on each bus. This is referred to as CTn (n = 1, 2,... N).

図2は、本発明の実施の形態1にかかる電流差動保護継電器1の構成図であり、3相の内のある1相についての電流差動保護継電器1の構成を示すものである。継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、最大値演算回路6と、誘導量演算回路8と、最大値選択回路9と、最小動作感度設定回路10と、動作判定回路7とを有して構成されている。   FIG. 2 is a configuration diagram of the current differential protection relay 1 according to the first exemplary embodiment of the present invention, and shows the configuration of the current differential protection relay 1 for a certain one of the three phases. The relay 1 mainly includes a difference current calculation circuit 3, an effective value calculation circuit 4, an effective value calculation circuits 2-1 to 2-n, a suppression amount calculation circuit 5, a maximum value calculation circuit 6, and an induction. The quantity calculation circuit 8, the maximum value selection circuit 9, the minimum operation sensitivity setting circuit 10, and the operation determination circuit 7 are configured.

ここで、最大値演算回路6および誘導量演算回路8は、誘導電流情報出力部20を構成し、この誘導電流情報出力部20は、自相の相電流の実効値に基づいて、自相のCTの1次側に流れる電流に伴い他相のCTの2次側に流れる誘導電流量に関する誘導電流情報(後述する誘導量KH)を生成して他相の継電器1へ出力するように構成されている。また、最大値選択回路9および最小動作感度設定回路10は、感度制御部21を構成し、この感度制御部21は、他相の誘導電流情報出力部20からの誘導量KHに基づいて自相の継電器1の動作感度を制御するように構成されている。以下、詳細に説明する。   Here, the maximum value calculation circuit 6 and the induction amount calculation circuit 8 constitute an induced current information output unit 20, and this induced current information output unit 20 is based on the effective value of the phase current of the own phase. Along with the current flowing on the primary side of the CT, it is configured to generate induced current information (inductive amount KH described later) related to the induced current amount flowing on the secondary side of the CT of the other phase and output it to the relay 1 of the other phase. ing. Further, the maximum value selection circuit 9 and the minimum operation sensitivity setting circuit 10 constitute a sensitivity control unit 21, which is based on the induction amount KH from the induced current information output unit 20 of the other phase. The operation sensitivity of the relay 1 is configured to be controlled. Details will be described below.

電力系統の保護対象(送電線或いは母線など)に接続される各端子電流は、3相個別に図1に示される各CTを介して、CT1電流(I1)、CT2電流(I2)、・・・CTn電流(In)として、継電器1へ入力される。   Each terminal current connected to the protection target (power transmission line or bus) of the electric power system passes through each CT shown in FIG. 1 for each of the three phases, CT1 current (I1), CT2 current (I2),. -It inputs into the relay 1 as CTn electric current (In).

継電器1では、入力された各端子電流を全て同一時刻でサンプリングし、AD変換することでデジタルデータとして処理される。なお、図2では、継電器1内に取り込まれた端子電流(相電流)I1〜Inを継電器1内で扱う電流値に変換する機能(例えば入力電流変換部)や、端子電流I1〜Inを時刻同期させて出力する機能(例えば同期処理部)の図示を省略している。   In the relay 1, all input terminal currents are sampled at the same time and processed as digital data by AD conversion. In FIG. 2, a function (for example, an input current conversion unit) that converts terminal currents (phase currents) I1 to In captured in the relay 1 into current values handled in the relay 1 or terminal currents I1 to In The illustration of a function (for example, a synchronization processing unit) that outputs in synchronization is omitted.

差電流演算回路3では差動演算が実行される。具体的には、差電流演算回路3は、継電器1に入力される各端子電流I1〜Inの同時刻データを瞬時値ベースで加算する。加算されたデータは、実効値演算回路4に入力され、実効値演算回路4は、差電流Id=I1+I2+・・・+Inを実効値演算し、動作量IDとして動作判定回路7に送出する。   The differential current calculation circuit 3 executes differential calculation. Specifically, the difference current calculation circuit 3 adds the same time data of the terminal currents I1 to In input to the relay 1 on an instantaneous value basis. The added data is input to the effective value calculation circuit 4, and the effective value calculation circuit 4 calculates an effective value of the difference current Id = I1 + I2 +... + In and sends it to the operation determination circuit 7 as an operation amount ID.

他方、各端子電流I1〜Inは、それぞれ実効値演算回路2−1〜2−nに入力され、実効値演算回路2−1〜2−nは、実効値演算を実行する。各実効値演算回路2−1〜2−nで演算された実効値は、抑制量演算回路5および最大値演算回路6に取り込まれる。   On the other hand, the terminal currents I1 to In are respectively input to the effective value calculation circuits 2-1 to 2-n, and the effective value calculation circuits 2-1 to 2-n execute the effective value calculation. The effective values calculated by the effective value calculation circuits 2-1 to 2-n are taken into the suppression amount calculation circuit 5 and the maximum value calculation circuit 6.

抑制量演算回路5は、各端子電流I1〜Inの実効値を加算することによって抑制量IRを演算する。   The suppression amount calculation circuit 5 calculates the suppression amount IR by adding the effective values of the terminal currents I1 to In.

最大値演算回路6は、各端子電流I1〜Inの実効値の内、最大の端子電流(各端子電流I1〜Inの実効値の最大値IK)を選択して誘導量演算回路8へ出力する。誘導量演算回路8は、最大値演算回路6からの最大値IKにCTの相間誘導係数αを乗じて、誘導量KHを演算する。そして、誘導量演算回路8にて演算された誘導量KHは、他の2相の継電器1へ送出され、他相の動作領域の制御に用いられる。   The maximum value calculation circuit 6 selects the maximum terminal current (maximum value IK of the effective values of the terminal currents I1 to In) among the effective values of the terminal currents I1 to In and outputs the selected terminal current to the induction amount calculation circuit 8. . The induction amount calculation circuit 8 calculates the induction amount KH by multiplying the maximum value IK from the maximum value calculation circuit 6 by the interphase induction coefficient α of CT. Then, the induction amount KH calculated by the induction amount calculation circuit 8 is sent to the other two-phase relay 1 and used for controlling the operation region of the other phase.

ここで、相間誘導係数αは、他相CTからの磁気誘導に伴い自相CTの2次側に流れる誘導電流の度合いであり、換言すれば、事故電流で発生するCT誘導量が他相に影響を与える度合いを示している。誘導量KHは、相間誘導係数αが加味された他相への誘導電流の値であり、CT相間誘導によって他相が誤動作する虞がある誘導電流の大きさを示す。   Here, the interphase induction coefficient α is the degree of the induced current that flows to the secondary side of the own-phase CT due to the magnetic induction from the other-phase CT. In other words, the amount of CT induction generated by the accident current changes to the other phase. Indicates the degree of influence. The induction amount KH is a value of the induced current to the other phase in which the interphase induction coefficient α is added, and indicates the magnitude of the induced current that may cause the other phase to malfunction due to the CT phase induction.

動作判定回路7は、実効値演算回路4で演算された実効値(動作量ID)と、抑制量演算回路5で演算された抑制量IRとに基づいて、内部外部事故判定を実行する。動作判定回路7の中に模式的に示される保護特性(あるいは動作特性)は、本発明の実施の形態にかかる継電器1によって制御される小電流域の最小感度設定値(動作感度)K01を説明するために便宜上示したものであり、小電流域の最小感度設定値K01、動作量ID、および抑制量IRにて設定される。   The operation determination circuit 7 executes an internal / external accident determination based on the effective value (operation amount ID) calculated by the effective value calculation circuit 4 and the suppression amount IR calculated by the suppression amount calculation circuit 5. The protection characteristic (or operation characteristic) schematically shown in the operation determination circuit 7 describes the minimum sensitivity setting value (operation sensitivity) K01 in the small current region controlled by the relay 1 according to the embodiment of the present invention. This is shown for the sake of convenience, and is set by the minimum sensitivity setting value K01, the operation amount ID, and the suppression amount IR in the small current region.

ここで、動作判定回路7に設定される小電流域の最小感度設定値K01に関して説明する。まず、最大値選択回路9は、他の2相の継電器1から送出された誘導量KHを取り込み、誘導量KHの何れか大きい方を最小動作感度設定回路10に対して出力する。最小動作感度設定回路10は、予め設定されていた小電流域の最小感度設定値K01に最大値選択回路9からの誘導量KHを加算したものを、新たな小電流域の最小感度設定値K01として動作判定回路7へ出力する。このように、最小動作感度設定回路10に入力された小電流域の最小感度設定値K01は、最小動作感度設定回路10によってK01+KHに変更される。換言すれば、最小動作感度設定回路10から出力される小電流域の最小感度設定値K01は、他相の外部事故電流の大きさに応じて変更される。   Here, the minimum sensitivity setting value K01 in the small current region set in the operation determination circuit 7 will be described. First, the maximum value selection circuit 9 takes in the induction amount KH sent from the other two-phase relay 1 and outputs the larger one of the induction amounts KH to the minimum operation sensitivity setting circuit 10. The minimum operation sensitivity setting circuit 10 adds the induction amount KH from the maximum value selection circuit 9 to the preset minimum sensitivity setting value K01 in the small current region, and sets the minimum sensitivity setting value K01 in the new small current region. Is output to the operation determination circuit 7 as follows. As described above, the minimum sensitivity setting value K01 of the small current region input to the minimum operating sensitivity setting circuit 10 is changed to K01 + KH by the minimum operating sensitivity setting circuit 10. In other words, the minimum sensitivity setting value K01 in the small current region output from the minimum operation sensitivity setting circuit 10 is changed according to the magnitude of the external accident current of the other phase.

次に動作について説明する。   Next, the operation will be described.

まず、実効値演算回路2−1〜2−nから誘導量演算回路8に至る回路における動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、最大値演算回路6に取り込まれ、最大値IKが選択される。最大値IKは、誘導量演算回路8に取り込まれ、最大端子電流(最大値IK)とCTの相間誘導係数αとに基づいて誘導量KHが演算され、誘導量KHは他の2相へ送出される。   First, the operation in the circuit from the effective value calculation circuits 2-1 to 2-n to the induction amount calculation circuit 8 will be described. The effective values of the terminal currents I1 to In output from the effective value arithmetic circuits 2-1 to 2-n are taken into the maximum value arithmetic circuit 6, and the maximum value IK is selected. The maximum value IK is taken into the induction amount calculation circuit 8, and the induction amount KH is calculated based on the maximum terminal current (maximum value IK) and the interphase induction coefficient α of CT, and the induction amount KH is sent to the other two phases. Is done.

次に、最大値選択回路9および最小動作感度設定回路10にかかる動作を説明する。継電器1では、それぞれ自相以外の相(他2相)からの誘導量KHが最大値選択回路9によって比較され、誘導量KHの大きい方のデータは、最小動作感度設定回路10によって、予め設定されている小電流域の最小感度設定値K01に加算され、動作判定回路7に取り込まれる。このような動作によって、例えば、動作判定回路7に示される小電流域の最小感度設定値K01が上昇する側に変更されるため、CT相間誘導による他相外部事故時の誤動作を防止することができる。   Next, operations according to the maximum value selection circuit 9 and the minimum operation sensitivity setting circuit 10 will be described. In the relay 1, the induction amount KH from the phases other than the own phase (the other two phases) is compared by the maximum value selection circuit 9, and the data with the larger induction amount KH is preset by the minimum operation sensitivity setting circuit 10. The value is added to the minimum sensitivity setting value K01 of the small current region, and is taken into the operation determination circuit 7. By such an operation, for example, the minimum sensitivity setting value K01 in the small current region shown in the operation determination circuit 7 is changed to an increasing side, so that it is possible to prevent malfunction at the time of another phase external accident due to CT phase induction. it can.

以下、健全相および事故相に関連付けて説明する。一般的な保護継電器は、差動電流が整定値を超えたときに内部故障と判断して動作するよう構成されている。例えば、外部に1相故障(事故)が発生した場合にはその相の流出電流と流入電流が逆位相で同じであるため、差動電流は生じない。従って、保護継電器が誤動作することはない。   Hereinafter, explanation will be made in relation to the healthy phase and the accident phase. A general protective relay is configured to operate by determining an internal failure when the differential current exceeds a set value. For example, when a one-phase failure (accident) occurs outside, a differential current does not occur because the outflow current and the inflow current of that phase are the same in opposite phases. Therefore, the protective relay does not malfunction.

ただし、例えば、3相一括型CTの場合、事故相にかかるCTに大きな事故電流(例えば50KA)が流れることによって、健全相のCTが事故相のCTからの磁気誘導を受けて、健全相のCTの2次側に誘導電流(例えばCT1次側換算で500〜600A)が流れる場合がある。その場合、流入と流出の差分が零にならず、差動電流が生じることとなるため、健全相にかかる保護継電器が誤動作する可能性がある。   However, for example, in the case of a three-phase collective CT, when a large accident current (for example, 50 KA) flows in the CT related to the accident phase, the healthy phase CT receives magnetic induction from the accident phase CT, and the healthy phase CT An induced current (for example, 500 to 600 A in terms of CT primary side) may flow on the secondary side of CT. In that case, the difference between the inflow and the outflow does not become zero, and a differential current is generated. Therefore, the protective relay for the healthy phase may malfunction.

本実施の形態にかかる継電器1によれば、例えば、A相を事故相、B相およびC相を健全相と見立てた場合、A相にかかる誘導量演算回路8にて演算された誘導量KHがB、C相にかかる継電器1に送出され、B、C相にかかる継電器1は、A相にかかる継電器1からの誘導量KHに基づいて動作感度を制御する。すなわち、A相にかかる継電器1に入力される端子電流I1〜Inのどれかが大きい場合には、B、C相にかかる継電器1の最小感度設定値K01は高くなり、A相にかかる継電器1に入力される端子電流I1〜Inが全て小さい場合には、B、C相にかかる継電器1の最小感度設定値K01は低くなる。このように、本実施の形態にかかる継電器1は、入力電流の大きさに基づいて、A相からのCT誘導に起因する誘導電流を予想し、それに準じて最小感度設定値K01を変化させるよう構成したことにより、B、C相にかかる継電器1の誤動作を防止することが可能である。   According to the relay 1 according to the present embodiment, for example, when assuming that the A phase is the accident phase and the B phase and the C phase are the healthy phases, the induced amount KH calculated by the induced amount calculating circuit 8 related to the A phase. Is transmitted to the relay 1 relating to the B and C phases, and the relay 1 relating to the B and C phases controls the operation sensitivity based on the induction amount KH from the relay 1 relating to the A phase. That is, when any of the terminal currents I1 to In input to the relay 1 related to the A phase is large, the minimum sensitivity setting value K01 of the relay 1 related to the B and C phases becomes high, and the relay 1 related to the A phase. When all of the terminal currents I1 to In inputted to are small, the minimum sensitivity setting value K01 of the relay 1 for the B and C phases is low. As described above, the relay 1 according to the present embodiment predicts the induced current caused by the CT induction from the A phase based on the magnitude of the input current, and changes the minimum sensitivity setting value K01 accordingly. By comprising, it is possible to prevent the malfunction of the relay 1 concerning the B and C phases.

他方、従来技術には、B、C相にかかる継電器にA相にかかる継電器からの誘導量KHを取り込む、という思想がないため、B、C相にかかる継電器は、小電流域の動作領域に入るようなA相からのCT誘導による動作量(誘導電流)が発生した場合、誤動作する可能性があった。従来技術では、このような誘導量を想定して、小電流域の最小感度設定値K01を、最大外部事故電流時のCT誘導で発生する誘導電流以上に設定する、などの措置を講じている場合もあるが、これは動作感度の低下をもたらすため、微小事故電流に対しては検出ができない場合がある。本実施の形態にかかる継電器1では、A相の外部事故電流(各端子電流の実効値)に応じてB、C相の動作感度を制御することができるため、動作感度の低下を最小限に抑えることが可能である。   On the other hand, the conventional technology does not have the idea of taking the induction amount KH from the relay applied to the A phase into the relay applied to the B and C phases. Therefore, the relay applied to the B and C phases is in the operation region in the small current region. When an operation amount (inductive current) due to CT induction from the A phase that enters, a malfunction may occur. In the prior art, taking such an induction amount, measures such as setting the minimum sensitivity setting value K01 in the small current region to be greater than or equal to the induction current generated by CT induction at the time of the maximum external accident current are taken. In some cases, this causes a reduction in operational sensitivity, and therefore, it may not be possible to detect a minute accident current. In the relay 1 according to the present embodiment, the operation sensitivity of the B and C phases can be controlled in accordance with the A phase external fault current (effective value of each terminal current), so that the decrease in the operation sensitivity is minimized. It is possible to suppress.

以上に説明したように、本発明の実施の形態にかかる継電器1は、誘導電流情報出力部20が相電流の実効値の中で最大の実効値(IK)と所定の係数(α)とに基づいて、誘導電流の大きさを示す誘導量KHを生成し、感度制御部21が誘導量KHに基づいて、自相の継電器1の動作感度K01を制御するようにしたので、従来のように最大事故電流によって生じる誘導電流を予め考慮してK01を設定する必要がなく、他相外部事故時におけるCT誘導によって健全相の継電器1が誤動作することを防止でき、かつ、健全相にかかる継電器1の動作感度の低下を最小限に抑えることが可能である。また、本発明の実施の形態にかかる継電器1によれば、各端子電流I1〜Inの実効値が演算された時点で小電流域の最小感度設定値K01を変化させるように構成されているので、各端子電流I1〜Inの実効値が小さい値であってもCT誘導による誤動作を防止することが可能である。   As described above, in the relay 1 according to the embodiment of the present invention, the induced current information output unit 20 has the maximum effective value (IK) and the predetermined coefficient (α) among the effective values of the phase current. Based on the induction amount KH indicating the magnitude of the induced current, and the sensitivity control unit 21 controls the operation sensitivity K01 of the self-phase relay 1 based on the induction amount KH. It is not necessary to set in advance K01 in consideration of the induced current caused by the maximum accident current, it is possible to prevent malfunction of the healthy phase relay 1 due to CT induction at the time of other phase external accident, and the relay 1 related to the healthy phase. It is possible to minimize a decrease in the operation sensitivity. Moreover, according to the relay 1 concerning embodiment of this invention, since the effective value of each terminal current I1-In is calculated, since it is comprised so that the minimum sensitivity setting value K01 of a small electric current area may be changed. Even if the effective values of the terminal currents I1 to In are small, it is possible to prevent malfunction due to CT induction.

実施の形態2.
実施の形態1では、各端子電流I1〜Inの実効値の最大値IKにCTの相間誘導係数αを乗ずることによって想定される誘導量KHを演算し、その誘導量KHに応じて小電流域の最小感度設定値K01を制御する態様であった。この実施の形態2は、誘導量KHを演算で求める誘導量演算回路8の代わりに、各端子電流I1〜Inの実効値が所定の電流値以上であるか否かを判定する回路を設け、CT誘導量によって継電器1が誤動作する可能性があると判定した場合、小電流域の最小感度設定値K01を大きくして、誤動作を防止するようにしたものである。以下、詳細に説明する。
Embodiment 2. FIG.
In the first embodiment, the induction amount KH assumed by multiplying the maximum value IK of the effective values of the terminal currents I1 to In by the interphase induction coefficient α of the CT is calculated, and a small current region is determined according to the induction amount KH. The minimum sensitivity setting value K01 was controlled. In the second embodiment, a circuit for determining whether or not the effective value of each of the terminal currents I1 to In is equal to or greater than a predetermined current value is provided instead of the induced amount calculation circuit 8 for calculating the induced amount KH. When it is determined that the relay 1 may malfunction due to the CT induction amount, the minimum sensitivity setting value K01 in the small current region is increased to prevent malfunction. Details will be described below.

図3は、本発明の実施の形態2にかかる電流差動保護継電器1の構成図である。図3に示される継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、過電流判定回路11−1〜11−nと、OR回路12と、OR回路13と、最小動作感度設定回路10と、動作判定回路7とを有して構成されている。   FIG. 3 is a configuration diagram of the current differential protection relay 1 according to the second exemplary embodiment of the present invention. The relay 1 shown in FIG. 3 mainly includes a difference current calculation circuit 3, an effective value calculation circuit 4, an effective value calculation circuits 2-1 to 2-n, a suppression amount calculation circuit 5, and an overcurrent determination. The circuit 11-1 to 11-n, the OR circuit 12, the OR circuit 13, the minimum operation sensitivity setting circuit 10, and the operation determination circuit 7 are configured.

ここで、過電流判定回路11−1〜11−nおよびOR回路12は、誘導電流情報出力部22を構成し、この誘導電流情報出力部22は、自相の相電流の実効値に基づいて、自相のCTの1次側に流れる電流に伴い他相のCTの2次側に流れる誘導電流の有無に関する誘導電流情報(後述する検出信号)を生成して他相の継電器1へ出力するように構成されている。また、OR回路13および最小動作感度設定回路10は、感度制御部23を構成する。この感度制御部23は、他相の誘導電流情報出力部22からの検出信号に基づいて自相の継電器1の動作感度設定値K01を制御するように構成されている。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。   Here, the overcurrent determination circuits 11-1 to 11-n and the OR circuit 12 constitute an induced current information output unit 22, which is based on the effective value of the phase current of the own phase. Inductive current information (detection signal to be described later) related to the presence or absence of induced current flowing in the secondary side of the CT of the other phase in accordance with the current flowing in the primary side of the CT of the own phase is generated and output to the relay 1 of the other phase. It is configured as follows. The OR circuit 13 and the minimum operating sensitivity setting circuit 10 constitute a sensitivity control unit 23. The sensitivity control unit 23 is configured to control the operation sensitivity setting value K01 of the relay 1 of the own phase based on the detection signal from the induced current information output unit 22 of the other phase. Hereinafter, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.

過電流判定回路11−1〜11−nには、所定の判定値IHが設定されている。過電流判定回路11−1〜11−nは、実効値演算回路2−1〜2−nからの実効値をそれぞれ取り込み、各実効値が判定値IHを超えた場合に、OR回路12に対してそれぞれ検出信号を出力する。判定値IHは、CT相間誘導によって発生する誘導電流が、予め設定される最小感度K01に対して継電器1が動作しない余裕のある値として設定される。すなわち、判定値IH以下の端子電流I1〜Inの実効値(I1’〜In’)が過電流判定回路11−1〜11−nに入力された場合、継電器1が動作することはない。他方、判定値IHより大きい端子電流I1〜Inの実効値(I1’〜In’)が過電流判定回路11−1〜11−nに入力された場合、予め設定される最小感度K01に対して継電器1が動作する可能性がある。   A predetermined determination value IH is set in the overcurrent determination circuits 11-1 to 11-n. The overcurrent determination circuits 11-1 to 11-n fetch the effective values from the effective value calculation circuits 2-1 to 2-n, respectively, and when each effective value exceeds the determination value IH, the overcurrent determination circuits 11-1 to 11-n Output a detection signal. The determination value IH is set as a value with which the induced current generated by the CT phase induction has a margin that the relay 1 does not operate with respect to the preset minimum sensitivity K01. That is, when the effective values (I1 ′ to In ′) of the terminal currents I1 to In that are equal to or less than the determination value IH are input to the overcurrent determination circuits 11-1 to 11-n, the relay 1 does not operate. On the other hand, when the effective values (I1 ′ to In ′) of the terminal currents I1 to In that are larger than the determination value IH are input to the overcurrent determination circuits 11-1 to 11-n, the minimum sensitivity K01 set in advance is set. There is a possibility that the relay 1 operates.

OR回路12は、過電流判定回路11−1〜11−nからの各検出信号を取り込み、いずれかの過電流判定回路11−1〜11−nから検出信号が出力された場合、その検出信号を他の2相の継電器1へ送出する。   The OR circuit 12 takes in each detection signal from the overcurrent determination circuits 11-1 to 11-n, and when a detection signal is output from any of the overcurrent determination circuits 11-1 to 11-n, the detection signal Is sent to the other two-phase relay 1.

OR回路13は、他の2相の継電器1からの検出信号を取り込み、他の2相の何れか一方の相にかかる継電器1から検出信号が出力されていれば、その検出信号を最小動作感度設定回路10に対して出力する。   The OR circuit 13 takes in the detection signal from the other two-phase relay 1, and if the detection signal is output from the relay 1 related to one of the other two phases, the detection signal is used as the minimum operating sensitivity. Output to the setting circuit 10.

図3に示される最小動作感度設定回路10には、予め小電流域の最小感度設定値K01と誘導量KH’とが設定されている。この誘導量KH’は、例えば他相に最大外部事故電流が流れたときに、他相からのCT誘導量により自相の継電器1が誤動作しない値として設定される。最小動作感度設定回路10は、OR回路13から検出信号が出力されていない場合、誘導量KH’を加算することなく小電流域の最小感度設定値K01を出力する。他方、OR回路13から検出信号が出力された場合には、最小動作感度設定回路10は、予め設定される小電流域の最小感度設定値K01を、他相からのCT誘導によって自相の電流差動保護継電器が誤動作することがない値(新たなK01)に変更する。すなわち、最小動作感度設定回路10は、他相の誘導電流情報出力部22からの検出信号を受信した場合、小電流域の最小感度設定値K01をK01+KH’へ変更する。   In the minimum operation sensitivity setting circuit 10 shown in FIG. 3, a minimum sensitivity setting value K01 and an induction amount KH ′ in a small current region are set in advance. For example, when the maximum external fault current flows in the other phase, the induction amount KH ′ is set as a value that does not cause the own-phase relay 1 to malfunction due to the CT induction amount from the other phase. When the detection signal is not output from the OR circuit 13, the minimum operation sensitivity setting circuit 10 outputs the minimum sensitivity setting value K01 in the small current region without adding the induction amount KH '. On the other hand, when the detection signal is output from the OR circuit 13, the minimum operation sensitivity setting circuit 10 sets the minimum sensitivity setting value K01 in the small current region set in advance to the current of the own phase by CT induction from the other phase. The value is changed to a value (new K01) in which the differential protection relay does not malfunction. That is, when the detection signal from the induced current information output unit 22 of the other phase is received, the minimum operation sensitivity setting circuit 10 changes the minimum sensitivity setting value K01 in the small current region to K01 + KH ′.

このように、小電流域の最小感度設定値K01に誘導量KH’を加算することで、他相外部事故時における事故相からのCT相間誘導により、健全相にかかる継電器1が誤動作することを防止することができる。   In this way, by adding the induction amount KH ′ to the minimum sensitivity setting value K01 in the small current region, the relay 1 relating to the healthy phase malfunctions due to the induction between the CT phases from the accident phase at the time of the other phase external accident. Can be prevented.

次に動作について説明する。ただし、図3において図2と同一符号の回路は同機能として説明を省略する。   Next, the operation will be described. However, in FIG. 3, the circuits having the same reference numerals as those in FIG.

まず、実効値演算回路2−1〜2−nからOR回路12に至る回路における動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、それぞれ過電流判定回路11−1〜11−nに取り込まれる。実効値が判定値IHを超えた場合、過電流判定回路11−1〜11−nから検出信号が出力され、検出信号は、OR回路12を介して他の2相の継電器1へ送出される。   First, the operation in the circuit from the effective value arithmetic circuits 2-1 to 2-n to the OR circuit 12 will be described. The effective values of the terminal currents I1 to In output from the effective value arithmetic circuits 2-1 to 2-n are taken into the overcurrent determination circuits 11-1 to 11-n, respectively. When the effective value exceeds the determination value IH, a detection signal is output from the overcurrent determination circuits 11-1 to 11-n, and the detection signal is sent to the other two-phase relay 1 via the OR circuit 12. .

次に、OR回路13および最小動作感度設定回路10にかかる動作を説明する。継電器1には、自相以外の相(他2相)からの検出信号が取り込まれる。他2相の何れか一方の相にかかる継電器1から検出信号が出力されている場合、その検出信号はOR回路13を介して最小動作感度設定回路10に取り込まれる。最小動作感度設定回路10では、この検出信号をトリガとして、小電流域の最小感度設定値K01に誘導量KH’を加算する。このような動作によって、例えば、動作判定回路7に模式的に示される小電流域の最小感度設定値K01が上昇する側に変更され、CT相間誘導による他相外部事故時の誤動作を防止することができる。   Next, operations according to the OR circuit 13 and the minimum operation sensitivity setting circuit 10 will be described. The relay 1 receives a detection signal from a phase other than its own phase (the other two phases). When a detection signal is output from the relay 1 relating to one of the other two phases, the detection signal is taken into the minimum operation sensitivity setting circuit 10 via the OR circuit 13. The minimum operation sensitivity setting circuit 10 uses the detection signal as a trigger to add the induction amount KH ′ to the minimum sensitivity setting value K01 in the small current region. By such an operation, for example, the minimum sensitivity setting value K01 in the small current region schematically shown in the operation determination circuit 7 is changed to an increasing side, and prevents malfunction at the time of another phase external accident due to CT interphase induction. Can do.

以上に説明したように、本発明の実施の形態にかかる継電器1は、誘導電流情報出力部22が相電流の実効値の中で最大の実効値をそれぞれ所定の判定値IHと比較すると共に、相電流の実効値の何れかが判定値IHより大きい場合、誘導電流が他相の電流差動保護継電器を誤動作させる可能性を示す検出信号を生成し、感度制御部23がこの検出信号に基づいて自相の継電器1の動作感度K01を制御するようにしたので、従来のように最大事故電流によって生じる誘導電流を予め考慮して動作感度K01を設定する必要がなく、他相外部事故時におけるCT誘導によって健全相の継電器1が誤動作することを防止でき、かつ、健全相にかかる継電器1の動作感度の低下の影響を最小限に抑えることが可能である。また、本発明の実施の形態にかかる継電器1によれば、各端子電流I1〜Inの実効値が所定の電流値以上となるまでは小電流域の最小感度設定値K01が変化しないため、継電器特性試験を容易化することが可能である。また、図2に示される最大値演算回路6や誘導量演算回路8が不要になるため、回路を単純化できると共に、CT相間誘導による誤動作対策も実施の形態1と同様にすることができる。さらに、実施の形態1にかかる継電器1のように、相間誘導係数αを乗じて想定される誘導量KHを演算するという処理が不要であるため、小電流域の最小感度設定値K01をより迅速に変更可能である。   As described above, in the relay 1 according to the embodiment of the present invention, the induced current information output unit 22 compares the maximum effective value among the effective values of the phase current with the predetermined determination value IH, respectively. If any of the effective values of the phase current is larger than the determination value IH, a detection signal indicating that the induced current may cause the current differential protection relay of the other phase to malfunction is generated, and the sensitivity control unit 23 is based on this detection signal. Since the operation sensitivity K01 of the relay 1 of the own phase is controlled, it is not necessary to set the operation sensitivity K01 in consideration of the induced current caused by the maximum accident current as in the prior art. It is possible to prevent malfunction of the relay 1 in the healthy phase due to CT induction, and it is possible to minimize the influence of the decrease in operation sensitivity of the relay 1 on the healthy phase. Further, according to the relay 1 according to the embodiment of the present invention, the minimum sensitivity setting value K01 in the small current region does not change until the effective values of the terminal currents I1 to In become equal to or higher than a predetermined current value. It is possible to facilitate the characteristic test. Further, since the maximum value calculation circuit 6 and the induction amount calculation circuit 8 shown in FIG. 2 are not required, the circuit can be simplified and the countermeasure against malfunction due to the CT phase induction can be made the same as in the first embodiment. Furthermore, unlike the relay 1 according to the first embodiment, the process of calculating the induction amount KH assumed by multiplying the interphase induction coefficient α is unnecessary, so that the minimum sensitivity setting value K01 in the small current region can be set more quickly. Can be changed.

実施の形態3.
実施の形態2では、各端子電流I1〜Inの実効値が所定の電流値以上であるか否かを判定する回路(過電流判定回路11−1〜11−n)を設けて、CT相間誘導量で誤動作する可能性があると判定した電流が流れた場合について小電流域の最小感度設定値K01を制御するようにしたものであるが、実施形態3では、各端子電流I1〜Inの最大値について過電流判定をするようにしたものである。各端子電流I1〜Inの過電流判定と最大値演算回路との違いがあるが、このように構成した場合でも実施の形態2とほぼ同等の効果が得られる。以下、詳細に説明する。
Embodiment 3 FIG.
In the second embodiment, a circuit (overcurrent determination circuits 11-1 to 11-n) for determining whether or not the effective values of the terminal currents I1 to In are greater than or equal to a predetermined current value is provided, and CT phase induction is performed. In the third embodiment, the minimum sensitivity setting value K01 in the small current region is controlled when a current that is determined to have a possibility of malfunction due to the amount flows. In the third embodiment, the maximum of each of the terminal currents I1 to In is controlled. The overcurrent is determined for the value. Although there is a difference between the overcurrent determination of each of the terminal currents I1 to In and the maximum value calculation circuit, even when configured in this way, substantially the same effect as the second embodiment can be obtained. Details will be described below.

図4は、本発明の実施の形態3にかかる電流差動保護継電器1の構成図である。図4に示される継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、最大値演算回路6と、過電流判定回路14と、OR回路13と、最小動作感度設定回路10と、動作判定回路7とを有して構成されている。   FIG. 4 is a configuration diagram of the current differential protection relay 1 according to the third exemplary embodiment of the present invention. The relay 1 shown in FIG. 4 mainly includes a difference current calculation circuit 3, an effective value calculation circuit 4, an effective value calculation circuits 2-1 to 2-n, a suppression amount calculation circuit 5, and a maximum value calculation. The circuit 6 includes an overcurrent determination circuit 14, an OR circuit 13, a minimum operation sensitivity setting circuit 10, and an operation determination circuit 7.

ここで、最大値演算回路6および過電流判定回路14は、誘導電流情報出力部24を構成し、この誘導電流情報出力部24は、自相の相電流の実効値に基づいて、自相のCTの1次側に流れる電流に伴い他相のCTの2次側に流れる誘導電流の有無に関する誘導電流情報(後述する検出信号)を生成して他相の継電器1へ出力するように構成されている。また、OR回路13および最小動作感度設定回路10は、感度制御部23を構成する。この感度制御部23は、他相の誘導電流情報出力部22からの検出信号に基づいて自相の継電器1の動作感度を制御するように構成されている。以下、実施の形態1および2と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。   Here, the maximum value calculation circuit 6 and the overcurrent determination circuit 14 constitute an induced current information output unit 24. The induced current information output unit 24 is based on the effective value of the phase current of the own phase. It is configured to generate induced current information (detection signal to be described later) related to the presence or absence of induced current flowing in the secondary side of the CT of the other phase in accordance with the current flowing in the primary side of the CT and to output it to the relay 1 of the other phase. ing. The OR circuit 13 and the minimum operating sensitivity setting circuit 10 constitute a sensitivity control unit 23. The sensitivity control unit 23 is configured to control the operation sensitivity of the relay 1 of the own phase based on the detection signal from the induced current information output unit 22 of the other phase. In the following, the same parts as those in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted, and only different parts will be described here.

過電流判定回路14には、所定の判定値IHが設定されている。この判定値IHは、実施の形態2にかかる過電流判定回路11−1〜11−nに設定された判定値IHと同様である。過電流判定回路14は、最大値演算回路6からの最大値IKが判定値IHを超えた場合、検出信号を出力する。   A predetermined determination value IH is set in the overcurrent determination circuit 14. This determination value IH is the same as the determination value IH set in the overcurrent determination circuits 11-1 to 11-n according to the second embodiment. The overcurrent determination circuit 14 outputs a detection signal when the maximum value IK from the maximum value calculation circuit 6 exceeds the determination value IH.

次に動作について説明する。ただし、図4において図2および図3と同一符号の回路は同機能として説明を省略する。   Next, the operation will be described. However, in FIG. 4, circuits having the same reference numerals as those in FIGS.

まず、実効値演算回路2−1〜2−nから過電流判定回路14に至る回路における動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、最大値演算回路6に取り込まれ、最大値IKが選択される。最大値IKは、過電流判定回路14によって判定値IHと比較される。最大値IKが判定値IHを超えた場合、過電流判定回路14から検出信号が出力され、検出信号は、他の2相の継電器1へ送出される。OR回路13および最小動作感度設定回路10にかかる動作に関しては、実施の形態2と同じであるので、説明を割愛する。   First, the operation in the circuit from the effective value arithmetic circuits 2-1 to 2-n to the overcurrent determination circuit 14 will be described. The effective values of the terminal currents I1 to In output from the effective value arithmetic circuits 2-1 to 2-n are taken into the maximum value arithmetic circuit 6, and the maximum value IK is selected. Maximum value IK is compared with determination value IH by overcurrent determination circuit 14. When the maximum value IK exceeds the determination value IH, a detection signal is output from the overcurrent determination circuit 14 and the detection signal is sent to the other two-phase relay 1. Since operations relating to the OR circuit 13 and the minimum operation sensitivity setting circuit 10 are the same as those in the second embodiment, description thereof will be omitted.

以上に説明したように、本発明の実施の形態にかかる継電器1は、誘導電流情報出力部24が相電流の実効値の中で最大の実効値(IK)と所定の判定値IHと比較すると共に、最大の実効値IKが判定値IHより大きい場合、誘導電流が他相の電流差動保護継電器を誤動作させる可能性を示す検出信号を生成し、感度制御部23がこの検出信号に基づいて自相の継電器1の動作感度K01を制御するようにしたので、従来のように最大事故電流によって生じる誘導電流を予め考慮してK01を設定する必要がなく、他相外部事故時におけるCT誘導によって健全相の継電器1が誤動作することを防止でき、かつ、健全相にかかる継電器1の動作感度の低下の影響を最小限に抑えることが可能である。また、本発明の実施の形態にかかる継電器1は、大電流時にのみ小電流域の最小感度設定値K01を制御するように構成されているため、内部事故時の動作感度への影響を最小限にすることができるという効果がある。さらに、実施の形態1にかかる継電器1のように、相間誘導係数αを乗じて想定される誘導量KHを演算するという処理が不要であるため、小電流域の最小感度設定値K01をより迅速に変更可能である。   As described above, in the relay 1 according to the embodiment of the present invention, the induced current information output unit 24 compares the maximum effective value (IK) among the effective values of the phase current with the predetermined determination value IH. At the same time, when the maximum effective value IK is larger than the determination value IH, a detection signal indicating that the induced current may cause the current differential protection relay of the other phase to malfunction is generated, and the sensitivity control unit 23 is based on this detection signal. Since the operation sensitivity K01 of the self-phase relay 1 is controlled, there is no need to set K01 in advance in consideration of the induced current caused by the maximum accident current as in the prior art. It is possible to prevent the malfunction-phase relay 1 from malfunctioning and to minimize the influence of a decrease in the operation sensitivity of the relay 1 relating to the healthy phase. Further, since the relay 1 according to the embodiment of the present invention is configured to control the minimum sensitivity setting value K01 in the small current region only at the time of a large current, the influence on the operation sensitivity at the time of an internal accident is minimized. There is an effect that can be made. Furthermore, unlike the relay 1 according to the first embodiment, the process of calculating the induction amount KH assumed by multiplying the interphase induction coefficient α is unnecessary, so that the minimum sensitivity setting value K01 in the small current region can be set more quickly. Can be changed.

なお、実施の形態1〜3の説明では、実効値演算回路2−1〜2−nによる実効値演算の結果により判定していたが、振幅値演算あるいは絶対値演算の結果でも同様の効果を得る。また、実施の形態1〜3の説明では、この発明(健全相にかかる小電流域の最小感度設定値K01を変更する機能)の用途として送電線、或いは母線を保護対象とする場合を例に説明したが、その他の電流差動保護を動作原理とする他の保護継電器にも適用できる。   In the description of the first to third embodiments, the determination is made based on the result of the effective value calculation by the effective value calculation circuits 2-1 to 2-n. However, the same effect can be obtained by the result of the amplitude value calculation or the absolute value calculation. obtain. In the description of the first to third embodiments, as an example of the application of the present invention (the function of changing the minimum sensitivity setting value K01 of the small current region applied to the healthy phase), the transmission line or the bus is targeted for protection. Although described, it can also be applied to other protection relays based on other current differential protection operating principles.

なお、実施の形態1〜3に示した電流差動保護継電器は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。   In addition, the current differential protection relay shown in the first to third embodiments shows an example of the contents of the present invention, and can be combined with another known technique, and the gist of the present invention. Of course, it is possible to change and configure such as omitting a part without departing from the above.

以上のように、本発明は、母線および送電線を電流差動原理により保護する電流差動保護継電器に適用可能であり、特に、健全相へのCT誘導が発生しても誤動作しない発明として有用である。   As described above, the present invention can be applied to a current differential protection relay that protects a bus and a power transmission line by a current differential principle, and is particularly useful as an invention that does not malfunction even when CT induction to a healthy phase occurs. It is.

1、1a、1b、1c 電流差動保護継電器
2−1〜2−n 実効値演算回路
3 差電流演算回路
4 実効値演算回路
5 抑制量演算回路
6 最大値演算回路
7 動作判定回路
8 誘導量演算回路
9 最大値選択回路
10 最小動作感度設定回路
11−1〜11−n、14 過電流判定回路
12、13 OR回路
20 誘導電流情報出力部
21、23 感度制御部
22、24 誘導電流情報出力部
30a、30b、30c 母線
31a、31b、31c、32、33 引き出し線
34、35、36 遮断器
37a、37b、37c、38、39 CT
40a、40b、40c、41、42 ケーブル
α 相関誘導係数
I1〜In 端子電流(相電流)
Id 差電流
ID 動作量
IH 判定値
IK 各端子電流の実効値の最大値
IR 抑制量
KH、KH’ 誘導量(誘導電流量に関する誘導電流情報)
K01 小電流域の最小感度設定値(動作感度)
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c Current differential protection relay 2-1 to 2-n RMS value calculation circuit 3 Difference current calculation circuit 4 RMS value calculation circuit 5 Suppression amount calculation circuit 6 Maximum value calculation circuit 7 Operation determination circuit 8 Induction amount Arithmetic circuit 9 Maximum value selection circuit 10 Minimum operation sensitivity setting circuit 11-1 to 11-n, 14 Overcurrent determination circuit 12, 13 OR circuit 20 Inductive current information output unit 21, 23 Sensitivity control unit 22, 24 Inductive current information output Section 30a, 30b, 30c Bus 31a, 31b, 31c, 32, 33 Leader 34, 35, 36 Circuit breaker 37a, 37b, 37c, 38, 39 CT
40a, 40b, 40c, 41, 42 Cable α Correlation induction coefficient I1-In Terminal current (phase current)
Id Difference current ID Operating amount IH Judgment value IK Maximum effective value of each terminal current IR suppression amount KH, KH 'Induction amount (induction current information related to the induction current amount)
K01 Minimum sensitivity setting value for small current range (operation sensitivity)

Claims (4)

電力系統の各相に設けられた複数の変流器からの相電流を用いて動作量と抑制量とを演算し、前記動作量と前記抑制量に基づいて電力系統の保護を行う電流差動保護継電器であって、
自相の相電流の実効値に基づいて、自相の変流器の1次側に流れる電流に伴い他相の変流器の2次側に流れる誘導電流の有無または誘導電流量に関する誘導電流情報を生成して他相の電流差動保護継電器へ出力する誘導電流情報出力部と、
他相の誘導電流情報出力部からの前記誘導電流情報に基づいて自相の電流差動保護継電器の動作感度を制御する感度制御部と、
を備えたことを特徴とする電流差動保護継電器。
A current differential that calculates an operation amount and a suppression amount using phase currents from a plurality of current transformers provided in each phase of the power system, and protects the power system based on the operation amount and the suppression amount A protective relay,
Based on the effective value of the phase current of the own phase, an induced current related to the presence or absence of the induced current flowing in the secondary side of the current transformer of the other phase or the amount of induced current accompanying the current flowing in the primary side of the current phase current transformer An induction current information output unit that generates information and outputs it to the current differential protection relay of the other phase;
A sensitivity control unit that controls the operation sensitivity of the current-phase current differential protection relay based on the induced current information from the induced current information output unit of the other phase;
A current differential protection relay comprising:
前記誘導電流情報出力部は、前記相電流の実効値の中で最大の実効値と所定の係数とに基づいて、前記誘導電流の大きさを示す誘導量を生成し、
前記感度制御部は、前記誘導量に基づいて、自相の電流差動保護継電器の動作感度を制御することを特徴とする請求項1に記載の電流差動保護継電器。
The induced current information output unit generates an induced amount indicating the magnitude of the induced current based on a maximum effective value and a predetermined coefficient among effective values of the phase current,
The current differential protection relay according to claim 1, wherein the sensitivity control unit controls the operation sensitivity of the current differential protection relay of the own phase based on the amount of induction.
前記誘導電流情報出力部は、前記相電流の実効値をそれぞれ所定の判定値と比較すると共に、前記相電流の実効値の何れかが前記判定値より大きい場合、前記誘導電流が他相の電流差動保護継電器を誤動作させる可能性を示す検出信号を生成し、
前記感度制御部は、前記検出信号に基づいて、自相の電流差動保護継電器の動作感度を制御することを特徴とする請求項1に記載の電流差動保護継電器。
The induced current information output unit compares the effective value of the phase current with a predetermined determination value, and if any of the effective values of the phase current is larger than the determination value, the induced current is a current of another phase. Generate a detection signal indicating the possibility of malfunctioning the differential protection relay,
The current differential protection relay according to claim 1, wherein the sensitivity control unit controls operation sensitivity of the current differential protection relay of the own phase based on the detection signal.
前記誘導電流情報出力部は、前記相電流の実効値の中で最大の実効値と所定の判定値と比較すると共に、前記最大の実効値が前記判定値より大きい場合、前記誘導電流が他相の電流差動保護継電器を誤動作させる可能性を示す検出信号を生成し、
前記感度制御部は、前記検出信号に基づいて、自相の電流差動保護継電器の動作感度を制御することを特徴とする請求項1に記載の電流差動保護継電器。
The induced current information output unit compares the maximum effective value of the effective values of the phase current with a predetermined determination value, and if the maximum effective value is larger than the determination value, the induced current is in another phase. Generates a detection signal indicating the possibility of malfunctioning the current differential protection relay of
The current differential protection relay according to claim 1, wherein the sensitivity control unit controls operation sensitivity of the current differential protection relay of the own phase based on the detection signal.
JP2010225106A 2010-10-04 2010-10-04 Current differential protection relay Active JP5645578B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010225106A JP5645578B2 (en) 2010-10-04 2010-10-04 Current differential protection relay
KR1020110001447A KR101129157B1 (en) 2010-10-04 2011-01-06 Differential current protect realy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225106A JP5645578B2 (en) 2010-10-04 2010-10-04 Current differential protection relay

Publications (2)

Publication Number Publication Date
JP2012080700A true JP2012080700A (en) 2012-04-19
JP5645578B2 JP5645578B2 (en) 2014-12-24

Family

ID=46142641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225106A Active JP5645578B2 (en) 2010-10-04 2010-10-04 Current differential protection relay

Country Status (2)

Country Link
JP (1) JP5645578B2 (en)
KR (1) KR101129157B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671409A (en) * 2021-08-12 2021-11-19 厦门京福通信有限公司 Current acquisition protection circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116654A (en) * 1978-03-03 1979-09-11 Toshiba Corp Current differential relay device
JPH08233868A (en) * 1995-02-28 1996-09-13 Kyushu Henatsuki Kk Method and apparatus for setting magnetic field influence coefficient
JPH1014090A (en) * 1996-06-14 1998-01-16 Toshiba Corp Current differential relay
JP2000224755A (en) * 1999-02-01 2000-08-11 Toshiba Corp Current differential protective relay
JP2007318922A (en) * 2006-05-26 2007-12-06 Toshiba Corp Digital protection relay apparatus
JP2009017680A (en) * 2007-07-04 2009-01-22 Electric Power Dev Co Ltd Protective relay system
JP2011101518A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Bus protection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538195A (en) * 1984-02-22 1985-08-27 Westinghouse Electric Corp. Three terminal current differential protective relay
US6442010B1 (en) * 2000-04-03 2002-08-27 General Electric Company Differential protective relay for electrical buses with improved immunity to saturation of current transformers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116654A (en) * 1978-03-03 1979-09-11 Toshiba Corp Current differential relay device
JPH08233868A (en) * 1995-02-28 1996-09-13 Kyushu Henatsuki Kk Method and apparatus for setting magnetic field influence coefficient
JPH1014090A (en) * 1996-06-14 1998-01-16 Toshiba Corp Current differential relay
JP2000224755A (en) * 1999-02-01 2000-08-11 Toshiba Corp Current differential protective relay
JP2007318922A (en) * 2006-05-26 2007-12-06 Toshiba Corp Digital protection relay apparatus
JP2009017680A (en) * 2007-07-04 2009-01-22 Electric Power Dev Co Ltd Protective relay system
JP2011101518A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Bus protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671409A (en) * 2021-08-12 2021-11-19 厦门京福通信有限公司 Current acquisition protection circuit
CN113671409B (en) * 2021-08-12 2024-04-12 厦门京福通信有限公司 Current acquisition protection circuit

Also Published As

Publication number Publication date
JP5645578B2 (en) 2014-12-24
KR101129157B1 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
WO2010023956A1 (en) Short-circuit distance relay
JP2019004661A (en) Bus protection device
JP5441625B2 (en) Busbar protection device
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
KR101986036B1 (en) Protection relay device
JP6887906B2 (en) Zero-phase current differential relay
JP5073003B2 (en) Distribution transformer secondary side ground fault detection system
JP5645578B2 (en) Current differential protection relay
CN102204050B (en) Differential protection method and differential protection device
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP4262155B2 (en) Protective relay device for generator main circuit
JP5697551B2 (en) Current differential protection relay
JP2015216783A (en) Bus bar protective relay device
JP2009089505A (en) Transformer protection relay
JP6193672B2 (en) Three-phase phase loss protection device and three-phase phase loss protection method
JP2016010223A (en) Current differential relay device
JP6251027B2 (en) Short-circuit direction relay
JP2007068279A (en) Method for detecting earth fault
JP4836663B2 (en) Loop system protection device and method
JP2011130536A (en) Three-phase overcurrent protective relay
JP2008141896A (en) Protection relay
JP5224760B2 (en) Disconnection protection relay
JP2002058155A (en) Ac-dc converter protective delay device
JP2005341770A (en) Protective relay system
JP2005192337A (en) Transformer protecting relay device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250