JP2012080671A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2012080671A
JP2012080671A JP2010223569A JP2010223569A JP2012080671A JP 2012080671 A JP2012080671 A JP 2012080671A JP 2010223569 A JP2010223569 A JP 2010223569A JP 2010223569 A JP2010223569 A JP 2010223569A JP 2012080671 A JP2012080671 A JP 2012080671A
Authority
JP
Japan
Prior art keywords
power
coil
power transmission
power receiving
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010223569A
Other languages
Japanese (ja)
Inventor
Hideki Kojima
秀樹 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2010223569A priority Critical patent/JP2012080671A/en
Publication of JP2012080671A publication Critical patent/JP2012080671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device capable of implementing power transmission in a wide area.SOLUTION: The non-contact power transmission device, which supplies electric power from a power transmission coil to power reception coil by electromagnetic induction, includes: a power transmission coil 51 forming a region in which a substantially parallel AC magnetic field is generated; a first power transmission coil 11 wound around one opposing arm of a cross-shaped core 12; and a second power reception coil 21 wound around the other opposing arm of the cross-shaped core 12. The first power reception coil 11 and the second power reception coil 21 are disposed within the region.

Description

広範囲で電力伝送を行うことができる非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission apparatus capable of performing power transmission over a wide range.

近年、携帯電話やデジタルカメラ、ノートパソコンなどの電子機器に対して非接触で電力を伝送する方式が普及してきている。送電装置に内蔵される送電コイルから発生する交流磁場により、電子機器に内蔵される受電コイルに電力を伝送する。そのため、受電コイルは送電コイルに近接させて配置する必要がある。受電コイルと送電コイルの相対位置がずれると、受電コイルの出力が大きく低下してしまう。   In recent years, a method for transmitting power in a contactless manner to an electronic device such as a mobile phone, a digital camera, or a laptop computer has become widespread. Electric power is transmitted to the power receiving coil built in the electronic device by an alternating magnetic field generated from the power transmitting coil built in the power transmitting device. For this reason, the power receiving coil needs to be disposed close to the power transmitting coil. When the relative position of the power receiving coil and the power transmitting coil is shifted, the output of the power receiving coil is greatly reduced.

特許文献1には、電子機器を送電装置のケース上面のどこに載せても、送電コイルを移動させることにより位置決めを行う方法が記載されている。特許文献2には、複数の送電コイルを設け、受電コイルを載置した位置に対応する送電コイルのみを駆動する方法が記載されている。しかし、いずれも送電装置の構造が複雑であり、コストアップとなってしまう。   Patent Document 1 describes a method of performing positioning by moving a power transmission coil wherever an electronic device is placed on the upper surface of a case of a power transmission device. Patent Document 2 describes a method in which a plurality of power transmission coils are provided and only the power transmission coil corresponding to the position where the power reception coil is placed is driven. However, in any case, the structure of the power transmission device is complicated, resulting in an increase in cost.

特許文献3には、薄板形状の磁性材料に送電コイルを巻回した送電装置により電力伝送を行う方法が記載されている。図5は、送電コイルと受電コイルの位置関係を示す図である。図中の矢印は磁束の向きを示す。送電コイル51は平板状コア52に巻回されている。受電コイル61a、61bは、それぞれ薄板形状のコア62a、62bに巻回されている。送電コイル51により、平板状コア52の側方に水平方向の磁場が形成される。この水平方向の磁場が形成される領域内において、受電コイル61aの巻軸と磁場の方向を合わせることで、位置ずれによる受電能力の低下を抑制している。   Patent Document 3 describes a method of transmitting power by a power transmission device in which a power transmission coil is wound around a thin plate-shaped magnetic material. FIG. 5 is a diagram illustrating a positional relationship between the power transmission coil and the power reception coil. The arrows in the figure indicate the direction of the magnetic flux. The power transmission coil 51 is wound around the flat core 52. The power receiving coils 61a and 61b are wound around thin cores 62a and 62b, respectively. A horizontal magnetic field is formed on the side of the flat core 52 by the power transmission coil 51. In the region where the horizontal magnetic field is formed, the winding axis of the power receiving coil 61a is aligned with the direction of the magnetic field, thereby suppressing a decrease in power receiving capability due to a positional shift.

特開2009−247194号公報JP 2009-247194 A 特開2006−246633号公報JP 2006-246633 A 特表2007−505480号公報Special table 2007-505480

しかし、送電コイル51が形成する磁束の向きと受電コイルの巻軸の向きがずれてしまうと、受電コイルに鎖交する磁束が減少し、伝送効率が低下してしまう。特に、受電コイル61bのように、磁束の向きと巻軸が90°になると、受電コイル61bに電力がほとんど伝送されなくなってしまう。   However, if the direction of the magnetic flux formed by the power transmission coil 51 deviates from the direction of the winding axis of the power reception coil, the magnetic flux interlinked with the power reception coil is reduced, and the transmission efficiency is reduced. In particular, as in the power receiving coil 61b, when the direction of the magnetic flux and the winding axis are 90 °, power is hardly transmitted to the power receiving coil 61b.

本発明はこのような問題を考慮してなされたものであり、簡易な構成であるとともに、広範囲で受電コイルの向きによらず効率良く電力伝送を行うことができる非接触電力伝送装置を提供することを目的とする。   The present invention has been made in consideration of such problems, and provides a non-contact power transmission apparatus that has a simple configuration and can efficiently perform power transmission over a wide range regardless of the direction of the power receiving coil. For the purpose.

本発明はこのような目的を達成するため、送電コイルから受電コイルに対して電磁誘導により電力の供給を行なう非接触電力伝送装置において、略平行な交流磁場が発生する領域を形成する送電コイルと、十字型コアの一方の対向するアームに巻回された第1の受電コイルと、前記十字型コアの他方の対向するアームに巻回された第2の受電コイルを備え、前記領域内に第1の受電コイルおよび第2の受電コイルを配置することを特徴とする。   In order to achieve such an object, the present invention provides a non-contact power transmission apparatus that supplies power from a power transmission coil to a power reception coil by electromagnetic induction, and a power transmission coil that forms a region in which a substantially parallel alternating magnetic field is generated. A first power receiving coil wound around one opposing arm of the cruciform core and a second power receiving coil wound around the other opposing arm of the cruciform core, 1 receiving coil and 2nd receiving coil are arrange | positioned, It is characterized by the above-mentioned.

本発明によると、簡易な構成であるとともに、広範囲で受電コイルの向きによらず効率良く電力伝送を行うことができる。   According to the present invention, it has a simple configuration and can efficiently transmit power over a wide range regardless of the direction of the power receiving coil.

本発明の一実施例における受電コイルの斜視図The perspective view of the receiving coil in one Example of this invention 本発明の一実施例における送電コイルと受電コイルの関係を示す斜視図The perspective view which shows the relationship between the power transmission coil and power receiving coil in one Example of this invention. 本発明の一実施例における送電コイルと受電コイルの関係を示す斜視図The perspective view which shows the relationship between the power transmission coil and power receiving coil in one Example of this invention. 本発明の一実施例における送電装置および受電装置の回路図1 is a circuit diagram of a power transmitting device and a power receiving device according to an embodiment of the present invention. 従来の送電コイルおよび受電コイルの斜視図A perspective view of a conventional power transmission coil and power reception coil

本発明の一実施例における受電コイルについて説明する。図1は受電コイルの斜視図である。十字型コア12に第1の受電コイル11と第2の受電コイル21が巻回されている。S1、F1はそれぞれ第1の受電コイル11の巻始めと巻終りを示す。また、S2、F2はそれぞれ第2の受電コイル21の巻始めと巻終りを示す。各受電コイルは、十字型コア12の対向するアーム部にそれぞれ巻回されている。   A power receiving coil according to an embodiment of the present invention will be described. FIG. 1 is a perspective view of a power receiving coil. A first power receiving coil 11 and a second power receiving coil 21 are wound around the cross-shaped core 12. S1 and F1 indicate the start and end of winding of the first power receiving coil 11, respectively. S2 and F2 indicate the start and end of winding of the second power receiving coil 21, respectively. Each of the power receiving coils is wound around the opposing arm portion of the cross-shaped core 12.

第1の受電コイル11は、十字型コア12の一方の対向するアームの一端部から十字型コア12の中央部を通って、一方の対向するアームの他端部に向かって巻回されている。 第2の受電コイル21は、十字型コア12の他方の対向するアームの一端部から十字型コア12の中央部を通って、他方の対向するアームの他端部に向かって巻回されている。第1の受電コイル11の巻軸と第2の受電コイル21の巻軸は略直交するように構成されている。第1の受電コイル11と第2の受電コイル21はそれぞれ十字型コア12の異なるアームに巻回されるため、受電部の厚みを薄くすることができる。   The first power receiving coil 11 is wound from one end of one opposing arm of the cruciform core 12 through the center of the cruciform core 12 toward the other end of the one opposing arm. . The second power receiving coil 21 is wound from one end of the other opposing arm of the cruciform core 12 through the center of the cruciform core 12 toward the other end of the other opposing arm. . The winding axis of the first power receiving coil 11 and the winding axis of the second power receiving coil 21 are configured to be substantially orthogonal. Since the first power receiving coil 11 and the second power receiving coil 21 are wound around different arms of the cross-shaped core 12, the thickness of the power receiving unit can be reduced.

次に、本発明の一実施例における送電コイルおよび受電コイルについて説明する。図2は送電コイルと受電コイルの関係を示す斜視図である。図中の矢印は送電コイル51により生成される磁束の向きを示す。送電コイル51は平板状コア52に巻回されている。送電コイル51により、平板状コア52の側方に水平方向に略平行な交流磁場が形成される。第1の受電コイル11と第2の受電コイル21は、送電コイル51の表面上に載置することにより、水平方向の磁束が流れる領域内に配置される。すなわち、送電コイルから発生する磁束の向きと、第1の受電コイルおよび第2の受電コイルの巻軸が同一平面上になるように配置する。   Next, a power transmission coil and a power reception coil in one embodiment of the present invention will be described. FIG. 2 is a perspective view showing the relationship between the power transmission coil and the power reception coil. The arrow in the figure indicates the direction of the magnetic flux generated by the power transmission coil 51. The power transmission coil 51 is wound around the flat core 52. An alternating magnetic field substantially parallel to the horizontal direction is formed on the side of the flat core 52 by the power transmission coil 51. The first power receiving coil 11 and the second power receiving coil 21 are placed on the surface of the power transmitting coil 51, thereby being disposed in a region where a horizontal magnetic flux flows. That is, it arrange | positions so that the direction of the magnetic flux which generate | occur | produces from a power transmission coil, and the winding axis of a 1st power receiving coil and a 2nd power receiving coil may be on the same plane.

図2に示すように、第2の受電コイル21の巻軸は磁束の向きに対して90°のとき、第2の受電コイル21に磁束は鎖交せず、電力がほとんど伝送されない。しかし、第1の受電コイル11の巻軸は磁束の向きと同一になるため、第1の受電コイル11に対して、電力が効率よく伝送される。   As shown in FIG. 2, when the winding axis of the second power receiving coil 21 is 90 ° with respect to the direction of the magnetic flux, no magnetic flux is linked to the second power receiving coil 21, and almost no power is transmitted. However, since the winding axis of the first power receiving coil 11 is the same as the direction of the magnetic flux, power is efficiently transmitted to the first power receiving coil 11.

図示していないが、第1の受電コイル11の巻軸が磁束の向きに対して90°になる場合には、第1の受電コイル11に磁束は鎖交せず、電力がほとんど伝送されない。しかし、第2の受電コイル21の巻軸は磁束の向きと同一になるため、第2の受電コイル21に対して、電力が効率よく伝送される。   Although not shown, when the winding axis of the first power receiving coil 11 is 90 ° with respect to the direction of the magnetic flux, the magnetic flux is not linked to the first power receiving coil 11 and almost no power is transmitted. However, since the winding axis of the second power receiving coil 21 is the same as the direction of the magnetic flux, power is efficiently transmitted to the second power receiving coil 21.

次に、図2における受電コイルを水平方向に45°回転させた場合について説明する。図3はそのときの送電コイルと受電コイルの関係を示す斜視図である。図中の矢印は送電コイル51により生成される磁束の向きを示す。第1の受電コイル11と第2の受電コイル21の巻軸は、送電コイル51により生成される磁束の向きに対し、それぞれ45°の位置にある。第1の受電コイル11の巻軸の向きと磁束の向きに傾きがある分、図2と比較して第1の受電コイル11を貫く磁束は減少し、伝送される電力は減少する。一方、第2の受電コイル21については、図2と比較して第2の受電コイル21を貫く磁束は増加し、伝送される電力は増加する。このように、十字型コア12の対向するアームの両方で磁束を受けることができる。そのため、水平方向に受電コイルの向きが回転した場合にも、効率が大きく低下することなく電力伝送を行うことができる。   Next, a case where the power receiving coil in FIG. 2 is rotated by 45 ° in the horizontal direction will be described. FIG. 3 is a perspective view showing the relationship between the power transmission coil and the power reception coil at that time. The arrow in the figure indicates the direction of the magnetic flux generated by the power transmission coil 51. The winding axes of the first power receiving coil 11 and the second power receiving coil 21 are each 45 ° with respect to the direction of the magnetic flux generated by the power transmitting coil 51. As the winding direction of the first power receiving coil 11 and the direction of the magnetic flux are inclined, the magnetic flux penetrating the first power receiving coil 11 is reduced as compared with FIG. 2, and the transmitted power is reduced. On the other hand, as for the second power receiving coil 21, the magnetic flux passing through the second power receiving coil 21 is increased as compared with FIG. 2, and the transmitted power is increased. Thus, the magnetic flux can be received by both of the opposing arms of the cross-shaped core 12. Therefore, even when the direction of the power receiving coil rotates in the horizontal direction, power transmission can be performed without a significant decrease in efficiency.

次に、本発明の受電コイルを用いた受電装置の回路について説明する。図4は本発明の一実施例における送電装置および受電装置の回路図である。送電装置50は、駆動回路56と送電コイル51を備える。駆動回路56は、直流電源Vinより直流電圧が供給され、送電コイル51に交流電力を供給する。駆動回路56は、図示したような自励発振回路ではなく、他励発振回路を用いてもよい。   Next, a circuit of a power receiving device using the power receiving coil of the present invention will be described. FIG. 4 is a circuit diagram of a power transmitting device and a power receiving device in one embodiment of the present invention. The power transmission device 50 includes a drive circuit 56 and a power transmission coil 51. The drive circuit 56 is supplied with a DC voltage from a DC power source Vin and supplies AC power to the power transmission coil 51. The drive circuit 56 may use a separately excited oscillation circuit instead of the self-excited oscillation circuit as shown.

受電装置10は、第1の受電コイル11、第2の受電コイル21、共振コンデンサ15、25、整流素子16、26、平滑コンデンサ17を備える。第1の受電コイル11および第2の受電コイル21には、それぞれ共振コンデンサ15、25が並列に接続されている。また、第1の受電コイル11および第2の受電コイル21はそれぞれ整流素子16、26を介して並列に接続されている。送電コイル51により発生する交流磁束によって、第1の受電コイル11および第2の受電コイル21に発生する誘導起電力は、それぞれ整流素子16、26により整流され、その出力は合成される。各整流素子16、26の出力は、平滑コンデンサ17により平滑化され、受電装置10の出力電圧Voutが得られる。   The power receiving device 10 includes a first power receiving coil 11, a second power receiving coil 21, resonant capacitors 15 and 25, rectifying elements 16 and 26, and a smoothing capacitor 17. Resonant capacitors 15 and 25 are connected in parallel to the first power receiving coil 11 and the second power receiving coil 21, respectively. The first power receiving coil 11 and the second power receiving coil 21 are connected in parallel via rectifying elements 16 and 26, respectively. The induced electromotive forces generated in the first power receiving coil 11 and the second power receiving coil 21 by the AC magnetic flux generated by the power transmitting coil 51 are rectified by the rectifying elements 16 and 26, respectively, and the outputs are combined. The outputs of the rectifying elements 16 and 26 are smoothed by the smoothing capacitor 17, and the output voltage Vout of the power receiving device 10 is obtained.

本発明は、十字型コア12に2つの受電コイルを巻回している。これにより、従来では受電コイルの向きを一方向に合わせておく必要があったが、受電コイルが回転しても受電能力が大きく低下することがなくなる。特に、受電コイルを水平方向に90°回転させた場合でも受電能力が低下することがなくなる。また、送電コイル51上すなわち略平行な交流磁場が生成される領域内であれば、広い範囲で受電可能とすることができる。送電コイルは、平板状コア52に送電コイル51を巻回するだけの簡易な構成とすることができる。そのため、薄型化が可能であり、安価に非接触電力伝送のシステムを構成することができる。   In the present invention, two power receiving coils are wound around the cross-shaped core 12. As a result, conventionally, it has been necessary to align the direction of the power receiving coil in one direction. However, even if the power receiving coil rotates, the power receiving capability is not greatly reduced. In particular, even when the power receiving coil is rotated 90 ° in the horizontal direction, the power receiving capability does not decrease. Further, power can be received in a wide range as long as it is on the power transmission coil 51, that is, within a region where a substantially parallel alternating magnetic field is generated. The power transmission coil can have a simple configuration in which the power transmission coil 51 is wound around the flat core 52. Therefore, the thickness can be reduced and a non-contact power transmission system can be configured at low cost.

水平方向の磁束が流れる領域内に各受電コイルを配置するため、十字型コア12の大きさは、平板状コア52の大きさと比較して同じ程度か、または小さくするとよい。十字型コア12および平板状コア52は、それぞれ磁性材料であれば磁性シートやフェライトコア、アモルファスコアなどを用いてもよい。送電コイル51を巻回するコア52は平板状としたが、略平行な交流磁場が生成される領域を形成することができるのであれば、どのような形状を用いてもよい。   In order to arrange each receiving coil in the region where the magnetic flux in the horizontal direction flows, the size of the cross-shaped core 12 may be the same as or smaller than the size of the flat core 52. As long as the cross-shaped core 12 and the flat core 52 are magnetic materials, a magnetic sheet, a ferrite core, an amorphous core, or the like may be used. The core 52 around which the power transmission coil 51 is wound has a flat plate shape, but any shape may be used as long as a region in which a substantially parallel alternating magnetic field is generated can be formed.

10 受電装置
11 第1の受電コイル
12 十字型コア
15、25 共振コンデンサ
16、26 整流素子
17 平滑コンデンサ
21 第2の受電コイル
50 送電装置
51 送電コイル
52 平板状コア
56 駆動回路
DESCRIPTION OF SYMBOLS 10 Power receiving apparatus 11 1st power receiving coil 12 Cross-shaped cores 15 and 25 Resonance capacitor | condenser 16 and 26 Rectifier 17 Smoothing capacitor 21 2nd power receiving coil 50 Power transmission apparatus 51 Power transmission coil 52 Flat core 56 Drive circuit

Claims (4)

送電コイルから受電コイルに対して電磁誘導により電力の供給を行なう非接触電力伝送装置において、
略平行な交流磁場が発生する領域を形成する送電コイルと、
十字型コアの一方の対向するアームに巻回された第1の受電コイルと、
前記十字型コアの他方の対向するアームに巻回された第2の受電コイルを備え、
前記領域内に第1の受電コイルおよび第2の受電コイルを配置することを特徴とする非接触電力伝送装置。
In a non-contact power transmission device that supplies power from a power transmission coil to a power reception coil by electromagnetic induction,
A power transmission coil that forms a region in which a substantially parallel alternating magnetic field is generated;
A first power receiving coil wound around one opposing arm of the cross-shaped core;
A second power receiving coil wound around the other opposing arm of the cross-shaped core;
A contactless power transmission device, wherein a first power receiving coil and a second power receiving coil are disposed in the region.
前記送電コイルは平板状コアに巻回されていることを特徴とする請求項1に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the power transmission coil is wound around a flat core. 前記送電コイルの側方に発生する磁束の向きと、前記第1の受電コイルおよび第2の受電コイルの巻軸が同一平面上にあることを特徴とする請求項2に記載の非接触電力伝送装置。   The contactless power transmission according to claim 2, wherein a direction of magnetic flux generated laterally of the power transmission coil and a winding axis of the first power reception coil and the second power reception coil are on the same plane. apparatus. 前記第1の受電コイルおよび第2の受電コイルの出力はそれぞれ整流後に合成されることを特徴とする請求項1〜3のいずれか一項に記載の非接触電力伝送装置。   The contactless power transmission apparatus according to claim 1, wherein outputs of the first power receiving coil and the second power receiving coil are combined after rectification.
JP2010223569A 2010-10-01 2010-10-01 Non-contact power transmission device Pending JP2012080671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010223569A JP2012080671A (en) 2010-10-01 2010-10-01 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010223569A JP2012080671A (en) 2010-10-01 2010-10-01 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2012080671A true JP2012080671A (en) 2012-04-19

Family

ID=46240268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010223569A Pending JP2012080671A (en) 2010-10-01 2010-10-01 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2012080671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090617A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Vehicle parking support device, non-contact power transmission equipment, and non-contact power receiving equipment
DE102013113244A1 (en) * 2013-11-29 2015-06-03 Paul Vahle Gmbh & Co. Kg Coil for an inductive energy transfer system
JPWO2013176152A1 (en) * 2012-05-21 2016-01-14 株式会社テクノバ Contactless power transformer for moving objects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277356A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
WO1999027603A1 (en) * 1997-11-20 1999-06-03 Seiko Epson Corporation Electronic device
JP2008301645A (en) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd Non-contact power receiving apparatus and electronic apparatus therewith
WO2010036980A1 (en) * 2008-09-27 2010-04-01 Witricity Corporation Wireless energy transfer systems
JP2010213414A (en) * 2009-03-09 2010-09-24 Seiko Epson Corp Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and non-contact power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277356A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
WO1999027603A1 (en) * 1997-11-20 1999-06-03 Seiko Epson Corporation Electronic device
JP2008301645A (en) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd Non-contact power receiving apparatus and electronic apparatus therewith
WO2010036980A1 (en) * 2008-09-27 2010-04-01 Witricity Corporation Wireless energy transfer systems
JP2010213414A (en) * 2009-03-09 2010-09-24 Seiko Epson Corp Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and non-contact power transmission system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013176152A1 (en) * 2012-05-21 2016-01-14 株式会社テクノバ Contactless power transformer for moving objects
US9793045B2 (en) 2012-05-21 2017-10-17 Technova Inc. Contactless power transfer transformer for moving body
JP2014090617A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Vehicle parking support device, non-contact power transmission equipment, and non-contact power receiving equipment
US9409491B2 (en) 2012-10-31 2016-08-09 Toyota Jidosha Kabushiki Kaisha Parking assist system for vehicle, contactless power transmitting device, and contactless power receiving device
DE102013113244A1 (en) * 2013-11-29 2015-06-03 Paul Vahle Gmbh & Co. Kg Coil for an inductive energy transfer system

Similar Documents

Publication Publication Date Title
JP5942084B2 (en) Non-contact charging module, non-contact charging device and portable device using the same
KR101198880B1 (en) Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same
JP5845405B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
WO2012101731A1 (en) Contactless charging module and receiving-side and transmission-side contactless charger using same
WO2012101729A1 (en) Non-contact charging module and non-contact charging instrument
JP5845406B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP5400734B2 (en) Non-contact power transmission device
JP4835796B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP6610583B2 (en) Wireless power transmission system
JP5445545B2 (en) Non-contact charging module, non-contact charger and electronic device
JP2012080671A (en) Non-contact power transmission device
KR101198881B1 (en) Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same
JP2012199505A (en) Non-contact charging module, and transmission side non-contact charging apparatus and reception side non-contact charging apparatus having the same
JP2013093989A (en) Non-contact charging module, non-contact charger using the same and portable terminal
JP5400811B2 (en) Self-excited non-contact power transmission device
JP5824631B2 (en) Non-contact charging module and charger and electronic device using the same
JP2012191704A (en) Non contact charging module and non contact charger
JP5845407B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP2013004964A (en) Non-contact charging module and non-contact charger using the same
JP5358699B2 (en) Mobile device
JP6179621B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2014236542A (en) Transmitter and coil unit
JP2015079847A (en) Non-contact charge module, battery pack and electronic apparatus
JP5457478B2 (en) Mobile device
JP2014045552A (en) Wireless power-transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826