JP2012079904A - Capacitor device - Google Patents

Capacitor device Download PDF

Info

Publication number
JP2012079904A
JP2012079904A JP2010223355A JP2010223355A JP2012079904A JP 2012079904 A JP2012079904 A JP 2012079904A JP 2010223355 A JP2010223355 A JP 2010223355A JP 2010223355 A JP2010223355 A JP 2010223355A JP 2012079904 A JP2012079904 A JP 2012079904A
Authority
JP
Japan
Prior art keywords
side conductor
conductor
capacitor
capacitors
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010223355A
Other languages
Japanese (ja)
Other versions
JP5789946B2 (en
Inventor
Masayuki Ejiri
将幸 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2010223355A priority Critical patent/JP5789946B2/en
Publication of JP2012079904A publication Critical patent/JP2012079904A/en
Application granted granted Critical
Publication of JP5789946B2 publication Critical patent/JP5789946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor device capable of solving the problem that the area for mounting capacitor on a conductor enlarges as the number of capacitors that are mounted on the conductor increases in accordance with increase in capacity of a capacitor, resulting in increase in size of the capacitor device, and capable of solving the problem of unbalance in inductance and resistance, further flowing-in current and heating at capacitors.SOLUTION: The stacking of a P-side conductor and an N-side conductor to which a capacitor terminal is connected includes four layers, namely a first P-side conductor, a second N-side conductor, a second P-side conductor, and a first N-side conductor in this order. The capacitor is placed on the first P-side conductor and the first N-side conductor respectively, and an external terminal is provided in the same direction of the first P-side conductor and the first N-side conductor. The first and second P-side conductors, on the side different from the external terminal, as well as the first and second N-side conductors are connected using a connection member. Further, an impedance adjusting hole is provided to an arbitrary part of the P-side and the N-side conductors.

Description

本発明は、複数のコンデンサを接続導体に並列配置するコンデンサ装置に関するものである。   The present invention relates to a capacitor device in which a plurality of capacitors are arranged in parallel on connection conductors.

例えば、複数のスイッチング素子を有するインバータ装置には、各スイッチング素子と並列にそれぞれコンデンサが接続されている。また、大容量の電圧型インバータ装置では、直流コンデンサとして高耐圧、大電流、大容量のものが必要となることから、通常は多数のコンデンサを並列接続して等価的に一つの直流コンデンサとして設置される。コンデンサを並列接続するときに配慮すべき点として、寿命に対する信頼性から各コンデンサの電流責務(温度責務)を均一化する必要があり、従来では、特許文献1〜3のようなものが公知となっている。   For example, in an inverter device having a plurality of switching elements, a capacitor is connected in parallel with each switching element. In addition, a large-capacity voltage-type inverter device requires a high-voltage, high-current, large-capacity DC capacitor, so normally a large number of capacitors are connected in parallel and equivalently installed as a single DC capacitor. Is done. As a point to be considered when connecting capacitors in parallel, it is necessary to equalize the current duty (temperature duty) of each capacitor from the reliability with respect to the lifetime. It has become.

特許文献1には、並列に接続されるコンデンサ数を偶数にし、コンデンサの一方の電極側を共通の導体に接続し、他方のコンデンサ電極を共通の他の導体に接続することで、複数個のコンデンサ間の電流バラツキを改善することが記載されている。
特許文献2には、コンデンサの正極端子から負極端子へ向かうコンデンサ端子の配列方向が互いに平行となるように配列し、そのうちの一つのコンデンサの配列端子が他のものと逆にすることでインダクタンスのバラツキを小さくすることが記載されている。
特許文献3には、半導体デバイスに対して直流中間コンデンサを複数同じ方向に並列接続し、半導体デバイスとコンデンサ間の電流経路において各経路の距離が等しくなるようなスリットを設けることでインダクタンスのバラツキを小さくすることが記載されている。
In Patent Document 1, the number of capacitors connected in parallel is set to an even number, one electrode side of the capacitor is connected to a common conductor, and the other capacitor electrode is connected to another common conductor. It is described that current variation between capacitors is improved.
In Patent Document 2, the capacitor terminals are arranged so that the arrangement directions of the capacitor terminals from the positive electrode terminal to the negative electrode terminal are parallel to each other. It describes that the variation is reduced.
In Patent Document 3, a plurality of DC intermediate capacitors are connected in parallel to the semiconductor device in the same direction, and a slit is provided in the current path between the semiconductor device and the capacitor so that the distances of the respective paths are equal. It is described to make it smaller.

特開2000−82635JP 2000-82635 A 特開2004−165309JP2004165309 特開2007−89293JP2007-89293

コンデンサを並列接続する場合の問題として、特許文献1では、同文献で図18を用いて周波数帯により中心部の方で電流が増大し、または反対に中心部で減少すること、及び共振周波数付近でコンデンサ回路に局部的に電流が流れる問題点を有することが記載されている。また、各コンデンサの電流ループで生じる磁束が、他のコンデンサ回路との相互インダクタンスにより電流分担を悪くすることも知られており、上記各特許文献はそれらの各問題点を解決しようとするものである。   As a problem in the case of connecting capacitors in parallel, in Patent Document 1, the current increases in the center part according to the frequency band using FIG. 18 in the same document, or conversely decreases in the center part, and near the resonance frequency. It is described that there is a problem that current flows locally in the capacitor circuit. In addition, it is known that the magnetic flux generated in the current loop of each capacitor deteriorates current sharing due to mutual inductance with other capacitor circuits, and each of the above-mentioned patent documents tries to solve each of these problems. is there.

しかし、インバータ装置を構成するスイッチング素子数が増加する場合や、直流回路用コンデンサの大容量化等に伴って導体上に配設するコンデンサ数が増えると導体上でのコンデンサ取付け面積が増大してコンデンサ装置が大型化するが、この大型化についての対策については各特許文献には開示されてない。   However, when the number of switching elements constituting the inverter device increases, or when the number of capacitors disposed on the conductor increases as the capacity of the DC circuit capacitor increases, the capacitor mounting area on the conductor increases. Although the capacitor device is enlarged, the countermeasures for the enlargement are not disclosed in each patent document.

そこで本発明が目的とするとこは、インダクタンスのアンバランスに基づく問題点を解決しつつコンデンサ装置の大型化についての対策を施したコンデンサ装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a capacitor device in which measures for increasing the size of the capacitor device are taken while solving the problems based on inductance imbalance.

本発明は、積み重ねたP側導体とN側導体間に、複数のコンデンサの正極端子と負極端子をそれぞれ接続して構成するコンデンサ装置において、
前記コンデンサの端子が接続されるP側導体とN側導体の積み重ねを第1のP側導体,第2のN側導体,第2のP側導体,第1のN側導体の順の四層とし、第1のP側導体と第1のN側導体にそれぞれ前記コンデンサを分配して載置すると共に、第1のP側導体と第1のN側導体の同一方向に外部端子を設け、この外部端子とは異なる側の第1,2のP側導体間、及び第1,2のN側導体間を連結部材にて連結して構成したことを特徴としたものである。
The present invention relates to a capacitor device in which a positive electrode terminal and a negative electrode terminal of a plurality of capacitors are respectively connected between the stacked P-side conductor and N-side conductor,
Stacking the P-side conductor and the N-side conductor to which the capacitor terminal is connected is the four layers in the order of the first P-side conductor, the second N-side conductor, the second P-side conductor, and the first N-side conductor. The capacitor is distributed and placed on each of the first P-side conductor and the first N-side conductor, and an external terminal is provided in the same direction of the first P-side conductor and the first N-side conductor, The first and second P-side conductors on the side different from the external terminal and the first and second N-side conductors are connected by a connecting member.

本発明の請求項2は、前記第1のP側導体と第1のN側導体に載置するコンデンサ数は同数とし、且つ第2のP側導体と第2のN側導体間に絶縁物を介在させたことを特徴としたものである。   According to a second aspect of the present invention, the same number of capacitors are placed on the first P-side conductor and the first N-side conductor, and an insulator is provided between the second P-side conductor and the second N-side conductor. It is characterized by interposing.

本発明の請求項3は、前記P側導体及びN側導体の任意部に調整用孔を設けたことを特徴としたものである。   A third aspect of the present invention is characterized in that adjustment holes are provided in arbitrary portions of the P-side conductor and the N-side conductor.

本発明の請求項4は、前記調整用孔は、前記外部端子と対向する近辺の当該外部端子と同極導体に設けたことを特徴としたものである。   According to a fourth aspect of the present invention, the adjustment hole is provided in the same-polarity conductor as the external terminal in the vicinity facing the external terminal.

以上のとおり、本発明によれば、コンデンサの設置数が多数となる場合に、その設置面積の縮小が可能となり、低インピーダンスを保ちつつ各コンデンサに流入する電流をバランスさせ、温度責務を均一化できるものである。   As described above, according to the present invention, when a large number of capacitors are installed, the installation area can be reduced, the current flowing into each capacitor is balanced while maintaining a low impedance, and the temperature duty is made uniform. It can be done.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 本発明の配線回路図。The wiring circuit diagram of this invention. 本発明の他の実施形態を示す部分図。The fragmentary view which shows other embodiment of this invention.

図1は、本発明の実施例を示すコンデンサ装置の構成図、図2はその配線図を示したものである。この実施例は、コンデンサ数が36個よりなるコンデンサ装置の例である。10は第1のN側(負極側)導体で、この導体10上には18個のコンデンサCが6列×3列の状態で配設されている。また、N側導体10の一側には電源などの外部側に接続されるN側の外部端子10aが形成されている。11は第2のN側導体、20は第1のP側導体で、この導体20上には18個のコンデンサCが6列×3列の状態で配設されている。また、このP側導体20の一側には電源などの外部側に接続されるP側の外部端子20aを有している。21は第2のP側(正極側)導体である。   FIG. 1 is a configuration diagram of a capacitor device showing an embodiment of the present invention, and FIG. 2 is a wiring diagram thereof. This embodiment is an example of a capacitor device having 36 capacitors. Reference numeral 10 denotes a first N-side (negative electrode side) conductor, and 18 capacitors C are arranged on the conductor 10 in a state of 6 rows × 3 rows. Further, an N-side external terminal 10 a connected to the outside of a power source or the like is formed on one side of the N-side conductor 10. 11 is a second N-side conductor, 20 is a first P-side conductor, and 18 capacitors C are arranged on the conductor 20 in a state of 6 rows × 3 rows. One side of the P-side conductor 20 has a P-side external terminal 20a connected to the outside of a power source or the like. Reference numeral 21 denotes a second P-side (positive electrode side) conductor.

P側及びN側の各導体は、P側の外部端子20aとN側の外部端子10aを同一方向(図1では右方向)に向けて配置され、且つ各導体間には絶縁物3,4,及び5を介してN,P,N,P導体の順に積層される。積層された上下に隣接するP側導体20とN側導体11間と、N側導体10とP側導体21間には、それぞれコンデンサの配設位置にスルーホールが穿設されてコンデンサの極性端子が挿し込まれ、例えば、N側導体10上に配設されコンデンサの場合、コンデンサの正極端子はP側導体21に、負極端子はN側導体10に固着され、各極性毎の導体にそれぞれ電気的に接続される。そして、突設されたP側の外部端子20aとN側の外部端子10aとの反対側は、図2で示すようにN導体同士とP導体同士が導体よりなる連結部材6,7によって連結される。すなわち、コンデンサを配設する導体の中間位置でその導体を恰も折り曲げた状態でコンデンサ装置が構成される。   The P-side and N-side conductors are arranged with the P-side external terminal 20a and the N-side external terminal 10a facing in the same direction (rightward in FIG. 1), and the insulators 3, 4 are placed between the conductors. , 5 and 5 are stacked in the order of N, P, N, and P conductors. Through holes are formed between the stacked P-side conductors 20 and N-side conductors 11 and between the N-side conductors 10 and P-side conductors 21 at the positions where the capacitors are disposed, so that the polar terminals of the capacitors For example, in the case of a capacitor disposed on the N-side conductor 10, the positive terminal of the capacitor is fixed to the P-side conductor 21, and the negative terminal is fixed to the N-side conductor 10. Connected. The opposite sides of the projecting P-side external terminal 20a and the N-side external terminal 10a are connected by connecting members 6 and 7, each of which includes N conductors and P conductors, as shown in FIG. The That is, the capacitor device is configured in a state where the conductor is bent at the middle position of the conductor where the capacitor is disposed.

上記のように構成することで、コンデンサ装置における配線回路図は図2のようになる。すなわち、第1のP側導体20にはコンデンサC1〜C18の各正極端子が接続され、第2のN側導体11にはコンデンサC1〜C18の各負極端子がそれぞれ接続される。同様に、第1のN側導体10にはコンデンサC19〜C36の各負極端子が接続され、第2のP側導体21にはコンデンサC19〜C36の各正極端子がそれぞれ接続され、各コンデンサは並列接続状態となってコンデンサ間の自己インダクタンスが略同じとなるように構成される。   With the above configuration, the wiring circuit diagram of the capacitor device is as shown in FIG. That is, the positive terminals of the capacitors C1 to C18 are connected to the first P-side conductor 20, and the negative terminals of the capacitors C1 to C18 are connected to the second N-side conductor 11, respectively. Similarly, the negative terminals of capacitors C19 to C36 are connected to the first N-side conductor 10, and the positive terminals of capacitors C19 to C36 are connected to the second P-side conductor 21, respectively. The connection state is established so that the self-inductance between the capacitors is substantially the same.

コンデンサ装置に流入する電流は充放電されることから必ずしも一方向からの流入ではないが、例えば、P側外部端子に正極の、N側外部端子に負極の電圧がPNの両端子間に印加されると、第1のP側導体20には電流iP1が矢印方向に流れ、第2のN側導体11には電流iN2が矢印方向に流れる。各電流は、連結部材6,7を介して第2のP側導体21と第1のN側導体10にも流れ、第2のP側導体21には電流iP2が矢印方向に流れ、第2のN側導体11には電流iN1が矢印方向に流れる。 The current flowing into the capacitor device is not necessarily inflow from one direction because it is charged and discharged. For example, a positive voltage is applied to the P-side external terminal and a negative voltage is applied to the N-side external terminal between both terminals of the PN. Then, the current i P1 flows through the first P-side conductor 20 in the direction of the arrow, and the current i N2 flows through the second N-side conductor 11 in the direction of the arrow. Each current also flows to the second P-side conductor 21 and the first N-side conductor 10 via the connecting members 6 and 7, and the current i P2 flows to the second P-side conductor 21 in the direction of the arrow. A current i N1 flows through the second N-side conductor 11 in the direction of the arrow.

つまり、コンデンサ装置を流れる電流は、第1のP側導体20と第2のN側導体11に流れる電流方向は同一方向となり、また、第2のP側導体21と第1のN側導体10に流れる電流方向は同一方向となり、導体20,11間及び導体21,10間の磁束は略ゼロになる。これにより、導体20,11によって構成される回路網、及び導体21,10よって構成される回路網による相互インダクタンスの影響は少なくなる。なお、隣り合う導体のうち、異なる方向に電流が流れるN側導体11とP側導体21間では電流差による磁束は発生するが、両導体11,21間には絶縁物4が介在されて間隙が形成されることから、相互インダクタンスによる影響は軽減され、低インピーダンスの回路網が形成される。   That is, the current flowing through the capacitor device has the same direction of the current flowing through the first P-side conductor 20 and the second N-side conductor 11, and the second P-side conductor 21 and the first N-side conductor 10. The direction of the current flowing through the conductors is the same, and the magnetic flux between the conductors 20 and 11 and between the conductors 21 and 10 is substantially zero. Thereby, the influence of the mutual inductance by the circuit network constituted by the conductors 20 and 11 and the circuit network constituted by the conductors 21 and 10 is reduced. Of the adjacent conductors, a magnetic flux is generated between the N-side conductor 11 and the P-side conductor 21 in which current flows in different directions, but an insulator 4 is interposed between the two conductors 11 and 21 so that a gap is present. Therefore, the influence of mutual inductance is reduced and a low impedance circuit network is formed.

この実施例によれば、コンデンサ装置の等価回路の中心位置より恰も折り曲げた形で積層し、導体を四重構造としたことにより少ない面積での多数コンデンサの並列配置が可能となり、特に大容量コンデンサ装置の小型化が実現できるものである。また、折り曲げ時(積層時)においても、相互インダクタンスによる影響を低減したことにより各コンデンサ電流のアンバランスは減少できるものである。   According to this embodiment, it is possible to arrange a large number of capacitors in a small area in parallel by stacking in a shape that is bent more than the center position of the equivalent circuit of the capacitor device and making the conductor a quadruple structure. The device can be miniaturized. Also, even during bending (stacking), the imbalance between the capacitor currents can be reduced by reducing the influence of mutual inductance.

図3は他の実施例を示した部分図である。
本発明によるコンデンサ装置は、図1,2で示すように等価的な中心位置より折り曲げて上下対象に構成したことにより、大容量のコンデンサ装置でも比較的小型に、且つ相互インダクタンスの影響を抑制し、しかもコンデンサ間の自己インダクタンスが同等となるよう構成されるが、各コンデンサに流入する電流のアンバランスは発生する。各コンデンサに流入する電流は、自己インダクタンス、相互インダクタンス及び抵抗分によって決定される。本発明では、コンデンサ装置の等価回路における中間点で折り曲げた構成となっていることから、電流が流入するP端子20a及びN端子10aから最も離れた点でのインダクタンスが小さく、且つ抵抗値が大きくなってコンデンサ個々での電流のアンバランスが発生する可能性がある。この実施例はインダクタンス及び抵抗値の不均一に基づく各コンデンサ電流のアンバランスを調整するものである。
FIG. 3 is a partial view showing another embodiment.
As shown in FIGS. 1 and 2, the capacitor device according to the present invention is bent from the equivalent center position so as to be vertically positioned, so that even a large-capacity capacitor device is relatively small and suppresses the influence of mutual inductance. In addition, although the self-inductance between the capacitors is equal, an imbalance of the current flowing into each capacitor occurs. The current flowing into each capacitor is determined by self-inductance, mutual inductance, and resistance. In the present invention, since it is configured to be bent at an intermediate point in the equivalent circuit of the capacitor device, the inductance at a point farthest from the P terminal 20a and the N terminal 10a into which the current flows is small and the resistance value is large. This may cause an imbalance of current in each capacitor. In this embodiment, the unbalance of each capacitor current is adjusted based on the nonuniformity of the inductance and the resistance value.

図3はN側導体のみを示したもので、第2のN側導体11の任意部にインダクタンス及び抵抗値の調整用孔12を任意数穿設してインダクタンスを大きくし、且つ抵抗値を小さくして電流のバランスをとりつつ低インピーダンス化を図ったものである。調整用孔12は、N側外部端子10aより最も離れた位置、すなわち、導体積層時の外部端子10aと対向する近辺の第2のN側導体11で、コンデンサの端子が接続されるスルーホールを逃げた位置で特に穿設されるが、この調整用孔12は、各コンデンサの電流責務は温度上昇で測定できることから、温度測定の結果で所定の温度ばらつきの範囲内に入るよう設けられる。このことから、図3では調整用孔12を第2のN側導体11にのみ穿設しているが、第1のN側導体10やP側導体においても同様にして調整用孔12を設けてインダクタンスを大きくすると共に、抵抗値も調整して温度責務の均一化が図られて各コンデンサの電流分担を改善している。   FIG. 3 shows only the N-side conductor. An arbitrary number of adjustment holes 12 for adjusting the inductance and the resistance value are formed in an arbitrary portion of the second N-side conductor 11 to increase the inductance, and the resistance value is decreased. Thus, the impedance is reduced while balancing the current. The adjustment hole 12 is a position farthest away from the N-side external terminal 10a, that is, the second N-side conductor 11 in the vicinity facing the external terminal 10a when the conductors are laminated, and a through hole to which the capacitor terminal is connected. This adjustment hole 12 is provided so as to fall within a predetermined temperature variation range as a result of the temperature measurement because the current duty of each capacitor can be measured by a temperature rise. Therefore, in FIG. 3, the adjustment hole 12 is formed only in the second N-side conductor 11, but the adjustment hole 12 is similarly provided in the first N-side conductor 10 and the P-side conductor. In addition to increasing the inductance, the resistance value is also adjusted to make the temperature duty uniform, improving the current sharing of each capacitor.

この実施例によれば、図1の実施例に加えて、さらに温度責務の均一化が図られて各コンデンサの電流分担が改善されるものである。   According to this embodiment, in addition to the embodiment of FIG. 1, the temperature duty is further made uniform and the current sharing of each capacitor is improved.

3,4,5… 絶縁物
6,7… 連結部材
10… 第1のN側導体
11… 第2のN側導体
12… 調整用孔
20… 第1のP側導体
21… 第2のP側導体
3, 4, 5 ... Insulator 6, 7 ... Connecting member 10 ... First N-side conductor 11 ... Second N-side conductor 12 ... Adjustment hole 20 ... First P-side conductor 21 ... Second P-side conductor

Claims (4)

積み重ねたP側導体とN側導体間に、複数のコンデンサの正極端子と負極端子をそれぞれ接続して構成するコンデンサ装置において、
前記コンデンサの端子が接続されるP側導体とN側導体の積み重ねを第1のP側導体,第2のN側導体,第2のP側導体,第1のN側導体の順の四層とし、第1のP側導体と第1のN側導体にそれぞれ前記コンデンサを分配して載置すると共に、第1のP側導体と第1のN側導体の同一方向に外部端子を設け、この外部端子とは異なる側の第1,2のP側導体間、及び第1,2のN側導体間を連結部材にて連結して構成したことを特徴としたコンデンサ装置。
In the capacitor device configured by connecting the positive and negative terminals of a plurality of capacitors between the stacked P-side conductor and N-side conductor,
Stacking the P-side conductor and the N-side conductor to which the capacitor terminal is connected is the four layers in the order of the first P-side conductor, the second N-side conductor, the second P-side conductor, and the first N-side conductor. The capacitor is distributed and placed on each of the first P-side conductor and the first N-side conductor, and an external terminal is provided in the same direction of the first P-side conductor and the first N-side conductor, A capacitor device comprising: a connecting member connecting the first and second P-side conductors on the side different from the external terminal and the first and second N-side conductors.
前記第1のP側導体と第1のN側導体に載置するコンデンサ数は同数とし、且つ第2のP側導体と第2のN側導体間に絶縁物を介在させたことを特徴とした請求項1記載のコンデンサ装置。 The same number of capacitors are placed on the first P-side conductor and the first N-side conductor, and an insulator is interposed between the second P-side conductor and the second N-side conductor. 2. The capacitor device according to claim 1. 前記P側導体及びN側導体の任意部に調整用孔を設けたことを特徴とした請求項1又は2記載のコンデンサ装置。 3. The capacitor device according to claim 1, wherein adjustment holes are provided in arbitrary portions of the P-side conductor and the N-side conductor. 前記調整用孔は、前記外部端子と対向する近辺の当該外部端子と同極導体に設けたことを特徴とした請求項3記載のコンデンサ装置。
4. The capacitor device according to claim 3, wherein the adjustment hole is provided in the same-polarity conductor as the external terminal in the vicinity facing the external terminal.
JP2010223355A 2010-10-01 2010-10-01 Capacitor device Active JP5789946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010223355A JP5789946B2 (en) 2010-10-01 2010-10-01 Capacitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010223355A JP5789946B2 (en) 2010-10-01 2010-10-01 Capacitor device

Publications (2)

Publication Number Publication Date
JP2012079904A true JP2012079904A (en) 2012-04-19
JP5789946B2 JP5789946B2 (en) 2015-10-07

Family

ID=46239808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010223355A Active JP5789946B2 (en) 2010-10-01 2010-10-01 Capacitor device

Country Status (1)

Country Link
JP (1) JP5789946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086014A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Capacitor module
JP2016139702A (en) * 2015-01-28 2016-08-04 株式会社明電舎 Attachment structure of capacitor and power converter
JP2018137271A (en) * 2017-02-20 2018-08-30 トヨタ自動車株式会社 Coil unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389227A (en) * 1986-09-30 1988-04-20 Nitsukuu Kogyo Kk Partial impregnating formation for casting
JPS6389227U (en) * 1986-11-29 1988-06-10
JP2000082635A (en) * 1998-09-04 2000-03-21 Toshiba Corp Capacitor circuit device
JP2006019367A (en) * 2004-06-30 2006-01-19 Nippon Chemicon Corp Connector, electronic component connecting structure, and electronic component device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389227A (en) * 1986-09-30 1988-04-20 Nitsukuu Kogyo Kk Partial impregnating formation for casting
JPS6389227U (en) * 1986-11-29 1988-06-10
JP2000082635A (en) * 1998-09-04 2000-03-21 Toshiba Corp Capacitor circuit device
JP2006019367A (en) * 2004-06-30 2006-01-19 Nippon Chemicon Corp Connector, electronic component connecting structure, and electronic component device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086014A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Capacitor module
JP2016139702A (en) * 2015-01-28 2016-08-04 株式会社明電舎 Attachment structure of capacitor and power converter
JP2018137271A (en) * 2017-02-20 2018-08-30 トヨタ自動車株式会社 Coil unit

Also Published As

Publication number Publication date
JP5789946B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
EP3203625B1 (en) Electric power conversion apparatus
US8780525B2 (en) Capacitor
US10128035B2 (en) Coupled inductor arrays and associated methods
JP4597202B2 (en) Power converter
CN101807863B (en) Power converter
CN109873262B (en) Laminated flat electric wire
WO2018025342A1 (en) Noise filter circuit
JP4826845B2 (en) Power semiconductor module
JP2008091809A (en) Semiconductor module
US20100097169A1 (en) Multiphase inductor and filter assemblies using bundled bus bars with magnetic core material rings
CN111865100A (en) Power conversion device
JP5789946B2 (en) Capacitor device
JP5207862B2 (en) Semiconductor module
US10536090B2 (en) Bus bar structure and power conversion device using same
KR101381425B1 (en) Super high-capacity shunt
JP2008306867A (en) Power conversion equipment and method of connecting electrical part
JP2017208531A (en) Capacitor module
CN208797046U (en) Semiconductor devices resistor
CN108922744B (en) Coil and electronic equipment
JP2001245480A (en) Semiconductor power conversion device
KR101494599B1 (en) Auto molded transformer for an electric-railroad power supply
JP2015018856A (en) Semiconductor power module
CN114342566B (en) Electronic component mounting structure
JPH07307244A (en) Capacitor unit
JP2017225235A (en) Single-phase inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5789946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150