JP2012078228A - Air flow rate measuring device - Google Patents

Air flow rate measuring device Download PDF

Info

Publication number
JP2012078228A
JP2012078228A JP2010224273A JP2010224273A JP2012078228A JP 2012078228 A JP2012078228 A JP 2012078228A JP 2010224273 A JP2010224273 A JP 2010224273A JP 2010224273 A JP2010224273 A JP 2010224273A JP 2012078228 A JP2012078228 A JP 2012078228A
Authority
JP
Japan
Prior art keywords
heating resistor
flow rate
upstream
downstream
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010224273A
Other languages
Japanese (ja)
Inventor
Noboru Kitahara
昇 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010224273A priority Critical patent/JP2012078228A/en
Publication of JP2012078228A publication Critical patent/JP2012078228A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To facilitate elimination of an application error in a thermal type air flow rate measuring device for measuring flow rate of intake air.SOLUTION: In an air flow rate measuring device, three terminals 54-56 are provided in a heating resistor 6 and the heating resister 6 is energized via the terminals 54-56 to generate a heating value difference between upstream side and downstream side heating resistors 48 and 49 of the heating register 6, which are respectively near to upstream side and downstream side temperature measuring resistors 7-10. Accordingly, thermal influence received by the upstream side temperature measuring resistors 7 and 8 from the heating resistor 6 and thermal influence received by the downstream side temperature measuring resistors 9 and 10 from the heating resistor 6 are made different from each other, a temperature difference-flow rate characteristic to be a reference for flow rate measurement is freely changed, and a shift of a detection value by the application error can be canceled. As a result, the application error can be easily eliminated, even if a large number of kinds of sensors are not prepared in the air flow rate measuring device.

Description

本発明は、例えば、内燃機関に吸入される空気(以下、吸入空気と呼ぶことがある。)との間に伝熱現象を発生させることで吸入空気の流量(以下、吸気量と略して呼ぶことがある。)を測定する熱式の空気流量測定装置に関する。   In the present invention, for example, a flow rate of intake air (hereinafter abbreviated as an intake air amount) is generated by generating a heat transfer phenomenon between air sucked into an internal combustion engine (hereinafter also referred to as intake air). The present invention relates to a thermal air flow rate measuring device that measures the air flow rate).

従来から、吸気量の測定には、流量として質量流量を直接的に測定できる利点から、吸入空気との間に伝熱現象を発生させて質量流量相当の検出値を発生する熱式の空気流量測定装置が広く利用されている(以下の説明では、吸入空気の流れる方向に関し、エアクリーナから内燃機関に向かう方向を順方向と呼び、内燃機関からエアクリーナに向かう方向を逆方向と呼ぶ。また、順方向にも、逆方向にも空気が流れていない状態を無風状態と呼ぶ。)。   Conventionally, in the measurement of intake air amount, the thermal air flow rate that generates a detection value equivalent to the mass flow rate by generating a heat transfer phenomenon with the intake air from the advantage that the mass flow rate can be directly measured as the flow rate Measuring devices are widely used (in the following description, the direction from the air cleaner to the internal combustion engine is referred to as the forward direction, and the direction from the internal combustion engine to the air cleaner is referred to as the reverse direction with respect to the direction of intake air flow. A state in which no air is flowing in either the direction or the reverse direction is referred to as no wind.)

従来の空気流量測定装置100のセンサ100Aは、例えば、図14に示すように、通電により発熱する発熱抵抗体101と、発熱抵抗体101の上流側に配されて、発熱抵抗体101から熱的影響を受ける上流側測温抵抗体102と、発熱抵抗体101の下流側に配されて、発熱抵抗体101から熱的影響を受ける下流側測温抵抗体103とを備え、上流側、下流側測温抵抗体102、103は、発熱抵抗体101を挟んで吸入空気の流れる方向に関し線対称に設けられている。   For example, as shown in FIG. 14, the sensor 100 </ b> A of the conventional air flow rate measuring device 100 is arranged on the upstream side of the heating resistor 101 and the heating resistor 101 that generates heat when energized. An upstream temperature sensing resistor 102 that is affected, and a downstream temperature sensing resistor 103 that is disposed downstream of the heating resistor 101 and that is thermally influenced by the heating resistor 101, is provided upstream and downstream. The resistance temperature detectors 102 and 103 are provided symmetrically with respect to the direction in which the intake air flows with the heating resistor 101 interposed therebetween.

また、センサ100Aは、例えば、発熱抵抗体101から熱的影響を受けていない状態の吸入空気の温度と発熱抵抗体101の温度との温度差が一定値となるように、発熱抵抗体101の発熱を制御する。これにより、吸入空気の流れる方向に沿って吸気量に応じた温度分布が形成され、上流側、下流側測温抵抗体102、103の間には吸気量に応じた温度差が発生するので、この温度差に応じた電気信号を利用することで、吸気量の質量流量相当の検出値が得られる(なお、温度差は、下流側測温抵抗体103の温度から上流側測温抵抗体102の温度を減じたものとして定義する。)。   In addition, the sensor 100A is configured so that, for example, the temperature difference between the temperature of the intake air and the temperature of the heating resistor 101 that is not thermally influenced by the heating resistor 101 becomes a constant value. Control heat generation. As a result, a temperature distribution corresponding to the intake air amount is formed along the flow direction of the intake air, and a temperature difference corresponding to the intake air amount is generated between the upstream and downstream temperature measuring resistors 102 and 103. A detection value corresponding to the mass flow rate of the intake air amount is obtained by using an electrical signal corresponding to this temperature difference (note that the temperature difference is determined from the temperature of the downstream resistance temperature detector 103 to the upstream resistance temperature detector 102. Defined as the reduced temperature of.)

すなわち、無風状態では、吸入空気の流れる方向に関して発熱抵抗体101の上下流側に線対称な温度分布が形成され、上流側、下流側測温抵抗体102、103の間の温度差はゼロに略一致する。   That is, in the no-wind state, a temperature-symmetrical temperature distribution is formed on the upstream and downstream sides of the heating resistor 101 with respect to the flow direction of the intake air, and the temperature difference between the upstream and downstream temperature measuring resistors 102 and 103 is zero. It almost agrees.

また、順方向に吸入空気の流れが生じている場合、発熱抵抗体101の上流側では温度が下がり、発熱抵抗体101の下流側では温度が上がるので、上流側、下流側測温抵抗体102、103の間にはプラスの温度差が発生し、逆方向に吸入空気の流れが生じている場合、発熱抵抗体101の上流側では温度が上がり、発熱抵抗体101の下流側では温度が下がるので、上流側、下流側測温抵抗体102、103の間にはマイナスの温度差が発生する。   Further, when the flow of the intake air is generated in the forward direction, the temperature decreases on the upstream side of the heating resistor 101 and the temperature increases on the downstream side of the heating resistor 101, and therefore, the upstream and downstream temperature measuring resistors 102. , 103 has a positive temperature difference, and when a flow of intake air is generated in the opposite direction, the temperature rises on the upstream side of the heating resistor 101 and decreases on the downstream side of the heating resistor 101. Therefore, a negative temperature difference is generated between the upstream and downstream resistance thermometers 102 and 103.

ところで、従来の空気流量測定装置100によれば、温度差と空気流量との相関(以下、温度差−流量特性と呼ぶ。)は、図15に示すように、空気流量がプラスであって順方向に空気が流れている範囲で上に凸となり、空気流量がマイナスであって逆方向に空気が流れている範囲で下に凸となり、温度差=ゼロ、かつ、空気流量=ゼロの点を中心として点対称となる。   By the way, according to the conventional air flow rate measuring apparatus 100, the correlation between the temperature difference and the air flow rate (hereinafter referred to as the temperature difference-flow rate characteristic) is as shown in FIG. Convex in the direction of air flow in the direction, convex down in the range of negative air flow and air flow in the reverse direction, and the points of temperature difference = zero and air flow rate = zero It is point-symmetric with respect to the center.

これにより、例えば、吸入路における吸入空気の流れが、内燃機関のバルブ開閉に応じて脈動すると、吸気量の脈動平均値は、真値に対してマイナス側に偏った数値として検出されてしまう。そこで、脈動平均値がマイナス側に偏って検出されることにより検出値がマイナス側にシフトするのを解消するべく、空気流量測定装置100では、図16に示すように、吸気路における直線的な流れを迂回する内部流路105を形成して内部流路105にセンサ100Aを配する構成が広く採用されている。   Thereby, for example, when the flow of the intake air in the intake passage pulsates in accordance with the opening / closing of the valve of the internal combustion engine, the pulsation average value of the intake air amount is detected as a numerical value that is biased to the minus side with respect to the true value. Therefore, in order to eliminate the shift of the detected value to the minus side due to the detection of the pulsation average value biased to the minus side, the air flow rate measuring device 100 is linear in the intake passage as shown in FIG. A configuration in which an internal flow path 105 that bypasses the flow is formed and the sensor 100A is arranged in the internal flow path 105 is widely adopted.

すなわち、内部流路105に取り込まれず吸気路を直進した場合の流路長をL1、内部流路105の流路長をL2とすると、空気流量測定装置100は、直線的な流れを迂回する内部流路105を形成して内部流路105にセンサ100Aを配することにより、L2/L1に応じて検出値を高める補正機能を有するようになる。   In other words, when the flow path length when the air flow path is not taken into the internal flow path 105 and goes straight through the intake path is L1, and the flow path length of the internal flow path 105 is L2, the air flow rate measuring device 100 is an internal part that bypasses the linear flow. By forming the flow path 105 and arranging the sensor 100A in the internal flow path 105, a correction function for increasing the detection value according to L2 / L1 is provided.

しかし、内部流路105にセンサ100Aを配することで検出値のマイナス側へのシフトを解消しても、空気流量測定装置100を車両に組み込んで使用するときに検出値がマイナス側またはプラス側にシフトして誤差を含んでしまう。つまり、エアクリーナの態様や脈動条件が車両ごとに相違しており、この相違に起因して検出値の誤差が発生する( 以下の説明では、空気流量測定装置を車両に組み込んで使用するときに、車両ごとのエアクリーナの態様や脈動条件の相違に起因して発生する誤差を、適用誤差と呼ぶ。)。   However, even if the shift of the detected value to the minus side is eliminated by arranging the sensor 100A in the internal flow path 105, the detected value is on the minus side or the plus side when the air flow measuring device 100 is incorporated in a vehicle and used. It will shift to and will contain errors. That is, the mode of air cleaner and the pulsation condition are different for each vehicle, and an error of the detection value occurs due to this difference (in the following description, when the air flow rate measuring device is incorporated in a vehicle and used, An error that occurs due to a difference in the mode of air cleaner and pulsation conditions for each vehicle is called an application error.)

ここで、特許文献1には、空気の流れ方向に関する発熱抵抗体との距離を上流側測温抵抗体と下流側測温抵抗体との間で異ならせたり、発熱抵抗体の形状を上流側と下流側とで異ならせたりすることで、無風状態において発熱抵抗体が上流側測温抵抗体に与える熱的影響と、発熱抵抗体が下流側測温抵抗体に与える熱的影響とを異ならせる構成が開示されている。また、特許文献2には、発熱抵抗体から熱的影響を受けない抵抗体を下流側測温抵抗体に接続することで、上流側、下流側測温抵抗体の間で熱特性を異ならせる構成が開示されている。   Here, in Patent Document 1, the distance from the heating resistor in the air flow direction is made different between the upstream temperature measuring resistor and the downstream temperature measuring resistor, or the shape of the heating resistor is set upstream. The thermal effect of the heating resistor on the upstream resistance temperature detector and the thermal effect of the heating resistor on the downstream resistance temperature detector are different from each other in the no wind condition. A configuration to be applied is disclosed. Patent Document 2 discloses that the thermal characteristics of the upstream and downstream resistance thermometers are made different by connecting a resistor not thermally affected by the heating resistor to the downstream resistance thermometer. A configuration is disclosed.

しかし、特許文献1の構成によれば、適用誤差を解消するには、車両ごとに、発熱抵抗体と上流側、下流側測温抵抗体それぞれとの距離を設定したり、発熱抵抗体の形状を設定したりする必要がある。また、特許文献2の構成によれば、適用誤差を解消するには、車両ごとに、下流側測温抵抗体に接続する抵抗体を変更する必要がある。
このため、特許文献1、2のいずれの構成を採用するとしても、適用誤差を解消するには膨大な品種のセンサを準備しておく必要があり、適用誤差の解消策として煩雑である。
However, according to the configuration of Patent Document 1, in order to eliminate the application error, for each vehicle, the distance between the heating resistor and each of the upstream and downstream temperature measuring resistors is set, or the shape of the heating resistor is set. Need to be set. Moreover, according to the structure of patent document 2, in order to eliminate an application error, it is necessary to change the resistor connected to a downstream resistance temperature sensor for every vehicle.
For this reason, even if which structure of patent document 1 and 2 is employ | adopted, in order to eliminate an application error, it is necessary to prepare an enormous variety of sensors, and it is complicated as a solution for an application error.

特許第2666163号公報Japanese Patent No. 2666163 特許第3718198号公報Japanese Patent No. 3718198

本発明は、上記の問題点を解決するためになされたものであり、その目的は、吸入空気の流量を測定する熱式の空気流量測定装置において、適用誤差の解消を容易化することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to facilitate the elimination of application errors in a thermal air flow measurement device that measures the flow rate of intake air. .

〔請求項1の手段〕
請求項1の手段によれば、空気流量測定装置は、内燃機関に吸入される空気との間に伝熱現象を発生させることで内燃機関に吸入される空気の流量を測定するものである。また、空気流量測定装置は、通電により発熱する発熱抵抗体と、発熱抵抗体の上流側に配されて、発熱抵抗体から熱的影響を受ける上流側測温抵抗体と、発熱抵抗体の下流側に配されて、発熱抵抗体から熱的影響を受ける下流側測温抵抗体とを備える。
[Means of Claim 1]
According to the first aspect of the present invention, the air flow rate measuring device measures the flow rate of the air sucked into the internal combustion engine by generating a heat transfer phenomenon with the air sucked into the internal combustion engine. In addition, the air flow rate measuring device includes a heating resistor that generates heat when energized, an upstream temperature measuring resistor that is disposed upstream of the heating resistor and is thermally affected by the heating resistor, and a downstream of the heating resistor. And a downstream resistance temperature detector which is arranged on the side and receives thermal influence from the heating resistor.

そして、発熱抵抗体は、通電を受けるための3つ以上の端子を有し、発熱抵抗体が3つ以上の端子を介して通電を受けることで、空気が流れていないときに、上流側測温抵抗体が発熱抵抗体から受ける熱的影響と、下流側測温抵抗体が発熱抵抗体から受ける熱的影響とが異なる。   The heating resistor has three or more terminals for receiving energization, and when the heating resistor is energized through the three or more terminals, when the air is not flowing, the upstream side measurement is performed. The thermal effect that the temperature resistor receives from the heating resistor is different from the thermal effect that the downstream temperature measuring resistor receives from the heating resistor.

発熱抵抗体に3つ以上の端子を設け、これらの端子を介して発熱抵抗体に通電することで、発熱抵抗体の内、上流側測温抵抗体に近い抵抗部分と下流側測温抵抗体に近い抵抗部分との間に発熱量差を発生することができる。つまり、上流側、下流側測温抵抗体に近い抵抗部分のそれぞれに、例えば、直列に可変抵抗器を接続し、それぞれの可変抵抗器の抵抗値を自在に設定することで、上流側測温抵抗体に近い抵抗部分と下流側測温抵抗体に近い抵抗部分との間の発熱量差を自在に操作することができる。   By providing three or more terminals to the heating resistor and energizing the heating resistor through these terminals, the resistance portion close to the upstream resistance thermometer and the downstream resistance resistor among the heating resistors It is possible to generate a difference in heat generation between the resistance portion and the resistance portion close to. In other words, for example, by connecting a variable resistor in series to each of the resistance parts close to the upstream and downstream resistance thermometers, the resistance value of each variable resistor can be set freely, so that the upstream temperature measurement The calorific value difference between the resistance portion close to the resistor and the resistance portion close to the downstream resistance temperature detector can be freely manipulated.

このため、上流側測温抵抗体が発熱抵抗体から受ける熱的影響と、下流側測温抵抗体が発熱抵抗体から受ける熱的影響とを異ならせて、流量測定の基準となる温度差−流量特性を自在に変更することができる。
したがって、温度差−流量特性を適用誤差の解消に適するものに容易に変更することができるので、空気流量測定装置に関して膨大な数の品種を揃えなくても、容易に適用誤差を解消することができる。
For this reason, the thermal effect that the upstream resistance temperature detector receives from the heating resistor differs from the thermal effect that the downstream resistance resistor receives from the heating resistor, so that the temperature difference that is the reference for flow rate measurement − The flow characteristics can be changed freely.
Therefore, the temperature difference-flow rate characteristic can be easily changed to one suitable for eliminating the application error, so that it is possible to easily eliminate the application error without arranging a huge number of types of air flow measuring devices. it can.

〔請求項2の手段〕
請求項2の手段によれば、空気流量測定装置は、空洞を有して表面が電気絶縁膜で覆われる半導体基板を備え、発熱抵抗体、上流側測温抵抗体および下流側測温抵抗体は、電気絶縁膜の一部であって空洞を覆うメンブレン上に半導体膜として設けられている。
温度差−流量特性の変更は、例えば、上流側、下流側測温抵抗体それぞれ自身の通電による発熱量に差を持たせることでも可能である。
[Means of claim 2]
According to the means of claim 2, the air flow rate measuring device includes a semiconductor substrate having a cavity and having a surface covered with an electrical insulating film, and includes a heating resistor, an upstream temperature measuring resistor, and a downstream temperature measuring resistor. Is provided as a semiconductor film on a membrane that is a part of the electrical insulating film and covers the cavity.
The temperature difference-flow rate characteristic can be changed, for example, by providing a difference in the amount of heat generated by energization of the upstream side and downstream side resistance thermometers.

しかし、メンブレン上に発熱抵抗体や上流側、下流側測温抵抗体を設ける場合、上流側、下流側測温抵抗体は、メンブレン上で発熱抵抗体よりも周辺側に設けられるため、厚みを持った半導体基板に熱を奪われやすい。このため、上流側、下流側測温抵抗体それぞれ自身の通電による発熱量に差を持たせようとすると、上流側、下流側測温抵抗体への通電量を大きくする必要があり、消費電力が大きくなってしまう。   However, when providing a heating resistor or upstream or downstream resistance temperature detector on the membrane, the upstream and downstream resistance resistors are provided on the membrane closer to the periphery than the heating resistor. Heat is easily lost to the semiconductor substrate. For this reason, if there is a difference in the amount of heat generated by the energization of the upstream and downstream resistance thermometers, it is necessary to increase the energization amount to the upstream and downstream resistance thermometers. Will become bigger.

これに対し、発熱抵抗体内で発熱量に差を持たせる場合には、消費電力はさほど変化しない。このため、発熱抵抗体内で発熱量に差を持たせることにより、消費電力を増やさずに温度差−流量特性を変更することができる。   On the other hand, when there is a difference in the amount of heat generated in the heating resistor, the power consumption does not change much. For this reason, it is possible to change the temperature difference-flow rate characteristic without increasing the power consumption by providing a difference in the amount of heat generated in the heating resistor.

〔請求項3の手段〕
請求項3の手段によれば、上流側測温抵抗体と下流側測温抵抗体とは、発熱抵抗体を挟んで空気の流れる方向に関し線対称に設けられている。
メンブレン上に発熱抵抗体や上流側、下流側測温抵抗体を設ける場合、メンブレンに生じる応力により、発熱抵抗体や上流側、下流側測温抵抗体の抵抗値はピエゾ抵抗効果によって変動しやすくなり、測定精度が低下する虞がある。
[Means of claim 3]
According to the third aspect of the present invention, the upstream side resistance temperature detector and the downstream side resistance temperature detector are provided in line symmetry with respect to the direction of air flow with the heating resistor interposed therebetween.
When a heating resistor, upstream side, or downstream side resistance temperature detector is installed on the membrane, the resistance value of the heating resistor, upstream side, or downstream side resistance temperature detector is likely to fluctuate due to the piezoresistance effect due to the stress generated in the membrane. As a result, the measurement accuracy may be reduced.

そこで、発熱抵抗体を挟んで上流側、下流側測温抵抗体を空気の流れる方向に関し線対称に設ける。これにより、発熱抵抗体自身に空気の流れる方向に関してピエゾ抵抗効果が対称的に生じ、抵抗値の変動が相殺される。同様に、上流側、下流側測温抵抗体間でも空気の流れる方向に関してピエゾ抵抗効果が対称的に生じ、抵抗値の変動が相殺される。このため、発熱抵抗体を挟んで上流側、下流側測温抵抗体を空気の流れる方向に関し線対称に設けることにより、発熱抵抗体や上流側、下流側測温抵抗体の抵抗値変動を相殺して測定精度低下の虞を低減することができる。   Therefore, the upstream and downstream resistance thermometers are provided symmetrically with respect to the direction of air flow with the heating resistor interposed therebetween. As a result, a piezoresistance effect occurs symmetrically with respect to the direction of air flow in the heating resistor itself, and the variation in resistance value is offset. Similarly, the piezoresistive effect is generated symmetrically between the upstream and downstream resistance temperature detectors with respect to the direction of air flow, and the fluctuation of the resistance value is offset. For this reason, by providing the upstream and downstream resistance thermometers symmetrically with respect to the air flow direction across the heating resistor, the resistance value fluctuations of the heating resistor and upstream and downstream resistance resistors are offset. Thus, the possibility of a decrease in measurement accuracy can be reduced.

空気流量測定装置の内部を示す断面図である(実施例)。It is sectional drawing which shows the inside of an air flow measuring device (Example). メンブレン上の発熱抵抗体および上流側、下流側測温抵抗体の配置を示す平面図である(実施例)。It is a top view which shows arrangement | positioning of the heating resistor on a membrane, an upstream side, and a downstream temperature sensing resistor (Example). (a)はセンサの平面図であり、(b)はセンサの断面図であり、(c)は半導体基板上の素子、配線部および電極を示す断面図である(実施例)。(A) is a plan view of the sensor, (b) is a cross-sectional view of the sensor, and (c) is a cross-sectional view showing elements, wiring portions, and electrodes on the semiconductor substrate (Example). (a)は上流側、下流側測温抵抗体により温度差に応じた信号を出力するための回路構成図であり、(b)は発熱抵抗体の発熱を制御するための回路構成図である(実施例)。(A) is a circuit block diagram for outputting a signal according to a temperature difference by the upstream side and downstream side resistance temperature detectors, and (b) is a circuit block diagram for controlling the heat generation of the heating resistor. (Example). 空気流量測定装置の側面図である(実施例)。It is a side view of an air flow rate measuring apparatus (Example). (a)は空気流量測定装置の正面図であり、(b)は空気流量測定装置の下面図である(実施例)。(A) is a front view of an air flow measuring device, (b) is a bottom view of the air flow measuring device (Example). 吸気量の脈動平均値と吸気量の検出値との関係を示す説明図である(実施例)。It is explanatory drawing which shows the relationship between the pulsation average value of intake air amount, and the detected value of intake air amount (Example). 温度差−流量特性の変更を示す特性図である(実施例)。It is a characteristic view which shows the change of a temperature difference-flow rate characteristic (Example). 吸気量の脈動平均値と吸気量の検出値との関係を示す説明図である(実施例)。It is explanatory drawing which shows the relationship between the pulsation average value of intake air amount, and the detected value of intake air amount (Example). 温度差−流量特性の変更を示す特性図である(実施例)。It is a characteristic view which shows the change of a temperature difference-flow rate characteristic (Example). 吸気量の脈動平均値と吸気量の検出値との関係を示す説明図である(実施例)。It is explanatory drawing which shows the relationship between the pulsation average value of intake air amount, and the detected value of intake air amount (Example). メンブレン上の発熱抵抗体および上流側、下流側測温抵抗体の配置を示す平面図である(変形例)。It is a top view which shows arrangement | positioning of the heating resistor on a membrane, an upstream, and a downstream temperature sensing resistor (modification). メンブレン上の発熱抵抗体および上流側、下流側測温抵抗体の配置を示す平面図である(変形例)。It is a top view which shows arrangement | positioning of the heating resistor on a membrane, an upstream, and a downstream temperature sensing resistor (modification). メンブレン上の発熱抵抗体および上流側、下流側測温抵抗体の配置を示す平面図である(従来例)。It is a top view which shows arrangement | positioning of the heating resistor on a membrane, an upstream side, and a downstream temperature sensing resistor (conventional example). 温度差−流量特性を示す特性図である(従来例)。It is a characteristic view which shows a temperature difference-flow rate characteristic (conventional example). 空気流量測定装置の内部を示す断面図である(従来例)。It is sectional drawing which shows the inside of an air flow measuring device (conventional example).

実施形態の空気流量測定装置は、内燃機関に吸入される空気との間に伝熱現象を発生させることで内燃機関に吸入される空気の流量を測定するものである。また、空気流量測定装置は、通電により発熱する発熱抵抗体と、発熱抵抗体の上流側に配されて、発熱抵抗体から熱的影響を受ける上流側測温抵抗体と、発熱抵抗体の下流側に配されて、発熱抵抗体から熱的影響を受ける下流側測温抵抗体とを備える。   The air flow rate measuring device of the embodiment measures the flow rate of air sucked into the internal combustion engine by generating a heat transfer phenomenon between the air sucked into the internal combustion engine. In addition, the air flow rate measuring device includes a heating resistor that generates heat when energized, an upstream temperature measuring resistor that is disposed upstream of the heating resistor and is thermally affected by the heating resistor, and a downstream of the heating resistor. And a downstream resistance temperature detector which is arranged on the side and receives thermal influence from the heating resistor.

そして、発熱抵抗体は、通電を受けるための3つ以上の端子を有し、発熱抵抗体が3つ以上の端子を介して通電を受けることで、空気が流れていないときに、上流側測温抵抗体が発熱抵抗体から受ける熱的影響と、下流側測温抵抗体が発熱抵抗体から受ける熱的影響とが異なる。   The heating resistor has three or more terminals for receiving energization, and when the heating resistor is energized through the three or more terminals, when the air is not flowing, the upstream side measurement is performed. The thermal effect that the temperature resistor receives from the heating resistor is different from the thermal effect that the downstream temperature measuring resistor receives from the heating resistor.

また、空気流量測定装置は、空洞を有して表面が電気絶縁膜で覆われる半導体基板を備え、発熱抵抗体、上流側測温抵抗体および下流側測温抵抗体は、電気絶縁膜の一部であって空洞を覆うメンブレン上に半導体膜として設けられている。
さらに、上流側測温抵抗体と下流側測温抵抗体とは、発熱抵抗体を挟んで空気の流れる方向に関し線対称に設けられている。
The air flow rate measuring device includes a semiconductor substrate having a cavity and having a surface covered with an electric insulating film. The heating resistor, the upstream temperature measuring resistor, and the downstream temperature measuring resistor are included in the electric insulating film. It is provided as a semiconductor film on a membrane that covers the cavity.
Furthermore, the upstream side resistance temperature detector and the downstream side resistance temperature detector are provided symmetrically with respect to the direction of air flow with the heating resistor interposed therebetween.

〔実施例の構成〕
実施例の空気流量測定装置1の構成を、図1〜図11を用いて説明する。
空気流量測定装置1は、例えば、内燃機関への吸気路(図示せず)に突出するように配されて吸気量を測定するために用いられる。また、空気流量測定装置1は、吸気路を流れる空気の一部を取り込むとともに、取り込んだ空気との間に伝熱現象を発生させることで吸気量としての質量流量を直接的に測定するものである。
[Configuration of Example]
The structure of the air flow rate measuring apparatus 1 of an Example is demonstrated using FIGS.
For example, the air flow rate measuring device 1 is arranged so as to protrude into an intake path (not shown) to the internal combustion engine and is used for measuring the intake air amount. The air flow rate measuring device 1 takes in part of the air flowing through the intake passage, and directly measures the mass flow rate as the intake air amount by generating a heat transfer phenomenon with the taken-in air. is there.

すなわち、空気流量測定装置1は、吸入空気との間に伝熱現象を発生させて質量流量相当の検出値を発生する熱式のセンサ2、センサ2を収容する筐体3、センサ2から得られる検出値を電子制御装置(ECU)に出力するためのコネクタ4等を備える(図1、図5および図6等参照)。そして、ECUは、空気流量測定装置1から得られる検出値に基づいて吸気量を把握するとともに、把握した吸気量に基づいて燃料噴射制御等の各種の制御処理を実行する。   That is, the air flow rate measuring device 1 is obtained from a thermal sensor 2 that generates a detection value corresponding to a mass flow rate by generating a heat transfer phenomenon with intake air, a housing 3 that houses the sensor 2, and a sensor 2. A connector 4 or the like for outputting the detected value to the electronic control unit (ECU) is provided (see FIGS. 1, 5 and 6). Then, the ECU grasps the intake air amount based on the detection value obtained from the air flow rate measuring device 1, and executes various control processes such as fuel injection control based on the grasped air intake amount.

センサ2は、通電により発熱する発熱抵抗体6と、発熱抵抗体6の上流側に配されて、発熱抵抗体6から熱的影響を受ける上流側測温抵抗体7、8と、発熱抵抗体6の下流側に配されて、発熱抵抗体6から熱的影響を受ける下流側測温抵抗体9、10とを備える(図2等参照)。   The sensor 2 includes a heating resistor 6 that generates heat when energized, an upstream temperature measuring resistors 7 and 8 that are arranged on the upstream side of the heating resistor 6, and that are thermally affected by the heating resistor 6, and a heating resistor. 6 and the downstream resistance temperature detectors 9 and 10 which are arranged on the downstream side of the heater 6 and receive thermal influence from the heating resistor 6 (see FIG. 2 and the like).

また、センサ2は、空洞12を有して表面が電気絶縁膜13で覆われる半導体基板14を備え、発熱抵抗体6、上流側測温抵抗体7、8、および下流側測温抵抗体9、10は、電気絶縁膜13の一部であって空洞12を覆うメンブレン15上に半導体膜として設けられている(図2および図3等参照)。そして、上流側測温抵抗体7、8と下流側測温抵抗体9、10とは、発熱抵抗体6を挟んで吸入空気の流れる方向に関し線対称に設けられている。   In addition, the sensor 2 includes a semiconductor substrate 14 having a cavity 12 and having a surface covered with an electrical insulating film 13, and includes a heating resistor 6, upstream temperature measuring resistors 7 and 8, and a downstream temperature measuring resistor 9. 10 is a part of the electrical insulating film 13 and is provided as a semiconductor film on the membrane 15 covering the cavity 12 (see FIGS. 2 and 3). The upstream temperature measuring resistors 7 and 8 and the downstream temperature measuring resistors 9 and 10 are provided in line symmetry with respect to the flow direction of the intake air with the heating resistor 6 interposed therebetween.

ここで、上流側測温抵抗体7、8および下流側測温抵抗体9、10は、ブリッジ回路17を形成している(図4等参照)。そして、ブリッジ回路17は、例えば、上流側測温抵抗体7と下流側測温抵抗体9とが直列に、かつ、下流側測温抵抗体9が上流側測温抵抗体7よりも高電位側に配されるように、また、上流側測温抵抗体8と下流側測温抵抗体10とが直列に、かつ、上流側測温抵抗体8が下流側測温抵抗体10よりも高電位側に配されるように形成されている。   Here, the upstream resistance temperature detectors 7 and 8 and the downstream resistance temperature detectors 9 and 10 form a bridge circuit 17 (see FIG. 4 and the like). The bridge circuit 17 includes, for example, the upstream side resistance thermometer 7 and the downstream side resistance thermometer 9 in series, and the downstream side resistance thermometer 9 has a higher potential than the upstream side resistance thermometer 7. The upstream side resistance thermometer 8 and the downstream side resistance thermometer 10 are arranged in series so that the upstream side resistance thermometer 8 is higher than the downstream side resistance thermometer 10. It is formed so as to be arranged on the potential side.

また、発熱抵抗体6を含む発熱抵抗部18は、半導体基板29上に設けられて発熱抵抗体6と温度相関を有さない抵抗体20、22、および、半導体基板14上の発熱抵抗体6から熱的影響を受けない位置に設けられた感温抵抗体21とともにブリッジ回路23を形成している(図4等参照)。ここで、感温抵抗体21は、ケイ素の半導体膜として電気絶縁膜13を介して半導体基板14上に設けられるものであり、発熱抵抗体6により加熱されていない吸入空気の流れに熱的影響を受けるものである。   The heating resistor 18 including the heating resistor 6 is provided on the semiconductor substrate 29 and has no temperature correlation with the heating resistor 6, and the heating resistor 6 on the semiconductor substrate 14. The bridge circuit 23 is formed together with the temperature sensitive resistor 21 provided at a position not affected by heat (see FIG. 4 and the like). Here, the temperature sensitive resistor 21 is provided as a silicon semiconductor film on the semiconductor substrate 14 via the electrical insulating film 13, and has a thermal influence on the flow of intake air that is not heated by the heating resistor 6. To receive.

そして、ブリッジ回路23は、例えば、発熱抵抗部18と抵抗体22とが直列に、かつ、発熱抵抗部18が抵抗体22よりも高電位側に配されるように、また、抵抗体20と感温抵抗体21とが直列に、かつ、感温抵抗体21が抵抗体20よりも高電位側に配されるように形成されている。   The bridge circuit 23 includes, for example, the heating resistor 18 and the resistor 22 in series, and the heating resistor 18 is arranged on the higher potential side than the resistor 22. The temperature sensitive resistor 21 is arranged in series, and the temperature sensitive resistor 21 is arranged on the higher potential side than the resistor 20.

また、センサ2は、ブリッジ回路17における電位差に応じた信号を出力する比較器24と、ブリッジ回路23における電位差に応じて、ブリッジ回路23への通電を制御する増幅器25に信号を出力する比較器26とを備える。ここで、ブリッジ回路17における電位差とは、上流側測温抵抗体7と下流側測温抵抗体9との接続部の電位と、上流側測温抵抗体8と下流側測温抵抗体10との接続部の電位との差である。また、ブリッジ回路23における電位差とは、発熱抵抗部18と抵抗体22との接続部の電位と、抵抗体20と感温抵抗体21との接続部の電位との差である。   The sensor 2 also outputs a comparator 24 that outputs a signal corresponding to the potential difference in the bridge circuit 17 and a comparator that outputs a signal to the amplifier 25 that controls energization to the bridge circuit 23 according to the potential difference in the bridge circuit 23. 26. Here, the potential difference in the bridge circuit 17 refers to the potential at the connection between the upstream resistance temperature detector 7 and the downstream resistance temperature detector 9, the upstream resistance temperature detector 8, and the downstream resistance temperature detector 10. It is the difference from the potential of the connection part. The potential difference in the bridge circuit 23 is a difference between the potential at the connection portion between the heating resistor 18 and the resistor 22 and the potential at the connection portion between the resistor 20 and the temperature sensitive resistor 21.

以上により、センサ2では、ブリッジ回路23、比較器26および増幅器25により、例えば、発熱抵抗体6から熱的影響を受けていない状態の吸入空気と発熱抵抗体6との温度差が一定値となるように、発熱抵抗体6への通電が制御される。これにより、吸入空気の流れる方向に沿って吸気量に応じた温度分布が形成され、上流側測温抵抗体7、8と下流側測温抵抗体9、10との間には吸気量に応じた温度差が発生する。   As described above, in the sensor 2, the bridge circuit 23, the comparator 26, and the amplifier 25 cause the temperature difference between the intake air and the heating resistor 6 that is not thermally affected by the heating resistor 6 to be a constant value. Thus, energization to the heating resistor 6 is controlled. As a result, a temperature distribution corresponding to the intake air amount is formed along the direction in which the intake air flows, and the upstream side resistance temperature detectors 7 and 8 and the downstream side resistance temperature detectors 9 and 10 correspond to the intake air amount. Temperature difference occurs.

そして、ブリッジ回路17および比較器24により、温度差に応じた電位差が吸気量の検出値を示す信号として処理され、ECUに出力される(なお、以下の説明では、温度差を、下流側測温抵抗体9、10の温度から上流側測温抵抗体7、8の温度を減じたものとして定義する。)。   Then, the bridge circuit 17 and the comparator 24 process the potential difference corresponding to the temperature difference as a signal indicating the detected value of the intake air amount and output it to the ECU (in the following description, the temperature difference is measured on the downstream side). It is defined as the temperature of the temperature resistors 9 and 10 subtracted from the temperature of the upstream resistance resistors 7 and 8).

なお、比較器24、26や増幅器25等は、半導体基板14とは別体の半導体基板29上に設けられている(図3等参照)。そして、半導体基板14、29は、それぞれ、接着剤30、31により樹脂製の支持体32に接着されて支持されている。   The comparators 24 and 26, the amplifier 25, and the like are provided on a semiconductor substrate 29 that is separate from the semiconductor substrate 14 (see FIG. 3 and the like). The semiconductor substrates 14 and 29 are supported by being bonded to a resin support 32 by adhesives 30 and 31, respectively.

また、半導体基板14上の素子と、半導体基板29上の素子とは、半導体基板14、29の各々に設けられた配線部や電極、および、半導体基板14上の電極と半導体基板29上の電極とを導通するボンディングワイヤ33等により電気的に接続している(図3等参照)。さらに、素子および配線部は保護膜34により覆われて保護され、電極およびボンディングワイヤ33は保護剤35により覆われて保護されている。   Further, the element on the semiconductor substrate 14 and the element on the semiconductor substrate 29 include a wiring portion and an electrode provided on each of the semiconductor substrates 14 and 29, and an electrode on the semiconductor substrate 14 and an electrode on the semiconductor substrate 29. Are electrically connected by a bonding wire 33 or the like (see FIG. 3 and the like). Furthermore, the element and the wiring part are covered and protected by a protective film 34, and the electrode and the bonding wire 33 are covered and protected by a protective agent 35.

筐体3は、例えば、吸気路の上流側に向かって開口し、吸気路を順方向に流れる吸入空気の一部を取り込む吸入口38と、吸入口38から取り込んだ吸入空気を通すとともにセンサ2を収容する内部流路39と、吸気路の下流側に向かって開口し、吸入口38から取り込まれてセンサ2を通過した吸入空気を吸気路に戻す放出口40とを備える(図1、図5および図6等参照)。そして、センサ2は、吸入口38から取り込まれた吸入空気との間に伝熱現象を発生させて質量流量相当の検出値を発生する。   The housing 3 opens, for example, toward the upstream side of the intake passage, and allows the intake port 38 to take in a part of the intake air flowing in the forward direction in the intake passage, the intake air taken in from the intake port 38, and the sensor 2. And a discharge port 40 that opens toward the downstream side of the intake passage and returns intake air that has been taken in from the intake port 38 and passed through the sensor 2 to the intake passage (FIGS. 1 and 2). 5 and FIG. 6 etc.). The sensor 2 generates a heat transfer phenomenon between the intake air taken in from the suction port 38 and generates a detection value corresponding to the mass flow rate.

なお、以下の説明では、内部流路39における吸入空気の流れる方向に関して、吸入口38を上流端とし放出口40を下流端とし、吸入口38から放出口40に向かう流れ方向を順方向とし、放出口40から吸入口38に向かう流れ方向を逆方向とする。   In the following description, with respect to the flow direction of the intake air in the internal flow path 39, the suction port 38 is the upstream end, the discharge port 40 is the downstream end, and the flow direction from the suction port 38 toward the discharge port 40 is the forward direction. The direction of flow from the discharge port 40 toward the suction port 38 is the reverse direction.

内部流路39は、例えば、吸入口38から下流側に連続する吸入流路41と、放出口40から上流側に連続する放出流路42と、センサ2を収容するとともに吸入流路41と放出流路42とを接続するように周回する周回流路43とを有する。   The internal flow path 39 contains, for example, a suction flow path 41 continuous downstream from the suction opening 38, a discharge flow path 42 continuous upstream from the discharge opening 40, the sensor 2, and the suction flow path 41 and discharge. A circulation channel 43 that circulates so as to connect the channel 42 is provided.

吸入流路41は、吸入口38から下流側に直線的に伸びるように設けられており、吸入流路41における流れは、吸気路における直線的な流れと平行になる。そして、吸入流路41の下流端には、吸入口38から取り込まれた吸入空気に含まれるダストを直進させて排出するためのダスト排出流路44が接続している。また、ダスト排出流路44の下流端はダスト排出口45を形成しており、ダスト排出流路44は、ダスト排出口45に向かって流路幅が先細りしている。   The suction channel 41 is provided so as to extend linearly from the suction port 38 to the downstream side, and the flow in the suction channel 41 is parallel to the linear flow in the intake channel. A dust discharge channel 44 is connected to the downstream end of the suction channel 41 to allow the dust contained in the intake air taken in from the suction port 38 to go straight ahead and be discharged. Further, a dust discharge port 45 is formed at the downstream end of the dust discharge channel 44, and the dust discharge channel 44 tapers toward the dust discharge port 45.

周回流路43は、例えば、略C字状に設けられて上流端、下流端でそれぞれ吸入流路41、放出流路42に接続し、吸入口38から取り込まれた吸入空気を吸入流路41から放出流路42に向かって周回させる。また、センサ2は、周回流路43において吸入流路41における流れ方向とは逆の方向に流れる部分に収容されている。   The circulation channel 43 is provided, for example, in a substantially C shape, and is connected to the suction channel 41 and the discharge channel 42 at the upstream end and the downstream end, respectively, and sucks the intake air taken in from the suction port 38 into the suction channel 41. To the discharge channel 42. Further, the sensor 2 is accommodated in a portion of the circulation channel 43 that flows in a direction opposite to the flow direction in the suction channel 41.

ここで、周回流路43は、吸入流路41の下流端において、吸入流路41とダスト排出流路44とからなる直線的な流路から分岐している。つまり、吸入流路41は、下流端において周回流路43とダスト排出流路44とに分岐しており、ダストは、慣性力により吸入流路41からダスト排出流路44に直進してダスト排出口45から吸気路に排出され、吸入空気は、吸入流路41から周回流路43に流れ方向を変えて流入する。   Here, the circulation channel 43 is branched from a linear channel composed of the suction channel 41 and the dust discharge channel 44 at the downstream end of the suction channel 41. That is, the suction channel 41 is branched into the circulation channel 43 and the dust discharge channel 44 at the downstream end, and the dust travels straight from the suction channel 41 to the dust discharge channel 44 due to inertial force. The intake air is discharged from the outlet 45 to the intake passage, and the intake air flows from the intake passage 41 into the circulation passage 43 while changing the flow direction.

放出流路42は、周回流路43の下流端に接続して、周回流路43の下流端における順方向の流れを略直角に旋回させる曲がりをなしており、放出口40は曲がりの下流端である。また、放出流路42は、吸入流路41に跨るように2つに分岐し、放出口40は、吸入流路41の両側の2箇所に形成されている。つまり、放出流路42は、吸入流路41や周回流路43の流路軸を含む切断面を対称面として鏡映対称をなすように2つに分岐している。   The discharge flow path 42 is connected to the downstream end of the circumferential flow path 43 and is bent so that the forward flow at the downstream end of the circumferential flow path 43 is swung at a substantially right angle, and the discharge port 40 is the downstream end of the bending. It is. Further, the discharge channel 42 branches into two so as to straddle the suction channel 41, and the discharge ports 40 are formed at two locations on both sides of the suction channel 41. That is, the discharge flow channel 42 is branched into two so as to be mirror-symmetric with respect to the cut surface including the flow channel axis of the suction flow channel 41 and the circulation flow channel 43.

以上により、内部流路39は、吸気路における直線的な流れを迂回するように設けられており、吸入口38から取り込まれた吸入空気に、吸気路における直線的な流れを迂回させることで、センサ2の検出値を高める補正機能を有している。   As described above, the internal flow path 39 is provided so as to bypass the linear flow in the intake passage, and by allowing the intake air taken in from the suction port 38 to bypass the linear flow in the intake passage, A correction function for increasing the detection value of the sensor 2 is provided.

すなわち、内部流路39に取り込まれず吸気路を直進した場合の流路長をL1、内部流路39の流路長をL2とすると、空気流量測定装置1は、直線的な流れを迂回する内部流路39を形成して内部流路39にセンサ2を配することにより、L2/L1に応じて検出値を高める補正機能を有する。そして、この補正機能によれば、L2/L1を大きくするほど検出値を高めることができる。   That is, assuming that the flow path length when the air flow is straight in the intake path without being taken into the internal flow path 39 is L1, and the flow path length of the internal flow path 39 is L2, the air flow rate measuring device 1 is an internal part that bypasses the linear flow. By forming the flow path 39 and arranging the sensor 2 in the internal flow path 39, it has a correction function of increasing the detection value according to L2 / L1. According to this correction function, the detected value can be increased as L2 / L1 is increased.

なお、吸気路を逆方向に空気が流れた場合に、内部流路39には放出口40から吸入空気の一部が流入し、放出口40から流入した吸入空気はセンサ2を通過して、例えば、吸入口38から吸気路に戻る。   When air flows in the reverse direction in the intake passage, a part of the intake air flows into the internal flow path 39 from the discharge port 40, and the intake air that flows in from the discharge port 40 passes through the sensor 2, For example, the suction port 38 returns to the intake path.

次に、発熱抵抗部18について詳述する。
発熱抵抗部18は、発熱抵抗体6に含まれる抵抗配線の内、吸入空気の流れる方向に関して上流側測温抵抗体7、8に近い上流側発熱抵抗体48と、下流側測温抵抗体9、10に近い下流側発熱抵抗体49と、可変抵抗器50、51とを含むものであり、上流側、下流側発熱抵抗体48、49と、可変抵抗器50、51とはブリッジ回路52を形成している(図2および図4等参照)。
Next, the heating resistor portion 18 will be described in detail.
The heating resistor 18 includes an upstream heating resistor 48 close to the upstream temperature measuring resistors 7 and 8 and a downstream temperature measuring resistor 9 in the resistance wiring included in the heating resistor 6 in the direction in which the intake air flows. 10 includes a downstream heating resistor 49 and variable resistors 50 and 51, and the upstream and downstream heating resistors 48 and 49 and the variable resistors 50 and 51 form a bridge circuit 52. (Refer to FIG. 2 and FIG. 4 etc.).

ここで、発熱抵抗体6は、通電を受けるための3つの端子54〜56を有し、端子54〜56を介して通電を受ける。なお、端子54〜56は、メンブレン15上において配線部の一部をなすものである。そして、メンブレン15上において、端子54は上流側発熱抵抗体48に接続しており、端子55は下流側発熱抵抗体49に接続している。また、端子56は、吸入空気の流れる方向に関して上流側、下流側測温抵抗体7〜10の間に設けられて上流側、下流側測温抵抗体7〜10の両方に接続する配線57に接続している。   Here, the heating resistor 6 has three terminals 54 to 56 for receiving energization, and receives energization via the terminals 54 to 56. The terminals 54 to 56 form part of the wiring portion on the membrane 15. On the membrane 15, the terminal 54 is connected to the upstream heating resistor 48, and the terminal 55 is connected to the downstream heating resistor 49. Further, the terminal 56 is provided between the upstream side and the downstream side resistance temperature detectors 7 to 10 in the flow direction of the intake air, and is connected to both the upstream side and the downstream side resistance temperature detectors 7 to 10. Connected.

また、上流側、下流側発熱抵抗体48、49は、高電位側において、配線57を介して増幅器25のエミッタに接続している。さらに、可変抵抗器50、51は、半導体基板29上に設けられる。   The upstream and downstream heating resistors 48 and 49 are connected to the emitter of the amplifier 25 via the wiring 57 on the high potential side. Furthermore, the variable resistors 50 and 51 are provided on the semiconductor substrate 29.

そして、ブリッジ回路52は、例えば、上流側発熱抵抗体48と可変抵抗器50とが直列に、かつ、上流側発熱抵抗体48が可変抵抗器50よりも高電位側に配されるように、また、下流側発熱抵抗体49と可変抵抗器51とが直列に、かつ、下流側発熱抵抗体49が可変抵抗器51よりも高電位側に配されるように形成されている。また、可変抵抗器50、51は、低電位側で抵抗体22に接続している。   In the bridge circuit 52, for example, the upstream heating resistor 48 and the variable resistor 50 are arranged in series, and the upstream heating resistor 48 is arranged on the higher potential side than the variable resistor 50. Further, the downstream heating resistor 49 and the variable resistor 51 are formed in series, and the downstream heating resistor 49 is arranged on the higher potential side than the variable resistor 51. The variable resistors 50 and 51 are connected to the resistor 22 on the low potential side.

以上の構成により、増幅器25を介して発熱抵抗部18に通電が行われると、電流は、上流側発熱抵抗体48および可変抵抗器50を直列に含む枝路と、下流側発熱抵抗体49および可変抵抗器51を直列に含む枝路とに並列に分かれる。これにより、可変抵抗器50、51の抵抗値を自在に設定することで、上流側、下流側発熱抵抗体48、49のそれぞれにおける発熱量を自在に操作することができる。   With the configuration described above, when the heating resistor 18 is energized via the amplifier 25, the current flows through the branch including the upstream heating resistor 48 and the variable resistor 50 in series, the downstream heating resistor 49, and The variable resistor 51 is divided in parallel with a branch that includes the variable resistor 51 in series. Thereby, by setting the resistance values of the variable resistors 50 and 51 freely, the heat generation amounts in the upstream and downstream heating resistors 48 and 49 can be freely controlled.

このため、無風状態において、上流側測温抵抗体7、8が発熱抵抗体6から受ける熱的影響と、下流側測温抵抗体9、10が発熱抵抗体6から受ける熱的影響とを異ならせて、流量測定の基準となる温度差−流量特性を自在に変更することができる。この結果、温度差−流量特性を変更することにより、吸気量の検出値をプラス側やマイナス側に自在にシフトさせることができるので、例えば、適用誤差による検出値のシフトを相殺することができる。   For this reason, the thermal effect that the upstream resistance thermometers 7 and 8 receive from the heating resistor 6 and the thermal influence that the downstream resistance thermometers 9 and 10 receive from the heating resistor 6 are different from each other in the windless state. Thus, it is possible to freely change the temperature difference-flow rate characteristic which is a reference for flow rate measurement. As a result, by changing the temperature difference-flow rate characteristic, the detected value of the intake air amount can be freely shifted to the plus side or the minus side, so that, for example, the shift of the detected value due to an application error can be offset. .

例えば、可変抵抗器50、51の抵抗値を設定する前の温度差−流量特性Aでは、図7に示すように、空気流量がプラスであって順方向に空気が流れている範囲で上に凸となり、空気流量がマイナスであって逆方向に空気が流れている範囲で下に凸となり、温度差=ゼロ、かつ、空気流量=ゼロの点を中心として点対称となっているものとする。   For example, in the temperature difference-flow rate characteristic A before setting the resistance values of the variable resistors 50 and 51, as shown in FIG. 7, the air flow rate is positive and the air flows in the forward direction. It is convex and convex downward in the range where the air flow rate is negative and air is flowing in the opposite direction, and it is point-symmetric about the point where temperature difference = zero and air flow rate = zero .

ここで、吸気量がプラスの数値であるQを中心として、Qよりも大きい大側、およびQよりも小さい小側に同じ振幅QAで脈動する場合を考える。また、吸気量の脈動平均値となるQ、および、脈動領域(Q−QA)〜(Q+QA)は、温度差−流量特性Aにおいて温度差と流量との相関がほぼリニアとみなせる流量範囲に含まれているものとする(図7に示す「吸気量の脈動」を参照)。   Here, let us consider a case in which pulsation is performed with the same amplitude QA on the large side larger than Q and the smaller side smaller than Q around Q, which is a positive numerical value. The pulsation average value Q and the pulsation area (Q-QA) to (Q + QA) are included in the flow rate range in which the correlation between the temperature difference and the flow rate is almost linear in the temperature difference-flow rate characteristic A. (Refer to “pulsation of intake air amount” shown in FIG. 7).

この場合、温度差は、熱容量等に起因する応答遅れがないものと仮定すると、プラスの数値であるTを中心として、Tの大側およびTの小側に同じ振幅TAで脈動する(図7に示す「完全応答時の理想的な温度差の脈動」を参照)。なお、温度差の脈動平均値としてのTは、温度差−流量特性Aに吸気量の数値としてQを当てはめることで求まるものであり、振幅TAも、同様に振幅QAから求まるものである。   In this case, assuming that there is no response delay due to the heat capacity or the like, the temperature difference pulsates with the same amplitude TA on the large side of T and the small side of T, centering on the positive value T (FIG. 7). (Refer to “Pulse of ideal temperature difference in complete response”). Note that T as the pulsation average value of the temperature difference is obtained by applying Q as a numerical value of the intake air amount to the temperature difference-flow rate characteristic A, and the amplitude TA is also obtained from the amplitude QA.

そして、センサ2は、応答遅れ等を伴う温度差を離散的にサンプリングすることで、Tを脈動平均値として振幅TAよりも小さい振幅TA´で温度差の脈動が発生しているものと検知する(図7に示す「センサが検知する温度差の脈動」を参照)。この結果、吸気量の検出値は、脈動平均値としてのTを温度差−流量特性Aに当てはめることによりQとなる。   Then, the sensor 2 discretely samples the temperature difference accompanied by a response delay or the like, and detects that a pulsation of the temperature difference is generated with an amplitude TA ′ smaller than the amplitude TA, where T is a pulsation average value. (See “Pulse of temperature difference detected by sensor” shown in FIG. 7). As a result, the detected value of the intake air amount becomes Q by applying T as the pulsation average value to the temperature difference-flow rate characteristic A.

このように、吸気量の脈動が温度差−流量特性Aにおいて温度差と流量特性との相関がほぼリニアとみなせる流量範囲で発生している場合、温度差−流量特性Aに基づく吸気量の測定によれば、吸気量の検出値と吸気量の脈動平均値とが両方ともQとなって略一致している。   As described above, when the pulsation of the intake air amount occurs in the flow rate range where the correlation between the temperature difference and the flow rate characteristic can be regarded as almost linear in the temperature difference-flow rate characteristic A, the intake air amount is measured based on the temperature difference-flow rate characteristic A. According to the above, both the detected value of the intake air amount and the pulsation average value of the intake air amount are substantially equal to Q.

このような温度差−流量特性Aに対し、下流側発熱抵抗体49の発熱量が上流側発熱抵抗体48の発熱量よりも大きくなるように可変抵抗器50、51の抵抗値を設定して、例えば、温度差−流量特性Aを図8に示す温度差−流量特性Bに変更した場合を考える。
ここで、温度差−流量特性Bは、下流側発熱抵抗体49の発熱量が上流側発熱抵抗体48の発熱量よりも大きいことにより、温度差−流量特性Aに比べて、空気流量プラスの範囲において上への凸が顕著になり、空気流量マイナスの範囲において下への凸が緩和されている。
For such a temperature difference-flow rate characteristic A, the resistance values of the variable resistors 50 and 51 are set so that the heat generation amount of the downstream heating resistor 49 is larger than the heat generation amount of the upstream heating resistor 48. For example, consider a case where the temperature difference-flow rate characteristic A is changed to the temperature difference-flow rate characteristic B shown in FIG.
Here, the temperature difference-flow rate characteristic B has a larger air flow rate than the temperature difference-flow rate characteristic A because the amount of heat generated by the downstream side heating resistor 49 is larger than the amount of heat generated by the upstream side heating resistor 48. The upward convexity becomes remarkable in the range, and the downward convexity is relaxed in the negative air flow range.

これにより、吸気量に関して図7に示す脈動と同一の脈動が発生している場合、図9に示すように、温度差−流量特性Bに基づく吸気量の測定によれば、吸気量の検出値が吸気量の脈動平均値よりも大きくなる。   Accordingly, when the same pulsation as that shown in FIG. 7 is generated with respect to the intake air amount, the detected value of the intake air amount is measured according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic B as shown in FIG. Becomes larger than the pulsation average value of the intake air amount.

すなわち、吸気量に関して図7に示す脈動と同一の脈動が発生した場合(図9に示す「吸気量の脈動」を参照)、応答遅れがないものと仮定した温度差は、プラスの数値であるT1を中心として、T1の大側とT1の小側とで異なる振幅T1Ab、T1Asで脈動する(図9に示す「完全応答時の理想的な温度差の脈動」を参照)。なお、温度差の脈動平均値としてのT1は、吸気量の数値としてQを温度差−流量特性Bに当てはめることで求まるものであり、振幅T1Ab、T1Asは、それぞれ、吸気量の数値としてQ+QA、Q−QAを温度差−流量特性Bに当てはめることで求まるものである。   That is, when the same pulsation as shown in FIG. 7 is generated with respect to the intake air amount (see “pulsation of the intake air amount” shown in FIG. 9), the temperature difference assuming no response delay is a positive numerical value. Pulsing at different amplitudes T1Ab and T1As on the large side of T1 and on the small side of T1 with T1 as the center (see “Pulse of Ideal Temperature Difference at Complete Response” shown in FIG. 9). Note that T1 as the pulsation average value of the temperature difference is obtained by applying Q as the value of the intake air amount to the temperature difference-flow rate characteristic B, and the amplitudes T1Ab and T1As are respectively the values of the intake air amount as Q + QA, This is obtained by applying Q-QA to the temperature difference-flow rate characteristic B.

ここで、温度差−流量特性Bの形態が温度差−流量特性Aの形態に対して上記のような特徴を有することから、振幅T1Ab、T1As間には顕著な大小が見られるようになり、振幅T1Abは、振幅T1Asよりも大きい。   Here, since the form of the temperature difference-flow rate characteristic B has the above-described characteristics with respect to the form of the temperature difference-flow rate characteristic A, a remarkable magnitude can be seen between the amplitudes T1Ab and T1As. The amplitude T1Ab is larger than the amplitude T1As.

そして、センサ2は、応答遅れ等を伴う温度差を離散的にサンプリングすることで、T1よりも大きいT1´を脈動平均値として(T1Ab+T1As)/2よりも小さい振幅T1A´で温度差の脈動が発生しているものと検知する(図9に示す「センサが検知する温度差の脈動」を参照)。この結果、吸気量の検出値は、脈動平均値としてのT1´を温度差−流量特性Bに当てはめることで、Qよりも大きいQ1として得られる。   Then, the sensor 2 discretely samples the temperature difference accompanied by a response delay or the like, so that the pulsation of the temperature difference has an amplitude T1A ′ smaller than (T1Ab + T1As) / 2, where T1 ′ larger than T1 is a pulsation average value. It is detected that it has occurred (see “Pulsation of temperature difference detected by sensor” shown in FIG. 9). As a result, the detected value of the intake air amount is obtained as Q1 larger than Q by applying T1 ′ as the pulsation average value to the temperature difference-flow rate characteristic B.

このように、温度差−流量特性Bに基づく吸気量の測定によれば、吸気量の検出値が吸気量の脈動平均値よりも大きくなるので、吸気量の検出値をプラス側にシフトさせることができる。よって、温度差−流量特性Bに基づく吸気量の測定によれば、吸気量に関して適用誤差により検出値がマイナス側にシフトしている場合に、プラス側に吸気量の検出値をシフトさせることで、適用誤差による検出値のマイナス側へのシフトを相殺することができる。   Thus, according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic B, the detected value of the intake air amount becomes larger than the pulsation average value of the intake air amount, so that the detected value of the intake air amount is shifted to the plus side. Can do. Therefore, according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic B, when the detected value is shifted to the minus side due to an application error with respect to the intake air amount, the detected value of the intake air amount is shifted to the plus side. The shift of the detected value to the negative side due to the application error can be canceled out.

また、上流側発熱抵抗体48の発熱量が下流側発熱抵抗体49の発熱量よりも大きくなるように可変抵抗器50、51の抵抗値を設定して、例えば、温度差−流量特性Aを図10に示す温度差−流量特性Cに変更した場合を考える。
ここで、温度差−流量特性Cは、上流側発熱抵抗体48の発熱量が下流側発熱抵抗体49の発熱量よりも大きいことにより、温度差−流量特性Aに比べて、空気流量プラスの範囲において上への凸が緩和され、空気流量マイナスの範囲において下への凸が顕著になっている。
Further, the resistance values of the variable resistors 50 and 51 are set so that the heat generation amount of the upstream side heat generation resistor 48 is larger than the heat generation amount of the downstream side heat generation resistor 49. Consider the case of changing to the temperature difference-flow rate characteristic C shown in FIG.
Here, the temperature difference-flow rate characteristic C is higher in air flow rate than the temperature difference-flow rate characteristic A because the heat generation amount of the upstream heating resistor 48 is larger than the heat generation amount of the downstream heating resistor 49. The upward convexity is alleviated in the range, and the downward convexity is prominent in the negative air flow range.

これにより、吸気量に関して図7に示す脈動と同一の脈動が発生している場合、図11に示すように、温度差−流量特性Cに基づく吸気量の測定によれば、吸気量の検出値が吸気量の脈動平均値よりも小さくなる。   As a result, when the same pulsation as shown in FIG. 7 is generated with respect to the intake air amount, the detected value of the intake air amount is measured according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic C as shown in FIG. Becomes smaller than the pulsation average value of the intake air amount.

すなわち、吸気量に関して図7に示す脈動と同一の脈動が発生した場合(図11に示す「吸気量の脈動」を参照)、応答遅れがないものと仮定した温度差は、ゼロに略一致する数値であるT2を中心として、T2の大側とT2の小側とで異なる振幅T2Ab、T2Asで脈動する(図11に示す「完全応答時の理想的な温度差の脈動」を参照)。なお、温度差の脈動平均値としてのT2は、吸気量の数値としてQを温度差−流量特性Cに当てはめることで求まるものであり、振幅T2Ab、T2Asは、それぞれ、吸気量の数値としてQ+QA、Q−QAを温度差−流量特性Cに当てはめることで求まるものである。   That is, when the same pulsation as shown in FIG. 7 occurs with respect to the intake air amount (see “intake air pulsation” shown in FIG. 11), the temperature difference assumed to have no response delay is substantially equal to zero. It pulsates with different amplitudes T2Ab and T2As on the large side of T2 and the small side of T2, centering on the numerical value T2 (see “Pulse of Ideal Temperature Difference at Complete Response” shown in FIG. 11). Note that T2 as the pulsation average value of the temperature difference is obtained by applying Q as the value of the intake air amount to the temperature difference-flow rate characteristic C, and the amplitudes T2Ab and T2As are respectively the values of the intake air amount as Q + QA, This is obtained by applying Q-QA to the temperature difference-flow rate characteristic C.

ここで、温度差−流量特性Cの形態が温度差−流量特性Aの形態に対して上記のような特徴を有することから、振幅T2Ab、T2As間には顕著な大小が見られるようになり、振幅T2Abは、振幅T2Asよりも小さい。   Here, since the form of the temperature difference-flow rate characteristic C has the above-described characteristics with respect to the form of the temperature difference-flow rate characteristic A, a remarkable magnitude can be seen between the amplitudes T2Ab and T2As. The amplitude T2Ab is smaller than the amplitude T2As.

そして、センサ2は、応答遅れ等を伴う温度差を離散的にサンプリングすることで、T2よりも小さいT2´を脈動平均値として(T2Ab+T2As)/2よりも小さい振幅T2A´で温度差の脈動が発生しているものと検知する(図11に示す「センサが検知する温度差の脈動」を参照)。この結果、吸気量の検出値は、脈動平均値としてのT2´を温度差−流量特性Cに当てはめることで、Qよりも小さいQ2として得られる。   Then, the sensor 2 discretely samples the temperature difference accompanied by a response delay or the like, so that the pulsation of the temperature difference has an amplitude T2A ′ smaller than (T2Ab + T2As) / 2 with T2 ′ smaller than T2 as a pulsation average value. It is detected that it has occurred (see “Pulsation of temperature difference detected by sensor” shown in FIG. 11). As a result, the detected value of the intake air amount is obtained as Q2 smaller than Q by applying T2 ′ as the pulsation average value to the temperature difference-flow rate characteristic C.

このように、温度差−流量特性Cに基づく吸気量の測定によれば、吸気量の検出値が吸気量の脈動平均値よりも小さくなるので、吸気量の検出値をマイナス側にシフトさせることができる。よって、温度差−流量特性Cに基づく吸気量の測定によれば、吸気量に関して適用誤差により検出値がプラス側にシフトしている場合に、マイナス側に吸気量の検出値をシフトさせることで、適用誤差による検出値のプラス側へのシフトを相殺することができる。   Thus, according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic C, the detected value of the intake air amount becomes smaller than the pulsation average value of the intake air amount, so that the detected value of the intake air amount is shifted to the minus side. Can do. Therefore, according to the measurement of the intake air amount based on the temperature difference-flow rate characteristic C, when the detected value is shifted to the positive side due to an application error with respect to the intake air amount, the detected value of the intake air amount is shifted to the negative side. The shift of the detected value to the plus side due to the application error can be canceled out.

〔実施例の効果〕
実施例の空気流量測定装置1は、通電により発熱する発熱抵抗体6と、発熱抵抗体6の上流側、下流側にそれぞれ配されて、発熱抵抗体6から熱的影響を受ける上流側、下流側測温抵抗体7〜10とを備える。そして、発熱抵抗体6は、通電を受けるための3つの端子54〜56をメンブレン15上に有し、発熱抵抗体6が端子54〜56を介して通電を受けることで、無風状態において、上流側測温抵抗体7、8が発熱抵抗体6から受ける熱的影響と、下流側測温抵抗体9、10が発熱抵抗体6から受ける熱的影響とが異なる。
[Effects of Examples]
The air flow rate measuring device 1 of the embodiment is arranged on the heating resistor 6 that generates heat when energized, and on the upstream side and the downstream side of the heating resistor 6, respectively, on the upstream side and the downstream side that are thermally affected by the heating resistor 6. Side resistance thermometers 7 to 10 are provided. The heating resistor 6 has three terminals 54 to 56 on the membrane 15 for receiving energization, and the heating resistor 6 is energized through the terminals 54 to 56 so that in the windless state, the upstream side The thermal effect received by the side resistance thermometers 7 and 8 from the heating resistor 6 is different from the thermal effect received by the downstream temperature measuring resistors 9 and 10 from the heating resistor 6.

発熱抵抗体6に3つの端子54〜56を設け、端子54〜56を介して発熱抵抗体6に通電することで、発熱抵抗体6の内、上流側、下流側測温抵抗体7〜10にそれぞれ近い上流側、下流側発熱抵抗体48、49間に発熱量差を発生することができる。つまり、上流側、下流側発熱抵抗体48、49のそれぞれに、直列に可変抵抗器50、51を接続し、可変抵抗器50、51の抵抗値を自在に設定することで、上流側、下流側発熱抵抗体48、49間の発熱量差を自在に操作することができる。   The heating resistor 6 is provided with three terminals 54 to 56, and the heating resistor 6 is energized through the terminals 54 to 56, whereby the upstream and downstream temperature measuring resistors 7 to 10 of the heating resistor 6. It is possible to generate a difference in heat generation between the upstream and downstream heating resistors 48 and 49 close to each other. In other words, the variable resistors 50 and 51 are connected in series to the upstream and downstream heating resistors 48 and 49, respectively, and the resistance values of the variable resistors 50 and 51 are set freely, so that the upstream and downstream The difference in the amount of heat generated between the side heating resistors 48 and 49 can be manipulated freely.

このため、上流側測温抵抗体7、8が発熱抵抗体6から受ける熱的影響と、下流側測温抵抗体9、10が発熱抵抗体6から受ける熱的影響とを異ならせて、流量測定の基準となる温度差−流量特性を自在に変更することができる。この結果、温度差−流量特性の変更により吸気量の検出値をプラス側やマイナス側に自在にシフトさせて、適用誤差による検出値のシフトを相殺することができる。   For this reason, the thermal effect received by the upstream resistance thermometers 7 and 8 from the heating resistor 6 and the thermal effect received by the downstream resistance thermometers 9 and 10 from the heating resistor 6 are made different from each other. It is possible to freely change the temperature difference-flow rate characteristics as a measurement reference. As a result, the detected value of the intake air amount can be freely shifted to the plus side or the minus side by changing the temperature difference-flow rate characteristic, and the shift of the detected value due to the application error can be offset.

このように、発熱抵抗体6に3つの端子54〜56を設け、端子54〜56を介して発熱抵抗体6に通電するようにすることで、温度差−流量特性を適用誤差の解消に適するものに容易に変更することができる。したがって、空気流量測定装置1に関して膨大な数の品種を揃えなくても、容易に適用誤差を解消することができる。   Thus, by providing the heating resistor 6 with the three terminals 54 to 56 and energizing the heating resistor 6 through the terminals 54 to 56, the temperature difference-flow rate characteristic is suitable for eliminating the application error. Can be easily changed to one. Therefore, the application error can be easily eliminated without preparing an enormous number of products for the air flow rate measuring device 1.

また、空気流量測定装置1は、空洞12を有して表面が電気絶縁膜13で覆われる半導体基板14を備え、発熱抵抗体6、上流側測温抵抗体7、8および下流側測温抵抗体9、10は、電気絶縁膜13の一部であって空洞12を覆うメンブレン15上に半導体膜として設けられている。
温度差−流量特性の変更は、例えば、上流側、下流側測温抵抗体7〜10それぞれ自身の通電による発熱量に差を持たせることでも可能である。
The air flow rate measuring device 1 includes a semiconductor substrate 14 having a cavity 12 and having a surface covered with an electrical insulating film 13, and includes a heating resistor 6, upstream temperature measuring resistors 7, 8 and downstream temperature measuring resistors. The bodies 9 and 10 are provided as a semiconductor film on a membrane 15 that is a part of the electrical insulating film 13 and covers the cavity 12.
The temperature difference-flow rate characteristic can be changed, for example, by providing a difference in the amount of heat generated by energization of the upstream and downstream resistance thermometers 7 to 10.

しかし、上流側、下流側測温抵抗体7〜10は、メンブレン15上で発熱抵抗体6よりも周辺側に設けられるため、厚みを持った半導体基板14に熱を奪われやすい。このため、上流側、下流側測温抵抗体7〜10それぞれ自身の通電による発熱量に差を持たせようとすると、上流側、下流側測温抵抗体7〜10への通電量を大きくする必要があり、消費電力が大きくなってしまう。   However, since the upstream and downstream resistance thermometers 7 to 10 are provided on the membrane 15 on the peripheral side of the heating resistor 6, the semiconductor substrate 14 having a thickness is easily deprived of heat. For this reason, if it is going to give the difference in the emitted-heat amount by each energization of the upstream and downstream side resistance thermometers 7-10, the energization amount to the upstream side and downstream side resistance thermometers 7-10 will be enlarged. It is necessary and power consumption becomes large.

これに対し、発熱抵抗体6内の上流側、下流側発熱抵抗体48、49間で発熱量に差を持たせる場合には、消費電力はさほど変化しない。このため、発熱抵抗体6内で発熱量に差を持たせることにより、消費電力を増やさずに温度差−流量特性を変更することができる。   On the other hand, when the amount of heat generation is made different between the upstream and downstream heating resistors 48 and 49 in the heating resistor 6, the power consumption does not change much. For this reason, by providing a difference in the amount of heat generated in the heating resistor 6, the temperature difference-flow rate characteristic can be changed without increasing the power consumption.

また、上流側測温抵抗体7、8と下流側測温抵抗体9、10とは、発熱抵抗体6を挟んで吸入空気の流れる方向に関し線対称に設けられている。
発熱抵抗体6や上流側、下流側測温抵抗体7〜10の抵抗値は、メンブレン15に生じる応力により、ピエゾ抵抗効果によって変動しやすくなり、測定精度が低下する虞がある。
Further, the upstream temperature measuring resistors 7, 8 and the downstream temperature measuring resistors 9, 10 are provided in line symmetry with respect to the direction of intake air flow with the heating resistor 6 interposed therebetween.
Resistance values of the heating resistor 6 and the upstream and downstream temperature measuring resistors 7 to 10 are likely to fluctuate due to the piezoresistive effect due to the stress generated in the membrane 15, and the measurement accuracy may be reduced.

そこで、発熱抵抗体6を挟んで上流側、下流側測温抵抗体7〜10を吸入空気の流れる方向に関し線対称に設ける。これにより、発熱抵抗体6自身に吸入空気の流れる方向に関してピエゾ抵抗効果が対称的に生じ、抵抗値の変動が相殺される。同様に、上流側測温抵抗体7、8と下流側測温抵抗体9、10との間でも吸入空気の流れる方向に関してピエゾ抵抗効果が対称的に生じ、抵抗値の変動が相殺される。   Therefore, the upstream and downstream resistance thermometers 7 to 10 are provided symmetrically with respect to the flow direction of the intake air with the heating resistor 6 interposed therebetween. As a result, a piezoresistance effect is generated symmetrically with respect to the direction in which the intake air flows in the heating resistor 6 itself, and the variation in resistance value is offset. Similarly, the piezoresistive effect is generated symmetrically between the upstream resistance temperature detectors 7 and 8 and the downstream resistance temperature detectors 9 and 10 with respect to the direction in which the intake air flows, and the fluctuation of the resistance value is offset.

このため、発熱抵抗体6を挟んで上流側測温抵抗体7、8と下流側測温抵抗体9、10とを吸入空気の流れる方向に関し線対称に設けることにより、発熱抵抗体6や上流側、下流側測温抵抗体7〜10の抵抗値変動を相殺して測定精度低下の虞を低減することができる。   For this reason, by providing the upstream side resistance thermometers 7 and 8 and the downstream side resistance thermometers 9 and 10 symmetrically with respect to the flow direction of the intake air with the heating resistor 6 interposed therebetween, The fluctuation of the resistance value of the side and downstream side resistance temperature detectors 7 to 10 can be offset and the possibility of a decrease in measurement accuracy can be reduced.

なお、半導体基板14は、接着剤30により樹脂製の支持体32に接着されて支持されるが(図3参照)、半導体基板14と支持体32との間で線膨張係数が大きく異なるため、接着により半導体基板14が変形してメンブレン15に応力が発生しやすい。
また、電極およびボンディングワイヤ33は、保護剤35により覆われて保護されているが(図3参照)、半導体基板14と保護剤35との間でも線膨張係数が大きく異なるため、保護剤35の塗布によっても、半導体基板14が変形してメンブレン15に応力が発生しやすくなる。
Although the semiconductor substrate 14 is supported by being bonded to a resin support 32 by an adhesive 30 (see FIG. 3), the linear expansion coefficient differs greatly between the semiconductor substrate 14 and the support 32. The semiconductor substrate 14 is deformed by adhesion, and stress is easily generated in the membrane 15.
Further, although the electrodes and the bonding wires 33 are covered and protected by the protective agent 35 (see FIG. 3), the linear expansion coefficient differs greatly between the semiconductor substrate 14 and the protective agent 35. Even by application, the semiconductor substrate 14 is deformed and stress is easily generated in the membrane 15.

このため、上流側測温抵抗体7、8と下流側測温抵抗体9、10とを、発熱抵抗体6を挟んで吸入空気の流れる方向に関し線対称に設ける構成は、ピエゾ抵抗効果の影響を相殺して測定精度の低下を抑制する上で極めて有効である。   For this reason, the configuration in which the upstream side resistance thermometers 7 and 8 and the downstream side resistance thermometers 9 and 10 are provided in line symmetry with respect to the flow direction of the intake air with the heating resistor 6 interposed therebetween is affected by the piezoresistance effect. Is extremely effective in offsetting the above and suppressing the decrease in measurement accuracy.

〔変形例〕
空気流量測定装置1の態様は、実施例に限定されず種々の変形例を考えることができる。
例えば、実施例の空気流量測定装置1によれば、発熱抵抗体6に3つの端子54〜56を設け、端子54〜56を介して発熱抵抗体6に通電するようにしていたが、図12または図13に示すように、4つの端子54〜56、59を発熱抵抗体6に設け、端子54〜56、59を介して発熱抵抗体6に通電するようにしても、実施例と同様に温度差−流量特性を自在に変更することができる。
[Modification]
The aspect of the air flow rate measuring device 1 is not limited to the embodiment, and various modifications can be considered.
For example, according to the air flow rate measuring apparatus 1 of the embodiment, the heating resistor 6 is provided with the three terminals 54 to 56, and the heating resistor 6 is energized through the terminals 54 to 56. Alternatively, as shown in FIG. 13, four terminals 54 to 56 and 59 are provided in the heating resistor 6 and the heating resistor 6 is energized through the terminals 54 to 56 and 59, as in the embodiment. The temperature difference-flow rate characteristic can be freely changed.

この場合、図12に示すように、上流側発熱抵抗体48と下流側発熱抵抗体49との間に2つの配線57を配し、一方の配線57に端子56を接続するとともに他方の配線57に端子59を接続し、2つの配線57を両方とも上流側、下流側発熱抵抗体48、49の両方に接続してもよい。   In this case, as shown in FIG. 12, two wirings 57 are arranged between the upstream heating resistor 48 and the downstream heating resistor 49, the terminal 56 is connected to one wiring 57, and the other wiring 57 is connected. The two terminals 57 may be connected to both the upstream and downstream heating resistors 48 and 49.

また、図13に示すように、上流側発熱抵抗体48と下流側発熱抵抗体49との間に2つの配線57を配し、一方の配線57に端子56を接続するとともに他方の配線57に端子59を接続し、一方の配線57を上流側発熱抵抗体48のみに接続し、他方の配線57を下流側発熱抵抗体49のみに接続してもよい。
また、発熱抵抗体6に5つ以上の端子を設けても、同様に温度差−流量特性を自在に変更することができる。
Further, as shown in FIG. 13, two wirings 57 are arranged between the upstream heating resistor 48 and the downstream heating resistor 49, the terminal 56 is connected to one wiring 57 and the other wiring 57 is connected. The terminal 59 may be connected, one wiring 57 may be connected only to the upstream side heating resistor 48, and the other wiring 57 may be connected only to the downstream side heating resistor 49.
Further, even when five or more terminals are provided on the heating resistor 6, the temperature difference-flow rate characteristic can be freely changed in the same manner.

1 空気流量測定装置
6 発熱抵抗体
7 上流側測温抵抗体
8 上流側測温抵抗体
9 下流側測温抵抗体
10 下流側測温抵抗体
12 空洞
13 電気絶縁膜
14 半導体基板
15 メンブレン
54〜56、59 端子
DESCRIPTION OF SYMBOLS 1 Air flow measuring device 6 Heating resistor 7 Upstream side resistance temperature detector 8 Upstream side resistance temperature detector 9 Downstream side resistance temperature detector 10 Downstream side resistance temperature detector 12 Cavity 13 Electrical insulating film 14 Semiconductor substrate 15 Membrane 54- 56, 59 terminals

Claims (3)

内燃機関に吸入される空気との間に伝熱現象を発生させることで前記内燃機関に吸入される空気の流量を測定する空気流量測定装置において、
通電により発熱する発熱抵抗体と、
この発熱抵抗体の上流側に配されて、前記発熱抵抗体から熱的影響を受ける上流側測温抵抗体と、
前記発熱抵抗体の下流側に配されて、前記発熱抵抗体から熱的影響を受ける下流側測温抵抗体とを備え、
前記発熱抵抗体は、通電を受けるための3つ以上の端子を有し、
前記発熱抵抗体が前記3つ以上の端子を介して通電を受けることで、空気が流れていないときに、前記上流側測温抵抗体が前記発熱抵抗体から受ける熱的影響と、前記下流側測温抵抗体が前記発熱抵抗体から受ける熱的影響とが異なることを特徴とする空気流量測定装置。
In an air flow rate measuring apparatus for measuring a flow rate of air sucked into the internal combustion engine by generating a heat transfer phenomenon with the air sucked into the internal combustion engine,
A heating resistor that generates heat when energized;
An upstream resistance temperature detector that is disposed upstream of the heating resistor and receives thermal influence from the heating resistor;
A downstream resistance temperature detector disposed on the downstream side of the heating resistor and receiving thermal influence from the heating resistor;
The heating resistor has three or more terminals for receiving energization,
When the heating resistor is energized via the three or more terminals, when the air is not flowing, the thermal effect that the upstream resistance temperature detector receives from the heating resistor and the downstream side An air flow rate measuring device characterized in that a temperature measuring resistor is different from a thermal effect received from the heating resistor.
請求項1に記載の空気流量測定装置において、
空洞を有して表面が電気絶縁膜で覆われる半導体基板を備え、
前記発熱抵抗体、前記上流側測温抵抗体および前記下流側測温抵抗体は、前記電気絶縁膜の一部であって前記空洞を覆うメンブレン上に半導体膜として設けられていることを特徴とする空気流量測定装置。
The air flow rate measuring device according to claim 1,
A semiconductor substrate having a cavity and a surface covered with an electrical insulating film;
The heating resistor, the upstream resistance temperature detector, and the downstream resistance temperature detector are provided as a semiconductor film on a membrane that is a part of the electrical insulating film and covers the cavity. Air flow measuring device.
請求項2に記載の空気流量測定装置において、
前記上流側測温抵抗体と前記下流側測温抵抗体とは、前記発熱抵抗体を挟んで空気の流れる方向に関し線対称に設けられていることを特徴とする空気流量測定装置。
In the air flow measuring device according to claim 2,
The air flow rate measuring device, wherein the upstream side resistance temperature detector and the downstream side resistance temperature detector are provided in line symmetry with respect to a direction of air flow with the heating resistor interposed therebetween.
JP2010224273A 2010-10-01 2010-10-01 Air flow rate measuring device Pending JP2012078228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224273A JP2012078228A (en) 2010-10-01 2010-10-01 Air flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224273A JP2012078228A (en) 2010-10-01 2010-10-01 Air flow rate measuring device

Publications (1)

Publication Number Publication Date
JP2012078228A true JP2012078228A (en) 2012-04-19

Family

ID=46238638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224273A Pending JP2012078228A (en) 2010-10-01 2010-10-01 Air flow rate measuring device

Country Status (1)

Country Link
JP (1) JP2012078228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219285A (en) * 2013-05-08 2014-11-20 株式会社デンソー Method of manufacturing physical quantity sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183203A (en) * 1999-12-24 2001-07-06 Denso Corp Flow sensor
JP2004093189A (en) * 2002-08-29 2004-03-25 Mitsubishi Electric Corp Thermal flow rate detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183203A (en) * 1999-12-24 2001-07-06 Denso Corp Flow sensor
JP2004093189A (en) * 2002-08-29 2004-03-25 Mitsubishi Electric Corp Thermal flow rate detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219285A (en) * 2013-05-08 2014-11-20 株式会社デンソー Method of manufacturing physical quantity sensor

Similar Documents

Publication Publication Date Title
US7269999B2 (en) Thermal airflow meter
US9989390B2 (en) Thermal airflow measuring device
JP6352423B2 (en) Physical quantity detection device
EP2482050B1 (en) Intake air temperature sensor and thermal airflow meter including the same
JP5327262B2 (en) Thermal air flow meter
US9869573B2 (en) Physical amount measurement apparatus mounted integrally with flow rate measurement apparatus, and physical amount measurement method
JP2008292330A (en) Thermal flowmeter and control method
JP6686276B2 (en) Air flow meter
JP6073489B2 (en) Air mass flow meter with sensor element
US8844350B2 (en) Flow quantity measuring apparatus including branched conductive lines connected to midpoints of series circuits of the bridge circuit
WO2005050143A1 (en) Thermal flowmeter of fluid
JP5454603B2 (en) Flow measuring device
EP2966417B1 (en) Thermal-type airflow meter
JP5644674B2 (en) Thermal flow meter
JP6201901B2 (en) Air flow measurement device
JP2012078228A (en) Air flow rate measuring device
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
JP2012207925A (en) Thermal air flowmeter
JP5458935B2 (en) Air flow measurement device
JP6784316B2 (en) Air flow meter
US11346696B2 (en) Flow rate measuring device
JP4914226B2 (en) Gas flow meter
JP2003004496A (en) Flow rate measuring instrument
JP5968279B2 (en) Thermal flow meter
CN117157507A (en) Physical quantity detection device, signal processing device, and signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422