JP2012077968A - Air conditioning method and air conditioning system - Google Patents

Air conditioning method and air conditioning system Download PDF

Info

Publication number
JP2012077968A
JP2012077968A JP2010221945A JP2010221945A JP2012077968A JP 2012077968 A JP2012077968 A JP 2012077968A JP 2010221945 A JP2010221945 A JP 2010221945A JP 2010221945 A JP2010221945 A JP 2010221945A JP 2012077968 A JP2012077968 A JP 2012077968A
Authority
JP
Japan
Prior art keywords
air
outside air
amount
state point
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221945A
Other languages
Japanese (ja)
Other versions
JP5702571B2 (en
Inventor
Noriyuki Odate
啓之 大立
Kuniaki Yamada
邦昭 山田
Satoshi Yamashita
敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2010221945A priority Critical patent/JP5702571B2/en
Publication of JP2012077968A publication Critical patent/JP2012077968A/en
Application granted granted Critical
Publication of JP5702571B2 publication Critical patent/JP5702571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning method and an air conditioning system capable of making a specified index close to an optimal value even when outside air with adjusted humidity is supplied to air-conditioned rooms of a plurality of systems.SOLUTION: The air conditioning system 1 includes an outside adjusting machine 11 for adjusting the humidity of outside air OA, an air volume adjusting device 15 for adjusting the air volume of adjusted outside air QA, and a controller 60. A plurality of air volume adjusting devices 15 are provided to a plurality of air-conditioned rooms R. The controller 60 calculates a necessary dehumidification air volume when the adjusted outside air QA is supplied individually to each of the air-conditioned rooms R at a first state point, calculates a necessary outside air volume, adopts a larger volume from among the dehumidification air volume and necessary outside air volume, and finds out a specified index (consumption energy, etc.) to set a total air volume to the adjusted outside air QA at the first state point and required for conveyance. The specified index is calculated regarding a plurality of state points including a second state point. A minimum state point is adopted among the calculated state points to generate the adjusted outside air QA with the adjusted humidity.

Description

本発明は空調方法及び空調システムに関し、特に湿度が調節された外気を複数系統の被空調室に供給する場合でも所定の指標を最適値に近づけることができる空調方法及び空調システムに関する。   The present invention relates to an air-conditioning method and an air-conditioning system, and more particularly to an air-conditioning method and an air-conditioning system that can bring a predetermined index close to an optimum value even when supplying outside air with adjusted humidity to a plurality of air-conditioned rooms.

近年、省エネルギーと快適性とを両立する冷暖房方式として、放射熱を用いた放射冷暖房システムが注目されている。放射冷暖房システムは、放射パネルからの放射熱で専ら被空調室の顕熱を処理し、外調機で湿度を調節した外気を被空調室に供給することで主に被空調室の潜熱を処理する、顕熱処理と潜熱処理とを分離した顕熱潜熱分離処理システムの一形態である。顕熱潜熱分離処理システムの制御として、被空調室の二酸化炭素濃度を所定の濃度にするように供給外気量を調節するものがある(例えば、特許文献1参照)。   In recent years, a radiant cooling / heating system using radiant heat has attracted attention as a cooling / heating system that achieves both energy saving and comfort. The radiant cooling and heating system mainly processes the sensible heat of the air-conditioned room with the radiant heat from the radiant panel, and supplies the air to the air-conditioned room with the outside air adjusted in humidity by the external air conditioner. This is one form of a sensible heat latent heat separation treatment system in which sensible heat treatment and latent heat treatment are separated. As control of the sensible heat latent heat separation processing system, there is one that adjusts the amount of supplied outside air so that the carbon dioxide concentration in the air-conditioned room becomes a predetermined concentration (for example, see Patent Document 1).

特開2008−304096号公報(段落0042等)JP 2008-304096 (paragraph 0042, etc.)

しかしながら、二酸化炭素濃度に基づいて画一的に導入外気流量を決定すると、その外気流量で被空調室の潜熱を処理できるようにエンタルピを減少させるために、そのコイルに適切な範囲の運転点を外れて運転しなければならない場合が生じ得る。あるいは、外気を搬送するファンに適切な範囲の運転点を外れて運転しなければならない場合が生じ得る。このとき、外気導入流量を決定する観点を、二酸化炭素濃度あるいは機器類の運転点のいずれか適切な方を基準とすることも考えられるが、外調機で処理した外気を1つの被空調室に供給する場合はともかく、複数系統の被空調室に供給する場合は被空調室ごとに事情が異なる場合が一般的なので適用が難しいが、適用できればエネルギー消費量等の所定の指標を最適値に近づけることができると考えられる。   However, when the introduced outside air flow rate is uniformly determined based on the carbon dioxide concentration, in order to reduce the enthalpy so that the latent heat of the air-conditioned room can be processed by the outside air flow rate, an operating point in an appropriate range is set for the coil. It may happen that you have to drive off. Or the case where it must drive | operate outside the operating point of a suitable range for the fan which conveys external air may arise. At this time, it is conceivable that the viewpoint of determining the outside air introduction flow rate is based on the appropriate one of the carbon dioxide concentration and the operating point of the equipment, but the outside air treated by the external air conditioner is one air-conditioned room. However, it is difficult to apply when supplying air to multiple air-conditioned rooms because the situation is generally different for each air-conditioned room. It is thought that it can approach.

本発明は上述の課題に鑑み、湿度が調節された外気を複数系統の被空調室に供給する場合でも所定の指標を最適値に近づけることができる空調方法及び空調システムを提供することを目的とする。   An object of the present invention is to provide an air conditioning method and an air conditioning system capable of bringing a predetermined index close to an optimum value even when supplying outside air with adjusted humidity to a plurality of air-conditioned rooms. To do.

上記目的を達成するために、本発明の第1の態様に係る空調方法は、例えば図1乃至図3を参照して示すと、外気OAの湿度を調節し、湿度が調節された調節済外気QAを複数の被空調室Rに供給して、複数の被空調室Rの空調を行う空調方法であって;調節済外気QAを、被空調室Rの目標湿度PSに対してあらかじめ対応づけられた空気線図上の状態点である第1の状態点P1で、複数の被空調室Rに供給する際に、複数の被空調室Rを目標湿度PSにするために必要な除湿風量Qh1を個別に算出する第1の除湿風量算出工程(St1)と;複数の被空調室Rの二酸化炭素濃度を所定の濃度とするために必要な外気量を個別に算出する必要外気量算出工程(St2)と;複数の被空調室Rについて個別に、第1の除湿風量算出工程(St1)で算出された除湿風量Qh1と、必要外気量算出工程(St2)で算出された外気量Qrとを比較して、大きい方を採択する第1の採択工程(St3)と;第1の採択工程(St3)で個別に採択された風量の総和である第1の総和風量ΣQe1の外気OAを第1の状態点P1の調節済外気QAとするためにエンタルピを減少させる際の所定の指標の変化量を算出すると共に、第1の総和風量ΣQe1の調節済外気QAを複数の被空調室Rへ搬送する際の所定の指標の変化量を算出して合算する、第1の変化量算出工程(St4)と;除湿風量Qh2を第1の状態点P1とは異なる空気線図上の状態点である第2の状態点P2について、除湿風量Qh2を個別に算出する第2の除湿風量算出工程(St5)と;複数の被空調室Rについて個別に、第2の除湿風量算出工程(St5)で算出された除湿風量Qh2と、必要外気量算出工程(St2)で算出された外気量Qrとを比較して、大きい方を採択する第2の採択工程(St6)と;第2の採択工程(St6)で個別に採択された風量の総和である第2の総和風量ΣQe2の外気OAを第2の状態点P2の調節済外気QAとするためにエンタルピを減少させる際の所定の指標の変化量を算出すると共に、第2の総和風量ΣQe2の調節済外気QAを複数の被空調室Rへ搬送する際の所定の指標の変化量を算出して合算する、第2の変化量算出工程(St7)と;調節済外気QAの状態点を、第1の変化量算出工程(St4)で算出された所定の指標の第1の変化量Δ1と、第2の変化量算出工程(St7)で算出された所定の指標の第2の変化量Δ2とのうち、最小となる所定の指標の変化量の算出に用いられた状態点に更新する状態点更新工程(St8)とを備える。   In order to achieve the above object, the air conditioning method according to the first aspect of the present invention, for example, referring to FIGS. 1 to 3, adjusts the humidity of the outside air OA and adjusts the adjusted outside air with the humidity adjusted. An air conditioning method in which QA is supplied to a plurality of air-conditioned rooms R to air-condition the plurality of air-conditioned rooms R; adjusted outside air QA is previously associated with a target humidity PS of the air-conditioned room R When supplying the plurality of air-conditioned rooms R at the first state point P1, which is the state point on the air diagram, the amount of dehumidified air Qh1 required for setting the plurality of air-conditioned rooms R to the target humidity PS is A first dehumidifying air amount calculating step (St1) to be calculated individually; a necessary outside air amount calculating step (St2) to individually calculate the amount of outside air necessary for setting the carbon dioxide concentration of the plurality of air-conditioned rooms R to a predetermined concentration And a first dehumidifying air volume calculating step (S) for each of the plurality of air-conditioned rooms R. A first adopting step (St3) in which the dehumidifying air amount Qh1 calculated in 1) and the outside air amount Qr calculated in the necessary outside air amount calculating step (St2) are compared and the larger one is adopted; A predetermined index for reducing the enthalpy so that the outside air OA of the first total air volume ΣQe1 that is the sum of the air volumes individually adopted in the adopting step (St3) becomes the adjusted outside air QA of the first state point P1. The first change amount calculation that calculates the change amount of the predetermined index when the adjusted outside air QA of the first total air flow amount ΣQe1 is transported to the plurality of air-conditioned rooms R and calculates the change amount Step (St4); second dehumidification air amount calculation for individually calculating the dehumidification air amount Qh2 for the second state point P2 which is a state point on the air diagram different from the first state point P1 Step (St5); about a plurality of air-conditioned rooms R Separately, the dehumidifying air amount Qh2 calculated in the second dehumidifying air amount calculating step (St5) is compared with the outside air amount Qr calculated in the necessary outside air amount calculating step (St2), and the larger one is adopted. The outside air OA of the second total air volume ΣQe2, which is the sum of the air volumes individually adopted in the adoption step (St6) and the second adoption step (St6), is used as the adjusted outside air QA of the second state point P2. The amount of change in the predetermined index when reducing the enthalpy is calculated, and the amount of change in the predetermined index when the adjusted outside air QA of the second total air volume ΣQe2 is transferred to the plurality of air-conditioned rooms R is calculated. The second change amount calculation step (St7), and the state point of the adjusted outside air QA is calculated with the first change amount Δ1 of the predetermined index calculated in the first change amount calculation step (St4). The predetermined amount calculated in the second change amount calculating step (St7) Of the second change amount Δ2 of targets, and a state point updating process (St8) to update the status point used for calculation of smallest variation of predetermined index.

このように構成すると、複数の被空調室に供給される外気の総和に対して所定の指標が適切となるような状態点の外気に処理されることとなり、所定の指標を最適値に近づけることができる。   If comprised in this way, it will process to the outside air of a state point for which a predetermined | prescribed parameter | index becomes appropriate with respect to the sum total of the external air supplied to several air-conditioned rooms, and a predetermined | prescribed parameter | index will be approximated to an optimal value. Can do.

また、本発明の第2の態様に係る空調方法は、上記本発明の第1の態様に係る空調方法において、前記所定の指標が、エネルギー消費量、コスト、二酸化炭素排出量のうちの少なくとも1つである。   The air conditioning method according to the second aspect of the present invention is the air conditioning method according to the first aspect of the present invention, wherein the predetermined index is at least one of energy consumption, cost, and carbon dioxide emission. One.

このように構成すると、使用者の価値観に適合した所定の指標を最適値に近づけることができる。   If comprised in this way, the predetermined | prescribed parameter | index adapted to a user's sense of values can be approximated to an optimal value.

また、本発明の第3の態様に係る空調方法は、例えば図1及び図2を参照して示すと、上記本発明の第1の態様又は第2の態様に係る空調方法において、第2の変化量Δ2が、複数の状態点について複数算出され;状態点更新工程(St8)が、第1の変化量及び複数の第2の変化量のうちから最小となる変化量の算出に用いられた状態点に、調節済外気QAの状態点を更新するように構成されている。   Moreover, when the air-conditioning method according to the third aspect of the present invention is shown, for example, with reference to FIG. 1 and FIG. 2, in the air-conditioning method according to the first aspect or the second aspect of the present invention, A plurality of change amounts Δ2 are calculated for a plurality of state points; the state point update step (St8) is used to calculate a minimum change amount from the first change amount and the plurality of second change amounts. The state point of the adjusted outside air QA is updated to the state point.

このように構成すると、所定の指標の最適値に近づけるための選択肢を増やすことができ、所定の指標をより最適値に近づけることができる確率が高まることとなる。   With this configuration, it is possible to increase the number of options for approaching the optimal value of the predetermined index, and the probability that the predetermined index can be made closer to the optimal value increases.

また、本発明の第4の態様に係る空調システムは、例えば図1に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る空調方法を実行する制御装置60と;外気OAの湿度を調節する外調機11と;被空調室Rに供給される調節済外気QAの風量を調節する風量調節装置15であって、複数の被空調室Rに対応して複数設けられた風量調節装置15とを備える。   Moreover, the air conditioning system which concerns on the 4th aspect of this invention is a control which performs the air-conditioning method which concerns on any one aspect of the said 1st aspect thru | or 3rd aspect of this invention, as shown, for example in FIG. An air conditioner 11 for adjusting the humidity of the outside air OA; and an air volume adjusting device 15 for adjusting the air volume of the adjusted outside air QA supplied to the air-conditioned room R, corresponding to a plurality of air-conditioned rooms R And a plurality of air volume adjusting devices 15 provided.

このように構成すると、所定の指標を最適値に近づけることができる空調システムとなる。   If comprised in this way, it will become an air-conditioning system which can make a predetermined parameter | index close to an optimal value.

また、本発明の第5の態様に係る空調システムは、例えば図1及び図2に示すように、上記本発明の第4の態様に係る空調システム1において、外気OAの空気線図上の状態を特定する物理量を検出する調節前外気状態検出器51、52と;複数の被空調室Rのそれぞれに対応して設けられ、被空調室R内の湿度を検出する室内湿度検出器56と;複数の被空調室Rのそれぞれに対応して設けられ、被空調室R内の二酸化炭素濃度を検出する二酸化炭素濃度検出器57とを備え;制御装置60が、室内湿度検出器56で検出された値から第1の除湿風量算出工程(St1)における必要な除湿風量Qh1を算出し、二酸化炭素濃度検出器57で検出された値から必要外気量算出工程(St2)における必要な外気量Qrを算出すると共に、調節前外気状態検出器51、52で検出された値及び状態点更新工程(St8)で更新された状態点からエンタルピを減少させる際の所定の指標の変化量を算出するように構成されている。   Further, the air conditioning system according to the fifth aspect of the present invention is, for example, as shown in FIGS. 1 and 2, in the air conditioning system 1 according to the fourth aspect of the present invention, the state of the outside air OA on the air diagram. Pre-adjustment outside air condition detectors 51 and 52 that detect physical quantities that identify the air conditioner; and an indoor humidity detector 56 that is provided corresponding to each of the plurality of air-conditioned rooms R and detects the humidity in the air-conditioned room R; A carbon dioxide concentration detector 57 provided corresponding to each of the plurality of air-conditioned rooms R and detecting the carbon dioxide concentration in the air-conditioned room R; the control device 60 is detected by the indoor humidity detector 56 The necessary dehumidified air volume Qh1 in the first dehumidified air volume calculating step (St1) is calculated from the obtained value, and the necessary outside air volume Qr in the required outside air volume calculating step (St2) is calculated from the value detected by the carbon dioxide concentration detector 57. As well as calculating It is configured to calculate a change amount of a predetermined index in reducing the enthalpy before state point updated in the detected value and the state point updating process at ambient condition detector 51 and 52 (St8).

このように構成すると、被空調室の状態の変化に応じて、湿度が調節された調節済外気の状態点を適切に変更することができる。   If comprised in this way, according to the change of the state of an air-conditioned room, the state point of the adjusted outside air in which humidity was adjusted can be changed appropriately.

本発明によれば、複数の被空調室に供給される外気の総和に対して所定の指標が適切となるような状態点の外気に処理されることとなり、所定の指標を最適値に近づけることができる。   According to the present invention, processing is performed on the outside air at a state point where the predetermined index is appropriate for the sum of the outside air supplied to the plurality of air-conditioned rooms, and the predetermined index is brought close to the optimum value. Can do.

本発明の実施の形態に係る空調システムの模式的系統図である。1 is a schematic system diagram of an air conditioning system according to an embodiment of the present invention. 本発明の実施の形態に係る空調システムの制御を説明する概念図である。It is a conceptual diagram explaining control of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空調システムにおける空気の状態を示す空気線図である。It is an air line figure which shows the state of the air in the air conditioning system which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る空調システム1を説明する。図1は、空調システム1の模式的系統図である。空調システム1は、外気OAの湿度を調節する外調機11と、外調機11に熱媒体としての冷水Cを供給する熱源機13と、外調機11で外気OAの湿度が調節された調節済外気QAの風量を調節する風量調節装置としてのVAV(可変風量装置)15と、被空調室Rに供給する供給空気SAの温度を調節する空調機18と、被空調室Rの顕熱を処理する放射パネル21と、空調機18及び放射パネル21に熱媒体としての冷温水CHを供給する熱源機23と、各種の計器類51〜57と、制御装置60とを備えている。   First, an air conditioning system 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the air conditioning system 1. The air conditioning system 1 includes an external air conditioner 11 that adjusts the humidity of the outside air OA, a heat source device 13 that supplies cold water C as a heat medium to the external air conditioner 11, and the humidity of the outside air OA is adjusted by the external air conditioner 11. A VAV (variable air volume device) 15 as an air volume adjusting device for adjusting the air volume of the adjusted outside air QA, an air conditioner 18 for adjusting the temperature of the supply air SA supplied to the air-conditioned room R, and the sensible heat of the air-conditioned room R , A heat source device 23 for supplying cold / hot water CH as a heat medium to the air conditioner 18 and the radiation panel 21, various instruments 51 to 57, and a control device 60.

外調機11は、外気OAを導入し、導入した外気OAを熱源機13からの冷水Cで冷却除湿して湿度を調節し、外気OAの湿度が調節された調節済外気QAを生成する機器である。外調機11は、外気OAを冷却するコイル11cと、調節済外気QAを吐出するファン11fとを有している。また、外調機11は、排出する被空調室Rの空気(排気EA)と湿度調節前の外気OAとで熱交換を行わせる熱交換器11xを有している。以下の説明では、熱源機13のエネルギーを用いて冷却除湿された外気を調節済外気QAと言うこととし、熱交換器11xを通過した後でもコイル11cに導入される前は外気OAの概念に含まれることとする。外調機11のコイル11cと熱交換器11xとの間には、外気OAの温度を検出する外気温度計51と、外気OAの湿度を検出する外気湿度計52とが配設されている。外気温度計51と外気湿度計52とで、調節前外気状態検出器を構成している。外調機11は、外気OAの湿度を調節する際に外気OAを冷却するため、結果として外気OAの温度も変化することとなる。   The external air conditioner 11 introduces the outside air OA, cools and dehumidifies the introduced outside air OA with the cold water C from the heat source unit 13 to adjust the humidity, and generates the adjusted outside air QA in which the humidity of the outside air OA is adjusted. It is. The external air conditioner 11 includes a coil 11c that cools the outside air OA and a fan 11f that discharges the adjusted outside air QA. The external air conditioner 11 includes a heat exchanger 11x that performs heat exchange between the air (exhaust air EA) in the air-conditioned room R to be discharged and the external air OA before humidity adjustment. In the following description, the outside air cooled and dehumidified using the energy of the heat source unit 13 will be referred to as adjusted outside air QA, and even after passing through the heat exchanger 11x, the concept of the outside air OA is introduced before being introduced into the coil 11c. To be included. Between the coil 11c of the external air conditioner 11 and the heat exchanger 11x, an outside air thermometer 51 that detects the temperature of the outside air OA and an outside air hygrometer 52 that detects the humidity of the outside air OA are disposed. The outside air thermometer 51 and the outside air hygrometer 52 constitute an unadjusted outside air state detector. Since the external air conditioner 11 cools the outside air OA when adjusting the humidity of the outside air OA, the temperature of the outside air OA also changes as a result.

外調機11には、外気OAを導入する外気ダクト31と、調節済外気QAを流す調節済外気ダクト32と、被空調室Rからの排気EAを導入する排気ダクト33と、熱交換後の排気EAを外部に導く排気ダクト34とがそれぞれ接続されている。調節済外気ダクト32には、調節済外気QAを分配する分岐ダクト35が接続されている。分岐ダクト35は、図1中では3つが示されているが、実際は、1系統の外調機11から調節済外気QAが供給される被空調室Rの数分が、メインダクトとしての役割を果たす調節済外気ダクト32から分岐している。   The external air conditioner 11 includes an outside air duct 31 that introduces outside air OA, a regulated outside air duct 32 that flows regulated outside air QA, an exhaust duct 33 that introduces exhaust air EA from the air-conditioned room R, and a heat exchanger after heat exchange. An exhaust duct 34 that guides the exhaust EA to the outside is connected to each other. A branch duct 35 that distributes the adjusted outside air QA is connected to the adjusted outside air duct 32. Although three branch ducts 35 are shown in FIG. 1, the number of air-conditioned rooms R to which the adjusted outside air QA is supplied from one system of the external air conditioner 11 actually serves as the main duct. It branches off from the adjusted outside air duct 32 to be fulfilled.

熱源機13は、電気や熱等の外部からのエネルギー(外部エネルギー)を用いて、外調機11に供給する冷水Cの温度を調節する機器であり、典型的には冷凍機あるいはチリングユニットが用いられる。熱源機13は、外調機11で外気OAとの熱交換により温度が上昇した冷水Cを導入し、内部を循環する冷媒(不図示)が冷凍サイクル中で蒸発する際に冷水Cから蒸発潜熱を奪うことにより、冷水Cを冷却するように構成されている。熱源機13は、外調機11のコイル11cに対して、冷却された冷水Cを供給する冷水往管41及び温度が上昇した冷水Cを導入する冷水還管42で接続されている。   The heat source device 13 is a device that adjusts the temperature of the cold water C supplied to the external air conditioner 11 using external energy (external energy) such as electricity or heat. Typically, a refrigerator or chilling unit is used. Used. The heat source unit 13 introduces cold water C whose temperature has been increased by heat exchange with the outside air OA in the external air conditioner 11, and evaporates latent heat from the cold water C when a refrigerant (not shown) circulating inside evaporates in the refrigeration cycle. It is configured to cool the cold water C by depriving it. The heat source unit 13 is connected to the coil 11c of the external air conditioner 11 by a chilled water outgoing pipe 41 that supplies the cooled chilled water C and a chilled water return pipe 42 that introduces the chilled water C whose temperature has increased.

VAV15は、分岐ダクト35に配設されており、吐出される調節済外気QAを、制御装置60からの要求風量に応じた風量で吐出させる装置である。VAV15は、通過する気体の風速を検出する風速センサ(不図示)と、通過する気体の風量を調節するダンパ(不図示)とを有しており、風速センサで検出された通過風速に基づいて算出された通過風量を要求風量と比較し、通過風量が要求風量に近づくようにダンパの開度を調節するように構成されている。このように、VAV15は、通過風速に基づいて通過風量が算出されるため、ダクトの静圧が変化しても適切な風量制御が可能となっている。   The VAV 15 is a device that is disposed in the branch duct 35 and discharges the adjusted outside air QA to be discharged with an air volume corresponding to the required air volume from the control device 60. The VAV 15 includes a wind speed sensor (not shown) that detects the wind speed of the passing gas, and a damper (not shown) that adjusts the air volume of the passing gas. Based on the passing wind speed detected by the wind speed sensor. The calculated passing air volume is compared with the required air volume, and the opening degree of the damper is adjusted so that the passing air volume approaches the required air volume. In this way, the VAV 15 calculates the passing air volume based on the passing air speed, so that appropriate air volume control is possible even when the static pressure of the duct changes.

空調機18は、VAV15から導出された調節済外気QA及び被空調室Rからの還気RAを導入して混合し、混合された空気の温度を調節して被空調室Rに供給する供給空気SAを生成する機器である。空調機18は、混合された空気の温度を調節するコイル18cと、供給空気SAを吐出するファン18fとを有している。供給空気SAを圧送するファン18fは、インバータ制御で回転速度を変えることにより供給空気SAの吐出風量を変えることができるように構成されている。また、空調機18は、導入した調節済外気QA及び還気RAを混合させるミキシングチャンバ18mを有している。   The air conditioner 18 introduces and mixes the adjusted outside air QA derived from the VAV 15 and the return air RA from the air-conditioned room R, adjusts the temperature of the mixed air, and supplies the air to the air-conditioned room R It is a device that generates SA. The air conditioner 18 includes a coil 18c that adjusts the temperature of the mixed air and a fan 18f that discharges the supply air SA. The fan 18f that pumps the supply air SA is configured to be able to change the discharge air volume of the supply air SA by changing the rotation speed by inverter control. The air conditioner 18 also has a mixing chamber 18m that mixes the introduced adjusted outside air QA and return air RA.

空調機18には、分岐ダクト35と、還気RAを導入する還気ダクト38と、供給空気SAを被空調室Rに導く給気ダクト36とがそれぞれ接続されている。本実施の形態では、分岐ダクト35及び還気ダクト38がそれぞれミキシングチャンバ18mに接続されているが、VAV15の下流側の分岐ダクト35に還気ダクト38が接続されて還気RAが調節済外気QAに合流した後に空調機18へ導入されるように構成されていてもよい。   A branch duct 35, a return air duct 38 for introducing the return air RA, and an air supply duct 36 that guides the supply air SA to the air-conditioned room R are connected to the air conditioner 18. In this embodiment, the branch duct 35 and the return air duct 38 are each connected to the mixing chamber 18m. However, the return air duct 38 is connected to the branch duct 35 on the downstream side of the VAV 15 so that the return air RA is adjusted outside air. It may be configured to be introduced into the air conditioner 18 after joining the QA.

放射パネル21は、被空調室Rの天井に配設され、被空調室Rの天井面を構成している。放射パネル21は、板状に形成されたパネルの天井裏側の面に、熱媒体としての冷水C又は温水H(以下、総称して「冷温水CH」という。)を流すパイプが配置されて構成されている。パネルは、典型的には矩形(長方形又は正方形)の平面形状を有するが、三角形や六角形等の多角形の平面形状を有していてもよい。パイプは、冷温水CHが保有する熱(冷熱又は温熱)をパネル全体に伝達することができるように、蛇行させて接触配置することにより伝熱面積を大きくすることが好ましい。   The radiation panel 21 is disposed on the ceiling of the air-conditioned room R and constitutes the ceiling surface of the air-conditioned room R. The radiating panel 21 is configured such that a pipe for flowing cold water C or hot water H (hereinafter collectively referred to as “cold / hot water CH”) as a heat medium is disposed on the surface of the ceiling side of the panel formed in a plate shape. Has been. The panel typically has a rectangular (rectangular or square) planar shape, but may have a polygonal planar shape such as a triangle or a hexagon. It is preferable to increase the heat transfer area by arranging the pipes in a meandering manner so that heat (cold heat or hot heat) held by the cold / hot water CH can be transmitted to the entire panel.

熱源機23は、電気や熱等の外部からのエネルギー(外部エネルギー)を用いて、空調機18及び放射パネル21に供給する冷温水CHの温度を調節する機器であり、典型的には冷温水発生機あるいはヒートポンプチラーが用いられる。熱源機23には、温度が調節された冷温水CHを流す冷温水往管44と、空調機18及び/又は放射パネル21で熱が利用された後の冷温水CHを導入する冷温水還管46とが接続されている。冷温水往管44の他端は、空調機18のコイル18cに接続されている。冷温水還管46の他端は、放射パネル21に接続されている。空調機18と放射パネル21とは、冷温水中継管45で接続されている。このように構成されていることで、本実施の形態では、熱源機23で温度が調節された冷温水CHが、まず空調機18に供給されて供給空気SAと熱交換が行われ、その後に放射パネル21に供給されて被空調室R内の物体と放射熱交換を行って被空調室Rの顕熱を処理した後、熱源機23に戻されるように構成されている。   The heat source device 23 is a device that adjusts the temperature of the cold / hot water CH supplied to the air conditioner 18 and the radiating panel 21 using external energy (external energy) such as electricity and heat, and is typically cold / hot water. A generator or a heat pump chiller is used. The heat source unit 23 includes a chilled / hot water outgoing pipe 44 through which the chilled / warm water CH whose temperature is adjusted, and a chilled / warm water return pipe for introducing the chilled / warm water CH after heat is used by the air conditioner 18 and / or the radiant panel 21. 46 is connected. The other end of the cold / hot water outgoing pipe 44 is connected to the coil 18 c of the air conditioner 18. The other end of the cold / hot water return pipe 46 is connected to the radiation panel 21. The air conditioner 18 and the radiation panel 21 are connected by a cold / hot water relay pipe 45. With this configuration, in the present embodiment, the cold / hot water CH whose temperature is adjusted by the heat source device 23 is first supplied to the air conditioner 18 to exchange heat with the supply air SA, and then After being supplied to the radiant panel 21 and exchanging radiant heat with an object in the air-conditioned room R to process the sensible heat in the air-conditioned room R, the sensible heat is returned to the heat source unit 23.

調節済外気ダクト32には、調節済外気QAの温度を検出する調節済外気温度計53と、調節済外気QAの湿度を検出する調節済外気湿度計54とが配設されている。還気ダクト38には、還気RAの温度を検出する還気温度計55と、還気RAの湿度を検出する還気湿度計56と、還気RAの二酸化炭素濃度を検出する還気炭酸ガス濃度計57とが配設されている。還気温度計55及び還気湿度計56で、被空調室R内の温度及び湿度を実質的に検出することができるように構成されている。なお、還気温度計55、還気湿度計56及び還気炭酸ガス濃度計57は、被空調室R内に配設されていてもよい。外気湿度計52、調節済外気湿度計54、還気湿度計56は、典型的には半導体等を用いたセンサを感部とする電気式湿度計が用いられるが、露点計が用いられてもよい。また、各湿度計52、54、56は、単独で湿度を検出するものに限らず、温度計で検出された温度を用いて間接的に湿度を検出するものであってもよく、検出する湿度は相対湿度でも絶対湿度でもよい。さらに空調機18における供給空気SAの温度制御用に、供給空気SAの温度を検出する給気温度計(不図示)を給気ダクト36に設けてもよい。   The adjusted outside air duct 32 is provided with an adjusted outside air thermometer 53 that detects the temperature of the adjusted outside air QA and an adjusted outside air hygrometer 54 that detects the humidity of the adjusted outside air QA. The return air duct 38 includes a return air thermometer 55 that detects the temperature of the return air RA, a return air hygrometer 56 that detects the humidity of the return air RA, and a return carbon dioxide that detects the carbon dioxide concentration of the return air RA. A gas concentration meter 57 is provided. The return air thermometer 55 and the return air hygrometer 56 are configured to substantially detect the temperature and humidity in the air-conditioned room R. The return air thermometer 55, the return air hygrometer 56, and the return air carbon dioxide concentration meter 57 may be disposed in the air-conditioned room R. As the outside air hygrometer 52, the adjusted outside air hygrometer 54, and the return air hygrometer 56, typically, an electric hygrometer having a sensor using a semiconductor or the like as a sensing part is used, but even if a dew point meter is used. Good. The hygrometers 52, 54, and 56 are not limited to those that detect humidity alone, but may be those that indirectly detect humidity using the temperature detected by the thermometer. May be relative humidity or absolute humidity. Further, an air supply thermometer (not shown) for detecting the temperature of the supply air SA may be provided in the air supply duct 36 for temperature control of the supply air SA in the air conditioner 18.

制御装置60は、外調機11を制御する外調機制御部61と、VAV15及び空調機18を制御する空調機制御部68とを含んで構成されている。外調機制御部61と空調機制御部68とは、図1では分離されて示されているが、一体に構成されていてもよい。外調機制御部61は、外気温度計51、外気湿度計52、調節済外気温度計53、及び調節済外気湿度計54とそれぞれ信号ケーブルで接続されており、検出された値に基づいて外調機11のコイル11cにおける冷水Cと外気OAとの交換熱量を調節することができるように構成されている。冷水Cと外気OAとの交換熱量の調節は、典型的にはコイル11cを通過する冷水Cの流量を変化させることで行わせるが、コイル11cに供給される冷水Cの温度を変化させること、あるは冷水Cの温度及び流量の双方を変化させることにより調節することとしてもよい。外調機制御部61と空調機制御部68とは信号ケーブルで接続されており、検出値等のデータを相互に伝達することができるように構成されている。空調機制御部68は、還気温度計55、還気湿度計56、及び還気炭酸ガス濃度計57とそれぞれ信号ケーブルで接続されており、検出された値に基づいて除湿風量や必要外気量を算出又は抽出することができるように構成されている。また、空調機制御部68は、空調機18のファン18f及びVAV15とそれぞれ信号ケーブルで接続されており、外調機制御部61及び/又は空調機制御部68で検出あるいは演算されたデータに基づいてVAV15のダンパの開度及びファン18fの回転速度を調節することができるように構成されている。制御装置60における制御の詳細は後述する。   The control device 60 includes an external air conditioner control unit 61 that controls the external air conditioner 11 and an air conditioner control unit 68 that controls the VAV 15 and the air conditioner 18. Although the external air conditioner control unit 61 and the air conditioner control unit 68 are illustrated separately in FIG. 1, they may be configured integrally. The outside air conditioner control unit 61 is connected to the outside air thermometer 51, the outside air hygrometer 52, the adjusted outside air thermometer 53, and the adjusted outside air hygrometer 54 through signal cables, respectively. It is configured so that the amount of heat exchanged between the cold water C and the outside air OA in the coil 11c of the controller 11 can be adjusted. The adjustment of the amount of heat exchanged between the cold water C and the outside air OA is typically performed by changing the flow rate of the cold water C passing through the coil 11c, but the temperature of the cold water C supplied to the coil 11c is changed. Or it is good also as adjusting by changing both the temperature and flow volume of the cold water C. The external air conditioner control unit 61 and the air conditioner control unit 68 are connected by a signal cable, and are configured to be able to transmit data such as detection values to each other. The air conditioner control unit 68 is connected to the return air thermometer 55, the return air hygrometer 56, and the return air carbon dioxide concentration meter 57 via signal cables, respectively, and based on the detected values, the amount of dehumidified air and the required outside air amount Can be calculated or extracted. The air conditioner control unit 68 is connected to the fans 18f and VAV 15 of the air conditioner 18 through signal cables, respectively, and is based on data detected or calculated by the external air conditioner control unit 61 and / or the air conditioner control unit 68. Thus, the opening degree of the damper of the VAV 15 and the rotational speed of the fan 18f can be adjusted. Details of the control in the control device 60 will be described later.

引き続き図1を参照して、空調システム1の作用を説明する。まず、被空調室Rに供給される空気の大まかな流れを説明する。空調システム1を起動すると、外気OAが外調機11に導入される。外調機11に導入された外気OAは、熱源機13から供給された冷水Cによって冷却除湿されて調節済外気QAとなる。調節済外気QAは、調節済外気ダクト32を流れ、複数の分岐ダクト35に分流される。分岐ダクト35に流入した調節済外気QAは、VAV15で風量が調節されたうえで空調機18に導入される。空調機18には、調節済外気QAのほか、被空調室Rからの還気RAも導入され、両者は混合されたうえで、熱源機23から供給された冷温水CHによって温度が調節されて供給空気SAとなる。供給空気SAは、給気ダクト36を介して被空調室Rに供給され、被空調室Rの顕熱の一部及び潜熱を処理する。なお、被空調室Rの顕熱の残りは、放射パネル21からの放射熱によって処理される。放射パネル21には、空調機18で調節済外気QAと熱交換した後の冷温水CHが導入される。放射パネル21に導入された冷温水CHは、被空調室Rの顕熱を処理した後、熱源機23に還される。他方、被空調室Rの熱処理を行った供給空気SAは、一部が還気RAとして還気ダクト38を介して空調機18に導かれ、残りが排気EAとして排気ダクト33を介して外調機11に導かれて外気OAと熱交換が行われた後に、排気ダクト34から屋外に排出される。   With continued reference to FIG. 1, the operation of the air conditioning system 1 will be described. First, a rough flow of air supplied to the air-conditioned room R will be described. When the air conditioning system 1 is activated, the outside air OA is introduced into the external air conditioner 11. The outside air OA introduced into the external conditioner 11 is cooled and dehumidified by the cold water C supplied from the heat source unit 13 to become adjusted outside air QA. The adjusted outside air QA flows through the adjusted outside air duct 32 and is divided into a plurality of branch ducts 35. The adjusted outside air QA flowing into the branch duct 35 is introduced into the air conditioner 18 after the air volume is adjusted by the VAV 15. In addition to the adjusted outside air QA, the return air RA from the air-conditioned room R is also introduced into the air conditioner 18, and after both are mixed, the temperature is adjusted by the cold / hot water CH supplied from the heat source device 23. It becomes supply air SA. The supply air SA is supplied to the air-conditioned room R through the air supply duct 36 and processes a part of sensible heat and latent heat of the air-conditioned room R. The remaining sensible heat in the air-conditioned room R is processed by the radiant heat from the radiant panel 21. Cold / hot water CH after heat exchange with the adjusted outside air QA by the air conditioner 18 is introduced into the radiation panel 21. The cold / hot water CH introduced into the radiation panel 21 is returned to the heat source unit 23 after processing the sensible heat of the air-conditioned room R. On the other hand, a part of the supply air SA that has been heat-treated in the air-conditioned room R is led to the air conditioner 18 through the return air duct 38 as return air RA, and the remainder is externally adjusted through the exhaust duct 33 as exhaust EA. After being guided to the machine 11 and exchanging heat with the outside air OA, it is discharged from the exhaust duct 34 to the outside.

上述のように、空調システム1は、1台の外調機11で調節された調節済外気QAを、複数の系統に分配することとして、システム構成の簡略化を図っている。他方、分配された調節済外気QAが供給される各被空調室Rは、通常、在室者の人数がまちまちであるため、必要換気量や処理すべき熱負荷が異なっている。本実施の形態では、還気炭酸ガス濃度計57で各被空調室Rの二酸化炭素濃度を検出しているため、被空調室R内の二酸化炭素濃度を所定の濃度(例えば建築基準法で要求される濃度)に維持できる最小の外気OAを供給することとすれば、導入する外気OAの量を最小限にとどめることが可能になる。この場合、被空調室Rの潜熱の処理は、導入される最小限の風量の外気OAで行われることとなる。しかし、導入する外気OAの風量を二酸化炭素濃度のみで決定する場合、各被空調室Rの湿度を目標湿度以下に維持するためには、調節済外気QAの湿度の状態点を最も条件の悪い被空調室Rに合わせて調節することになる。このため、二酸化炭素濃度を所定の濃度に維持する観点から決定された風量が、外調機11の処理能力に適切な風量とは限らないため、空調システム1全体の消費エネルギー、ランニングコスト、又は二酸化炭素排出量等の所定の指標を最適化するのに、二酸化炭素濃度の観点から決定された風量が最適とは限らない。そこで、空調システム1では、以下のような制御をすることで、所定の指標を最適値に近づけることとしている。   As described above, the air conditioning system 1 simplifies the system configuration by distributing the adjusted outside air QA adjusted by one external air conditioner 11 to a plurality of systems. On the other hand, each air-conditioned room R to which the distributed adjusted outside air QA is supplied usually has a different number of people in the room, so that the required ventilation amount and the heat load to be processed are different. In the present embodiment, since the carbon dioxide concentration in each air-conditioned room R is detected by the return air carbon dioxide concentration meter 57, the carbon dioxide concentration in the air-conditioned room R is required to be a predetermined concentration (for example, required by the Building Standard Law). If the minimum amount of outside air OA that can be maintained is supplied, the amount of outside air OA to be introduced can be minimized. In this case, the process of the latent heat of the air-conditioned room R is performed with the minimum amount of outside air OA introduced. However, when the air volume of the outside air OA to be introduced is determined only by the carbon dioxide concentration, in order to maintain the humidity of each air-conditioned room R below the target humidity, the state condition of the humidity of the adjusted outside air QA is the worst condition. It will be adjusted according to the air-conditioned room R. For this reason, since the air volume determined from the viewpoint of maintaining the carbon dioxide concentration at a predetermined concentration is not necessarily an air volume appropriate for the processing capacity of the external air conditioner 11, energy consumption, running cost, or the entire air conditioning system 1 In order to optimize a predetermined index such as carbon dioxide emission amount, the air volume determined from the viewpoint of carbon dioxide concentration is not always optimal. Therefore, in the air conditioning system 1, a predetermined index is brought close to the optimum value by performing the following control.

図2は、空調システム1の制御を説明する概念図である。図3は、空調システム1における空気の状態を示す空気線図である。以下の説明において、空調システム1の構成に言及しているときは、適宜図1を参照することとする。また、以下の説明では、1台の外調機11で生成された調節済外気QAを3つの被空調室R(以下の説明の便宜上区別する場合はそれぞれR1、R2、R3の符号で示す)に分配する例を示すが、被空調室Rは2つでも4つ以上でも同様に適用することができる。また、以下の説明では、所定の指標が消費エネルギーであるとする。制御装置60は、各被空調室R1、R2、R3内の空気の状態が、目標とする室内空気の状態点(以下、「目標状態点PS」という。)に近づくように、空調システム1を制御する。本実施の形態では、目標状態点PSが、乾球温度28℃、相対湿度45%(このときの絶対湿度は0.01063kg/kg(DA)となる)であるとして説明する。   FIG. 2 is a conceptual diagram illustrating the control of the air conditioning system 1. FIG. 3 is an air diagram showing the state of air in the air conditioning system 1. In the following description, when referring to the configuration of the air conditioning system 1, FIG. 1 will be referred to as appropriate. Further, in the following description, the adjusted outside air QA generated by one external air conditioner 11 is divided into three air-conditioned rooms R (in the case of being distinguished for convenience in the following description, they are indicated by the symbols R1, R2, and R3, respectively). However, two or four or more air-conditioned rooms R can be similarly applied. In the following description, it is assumed that the predetermined index is energy consumption. The control device 60 controls the air conditioning system 1 so that the air state in each of the air-conditioned rooms R1, R2, and R3 approaches a target indoor air state point (hereinafter referred to as “target state point PS”). Control. In the present embodiment, it is assumed that the target state point PS is a dry bulb temperature of 28 ° C. and a relative humidity of 45% (the absolute humidity at this time is 0.01063 kg / kg (DA)).

制御装置60は、外気温度計51及び外気湿度計52から外気OAの温度及び湿度を検出して、外気OAの空気線図上における状態点P0(図3に示す例では、乾球温度が28℃、湿球温度が21.3℃)を検出している。また、制御装置60は、各被空調室R1、R2、R3について還気温度計55及び還気湿度計56から還気RAの状態点を検出し、調節済外気QAを、外調機11で仮に第1の状態点P1に調節した場合に、各被空調室R1、R2、R3内を目標湿度にするのに必要な風量である第1の除湿風量Qh1を、各被空調室R1、R2、R3について算出する(第1の除湿風量算出工程:St1)。第1の状態点P1は、目標状態点PSの湿度に対してあらかじめ対応づけられた状態点であり、典型的には、起動時はあらかじめ決められている値(絶対値でもよく、外気温等に対して所定の関係にある値でもよい)であり、運転中は直前に運転されていた状態点である。本実施の形態では、第1の状態点P1が、乾球温度12.3℃、相対湿度90%であり、第1の除湿風量Qh1が、被空調室R1は1433m/h、被空調室R2は1323m/h、被空調室R3は551m/hとなっている。 The control device 60 detects the temperature and humidity of the outside air OA from the outside air thermometer 51 and the outside air hygrometer 52, and the state point P0 on the air diagram of the outside air OA (in the example shown in FIG. 3, the dry bulb temperature is 28). ° C, wet bulb temperature is 21.3 ° C). Further, the control device 60 detects the state point of the return air RA from the return air thermometer 55 and the return air hygrometer 56 for each of the air-conditioned rooms R1, R2, and R3, and adjusts the adjusted outside air QA by the external air conditioner 11. If it is adjusted to the first state point P1, the first dehumidified air volume Qh1, which is the air volume necessary for setting the inside of each air-conditioned room R1, R2, R3 to the target humidity, is set to each air-conditioned room R1, R2. , R3 is calculated (first dehumidifying air volume calculating step: St1). The first state point P1 is a state point previously associated with the humidity of the target state point PS, and is typically a predetermined value at startup (which may be an absolute value, such as an outside air temperature). It may be a value having a predetermined relationship with respect to), and is the state point that was being operated immediately before the operation. In the present embodiment, the first state point P1 is a dry bulb temperature of 12.3 ° C. and a relative humidity of 90%, the first dehumidified air volume Qh1 is 1433 m 3 / h in the air-conditioned room R1, and the air-conditioned room R2 is 1323m 3 / h, the air conditioning chamber R3 has a 551m 3 / h.

また、制御装置60は、還気炭酸ガス濃度計57から二酸化炭素濃度を検出し、各被空調室R1、R2、R3の二酸化炭素濃度を所定の濃度にするために必要な外気OAの風量である必要外気風量Qrを算出する(必要外気量算出工程:St2)。必要外気風量Qrは、換気風量と相関があり、典型的には在室者の人数によって変動する。本実施の形態では、必要外気風量Qrが、被空調室R1は1800m/h、被空調室R2は2000m/h、被空調室R3は300m/hとなっている。第1の除湿風量Qh1及び必要外気風量Qrが算出されたら、制御装置60は、各被空調室R1、R2、R3について、第1の除湿風量Qh1及び必要外気風量Qrのうち大きい方を採択して第1の採択風量Qe1とする(第1の採択工程:St3)。本実施の形態では、第1の採択風量Qe1が、被空調室R1は1800m/h、被空調室R2は2000m/h、被空調室R3は551m/hとなっている。 Further, the control device 60 detects the carbon dioxide concentration from the return-air carbon dioxide concentration meter 57, and uses the air volume of the outside air OA necessary for setting the carbon dioxide concentration in each of the air-conditioned rooms R1, R2, and R3 to a predetermined concentration. A certain required outside air volume Qr is calculated (required outside air volume calculating step: St2). The necessary outside air volume Qr is correlated with the ventilation volume, and typically varies depending on the number of people in the room. In this embodiment, the required outside air wind amount Qr is, the air conditioning chamber R1 is 1800 m 3 / h, the air conditioning chamber R2 is 2000 m 3 / h, the air conditioning chamber R3 has a 300m 3 / h. When the first dehumidified air volume Qh1 and the required outside air volume Qr are calculated, the control device 60 adopts the larger one of the first dehumidified air volume Qh1 and the required outside air volume Qr for each air-conditioned room R1, R2, R3. To the first adopted air volume Qe1 (first adopted step: St3). In this embodiment, the first adoption airflow Qe1 is, the air conditioning chamber R1 is 1800 m 3 / h, the air conditioning chamber R2 is 2000 m 3 / h, the air conditioning chamber R3 has a 551m 3 / h.

その後、制御装置60は、各被空調室R1、R2、R3の第1の採択風量Qe1を総和して第1の総和風量ΣQe1を算出する。本実施の形態では、第1の総和風量ΣQe1は4351m/hとなる。この、第1の総和風量ΣQe1が、第1の状態点P1の調節済外気QAを被空調室Rに供給する場合に外調機11に導入する外気OAの風量となる。そして、制御装置60は、第1の総和風量ΣQe1の外気OAを第1の状態点P1の調節済外気QAとするためにエンタルピを減少させる際の消費エネルギー(所定の指標の変化量)を算出する。エンタルピを減少させる際の消費エネルギーは、外調機11の動力、熱源機13の動力、冷水Cの搬送動力等の総和である。ただし、この総和は、被空調室R内の顕熱処理に寄与する分が除かれている。被空調室Rの顕熱処理寄与分は、調節済外気QAによる被空調室R内の顕熱処理熱量に相当する熱源動力として、典型的には、「顕熱処理寄与分=0.33×外気OAの風量(m/h)×(被空調室R内の温度(℃)−調節済外気QAの温度(℃))÷熱源機のCOP」で求められる。上記式における数値「0.33」は、空気の定圧比熱(Wh/(kg・K))と空気の密度(kg/m)との積で求められる空気の容積比熱(Wh/(m・K))の略値である。また、熱源機13と熱源機23とのCOPが異なる場合、上記消費エネルギーから除かれる被空調室Rの顕熱処理寄与分は、熱源機23のCOPを適用することで、空調システム1全体の消費エネルギーを評価する際に、熱源機23の負荷の減少分を正しく反映することができる。ある熱負荷を処理する際、第1の総和風量ΣQe1が少ないほど比エンタルピの減少量を大きくするために外調機11のコイル11cを通過する冷水Cの流量が多くなりがちであり、冷水Cの流動抵抗も大きくなりがちである。また、制御装置60は、並行して、第1の総和風量ΣQe1の調節済外気QAを各被空調室R1、R2、R3に搬送する際の消費エネルギー(所定の指標の変化量)を算出する。このときの消費エネルギーは、典型的にはファン11fの動力である。そして、制御装置60は、第1の総和風量ΣQe1について、エンタルピを減少させる消費エネルギー及び調節済外気QAを搬送する際の消費エネルギーを算出したら、これらを合算した第1の変化量Δ1を算出する(第1の変化量算出工程:St4)。 Thereafter, the control device 60 calculates the first total air volume ΣQe1 by summing the first adopted air volumes Qe1 of the air-conditioned rooms R1, R2, and R3. In the present embodiment, the first total air volume ΣQe1 is 4351 m 3 / h. The first total air volume ΣQe1 is the air volume of the outside air OA introduced into the external air conditioner 11 when the adjusted outside air QA at the first state point P1 is supplied to the air-conditioned room R. Then, the control device 60 calculates energy consumption (a change amount of a predetermined index) when reducing the enthalpy so that the outside air OA of the first total air volume ΣQe1 becomes the adjusted outside air QA of the first state point P1. To do. The energy consumed when reducing the enthalpy is the sum of the power of the external air conditioner 11, the power of the heat source device 13, the power of conveying the cold water C, and the like. However, this total excludes the amount contributing to the sensible heat treatment in the air-conditioned room R. The sensible heat treatment contribution of the air-conditioned room R is typically expressed as “sensible heat treatment contribution = 0.33 × outside air OA as heat source power corresponding to the amount of sensible heat treatment in the air-conditioned room R by the adjusted outside air QA. Air volume (m 3 / h) × (temperature in air-conditioned room R (° C.) − Temperature of adjusted outside air QA (° C.)) ÷ COP of heat source machine ” The numerical value “0.33” in the above formula is the volume specific heat of air (Wh / (m 3 ) determined by the product of the constant pressure specific heat of air (Wh / (kg · K)) and the density of air (kg / m 3 ). -An abbreviation for K)). In addition, when the COPs of the heat source unit 13 and the heat source unit 23 are different, the sensible heat treatment contribution of the air-conditioned room R that is excluded from the consumed energy can be consumed by the entire air conditioning system 1 by applying the COP of the heat source unit 23. When the energy is evaluated, the decrease in the load of the heat source device 23 can be correctly reflected. When a certain heat load is processed, the smaller the first total air volume ΣQe1, the larger the flow rate of the cold water C passing through the coil 11c of the external air conditioner 11 in order to increase the reduction amount of the specific enthalpy. The flow resistance tends to increase. In parallel, the control device 60 calculates energy consumption (amount of change of a predetermined index) when the adjusted outside air QA having the first total air volume ΣQe1 is conveyed to each of the air-conditioned rooms R1, R2, and R3. . The energy consumption at this time is typically the power of the fan 11f. Then, after calculating the energy consumption for reducing the enthalpy and the energy consumption for transporting the adjusted outside air QA for the first total air volume ΣQe1, the control device 60 calculates the first change amount Δ1 obtained by adding these. (First change amount calculating step: St4).

次に、制御装置60は、調節済外気QAの最適な状態点を探索するため、外調機11から導出される調節済外気QAを、第1の状態点P1の代わりに第2の状態点P2に調節した場合に、各被空調室R1、R2、R3内を目標湿度にするのに必要な風量である第2の除湿風量Qh2を、各被空調室R1、R2、R3について算出する(第2の除湿風量算出工程:St5)。第2の状態点P2は、第1の状態点P1とは異なる任意の状態点である。第2の状態点P2は、外調機11によって冷却除湿される空気(外気OA)の露点付近の挙動に鑑み、第1の状態点P1が通る相対湿度線付近(典型的には同じ相対湿度)の状態点とするのが好ましい。本実施の形態では、第2の状態点P2が、乾球温度11.8℃、相対湿度90%であり、第2の除湿風量Qh2が、被空調室R1は1300m/h、被空調室R2は1200m/h、被空調室R3は500m/hとなっている。 Next, in order to search for the optimum state point of the adjusted outside air QA, the control device 60 uses the adjusted outside air QA derived from the external conditioner 11 as the second state point instead of the first state point P1. When adjusted to P2, the second dehumidified air volume Qh2, which is the air volume necessary to bring the air-conditioned rooms R1, R2, R3 to the target humidity, is calculated for each air-conditioned room R1, R2, R3 ( Second dehumidifying air amount calculating step: St5). The second state point P2 is an arbitrary state point different from the first state point P1. In view of the behavior near the dew point of the air (outside air OA) cooled and dehumidified by the external air conditioner 11, the second state point P2 is in the vicinity of the relative humidity line (typically the same relative humidity) through which the first state point P1 passes. ) Is preferable. In the present embodiment, the second state point P2 is a dry bulb temperature of 11.8 ° C. and a relative humidity of 90%, the second dehumidified air volume Qh2 is 1300 m 3 / h in the air-conditioned room R1, and the air-conditioned room R2 is 1200 m 3 / h, and the air-conditioned room R3 is 500 m 3 / h.

第2の除湿風量Qh2が算出されたら、制御装置60は、各被空調室R1、R2、R3について、第2の除湿風量Qh2及び必要外気風量Qrのうち大きい方を採択して第2の採択風量Qe2とする(第2の採択工程:St6)。なお、必要外気風量Qrは、第1の状態点P1における第1の除湿風量Qh1と比較する前に必要外気量算出工程(St2)で算出した風量と同じである。本実施の形態では、第2の採択風量Qe2が、被空調室R1は1800m/h、被空調室R2は2000m/h、被空調室R3は500m/hとなっている。 When the second dehumidified air volume Qh2 is calculated, the control device 60 adopts the larger one of the second dehumidified air volume Qh2 and the required outside air volume Qr for each of the air-conditioned rooms R1, R2, and R3 and adopts the second. The air volume is Qe2 (second adoption step: St6). The necessary outside air volume Qr is the same as the air volume calculated in the necessary outside air volume calculating step (St2) before comparing with the first dehumidified air volume Qh1 at the first state point P1. In this embodiment, the second adoption airflow Qe2 can be air-conditioned chamber R1 is 1800 m 3 / h, the air conditioning chamber R2 is 2000 m 3 / h, the air conditioning chamber R3 has a 500m 3 / h.

その後、制御装置60は、各被空調室R1、R2、R3の第2の採択風量Qe2を総和して第2の総和風量ΣQe2を算出する。本実施の形態では、第2の総和風量ΣQe2は4300m/hとなる。この、第2の総和風量ΣQe2が、第2の状態点P2の調節済外気QAを被空調室Rに供給する場合に外調機11に導入する外気OAの風量となる。そして、制御装置60は、上述の第1の変化量算出工程(St4)と同じ要領で、第2の総和風量ΣQe2の外気OAを第2の状態点P2の調節済外気QAとするためにエンタルピを減少させる際の消費エネルギー(所定の指標の変化量)を算出し(ここでの消費エネルギーも第1の変化量Δ1を算出したときと同様に被空調室R内の顕熱処理寄与分が除かれている。)、第2の総和風量ΣQe2の調節済外気QAを各被空調室R1、R2、R3に搬送する際の消費エネルギー(所定の指標の変化量)を算出して、両者を合算した第2の変化量Δ2を算出する(第2の変化量算出工程:St7)。 Thereafter, the control device 60 calculates the second total air volume ΣQe2 by summing the second selected air volumes Qe2 of the air-conditioned rooms R1, R2, and R3. In the present embodiment, the second total air volume ΣQe2 is 4300 m 3 / h. The second total air volume ΣQe2 is the air volume of the outside air OA introduced into the external air conditioner 11 when the adjusted outside air QA at the second state point P2 is supplied to the air-conditioned room R. Then, in the same manner as in the first change amount calculation step (St4), the control device 60 uses the enthalpy to set the outside air OA of the second total air volume ΣQe2 as the adjusted outside air QA of the second state point P2. Energy consumption (a change amount of a predetermined index) is calculated (the energy consumption here is also divided by the sensible heat treatment contribution in the air-conditioned room R in the same manner as when the first change amount Δ1 is calculated). ), Calculating energy consumption (amount of change of a predetermined index) when transporting the adjusted outside air QA of the second total air volume ΣQe2 to each air-conditioned room R1, R2, R3, and adding them together The calculated second variation Δ2 is calculated (second variation calculation step: St7).

また、本実施の形態では、調節済外気QAの最適な状態点を選定する際の選択肢を増やす観点から、第2の変化量Δ2をもう1つ算出することとしている。なお、もう1つの変化量を算出するのに必要な状態点、除湿風量、採択風量を、上述の第2の変化量Δ2を算出するのに用いたものと区別するため、接頭辞「第3の」を付することとする。制御装置60は、外調機11から導出される調節済外気QAを、第3の状態点P3に調節した場合に、各被空調室R1、R2、R3内を目標湿度にするのに必要な風量である第3の除湿風量Qh3を、各被空調室R1、R2、R3について算出する。本実施の形態では、第3の状態点P3が、乾球温度13.2℃、相対湿度90%であり、第3の除湿風量Qh3が、被空調室R1は1770m/h、被空調室R2は1634m/h、被空調室R3は681m/hとなっている。 Further, in the present embodiment, another second change amount Δ2 is calculated from the viewpoint of increasing choices when selecting an optimal state point of the adjusted outside air QA. In order to distinguish the state point, dehumidified air volume, and adopted air volume necessary for calculating another change amount from those used for calculating the second change amount Δ2 described above, the prefix “3rd Of "". When the adjusted outside air QA derived from the external air conditioner 11 is adjusted to the third state point P3, the control device 60 is necessary for setting the air-conditioned rooms R1, R2, and R3 to the target humidity. A third dehumidifying air volume Qh3, which is an air volume, is calculated for each air-conditioned room R1, R2, R3. In the present embodiment, the third state point P3 is a dry bulb temperature of 13.2 ° C. and a relative humidity of 90%, the third dehumidified air volume Qh3 is 1770 m 3 / h in the air-conditioned room R1, and the air-conditioned room R2 is 1634m 3 / h, the air conditioning chamber R3 has a 681m 3 / h.

第3の除湿風量Qh3が算出されたら、制御装置60は、各被空調室R1、R2、R3について、第3の除湿風量Qh3及び必要外気風量Qr(第1の変化量Δ1及び第2の変化量Δ2を算出する際の値と同じ)のうち大きい方を採択して第3の採択風量Qe3とする。本実施の形態では、第3の採択風量Qe3が、被空調室R1は1800m/h、被空調室R2は2000m/h、被空調室R3は681m/hとなっている。 When the third dehumidified air volume Qh3 is calculated, the control device 60 determines the third dehumidified air volume Qh3 and the necessary outside air volume Qr (first variation Δ1 and second variation) for each of the air-conditioned rooms R1, R2, and R3. The larger one of the values (same as the value when calculating the amount Δ2) is adopted as the third adopted air volume Qe3. In this embodiment, the third adopted airflow Qe3 is, the air conditioning chamber R1 is 1800 m 3 / h, the air conditioning chamber R2 is 2000 m 3 / h, the air conditioning chamber R3 has a 681m 3 / h.

その後、制御装置60は、各被空調室R1、R2、R3の第3の採択風量Qe3を総和して第3の総和風量ΣQe3を算出する。本実施の形態では、第3の総和風量ΣQe3は4481m/hとなる。この、第3の総和風量ΣQe3が、第3の状態点P3の調節済外気QAを被空調室Rに供給する場合に外調機11に導入する外気OAの風量となる。そして、制御装置60は、第3の総和風量ΣQe3の外気OAを第3の状態点P3の調節済外気QAとするためにエンタルピを減少させる際の消費エネルギー(所定の指標の変化量)を算出し(ここでの消費エネルギーも第1及び第2の変化量Δ1、Δ2を算出したときと同様に被空調室R内の顕熱処理寄与分が除かれている。)、第3の総和風量ΣQe3の調節済外気QAを各被空調室R1、R2、R3に搬送する際の消費エネルギー(所定の指標の変化量)を算出して、両者を合算した第3の変化量Δ3を算出する。 Thereafter, the control device 60 calculates the third total air volume ΣQe3 by summing the third selected air volume Qe3 of each air-conditioned room R1, R2, R3. In the present embodiment, the third total air volume ΣQe3 is 4481 m 3 / h. This third total air volume ΣQe3 becomes the air volume of the outside air OA introduced into the external air conditioner 11 when the adjusted outside air QA at the third state point P3 is supplied to the air-conditioned room R. Then, the control device 60 calculates energy consumption (a change amount of a predetermined index) when reducing the enthalpy so that the outside air OA of the third total air volume ΣQe3 becomes the adjusted outside air QA of the third state point P3. (The energy consumption here also excludes the contribution of sensible heat treatment in the air-conditioned room R in the same way as when calculating the first and second change amounts Δ1 and Δ2), and the third total air volume ΣQe3 The energy consumption (amount of change of a predetermined index) when the adjusted outside air QA is transported to each of the air-conditioned rooms R1, R2, and R3 is calculated, and a third change amount Δ3 is calculated by adding them together.

第1の変化量Δ1、第2の変化量Δ2、及び第3の変化量Δ3を算出したら、これらのうち最も小さくなるもの(すなわち消費エネルギーが最小となるもの)を選択し、その選択した変化量を算出した際に用いられた調節済外気QAの状態点を、制御目標の状態点として採用し、実際の制御に反映させる(状態点更新工程:St8)。調節済外気QAの状態点が状態点更新工程で採用した状態点になっているかは、調節済外気温度計53及び調節済外気湿度計54で調節済外気QAの温度及び湿度を検出することによって確認される。調節済外気QAの状態点が採用した状態点になっていない場合は、外調機11に供給される冷水Cの流量及び/又は温度を調節することにより、採用した状態点に近づける。そして、状態点を更新したら、引き続き、あるいは所定時間経過後に、再び第1の除湿風量算出工程(St1)に戻り、以降、上述の制御を繰り返す。   After calculating the first change amount Δ1, the second change amount Δ2, and the third change amount Δ3, the smallest change (ie, the one that consumes the least amount of energy) is selected, and the selected change is made. The state point of the adjusted outside air QA used when calculating the amount is adopted as the state point of the control target and reflected in the actual control (state point update step: St8). Whether the state point of the adjusted outside air QA is the state point adopted in the state point update process is determined by detecting the temperature and humidity of the adjusted outside air QA with the adjusted outside air thermometer 53 and the adjusted outside air hygrometer 54. It is confirmed. When the state point of the adjusted outside air QA is not the adopted state point, the flow rate and / or temperature of the cold water C supplied to the external air conditioner 11 is adjusted to approach the adopted state point. Then, after the state point is updated, the process returns to the first dehumidifying air amount calculation step (St1) continuously or after a predetermined time has elapsed, and thereafter the above-described control is repeated.

以上のように、空調システム1は、二酸化炭素濃度の観点から必要な外気流量に拘泥せず、所定の指標を最適値に近づける観点から導入する外気OAの風量を決定することとなるので、要求される所定の指標に最適な運転を行うことができる。   As described above, the air conditioning system 1 determines the air volume of the outside air OA to be introduced from the viewpoint of bringing the predetermined index close to the optimum value without regard to the flow rate of the outside air necessary from the viewpoint of the carbon dioxide concentration. The optimum operation can be performed for a predetermined index.

以上の説明では、所定の指標に最も適う調節済外気QAの状態点を採用するために、変化量を3つ算出することとしたが、算出する変化量は、計算負荷軽減の観点から2つとしてもよく、選択の幅を広げてより適切な調節済外気QAの状態点を探索する観点から4つ以上としてもよい。   In the above description, three change amounts are calculated in order to adopt the state point of the adjusted outside air QA that best suits the predetermined index. However, two change amounts are calculated from the viewpoint of reducing the calculation load. It is good also as four or more from a viewpoint which expands the selection range and searches for the state point of the more suitable adjusted outside air QA.

以上の説明では、外気温度計51及び外気湿度計52が外調機11のコイル11cと熱交換器11xとの間に設けられているとしたが、外調機11に熱交換器11xが設けられない場合は外気ダクト31あるいは屋外に設けられていてもよい。また、外調機11に熱交換器11xが設けられる場合であっても、熱交換器11xが顕熱のみを交換する熱交換器である場合は、外気湿度計52が外気ダクト31あるいは屋外に設けられることとしてもよい。   In the above description, the outside air thermometer 51 and the outside air hygrometer 52 are provided between the coil 11c of the outside air conditioner 11 and the heat exchanger 11x. However, the outside air conditioner 11 is provided with the heat exchanger 11x. If not, it may be provided outside the air duct 31 or outdoors. Even if the external air conditioner 11 is provided with a heat exchanger 11x, if the heat exchanger 11x is a heat exchanger that exchanges only sensible heat, the outdoor air hygrometer 52 is placed outside the outdoor air duct 31 or outdoors. It may be provided.

以上の説明では、被空調室Rの顕熱が主に空調機18及び放射パネル21で処理されることとしたが、放射パネル21で足りる場合は空調機18を設けずに、調節済外気QAを各被空調室Rに供給する構成としてもよい。このようにすると、空調システム1の構成を簡素化することができる。   In the above description, the sensible heat of the air-conditioned room R is mainly processed by the air conditioner 18 and the radiating panel 21, but when the radiating panel 21 is sufficient, the adjusted outside air QA is not provided without providing the air conditioner 18. May be supplied to each air-conditioned room R. If it does in this way, the composition of air-conditioning system 1 can be simplified.

1 空調システム
11 外調機
15 VAV
51 外気温度計
52 外気湿度計
56 還気湿度計
57 還気炭酸ガス濃度計
60 制御装置
OA 外気
QA 調節済外気
R 被空調室
1 Air conditioning system 11 External air conditioner 15 VAV
51 Outside air temperature meter 52 Outside air humidity meter 56 Return air humidity meter 57 Return air carbon dioxide concentration meter 60 Control device OA Outside air QA Adjusted outside air R Air-conditioned room

Claims (5)

外気の湿度を調節し、湿度が調節された調節済外気を複数の被空調室に供給して、複数の前記被空調室の空調を行う空調方法であって;
前記調節済外気を、前記被空調室の目標湿度に対してあらかじめ対応づけられた空気線図上の状態点である第1の状態点で、複数の前記被空調室に供給する際に、複数の前記被空調室を前記目標湿度にするために必要な除湿風量を個別に算出する第1の除湿風量算出工程と;
複数の前記被空調室の二酸化炭素濃度を所定の濃度とするために必要な外気量を個別に算出する必要外気量算出工程と;
複数の前記被空調室について個別に、前記第1の除湿風量算出工程で算出された除湿風量と、前記必要外気量算出工程で算出された外気量とを比較して、大きい方を採択する第1の採択工程と;
前記第1の採択工程で個別に採択された風量の総和である第1の総和風量の外気を前記第1の状態点の前記調節済外気とするためにエンタルピを減少させる際の所定の指標の変化量を算出すると共に、前記第1の総和風量の前記調節済外気を複数の前記被空調室へ搬送する際の前記所定の指標の変化量を算出して合算する、第1の変化量算出工程と;
前記除湿風量を前記第1の状態点とは異なる空気線図上の状態点である第2の状態点について、前記除湿風量を個別に算出する第2の除湿風量算出工程と;
複数の前記被空調室について個別に、前記第2の除湿風量算出工程で算出された除湿風量と、前記必要外気量算出工程で算出された外気量とを比較して、大きい方を採択する第2の採択工程と;
前記第2の採択工程で個別に採択された風量の総和である第2の総和風量の外気を前記第2の状態点の前記調節済外気とするためにエンタルピを減少させる際の所定の指標の変化量を算出すると共に、前記第2の総和風量の前記調節済外気を複数の前記被空調室へ搬送する際の前記所定の指標の変化量を算出して合算する、第2の変化量算出工程と;
前記調節済外気の状態点を、前記第1の変化量算出工程で算出された前記所定の指標の第1の変化量と、前記第2の変化量算出工程で算出された前記所定の指標の第2の変化量とのうち、最小となる前記所定の指標の変化量の算出に用いられた前記状態点に更新する状態点更新工程とを備える;
空調方法。
An air conditioning method for adjusting the humidity of outside air, supplying adjusted outside air with adjusted humidity to a plurality of air-conditioned rooms, and performing air conditioning of the plurality of air-conditioned rooms;
When supplying the adjusted outside air to the plurality of air-conditioned rooms at a first state point that is a state point on the air diagram that is previously associated with the target humidity of the air-conditioned room, A first dehumidifying air amount calculating step for individually calculating a dehumidifying air amount necessary for setting the air-conditioned room of the air to the target humidity;
A necessary outside air amount calculating step for individually calculating the amount of outside air necessary for setting the carbon dioxide concentrations of the plurality of air-conditioned rooms to a predetermined concentration;
For the plurality of air-conditioned rooms, the dehumidifying air amount calculated in the first dehumidifying air amount calculating step is compared with the outside air amount calculated in the necessary outside air amount calculating step, and the larger one is adopted. 1 adoption process;
A predetermined index for reducing enthalpy so that the outside air of the first total air volume, which is the sum of the air volumes individually adopted in the first adopting step, becomes the adjusted outside air of the first state point. A first change amount calculation that calculates a change amount and calculates and adds a change amount of the predetermined index when the adjusted outside air of the first total air volume is transferred to the plurality of air-conditioned rooms. Process and;
A second dehumidifying air amount calculating step for individually calculating the dehumidifying air amount for a second state point that is a state point on an air diagram different from the first state point;
For the plurality of air-conditioned rooms, the dehumidifying air amount calculated in the second dehumidifying air amount calculating step is compared with the outside air amount calculated in the required outside air amount calculating step, and the larger one is adopted. 2 adoption processes;
A predetermined index for reducing enthalpy so that the outside air of the second total air volume, which is the sum of the air volumes individually adopted in the second adoption step, becomes the adjusted outside air of the second state point. A second change amount calculation that calculates a change amount and calculates and adds a change amount of the predetermined index when the adjusted outside air of the second total air volume is conveyed to the plurality of air-conditioned rooms. Process and;
The state point of the adjusted outside air is calculated using the first change amount of the predetermined index calculated in the first change amount calculation step and the predetermined index calculated in the second change amount calculation step. A state point updating step of updating to the state point used to calculate the amount of change of the predetermined index that is the minimum among the second amount of change;
Air conditioning method.
前記所定の指標が、エネルギー消費量、コスト、二酸化炭素排出量のうちの少なくとも1つである;
請求項1に記載の空調方法。
The predetermined indicator is at least one of energy consumption, cost, and carbon dioxide emissions;
The air conditioning method according to claim 1.
前記第2の変化量が、複数の前記状態点について複数算出され;
前記状態点更新工程が、第1の変化量及び複数の前記第2の変化量のうちから最小となる変化量の算出に用いられた前記状態点に、前記調節済外気の状態点を更新するように構成された;
請求項1又は請求項2に記載の空調方法。
A plurality of the second change amounts are calculated for a plurality of the state points;
The state point updating step updates the state point of the adjusted outside air to the state point used for calculating the minimum amount of change from the first amount of change and the plurality of second amounts of change. Configured as follows;
The air conditioning method according to claim 1 or 2.
請求項1乃至請求項3のいずれか1項に記載の空調方法を実行する制御装置と;
外気の湿度を調節する外調機と;
前記被空調室に供給される前記調節済外気の風量を調節する風量調節装置であって、複数の前記被空調室に対応して複数設けられた風量調節装置とを備える;
空調システム。
A control device for executing the air conditioning method according to any one of claims 1 to 3;
An external air conditioner for adjusting the humidity of the outside air;
An air volume adjusting device for adjusting the air volume of the adjusted outside air supplied to the air-conditioned room, comprising: a plurality of air volume adjusting devices provided corresponding to the plurality of air-conditioned rooms;
Air conditioning system.
外気の空気線図上の状態を特定する物理量を検出する調節前外気状態検出器と;
複数の前記被空調室のそれぞれに対応して設けられ、前記被空調室内の湿度を検出する室内湿度検出器と;
複数の前記被空調室のそれぞれに対応して設けられ、前記被空調室内の二酸化炭素濃度を検出する二酸化炭素濃度検出器とを備え;
前記制御装置が、前記室内湿度検出器で検出された値から前記第1の除湿風量算出工程における前記必要な除湿風量を算出し、前記二酸化炭素濃度検出器で検出された値から前記必要外気量算出工程における前記必要な外気量を算出すると共に、前記調節前外気状態検出器で検出された値及び前記状態点更新工程で更新された前記状態点から前記エンタルピを減少させる際の所定の指標の変化量を算出するように構成された;
請求項4に記載の空調システム。
A pre-adjustment outdoor air condition detector for detecting a physical quantity that identifies a condition on an air diagram of the outdoor air;
An indoor humidity detector that is provided corresponding to each of the plurality of air-conditioned rooms and detects the humidity in the air-conditioned room;
A carbon dioxide concentration detector that is provided corresponding to each of the plurality of air-conditioned rooms and detects a carbon dioxide concentration in the air-conditioned room;
The control device calculates the necessary dehumidified air volume in the first dehumidified air volume calculating step from the value detected by the indoor humidity detector, and calculates the necessary outside air volume from the value detected by the carbon dioxide concentration detector. A predetermined index for reducing the enthalpy from the value detected by the pre-adjustment outside air state detector and the state point updated in the state point updating step while calculating the necessary outside air amount in the calculating step. Configured to calculate the amount of change;
The air conditioning system according to claim 4.
JP2010221945A 2010-09-30 2010-09-30 Air conditioning method and air conditioning system Active JP5702571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221945A JP5702571B2 (en) 2010-09-30 2010-09-30 Air conditioning method and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221945A JP5702571B2 (en) 2010-09-30 2010-09-30 Air conditioning method and air conditioning system

Publications (2)

Publication Number Publication Date
JP2012077968A true JP2012077968A (en) 2012-04-19
JP5702571B2 JP5702571B2 (en) 2015-04-15

Family

ID=46238433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221945A Active JP5702571B2 (en) 2010-09-30 2010-09-30 Air conditioning method and air conditioning system

Country Status (1)

Country Link
JP (1) JP5702571B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
JP2018096664A (en) * 2016-12-16 2018-06-21 株式会社ササクラ Air conditioning system
WO2020218127A1 (en) * 2019-04-15 2020-10-29 ダイキン工業株式会社 Air supply system
JP2021001721A (en) * 2019-06-24 2021-01-07 ダイキン工業株式会社 Air supply system
JP2021076330A (en) * 2019-11-12 2021-05-20 荏原実業株式会社 Air conditioner and air conditioning system
CN113551399A (en) * 2021-07-22 2021-10-26 珠海格力电器股份有限公司 Air conditioner fresh air volume control method and device and air conditioner
CN114608126A (en) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium
US11614244B2 (en) 2019-04-15 2023-03-28 Daikin Industries, Ltd. Air conditioning system
JP7420562B2 (en) 2020-01-07 2024-01-23 シャープ株式会社 Air conditioners and servers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312387A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Air conditioning system
JPH11101484A (en) * 1997-09-30 1999-04-13 Trinity Ind Corp Temperature/humidity controller for air conditioner
JP2002357356A (en) * 2001-06-04 2002-12-13 Hitachi Plant Eng & Constr Co Ltd Air conditioning control method
JP2002372284A (en) * 2001-06-12 2002-12-26 Hokkaido Electric Power Co Inc:The Air-conditioning system and air-conditioning method
JP2005140467A (en) * 2003-11-10 2005-06-02 Nippon Engineering Kk Constant temperature/constant humidity air conditioning method
JP2005214608A (en) * 2004-01-31 2005-08-11 Kiyoshi Yanagimachi Method for improving energy saving for air-conditioning facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312387A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Air conditioning system
JPH11101484A (en) * 1997-09-30 1999-04-13 Trinity Ind Corp Temperature/humidity controller for air conditioner
JP2002357356A (en) * 2001-06-04 2002-12-13 Hitachi Plant Eng & Constr Co Ltd Air conditioning control method
JP2002372284A (en) * 2001-06-12 2002-12-26 Hokkaido Electric Power Co Inc:The Air-conditioning system and air-conditioning method
JP2005140467A (en) * 2003-11-10 2005-06-02 Nippon Engineering Kk Constant temperature/constant humidity air conditioning method
JP2005214608A (en) * 2004-01-31 2005-08-11 Kiyoshi Yanagimachi Method for improving energy saving for air-conditioning facility

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173896A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
GB2540906A (en) * 2014-05-13 2017-02-01 Mitsubishi Electric Corp Air conditioning system
US10317120B2 (en) 2014-05-13 2019-06-11 Mitsubishi Electric Corporation Air conditioning system with indoor and ventilation circuits
GB2540906B (en) * 2014-05-13 2020-03-04 Mitsubishi Electric Corp Air conditioning system
JP2018096664A (en) * 2016-12-16 2018-06-21 株式会社ササクラ Air conditioning system
US11614244B2 (en) 2019-04-15 2023-03-28 Daikin Industries, Ltd. Air conditioning system
CN113692516A (en) * 2019-04-15 2021-11-23 大金工业株式会社 Gas supply system
WO2020218127A1 (en) * 2019-04-15 2020-10-29 ダイキン工業株式会社 Air supply system
JP2021001721A (en) * 2019-06-24 2021-01-07 ダイキン工業株式会社 Air supply system
JP2021076330A (en) * 2019-11-12 2021-05-20 荏原実業株式会社 Air conditioner and air conditioning system
JP7469025B2 (en) 2019-11-12 2024-04-16 荏原実業株式会社 Air conditioners and air conditioning systems
JP7420562B2 (en) 2020-01-07 2024-01-23 シャープ株式会社 Air conditioners and servers
CN114608126A (en) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium
CN114608126B (en) * 2020-12-08 2024-04-02 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium
CN113551399A (en) * 2021-07-22 2021-10-26 珠海格力电器股份有限公司 Air conditioner fresh air volume control method and device and air conditioner
CN113551399B (en) * 2021-07-22 2022-07-26 珠海格力电器股份有限公司 Air conditioner fresh air volume control method and device and air conditioner

Also Published As

Publication number Publication date
JP5702571B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5702571B2 (en) Air conditioning method and air conditioning system
JP6941772B2 (en) Air conditioning system, air conditioning system controller
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
TWI439644B (en) Air conditioning control device and the use of its air conditioning control system
EP2966374B1 (en) Air-conditioning system
WO2014184883A1 (en) Air conditioning system
WO2013057844A1 (en) Air conditioning system of communication/information processing apparatus chamber, etc.
JPWO2019008694A1 (en) Air conditioner and air conditioning system
JP2013072590A (en) Air conditioning system
JP2002168479A (en) Method and system for air-conditioning communication equipment room
CN107559956A (en) VMC and its control method
JP2011242011A (en) Air conditioning system for server
JP2013011427A (en) Air conditioning system and air conditioning control method for server room management
CN103075781A (en) Air conditioning control device and air conditioning control method
JP5602072B2 (en) Air conditioning system for server room management
JP2016017674A (en) Outdoor atmosphere utilizing air conditioning system
JP7378231B2 (en) air conditioning system
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP4905826B2 (en) Optimal operation control system for air conditioner combined with dehumidifier
JP5772157B2 (en) Air conditioning system
JP2015001359A5 (en)
JP2013164260A (en) Air conditioning control device, air conditioning control method, and program for air conditioning control
JP2018009753A (en) Air conditioning system
WO2021205684A1 (en) Air conditioning system
JP7209485B2 (en) air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5702571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250