JP2012077726A - Atmospheric pressure estimating device - Google Patents

Atmospheric pressure estimating device Download PDF

Info

Publication number
JP2012077726A
JP2012077726A JP2010226145A JP2010226145A JP2012077726A JP 2012077726 A JP2012077726 A JP 2012077726A JP 2010226145 A JP2010226145 A JP 2010226145A JP 2010226145 A JP2010226145 A JP 2010226145A JP 2012077726 A JP2012077726 A JP 2012077726A
Authority
JP
Japan
Prior art keywords
estimated value
atmospheric pressure
fuel cut
engine
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010226145A
Other languages
Japanese (ja)
Other versions
JP5511616B2 (en
Inventor
Kazunori Kawamura
和憲 河村
Takeshi Hara
武志 原
Takayuki Ozawa
隆行 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010226145A priority Critical patent/JP5511616B2/en
Publication of JP2012077726A publication Critical patent/JP2012077726A/en
Application granted granted Critical
Publication of JP5511616B2 publication Critical patent/JP5511616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an atmospheric pressure estimating device which can perform an estimation of the atmospheric pressure according to a detected intake pressure even during a fuel cut operation, and also can perform an accurate estimation by inhibiting a degradation of an estimation accuracy.SOLUTION: Immediately after an ignition switch is turned on, or in a state where a throttle valve opening TH is larger than a predetermined high opening THL, a stop estimated value PAESTP or a high load operation estimated value PAEHL is computed based on the intake pressure PBA, and during the fuel cut operation, a fuel cut operation estimated value PAEFC is computed based on an engine speed NE and the intake pressure PBA. A correction coefficient KFCPAE is computed based on the stop estimated value PAESTP or the high load operation estimated value PAEHL as well as the fuel cut operation estimated value PAEFC, and an estimated atmospheric pressure PAEST is computed based on the computed correction coefficient KFCPAE and the fuel cut operation estimated value PAEFC during the fuel cut operation.

Description

本発明は、内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定装置に関する。   The present invention relates to an atmospheric pressure estimation device that estimates an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine.

内燃機関の燃料供給量、点火時期などの制御パラメータの算出には、通常は大気圧センサによって検出された大気圧が適用されるが、機関制御パラメータを算出するためのセンサの数は、できるだけ少なくすることが望ましい。   The atmospheric pressure detected by the atmospheric pressure sensor is usually applied to calculate the control parameters such as the fuel supply amount and ignition timing of the internal combustion engine. However, the number of sensors for calculating the engine control parameter is as small as possible. It is desirable to do.

特許文献1には、スロットル弁開度、機関回転数、及び吸気圧に応じて大気圧を推定する手法が示されている。この大気圧推定手法によれば、スロットル弁開度及び機関回転数に応じて予め設定されたマップを検索することにより、傾きKpbpa及び標準大気圧における標準吸気圧Pbpaが算出され、傾きKpbpa及び標準吸気圧Pbpaを含む一次式に検出吸気圧を適用して、推定大気圧が算出される。   Patent Document 1 discloses a method for estimating the atmospheric pressure according to the throttle valve opening, the engine speed, and the intake pressure. According to this atmospheric pressure estimation method, the gradient Kpbpa and the standard intake pressure Pbpa at the standard atmospheric pressure are calculated by searching a map set in advance according to the throttle valve opening and the engine speed, and the gradient Kpbpa and the standard The estimated atmospheric pressure is calculated by applying the detected intake pressure to a linear expression including the intake pressure Pbpa.

特開平2−23253号公報JP-A-2-23253

スロットル弁が全閉状態とされる減速運転においては、機関への燃料供給を一時的に停止する燃料カット運転が行われる。燃料カット運転中においては、吸気圧は通常運転中に比べて吸気圧が低くなるため、上記従来の手法では、機関特性のばらつきの影響を受けやすくなり、大気圧の推定精度が低下するという課題がある。   In the deceleration operation in which the throttle valve is fully closed, a fuel cut operation that temporarily stops the fuel supply to the engine is performed. During fuel cut operation, the intake pressure is lower than that during normal operation, so the above-mentioned conventional method is more susceptible to variations in engine characteristics and the accuracy of estimating atmospheric pressure decreases. There is.

本発明はこの点に着目してなされたものであり、燃料カット運転中においても、検出吸気圧に応じた大気圧の推定を実行し、しかも推定精度の低下を抑制して正確な推定を行うことができる大気圧推定装置を提供することを目的とする。   The present invention has been made paying attention to this point, and even during fuel cut operation, the atmospheric pressure is estimated according to the detected intake pressure, and accurate estimation is performed while suppressing a decrease in estimation accuracy. An object of the present invention is to provide an atmospheric pressure estimation device that can perform the above-described process.

上記目的を達成するため請求項1に記載の発明は、内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定装置において、前記機関のスロットル弁の開度(TH)を検出するスロットル弁開度検出手段と、前記機関の回転数(NE)を検出する回転数検出手段と、前記機関の吸気圧(PBA)を検出する吸気圧検出手段と、前記機関の点火を可能とする点火スイッチのオン直後、または前記スロットル弁開度(TH)が所定開度(THHL)より大きい状態において、前記吸気圧(PBA)に基づいて大気圧の第1推定値(PAEHL)を算出する第1推定値算出手段と、前記機関への燃料供給を一時的に停止する燃料カット運転中において、前記機関回転数(NE)及び吸気圧(PBA)に基づいて大気圧の第2推定値(PAEFC)を算出する第2推定値算出手段と、前記第1及び第2推定値(PAEHL,PAEFC)に基づいて補正係数(KFCPAE)を算出する補正係数算出手段とを備え、前記燃料カット運転中においては、前記補正係数(KFCPAE)及び第2推定値(PAEFC)に基づいて前記大気圧の推定を行うことを特徴とする。   In order to achieve the above object, according to a first aspect of the present invention, there is provided an atmospheric pressure estimation device for estimating an atmospheric pressure to be applied to calculation of a control parameter of an internal combustion engine, and detecting an opening (TH) of a throttle valve of the engine. Throttle valve opening degree detecting means, speed detecting means for detecting the engine speed (NE), intake pressure detecting means for detecting the intake pressure (PBA) of the engine, and ignition of the engine are enabled. A first estimated value (PAEHL) of the atmospheric pressure is calculated based on the intake pressure (PBA) immediately after the ignition switch is turned on or in a state where the throttle valve opening (TH) is larger than a predetermined opening (THHL). 1 Estimated value calculating means and a second estimated value of atmospheric pressure based on the engine speed (NE) and the intake pressure (PBA) during fuel cut operation for temporarily stopping fuel supply to the engine Second estimated value calculating means for calculating (AEFC), and correction coefficient calculating means for calculating a correction coefficient (KFCPAE) based on the first and second estimated values (PAEHL, PAEFC), during the fuel cut operation Is characterized in that the atmospheric pressure is estimated based on the correction coefficient (KFCPAE) and the second estimated value (PAEFC).

請求項1に記載の発明によれば、点火スイッチのオン直後、またはスロットル弁開度が所定開度より大きい状態において、吸気圧に基づいて大気圧の第1推定値が算出されるとともに、機関への燃料供給を一時的に停止する燃料カット運転中において、機関回転数及び吸気圧に基づいて大気圧の第2推定値が算出される。さらに、第1及び第2推定値に基づいて補正係数が算出され、燃料カット運転中においては算出された補正係数及び第2推定値に基づいて大気圧の推定が行われる。補正係数には機関特性のばらつきの影響が反映されるので、燃料カット運転中に算出される第2推定値及び補正係数を用いて推定大気圧を算出することにより、燃料カット運転中において正確な大気圧推定を行うことができる。   According to the first aspect of the present invention, the first estimated value of the atmospheric pressure is calculated based on the intake pressure immediately after the ignition switch is turned on or in a state where the throttle valve opening is larger than the predetermined opening, and the engine During the fuel cut operation in which the fuel supply to is temporarily stopped, the second estimated value of the atmospheric pressure is calculated based on the engine speed and the intake pressure. Further, a correction coefficient is calculated based on the first and second estimated values, and atmospheric pressure is estimated based on the calculated correction coefficient and the second estimated value during the fuel cut operation. Since the correction coefficient reflects the influence of variations in engine characteristics, the estimated atmospheric pressure is calculated using the second estimated value and the correction coefficient calculated during the fuel cut operation. Atmospheric pressure estimation can be performed.

本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。It is a figure which shows the structure of the internal combustion engine and its control apparatus concerning one Embodiment of this invention. 大気圧推定処理のフローチャートである。It is a flowchart of an atmospheric pressure estimation process. 補正係数(KFCPAE)を算出する処理のフローチャートである。It is a flowchart of the process which calculates a correction coefficient (KFCPAE). 補正係数(KFCPAE)による補正の効果を説明するためのタイムチャートである。It is a time chart for demonstrating the effect of the correction | amendment by a correction coefficient (KFCPAE).

以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気管2を有し、吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度THを検出するスロットル弁開度センサ4が連結されており、その検出信号は、電子制御ユニット(以下(ECU)という)5に供給される。スロットル弁3には、スロットル弁3を駆動するアクチュエータ7が接続されており、アクチュエータ7は、ECU5によりその作動が制御される。吸気管2には、吸気温TAを検出する吸気温センサ9が設けられており、その検出信号は、ECU5に供給される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention. In FIG. 1, for example, an internal combustion engine (hereinafter simply referred to as “engine”) 1 having four cylinders is an intake pipe. 2 and a throttle valve 3 is arranged in the middle of the intake pipe 2. The throttle valve 3 is connected to a throttle valve opening sensor 4 for detecting the throttle valve opening TH, and the detection signal is supplied to an electronic control unit (hereinafter referred to as “ECU”) 5. An actuator 7 that drives the throttle valve 3 is connected to the throttle valve 3, and the operation of the actuator 7 is controlled by the ECU 5. The intake pipe 2 is provided with an intake air temperature sensor 9 for detecting the intake air temperature TA, and a detection signal thereof is supplied to the ECU 5.

燃料噴射弁6はエンジン1とスロットル弁3との間かつ吸気管2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。   The fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of the intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). At the same time, it is electrically connected to the ECU 5 and the valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.

エンジン1の各気筒の点火プラグ12は、ECU5に接続されており、ECU5は点火プラグ12に点火信号を供給し、点火時期制御を行う。
スロットル弁3の下流には吸気圧PBAを検出する吸気圧センサ8が取付けられている。またエンジン1の本体には、エンジン冷却水温TWを検出するエンジン冷却水温センサ10が取り付けられている。これらのセンサ8及び10の検出信号は、ECU5に供給される。
The ignition plug 12 of each cylinder of the engine 1 is connected to the ECU 5, and the ECU 5 supplies an ignition signal to the ignition plug 12 to perform ignition timing control.
An intake pressure sensor 8 for detecting the intake pressure PBA is attached downstream of the throttle valve 3. An engine cooling water temperature sensor 10 that detects the engine cooling water temperature TW is attached to the main body of the engine 1. The detection signals of these sensors 8 and 10 are supplied to the ECU 5.

ECU5には、エンジン1のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ11が接続されており、クランク軸の回転角度に応じた信号がECU5に供給される。クランク角度位置センサ11は、エンジン1の特定の気筒の所定クランク角度位置でパルス(以下「CYLパルス」という)を出力する気筒判別センサ、各気筒の吸入行程開始時の上死点(TDC)に関し所定クランク角度前のクランク角度位置で(4気筒エンジンではクランク角180度毎に)TDCパルスを出力するTDCセンサ及びTDCパルスより短い一定クランク角周期(例えば6度周期)で1パルス(以下「CRKパルス」という)を発生するCRKセンサから成り、CYLパルス、TDCパルス及びCRKパルスがECU5に供給される。これらのパルスは、燃料噴射時期、点火時期等の各種タイミング制御、エンジン回転数(エンジン回転速度)NEの検出に使用される。   The ECU 5 is connected to a crank angle position sensor 11 that detects a rotation angle of a crankshaft (not shown) of the engine 1, and a signal corresponding to the rotation angle of the crankshaft is supplied to the ECU 5. The crank angle position sensor 11 is a cylinder discrimination sensor that outputs a pulse (hereinafter referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 1, and relates to a top dead center (TDC) at the start of the intake stroke of each cylinder. A TDC sensor that outputs a TDC pulse at a crank angle position before a predetermined crank angle (every 180 degrees of crank angle in a four-cylinder engine) and one pulse (hereinafter referred to as “CRK”) with a constant crank angle cycle shorter than the TDC pulse (for example, a cycle of 6 °). The CYL pulse, the TDC pulse, and the CRK pulse are supplied to the ECU 5. These pulses are used for various timing controls such as fuel injection timing and ignition timing, and detection of engine speed (engine speed) NE.

ECU5には、エンジン1によって駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ31、及びエンジン1により駆動される車両の走行速度(車速)VPを検出する車速センサ32が接続されている。これらのセンサの検出信号は、ECU5に供給される。また、点火プラグ12による点火を可能とする点火スイッチ33のオンオフ信号がECU5に供給される。   The ECU 5 includes an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1, and a traveling speed (vehicle speed) VP of the vehicle driven by the engine 1. A vehicle speed sensor 32 for detecting the above is connected. Detection signals from these sensors are supplied to the ECU 5. Further, an on / off signal of an ignition switch 33 that enables ignition by the spark plug 12 is supplied to the ECU 5.

ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、アクチュエータ7、燃料噴射弁6、及び点火プラグ12に駆動信号を供給する出力回路から構成される。   The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing unit (hereinafter referred to as “CPU”). ), An arithmetic circuit executed by the CPU, a storage circuit for storing arithmetic results, and the like, and an output circuit for supplying drive signals to the actuator 7, the fuel injection valve 6, and the spark plug 12.

ECU5のCPUは、上記センサの検出信号に応じて、点火時期制御、スロットル弁3の開度制御、及びエンジン1に供給する燃料量(燃料噴射弁6の開弁時間)の制御を行う。   The CPU of the ECU 5 controls the ignition timing, the opening degree of the throttle valve 3, and the amount of fuel supplied to the engine 1 (opening time of the fuel injection valve 6) according to the detection signal of the sensor.

さらにECU5のCPUは、大気圧PAを推定する大気圧推定処理を実行し、該大気圧推定処理により得られる推定大気圧PAESTを、上記点火時期制御、燃料量制御などの制御に適用する。   Further, the CPU of the ECU 5 executes an atmospheric pressure estimation process for estimating the atmospheric pressure PA, and applies the estimated atmospheric pressure PAEST obtained by the atmospheric pressure estimation process to the control such as the ignition timing control and the fuel amount control.

図2は大気圧推定処理のフローチャートである。この処理は、点火スイッチ33がオンされた後に、ECU5のCPUで所定時間毎に実行される。
ステップS11では、エンジン停止フラグFESTPが「1」であるか否かを判別する。この答が肯定(YES)、すなわち点火スイッチ33がオン直後のエンジン回転開始前であるときは、エンジン停止時の大気圧推定値(以下「停止推定値」という)PAESTP及び推定大気圧PAESTを検出吸気圧PBAに設定し(ステップS12)、初期化完了フラグFPAINIを「1」に設定する(ステップS13)。
FIG. 2 is a flowchart of atmospheric pressure estimation processing. This process is executed at predetermined intervals by the CPU of the ECU 5 after the ignition switch 33 is turned on.
In step S11, it is determined whether or not the engine stop flag FESTP is “1”. If the answer is affirmative (YES), that is, before the engine rotation starts immediately after the ignition switch 33 is turned on, the estimated atmospheric pressure PAESTP and estimated atmospheric pressure PAEST when the engine is stopped are detected. The intake pressure PBA is set (step S12), and the initialization completion flag FPAINI is set to “1” (step S13).

ステップS11の答が否定(NO)であるときは、高負荷運転フラグFHLが「1」であるか否かを判別する(ステップS14)。高負荷運転フラグFHLは、スロットル弁開度THが所定開度THHL(例えば全開開度の20%に相当する開度)より大きく、かつ当該車両の走行状態が安定しているとき「1」に設定される。この答が否定(NO)であるときは直ちにステップS17に進む。一方、FHL=1であって、エンジン1が所定高負荷運転状態にあるときは、高負荷運転における大気圧推定値(以下「高負荷運転推定値」という)PAEHLを、吸気圧PBA及びエンジン回転数NEに応じて公知の手法(例えば上記特許文献1に示された手法)により算出する(ステップS15)。算出した高負荷運転推定値PAEHLは順次記憶し、エンジン1の今回の運転開始時点から算出された高負荷運転推定値PAEHLの数が所定数N1(例えば100)に達したときに、平均高負荷運転推定値PAEHLAV(=ΣPAEHL/N1)を算出するとともに、平均高負荷運転推定値PAEHLAVの算出が完了したことを示す高負荷運転平均値算出完了フラグFHLAVENDを「1」に設定する。   If the answer to step S11 is negative (NO), it is determined whether or not a high load operation flag FHL is “1” (step S14). The high load operation flag FHL is set to “1” when the throttle valve opening TH is larger than a predetermined opening THHL (for example, an opening corresponding to 20% of the fully opened opening) and the traveling state of the vehicle is stable. Is set. If the answer is no (NO), the process immediately proceeds to step S17. On the other hand, when FHL = 1 and the engine 1 is in a predetermined high load operation state, the atmospheric pressure estimated value (hereinafter referred to as “high load operation estimated value”) PAEHL in the high load operation is set to the intake pressure PBA and the engine speed. The number NE is calculated by a known method (for example, the method disclosed in Patent Document 1) (step S15). The calculated high load operation estimated value PAEHL is sequentially stored, and when the number of high load operation estimated values PAEHL calculated from the current operation start time of the engine 1 reaches a predetermined number N1 (for example, 100), the average high load The operation estimated value PAEHLAV (= ΣPAEHL / N1) is calculated, and a high load operation average value calculation completion flag FHLAVEEND indicating that the calculation of the average high load operation estimated value PAEHLAV is completed is set to “1”.

ステップS16では、推定大気圧PAESTをステップS15で算出した高負荷運転推定値PAEHLに設定する。
ステップS17では、燃料カットフラグFFCが「1」であるか否かを判別する。燃料カットフラグFFCは、当該車両の減速中においてエンジン1への燃料供給を一時的に停止する燃料カット運転を行っており、かつ当該車両の走行状態が安定しているとき「1」に設定される。この答が否定(NO)であるときは直ちに処理を終了する。
In step S16, the estimated atmospheric pressure PAEST is set to the high load operation estimated value PAEHL calculated in step S15.
In step S17, it is determined whether or not a fuel cut flag FFC is “1”. The fuel cut flag FFC is set to “1” when the fuel cut operation for temporarily stopping the fuel supply to the engine 1 during the deceleration of the vehicle and the traveling state of the vehicle is stable. The If this answer is negative (NO), the processing is immediately terminated.

一方燃料カットフラグFFCが「1」であるときは、燃料カット運転中における大気圧推定値(以下「燃料カット運転推定値」という)PAEFCを、吸気圧PBA及びエンジン回転数NEに応じて公知の手法(例えば上記特許文献1に示された手法)により算出する(ステップS18)。算出した燃料カット運転推定値PAEFCは順次記憶し、エンジン1の今回の運転開始時点から算出された燃料カット運転推定値PAEFCの数が所定数N2(例えば100)に達したときに、平均燃料カット運転推定値PAEFCAV(=ΣPAEFC/N2)を算出するとともに、平均燃料カット運転推定値PAEFCAVの算出が完了したことを示す燃料カット運転平均値算出完了フラグFFCAVENDを「1」に設定する。   On the other hand, when the fuel cut flag FFC is “1”, the atmospheric pressure estimated value (hereinafter referred to as “fuel cut operation estimated value”) PAEFC during the fuel cut operation is known according to the intake pressure PBA and the engine speed NE. Calculation is performed by a method (for example, the method disclosed in Patent Document 1) (step S18). The calculated fuel cut operation estimated value PAEFC is sequentially stored, and the average fuel cut is calculated when the number of fuel cut operation estimated values PAEFC calculated from the current operation start time of the engine 1 reaches a predetermined number N2 (for example, 100). The operation estimated value PAEFCAV (= ΣPAEFC / N2) is calculated, and the fuel cut operation average value calculation completion flag FFCAVEND indicating that the calculation of the average fuel cut operation estimated value PAEFCAV is completed is set to “1”.

ステップS19では、図3の処理で算出される補正係数KFCPAE及びステップS18で算出された燃料カット運転推定値PAEFCを下記式(1)に適用し、推定大気圧PAESTを算出する(ステップS20)。なお、補正係数KFCPAEは、記憶値が失われたときは「1.0」に初期化されるので、図3の処理で補正係数KFCPAEの算出が完了するまでの期間は、推定大気圧PAESTは、燃料カット運転推定値PAEFCと等しくなる。
PAEST=KFCPAE×PAEFC (1)
In step S19, the correction coefficient KFCPAE calculated in the process of FIG. 3 and the fuel cut operation estimated value PAEFC calculated in step S18 are applied to the following equation (1) to calculate the estimated atmospheric pressure PAEST (step S20). Since the correction coefficient KFCPAE is initialized to “1.0” when the stored value is lost, the estimated atmospheric pressure PAEST is equal to the period until the calculation of the correction coefficient KFCPAE is completed in the process of FIG. The fuel cut operation estimated value PAEFC becomes equal.
PAEST = KFCPAE × PAEFC (1)

図3は、補正係数KFCPAEを算出する処理のフローチャートである。この処理は、点火スイッチ33がオンされた後に、ECU5のCPUで所定時間毎に実行される。   FIG. 3 is a flowchart of a process for calculating the correction coefficient KFCPAE. This process is executed at predetermined intervals by the CPU of the ECU 5 after the ignition switch 33 is turned on.

ステップS31では、補正係数算出完了フラグFKCENDが「1」であるか否かを判別する。補正係数算出完了フラグFKCENDは、点火スイッチ33がオフされると「0」に戻されるので、最初はこの答は否定(NO)となり、ステップS32に進み、燃料カット運転平均値算出完了フラグFFCAVENDが「1」であるか否かを判別する。最初はこの答は否定(NO)であるので、直ちに処理を終了し、燃料カット運転平均値算出完了フラグFFCAVENDが「1」に設定されると、ステップS33に進み、高負荷運転平均値算出完了フラグFHLAVENDが「1」であるか否かを判別する。   In step S31, it is determined whether or not a correction coefficient calculation completion flag FKCEND is “1”. Since the correction coefficient calculation completion flag FKCEND is returned to “0” when the ignition switch 33 is turned off, the answer is initially negative (NO), the process proceeds to step S32, and the fuel cut operation average value calculation completion flag FFCAVEEND is set. It is determined whether or not “1”. Initially, the answer is negative (NO). Therefore, the process is immediately terminated, and when the fuel cut operation average value calculation completion flag FFCAVEEND is set to “1”, the process proceeds to step S33, and the high load operation average value calculation is completed. It is determined whether or not the flag FHLAEND is “1”.

ステップS33の答が否定(NO)であるときは、車両走行フラグFDISTが「1」であるか否かを判別する(ステップS34)。車両走行フラグFDISTは、初期値は「0」であり、当該車両が今回の運転開始後、所定距離DIST(例えば3000m)走行したとき「1」に設定される。最初は、ステップS34の答は否定(NO)であり、ステップS35に進んで、初期化フラグFPAINIが「1」であるか否かを判別する。   If the answer to step S33 is negative (NO), it is determined whether or not a vehicle travel flag FDIST is “1” (step S34). The vehicle travel flag FDIST has an initial value of “0”, and is set to “1” when the vehicle travels a predetermined distance DIST (for example, 3000 m) after the start of the current driving. Initially, the answer to step S34 is negative (NO), and the process proceeds to step S35 to determine whether or not the initialization flag FPAINI is “1”.

ステップS35の答が否定(NO)であるときは直ちに処理を終了し、ステップS33またはS35の答が肯定(YES)であるときは、ステップS36に進み、下記式(2)または(3)により補正係数の今回値KFCPAEPを算出する。式(2)は、平均高負荷運転推定値PAEHLAVと、平均燃料カット運転推定値PAEFCAVの比率を算出するものであり、ステップS33から直ちにステップS36に進んだときに適用される。式(3)は、停止推定値PAESTPと、平均燃料カット運転推定値PAEFCAVの比率を算出するものであり、ステップS35からステップS36に進んだときに適用される。
KFCPAEP=PAEHLAV/PAEFCAV (2)
KFCPAEP=PAESTP/PAEFCAV (3)
If the answer to step S35 is negative (NO), the process ends immediately. If the answer to step S33 or S35 is affirmative (YES), the process proceeds to step S36, and the following equation (2) or (3) is used. The current value KFCPAEP of the correction coefficient is calculated. Equation (2) is used to calculate the ratio between the average high-load operation estimated value PAEHLAV and the average fuel cut operation estimated value PAEFCAV, and is applied when the routine immediately proceeds from step S33 to step S36. Equation (3) calculates the ratio between the estimated stop value PAESTP and the estimated average fuel cut operation value PAEFCAV, and is applied when the process proceeds from step S35 to step S36.
KFCPAEP = PAEHLAV / PAEFCAV (2)
KFCPAEP = PAESTP / PAEFCAV (3)

ステップS34の答が肯定(YES)であって、点火スイッチオン後所定距離DIST以上走行したときは、車両走行環境が変化している可能性が高く停止推定値PAESTPの信頼性が低いので、直ちに処理を終了する。   If the answer to step S34 is affirmative (YES) and the vehicle has traveled more than a predetermined distance DIST after the ignition switch is turned on, the vehicle travel environment is likely to be changing and the reliability of the estimated stop value PAESTP is low. The process ends.

ステップS37では、リセットフラグFKFCRSTが「1」であるか否かを判別する。リセットフラグFKFCRSTは、メモリに記憶されている補正係数KFCPAEの値が失われたとき「0」に設定される。ステップS37の答が否定(NO)であるときは、補正係数KFCPAEを今回値KFCPAEPに設定し(ステップS38)、リセットフラグFKFCRSTを「1」に戻す(ステップS39)。ステップS41では、補正係数算出完了フラグFKCENDを「1」に設定する。   In step S37, it is determined whether or not the reset flag FKFCRST is “1”. The reset flag FKFCRST is set to “0” when the value of the correction coefficient KFCPAE stored in the memory is lost. If the answer to step S37 is negative (NO), the correction coefficient KFCPAE is set to the current value KFCPAEP (step S38), and the reset flag FKFCRST is returned to “1” (step S39). In step S41, the correction coefficient calculation completion flag FKCEND is set to “1”.

ステップS37の答が肯定(YES)、すなわちメモリに補正係数KFCPAEが格納されているときは、なまし演算により補正係数KFCPAEを算出する(ステップS40)。すなわち、下記式(4)の右辺に今回値KFCPAEP及び記憶値KFCPAEを適用し、補正係数KFCPAEの更新を行う。式(4)のCFCPAEは、0から1の間の値に設定されるなまし係数であり、より具体的には例えば0から0.1の間の値に設定される。
KFCPAE=CFCPAE×KFCPAEP
+(1−CFCPAE)×KFCPAE (4)
If the answer to step S37 is affirmative (YES), that is, if the correction coefficient KFCPAE is stored in the memory, the correction coefficient KFCPAE is calculated by a smoothing operation (step S40). That is, the current value KFCPAEP and the stored value KFCPAE are applied to the right side of the following formula (4), and the correction coefficient KFCPAE is updated. CFCPAE in Expression (4) is an annealing coefficient set to a value between 0 and 1, and more specifically, for example, set to a value between 0 and 0.1.
KFCPAE = CFCPAE × KFCPAEP
+ (1-CFCPAE) × KFCPAE (4)

ステップS38またはS40が実行され、補正係数KFCPAEの初期化または更新が行われると、補正係数算出完了フラグFKCENDが「1」に設定されるので、以後はステップS31の答が肯定(YES)となり、図3の処理は実質的に実行されなくなる。すなわち、補正係数KFCPAEの更新は、1運転期間(点火スイッチ33のオン時点からオフ時点まで期間)に1回のみ行われる。   When step S38 or S40 is executed and the correction coefficient KFCPAE is initialized or updated, the correction coefficient calculation completion flag FKCEND is set to “1”, and thereafter, the answer to step S31 becomes affirmative (YES). The process of FIG. 3 is substantially not executed. That is, the correction coefficient KFCPAE is updated only once in one operation period (period from the time when the ignition switch 33 is turned on to the time when it is turned off).

図4は、上述した補正係数KFCPAEを用いて推定大気圧PAESTを算出することの効果を説明するためのタイムチャートであり、図4(a)〜(f)は、それぞれ高負荷運転フラグFHL、燃料カットフラグFFC、推定大気圧PAEST(補正無し)、推定誤差DPA(補正無し)、推定大気圧PAEST(補正有り)、及び推定誤差DPA(補正有り)の推移を示す。推定誤差DPAは、推定大気圧PAESTから実大気圧PAを減算することにより算出されるものである。   FIG. 4 is a time chart for explaining the effect of calculating the estimated atmospheric pressure PAEST using the above-described correction coefficient KFCPAE. FIGS. 4A to 4F are respectively a high load operation flag FHL, The fuel cut flag FFC, estimated atmospheric pressure PAEST (without correction), estimated error DPA (without correction), estimated atmospheric pressure PAEST (with correction), and estimated error DPA (with correction) are shown. The estimated error DPA is calculated by subtracting the actual atmospheric pressure PA from the estimated atmospheric pressure PAEST.

図4(c)及び(d)に示す、補正係数KFCPAEによる補正を行わない例では、高負荷運転推定値PAEHLの推定誤差DPAはほぼ「0」であるが(時刻t1)、燃料カット運転推定値PAEFCは、実大気圧PAよりかなり低い値となり、推定誤差DPAがマイナス方向に大きくなっている(時刻t2)。燃料カット運転は6回行われており、燃料カット運転推定値PAEFCは若干変化しているが、推定誤差DPAの大きい状態は改善されない。時刻t3において再度、高負荷運転推定値PAEHLの算出が行われ、推定大気圧PAESTが高負荷運転推定値PAEHLに設定されるので、推定誤差DPAの絶対値が減少している。   In the example shown in FIGS. 4C and 4D in which correction by the correction coefficient KFCPAE is not performed, the estimation error DPA of the high load operation estimated value PAEHL is almost “0” (time t1), but the fuel cut operation estimation is performed. The value PAEFC is considerably lower than the actual atmospheric pressure PA, and the estimation error DPA increases in the negative direction (time t2). Although the fuel cut operation is performed six times and the fuel cut operation estimated value PAEFC slightly changes, the state where the estimation error DPA is large is not improved. At time t3, the high load operation estimated value PAEHL is calculated again, and the estimated atmospheric pressure PAEST is set to the high load operation estimated value PAEHL. Therefore, the absolute value of the estimated error DPA is decreased.

図4(e)及び(f)に示す、補正係数KFCPAEによる補正を行った例では、時刻t2から補正係数KFCPAEの適用が開始されるため、以後の燃料カット運転中において更新される推定大気圧PAESTの推定誤差DPAは、プラス方向に若干増加するが、図4(d)に示す例の推定誤差DPA(絶対値)と比較して大幅に改善されていることが確認できる。   In the example shown in FIGS. 4E and 4F in which correction is performed using the correction coefficient KFCPAE, the application of the correction coefficient KFCPAE is started from time t2, and therefore the estimated atmospheric pressure that is updated during the subsequent fuel cut operation. The estimated error DPA of PAEST slightly increases in the positive direction, but it can be confirmed that it is significantly improved compared to the estimated error DPA (absolute value) of the example shown in FIG.

以上のように本実施形態では、点火スイッチ33のオン直後、またはスロットル弁開度THが所定開度THHLより大きい状態において、吸気圧PBAに基づいて停止推定値PAESTPまたは高負荷運転推定値PAEHLが算出されるとともに、燃料カット運転中において、エンジン回転数NE及び吸気圧PBAに基づいて燃料カット運転推定値PAEFCが算出される。さらに、停止推定値PAESTPまたは高負荷運転推定値PAEHLの平均値PAEHLAVを、燃料カット運転推定値PAEFCの平均値PAEFCAVで除算することにより、補正係数KFCPAEが算出され、燃料カット運転中においては算出された補正係数KFCPAE及び燃料カット運転推定値PAEFCに基づいて推定大気圧PAESTの算出が行われる。補正係数KFCPAEにはエンジン特性のばらつきの影響が反映されるので、燃料カット運転推定値PAEFC及び補正係数KFCPAEを用いて推定大気圧PAESTを算出することにより、燃料カット運転中において従来より正確な大気圧推定を行うことができる。   As described above, in the present embodiment, immediately after the ignition switch 33 is turned on or in a state where the throttle valve opening TH is greater than the predetermined opening THHL, the stop estimated value PAESTP or the high load operation estimated value PAEHL is based on the intake pressure PBA. The calculated fuel cut operation value PAEFC is calculated based on the engine speed NE and the intake pressure PBA during the fuel cut operation. Further, the correction coefficient KFCPAE is calculated by dividing the average value PAEHLAV of the stop estimated value PAESTP or the high load operation estimated value PAEHL by the average value PAEFCAV of the fuel cut operation estimated value PAEFC, and is calculated during the fuel cut operation. The estimated atmospheric pressure PAEST is calculated based on the correction coefficient KFCPAE and the fuel cut operation estimated value PAEFC. Since the correction coefficient KFCPAE reflects the influence of variations in engine characteristics, the estimated atmospheric pressure PAEST is calculated using the fuel cut operation estimated value PAEFC and the correction coefficient KFCPAE. Atmospheric pressure estimation can be performed.

本実施形態では、スロットル弁開度センサ4、クランク角度位置センサ11、及び吸気圧センサ8が、それぞれスロットル弁開度検出手段、回転数検出手段、及び吸気圧検出手段に相当し、ECU5が第1推定値算出手段、第2推定値算出手段、及び補正係数算出手段を構成する。具体的には、図2のステップS11〜S15が第1推定値算出手段に相当し、ステップS17及びS18が第2推定値算出手段に相当し、図3の処理が補正係数算出手段に相当する。   In the present embodiment, the throttle valve opening sensor 4, the crank angle position sensor 11, and the intake pressure sensor 8 correspond to a throttle valve opening detection means, a rotation speed detection means, and an intake pressure detection means, respectively. 1 estimation value calculation means, 2nd estimation value calculation means, and correction coefficient calculation means are comprised. Specifically, steps S11 to S15 in FIG. 2 correspond to the first estimated value calculating means, steps S17 and S18 correspond to the second estimated value calculating means, and the processing in FIG. 3 corresponds to the correction coefficient calculating means. .

なお、本発明は上述した実施形態に限るものではなく、種々の変形が可能である。たとえば、上述した実施形態では高負荷運転推定値PAEHLは、吸気圧PBA及びエンジン回転数NEに応じて公知の手法で算出するようにしたが、所定開度THHLを全開開度近傍に設定し、スロットル弁開度THが所定高開度THHLより大きい状態における検出吸気圧PBAを、そのまま高負荷運転推定値PAEHLとしてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, the high load operation estimated value PAEHL is calculated by a known method according to the intake pressure PBA and the engine speed NE, but the predetermined opening THHL is set near the fully opened opening, The detected intake pressure PBA when the throttle valve opening TH is larger than the predetermined high opening THHL may be used as the high load operation estimated value PAEHL as it is.

1 内燃機関
3 スロットル弁
4 スロットル弁開度センサ(スロットル弁開度検出手段)
5 電子制御ユニット(第1推定値算出手段、第2推定値算出手段、補正係数算出手段)
8 吸気圧センサ(吸気圧検出手段)
11 クランク角度位置センサ(回転数検出手段)
33 点火スイッチ
1 Internal combustion engine 3 Throttle valve 4 Throttle valve opening sensor (throttle valve opening detection means)
5 Electronic control unit (first estimated value calculating means, second estimated value calculating means, correction coefficient calculating means)
8 Intake pressure sensor (Intake pressure detection means)
11 Crank angle position sensor (rotational speed detection means)
33 Ignition switch

Claims (1)

内燃機関の制御パラメータの算出に適用する大気圧を推定する大気圧推定装置において、
前記機関のスロットル弁の開度を検出するスロットル弁開度検出手段と、
前記機関の回転数を検出する回転数検出手段と、
前記機関の吸気圧を検出する吸気圧検出手段と、
前記機関の点火を可能とする点火スイッチのオン直後、または前記スロットル弁開度が所定開度より大きい状態において、前記吸気圧に基づいて大気圧の第1推定値を算出する第1推定値算出手段と、
前記機関への燃料供給を一時的に停止する燃料カット運転中において、前記機関回転数及び吸気圧に基づいて大気圧の第2推定値を算出する第2推定値算出手段と、
前記第1及び第2推定値に基づいて補正係数を算出する補正係数算出手段とを備え、
前記燃料カット運転中においては、前記補正係数及び第2推定値に基づいて前記大気圧の推定を行うことを特徴とする大気圧推定装置。
In an atmospheric pressure estimation device for estimating an atmospheric pressure applied to calculation of a control parameter of an internal combustion engine,
Throttle valve opening detection means for detecting the opening of the throttle valve of the engine;
A rotational speed detecting means for detecting the rotational speed of the engine;
An intake pressure detecting means for detecting an intake pressure of the engine;
A first estimated value calculation that calculates a first estimated value of atmospheric pressure based on the intake pressure immediately after turning on an ignition switch that enables ignition of the engine or in a state where the throttle valve opening is larger than a predetermined opening. Means,
A second estimated value calculating means for calculating a second estimated value of the atmospheric pressure based on the engine speed and the intake pressure during a fuel cut operation for temporarily stopping fuel supply to the engine;
Correction coefficient calculation means for calculating a correction coefficient based on the first and second estimated values,
During the fuel cut operation, the atmospheric pressure is estimated based on the correction coefficient and the second estimated value.
JP2010226145A 2010-10-06 2010-10-06 Atmospheric pressure estimation device Active JP5511616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010226145A JP5511616B2 (en) 2010-10-06 2010-10-06 Atmospheric pressure estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010226145A JP5511616B2 (en) 2010-10-06 2010-10-06 Atmospheric pressure estimation device

Publications (2)

Publication Number Publication Date
JP2012077726A true JP2012077726A (en) 2012-04-19
JP5511616B2 JP5511616B2 (en) 2014-06-04

Family

ID=46238243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010226145A Active JP5511616B2 (en) 2010-10-06 2010-10-06 Atmospheric pressure estimation device

Country Status (1)

Country Link
JP (1) JP5511616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291933A (en) * 2006-04-25 2007-11-08 Mitsubishi Electric Corp Control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291933A (en) * 2006-04-25 2007-11-08 Mitsubishi Electric Corp Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading

Also Published As

Publication number Publication date
JP5511616B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP4614104B2 (en) Intake air amount detection device for internal combustion engine
US10408138B2 (en) Method and functional monitoring apparatus for functional monitoring of an apparatus for variable setting of a cylinder compression in a reciprocating-piston internal combustion engine
JP6298689B2 (en) In-cylinder pressure detection device for internal combustion engine
JP6413582B2 (en) Control device for internal combustion engine
JP4630842B2 (en) In-cylinder pressure detection device for internal combustion engine
JP5118247B2 (en) Cylinder intake air amount calculation device for internal combustion engine
US9638130B2 (en) Apparatus and method for controlling internal combustion engine
JP5357852B2 (en) Control device for internal combustion engine
JP6389791B2 (en) Engine fuel injection amount control device
JP5511616B2 (en) Atmospheric pressure estimation device
JP5021045B2 (en) Atmospheric pressure estimation device
JP2005171927A (en) Method of detecting engine acceleration and deceleration, and fuel injection control method
JP2007224847A (en) Controlling device for internal combustion engine
JP6076280B2 (en) Control device for internal combustion engine
JP5010545B2 (en) Control device for internal combustion engine
JPH04103857A (en) Engine load parameter computing device and engine control device
JP2008144641A (en) Atmospheric pressure estimation device
JP2005147025A (en) Fuel injection control device for internal combustion engine
JP5240208B2 (en) Control device for internal combustion engine
JP4340577B2 (en) In-cylinder pressure sensor temperature detection device, in-cylinder pressure detection device using the same, and control device for internal combustion engine
JP2014211113A (en) Internal combustion engine controller
JP2011190781A (en) Cylinder intake air amount calculation device for internal combustion engine
JP5026396B2 (en) Control device for internal combustion engine
JP2009167871A (en) Control device of internal combustion engine
JP2009052418A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5511616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150