JP2012077701A - Pump characteristic measuring method and pump characteristic measuring device - Google Patents

Pump characteristic measuring method and pump characteristic measuring device Download PDF

Info

Publication number
JP2012077701A
JP2012077701A JP2010224895A JP2010224895A JP2012077701A JP 2012077701 A JP2012077701 A JP 2012077701A JP 2010224895 A JP2010224895 A JP 2010224895A JP 2010224895 A JP2010224895 A JP 2010224895A JP 2012077701 A JP2012077701 A JP 2012077701A
Authority
JP
Japan
Prior art keywords
pump
water
amount
pumped
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010224895A
Other languages
Japanese (ja)
Other versions
JP5613520B2 (en
Inventor
Minoru Nakajima
稔 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2010224895A priority Critical patent/JP5613520B2/en
Publication of JP2012077701A publication Critical patent/JP2012077701A/en
Application granted granted Critical
Publication of JP5613520B2 publication Critical patent/JP5613520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To automatically measure pump characteristics without stopping operation of a water treatment plant facility.SOLUTION: A control device 10 monitors whether a pumping amount q and an average rotation speed n of suction pumps P-Pare within prescribed ranges, and then detects average water level differences h-hwhen the pumping amount q and the average rotation speed n of the suction pumps P-Pare within the prescribed ranges. The control device 10 stores the detected average water level differences h-h, and pumping amounts q-qand average rotation speeds n-nof corresponding suction pumps P-Pin association with each other, and calculates a Q-H curve and a load curve of the suction pumps P-Pby using the associated and stored average water level differences h-hand the pumping amounts q1-q5 of the suction pumps P-Pand the average rotation speeds n-nof the suction pumps P-P.

Description

本発明は、第1の貯水槽内の汚水を第2の貯水槽に揚水するポンプのポンプ特性を計測するポンプ特性計測方法及びポンプ特性計測装置に関するものである。   The present invention relates to a pump characteristic measuring method and a pump characteristic measuring apparatus for measuring pump characteristics of a pump for pumping sewage in a first water tank to a second water tank.

一般に、水処理プラント設備(以下、プラント設備と略記)の運用方案の意志決定を行う際には、コンピュータ技術を利用したプラント設備の挙動のシミュレーションが行われる。このシミュレーションを行うにあたって、シミュレーションモデルが現実のプラント設備を正しく表現していない場合、シミュレーションによって求められるプラント設備の挙動と現実のプラント設備の挙動とが一致せず、シミュレーションの精度が低下する。このため、シミュレーションモデルは現実のプラント設備を正しく表現したものでなければならない。このような背景から、ポンプを備えるプラント設備の挙動をシミュレーションする場合には、ポンプ単体の試運転中に計測されたQ−H曲線や効率曲線などのポンプ特性をシミュレーションモデルに用いるようにしている。なお、Q−H曲線とは、ポンプが吐出可能な液体の流量Q[m/min]とポンプが液体を押し上げることが可能な高さ(揚程)H[m]との関係を示す曲線のことを意味する。一般に、流量Qが大きい場合、揚程Hは小さくなり、流量Qが小さい場合には、揚程Hは大きくなるので、Q−H曲線は右下がりの曲線となる。また、効率曲線とは、ポンプが吐出可能な液体の流量Q[m/min]とポンプの効率η[%]との関係を示す曲線のことを意味する。 Generally, when making a decision on an operation plan of a water treatment plant facility (hereinafter abbreviated as plant facility), a simulation of the behavior of the plant facility using computer technology is performed. In performing this simulation, if the simulation model does not correctly represent the actual plant equipment, the behavior of the plant equipment obtained by the simulation does not match the behavior of the actual plant equipment, and the simulation accuracy is reduced. For this reason, the simulation model must correctly represent actual plant equipment. From such a background, when simulating the behavior of a plant facility equipped with a pump, pump characteristics such as a QH curve and an efficiency curve measured during a trial operation of the pump alone are used in the simulation model. The QH curve is a curve showing the relationship between the flow rate Q [m 3 / min] of the liquid that can be discharged by the pump and the height (lift) H [m] at which the pump can push up the liquid. Means that. In general, when the flow rate Q is large, the lift H is small, and when the flow rate Q is small, the lift H is large, so the QH curve is a downward-sloping curve. The efficiency curve means a curve indicating a relationship between the flow rate Q [m 3 / min] of the liquid that can be discharged by the pump and the efficiency η [%] of the pump.

特開平3−145597号公報Japanese Patent Laid-Open No. 3-145597

ところで、プラント設備がポンプを複数台備える場合、各ポンプのポンプ特性は、ポンプの運転台数やポンプ間の配管の接続状態に応じてポンプ単体のポンプ特性から変化する。また、ポンプ単体のポンプ特性は、経年変化によって試運転時に計測されたポンプ特性から変化する。このため、ポンプ単体の試運転中に計測されたポンプ特性を用いてポンプを備えるプラント設備の挙動をシミュレーションした場合には、シミュレーションによって求められるポンプの挙動と現実のポンプの挙動とが一致せず、シミュレーションの精度が低下する。なお、このような問題を解決するために、プラント設備の稼働を停止してポンプのポンプ特性を計測する方法が考えられる。しかしながら、この方法によれば、プラント設備の稼働を停止するために多くの労力と時間とが必要になる。このため、ポンプを備えるプラント設備の挙動を正確にシミュレーション可能なように、プラント設備の稼働を停止することなくポンプのポンプ特性を自動計測可能な計測方法及び計測装置の提供が期待されている。   By the way, when the plant equipment includes a plurality of pumps, the pump characteristics of each pump change from the pump characteristics of a single pump according to the number of pumps operated and the connection state of piping between pumps. In addition, the pump characteristics of the pump alone change from the pump characteristics measured during the trial operation due to aging. For this reason, when simulating the behavior of the plant equipment equipped with the pump using the pump characteristics measured during the trial operation of the pump alone, the behavior of the pump required by the simulation does not match the behavior of the actual pump, Simulation accuracy is reduced. In addition, in order to solve such a problem, the method of stopping the operation of plant equipment and measuring the pump characteristics of the pump can be considered. However, according to this method, much labor and time are required to stop the operation of the plant equipment. For this reason, provision of a measuring method and a measuring device capable of automatically measuring the pump characteristics of the pump without stopping the operation of the plant equipment is expected so that the behavior of the plant equipment including the pump can be accurately simulated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、水処理プラント設備の稼働を停止することなくポンプ特性を自動計測可能なポンプ特性計測方法及びポンプ特性計測装置を提供することにある。   This invention was made in view of the said subject, The objective provides the pump characteristic measuring method and pump characteristic measuring apparatus which can measure a pump characteristic automatically, without stopping operation of water treatment plant equipment. There is.

上記課題を解決し、目的を達成するために、本発明に係るポンプ特性計測方法は、第1の貯水槽内の汚水を第2の貯水槽に揚水するポンプのポンプ特性を計測するポンプ特性計測方法であって、前記ポンプの定常運転中における回転数及び揚水量を検出する第1検出ステップと、前記第1検出ステップによって検出された回転数及び揚水量が所定の範囲内にあるか否かを判別する判別ステップと、前記判別ステップにおいて前記回転数及び前記揚水量が所定の範囲内にあると判別された場合に、前記回転数及び前記揚水量が所定の範囲内にあるときの前記第1の貯水槽内の汚水と前記第2の貯水槽内の汚水との水位差及び前記ポンプの効率の少なくとも一方を検出する第2検出ステップと、前記第2検出ステップによって検出された水位差及び効率の少なくとも一方と対応する前記回転数及び前記揚水量とを関連付けして記憶する記憶ステップと、前記記憶ステップにおいて関連付けして記憶された前記水位差及び前記効率の少なくとも一方と前記回転数及び前記揚水量とを用いて前記ポンプのQ−H曲線及び効率曲線の少なくとも一方を算出する演算ステップとを含む。   In order to solve the above-described problems and achieve the object, a pump characteristic measurement method according to the present invention is a pump characteristic measurement for measuring pump characteristics of a pump for pumping sewage in a first water tank to a second water tank. A first detection step for detecting a rotation speed and a pumping amount during steady operation of the pump, and whether or not the rotation speed and the pumping amount detected by the first detection step are within a predetermined range. A determination step that determines the rotation speed and the pumping amount when the rotation speed and the pumping amount are determined to be within a predetermined range in the determination step. A second detection step for detecting at least one of a water level difference between the sewage in the first water tank and the sewage in the second water tank and the efficiency of the pump; and the water level difference detected by the second detection step. A storage step of associating and storing at least one of the efficiency and the rotation speed corresponding to the pumping amount; at least one of the water level difference and the efficiency stored in association with each other in the storage step; And a calculation step of calculating at least one of a QH curve and an efficiency curve of the pump using the pumped water amount.

上記課題を解決し、目的を達成するために、本発明に係るポンプ特性計測装置は、第1の貯水槽内の汚水を第2の貯水槽に揚水するポンプのポンプ特性を計測するポンプ特性計測装置であって、前記ポンプの定常運転中における回転数を検出する回転数検出手段と、前記ポンプの定常運転中における揚水量を検出する揚水量検出手段と、前記回転数検出手段及び前記揚水量検出手段によって検出された回転数及び揚水量が所定の範囲内にあるか否かを判別する判別手段と、前記判別手段によって前記回転数及び前記揚水量が所定の範囲内にあると判別された場合に、前記回転数及び前記揚水量が所定の範囲内にあるときの前記第1の貯水槽内の汚水と前記第2の貯水槽内の汚水との水位差及び前記ポンプの効率の少なくとも一方を検出する検出手段と、前記検出手段によって検出された前記水位差及び効率の少なくとも一方と前記回転数及び前記揚水量とを関連付けして記憶し、関連付けして記憶された前記水位差及び前記効率の少なくとも一方と前記回転数及び前記揚水量とを用いて前記ポンプのQ−H曲線及び効率曲線の少なくとも一方を算出する演算手段とを備える。   In order to solve the above-described problems and achieve the object, a pump characteristic measurement apparatus according to the present invention measures pump characteristics of a pump that pumps sewage in a first water tank into a second water tank. A rotation number detecting means for detecting a rotation speed during steady operation of the pump; a pumping amount detection means for detecting a pumping amount during steady operation of the pump; the rotation speed detection means and the pumped amount The determining means for determining whether the rotation speed and the pumped amount detected by the detecting means are within a predetermined range, and the determination means determined that the rotation speed and the pumped water volume are within the predetermined range. In this case, at least one of the difference in water level between the sewage in the first water storage tank and the sewage in the second water storage tank and the efficiency of the pump when the rotation speed and the pumped amount are within a predetermined range. Detect to detect Means, and at least one of the water level difference and efficiency detected by the detection means and the rotation speed and the pumped amount are stored in association with each other, and the water level difference and at least one of the efficiency stored in association with each other are stored. And calculating means for calculating at least one of a QH curve and an efficiency curve of the pump using the rotation speed and the pumped amount.

本発明に係るポンプ特性計測方法及びポンプ特性計測装置によれば、水処理プラント設備の稼働を停止することなくポンプ特性を自動計測することができる。   According to the pump characteristic measuring method and the pump characteristic measuring apparatus according to the present invention, the pump characteristic can be automatically measured without stopping the operation of the water treatment plant facility.

図1は、本発明の一実施形態であるポンプ特性計測装置が適用される水処理プラント設備の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a water treatment plant facility to which a pump characteristic measuring apparatus according to an embodiment of the present invention is applied. 図2は、吸水ポンプの揚水量の算出方法を説明するための図である。FIG. 2 is a diagram for explaining a method of calculating the pumping amount of the water absorption pump. 図3は、Q−H曲線を算出するために用いられるマップの一例を示す図である。FIG. 3 is a diagram illustrating an example of a map used for calculating the QH curve. 図4は、Q−H曲線及び負荷曲線の算出に用いられる行列式の一例を示す図である。FIG. 4 is a diagram illustrating an example of a determinant used for calculating the QH curve and the load curve. 図5は、Q−H曲線の経年変化の様子を説明するための図である。FIG. 5 is a diagram for explaining how the QH curve changes over time. 図6は、吸水ポンプの回転数の変化に伴う効率曲線の変化を説明するための図である。FIG. 6 is a diagram for explaining a change in the efficiency curve accompanying a change in the number of rotations of the water absorption pump. 図7は、吸水ポンプの運転台数の変化に伴う効率曲線の変化を説明するための図である。FIG. 7 is a diagram for explaining a change in the efficiency curve accompanying a change in the number of operating water pumps. 図8は、効率曲線を算出するために用いられるマップの一例を示す図である。FIG. 8 is a diagram illustrating an example of a map used for calculating the efficiency curve. 図9は、効率曲線の算出に用いられる行列式の一例を示す図である。FIG. 9 is a diagram illustrating an example of a determinant used for calculating the efficiency curve. 図10は、効率曲線の経年変化の様子を説明するための図である。FIG. 10 is a diagram for explaining how the efficiency curve changes over time.

以下、図面を参照して、本発明の一実施形態であるポンプ特性計測装置の構成及びその動作(ポンプ特性計測方法)について説明する。   Hereinafter, the configuration and operation (pump characteristic measuring method) of a pump characteristic measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.

〔水処理プラント設備の構成〕
始めに、図1を参照して、本発明の一実施形態であるポンプ特性計測装置が適用される水処理プラント設備の構成について説明する。
[Configuration of water treatment plant equipment]
First, with reference to FIG. 1, the structure of the water treatment plant equipment with which the pump characteristic measuring device which is one Embodiment of this invention is applied is demonstrated.

図1は、本発明の一実施形態であるポンプ特性計測装置が適用される水処理プラント設備の構成を示す模式図である。図1に示すように、本発明の一実施形態であるポンプ特性計測装置が適用される水処理プラント設備1は、沈砂池2からポンプ井3内に流れ込んだ汚水4を吐出渠5に揚水するN台の吸水ポンプP〜Pの運転/停止を制御することによって、ポンプ井3内における汚水4の水位を所定範囲内に制御するものである。N台の吸水ポンプP〜Pによって吐出渠5に揚水された汚水4は、初沈槽、曝気槽、終沈槽などを備える水処理設備6に供給されて処理される。ポンプ井3及び吐出渠5はそれぞれ、本発明に係る第1及び第2に貯水槽に対応する。 FIG. 1 is a schematic diagram showing a configuration of a water treatment plant facility to which a pump characteristic measuring apparatus according to an embodiment of the present invention is applied. As shown in FIG. 1, a water treatment plant facility 1 to which a pump characteristic measuring device according to an embodiment of the present invention is applied pumps sewage 4 flowing from a sand basin 2 into a pump well 3 to a discharge trough 5. The water level of the sewage 4 in the pump well 3 is controlled within a predetermined range by controlling the operation / stop of the N water absorption pumps P 1 to P N. The sewage 4 pumped to the discharge tank 5 by the N water absorption pumps P 1 to P N is supplied to a water treatment facility 6 including an initial settling tank, an aeration tank, a final settling tank, and the like for processing. The pump well 3 and the discharge well 5 correspond to the first and second water storage tanks according to the present invention, respectively.

水処理プラント設備1は、吸水ポンプP〜P毎に設けられた開閉バルブV〜V,回転数センサSA1〜SAN,及び電気センサSB1〜SBNと、水位センサLと、揚水量センサQSと、制御装置10と、を備える。開閉バルブV〜Vはそれぞれ、吸水ポンプP〜Pから吐出された汚水4が流れる配管7〜7に設けられ、制御装置10によって開閉制御されることによって吸水ポンプP〜Pから吐出渠5に揚水される汚水4の流量を制御する。回転数センサSA1〜SANはそれぞれ、吸水ポンプP〜Pの回転数を検出し、検出された回転数を示す電気信号を制御装置10に入力する。回転数センサSA1〜SANは、本発明に係る回転数検出手段として機能する。 Water treatment plant equipment 1, water pump P 1 to P N off provided for each valve V 1 ~V N, the rotation speed sensor S A1 to S AN, and an electric sensor S B1 to S BN, and the water level sensor L The pumping amount sensor QS and the control device 10 are provided. The on-off valves V 1 to V N are provided in pipes 7 1 to 7 N through which the sewage 4 discharged from the water absorption pumps P 1 to P N flows, respectively, and are controlled to be opened and closed by the control device 10, whereby the water absorption pumps P 1 to P N. The flow rate of the sewage 4 pumped from the PN to the discharge rod 5 is controlled. Each speed sensor S A1 to S AN, detects the rotational speed of the water pump P 1 to P N, and inputs the electrical signal indicative of the rotational speed detected in the controller 10. Rotational speed sensor S A1 to S AN functions as a rotation speed detecting means of the present invention.

電気センサSB1〜SBNはそれぞれ、吸水ポンプP〜Pの電磁接触器の動作状態を検出し、検出された動作状態を示す電気信号を制御装置10に入力する。すなわち、電気センサSB1〜SBNは、吸水ポンプP〜Pの運転台数を検出する。また、電気センサSB1〜SBNは、吸水ポンプP〜Pの消費電力を検出し、検出された消費電力を示す電気信号を制御装置10に入力する。すなわち、電気センサSB1〜SBNは、吸水ポンプP〜Pの効率を検出する。水位センサLは、ポンプ井3内における汚水4の水位を検出し、検出された水位を示す電気信号を制御装置10に入力する。電気センサSB1〜SBN及び水位センサLは、本発明に係る検出手段として機能する。揚水量センサQSは、吐出渠5に揚水される汚水4の流量を動作状態にある吸水ポンプP〜Pによる揚水量Qとして検出し、検出された揚水量Qを示す電気信号を制御装置10に入力する。揚水量センサQSは、本発明に係る揚水量検出手段として機能する。 The electric sensors S B1 to S BN detect the operation state of the electromagnetic contactors of the water absorption pumps P 1 to P N , respectively, and input an electric signal indicating the detected operation state to the control device 10. That is, the electric sensors S B1 to S BN detect the number of operating water pumps P 1 to PN . The electric sensors S B1 to S BN detect the power consumption of the water absorption pumps P 1 to P N and input an electric signal indicating the detected power consumption to the control device 10. That is, the electrical sensors S B1 to S BN detect the efficiency of the water absorption pumps P 1 to PN . The water level sensor L detects the water level of the sewage 4 in the pump well 3 and inputs an electric signal indicating the detected water level to the control device 10. The electric sensors S B1 to S BN and the water level sensor L function as detection means according to the present invention. Pumping amount sensor QS detects the flow rate of the wastewater 4 being pumped to the discharge culvert 5 as pumping amount Q 0 due to water absorption pump P 1 to P N, which is in operation, an electrical signal indicative of the pumping amount Q 0 which has been detected Input to the control device 10. The pumping amount sensor QS functions as a pumping amount detection unit according to the present invention.

制御装置10は、ワークステーションやパーソナルコンピュータなどの演算処理装置によって構成されている。制御装置10は、各センサから入力された電気信号に基づいて吸水ポンプP〜Pの動作や回転数を制御することによって、ポンプ井3内における汚水4の水位を所定範囲内に制御する。また、制御装置10は、本発明の一実施形態であるポンプ特性計測装置として動作することによって、水処理プラント設備1が稼働しているときに動作状態にある吸水ポンプP〜Pのポンプ特性を自動計測する。制御装置10は、本発明に係る判別手段及び演算手段として機能する。 The control device 10 is configured by an arithmetic processing device such as a workstation or a personal computer. The control device 10 controls the water level of the sewage 4 in the pump well 3 within a predetermined range by controlling the operation and the rotational speed of the water absorption pumps P 1 to P N based on the electric signals input from the sensors. . Moreover, the control apparatus 10 operates as a pump characteristic measuring apparatus according to an embodiment of the present invention, so that the pumps of the water absorption pumps P 1 to P N that are in an operating state when the water treatment plant facility 1 is operating. Automatic measurement of characteristics. The control device 10 functions as a determination unit and a calculation unit according to the present invention.

〔ポンプ特性計測方法〕
このような構成を有する水処理プラント設備1では、制御装置10が以下に示すように動作することによって、動作状態にある吸水ポンプP〜PのQ−H曲線及び効率曲線を自動計測する。以下、Q−H曲線を計測する際の動作と効率曲線を計測する際の動作とに分けて、吸水ポンプP〜Pのポンプ特性を計測する際の制御装置10の動作について説明する。
[Pump characteristic measurement method]
In the water treatment plant facility 1 having such a configuration, the control device 10 operates as follows to automatically measure the QH curve and the efficiency curve of the water absorption pumps P 1 to P N in the operating state. . Hereinafter, the operation of the control device 10 when measuring the pump characteristics of the water absorption pumps P 1 to P N will be described separately for the operation when measuring the QH curve and the operation when measuring the efficiency curve.

〔Q−H曲線の計測方法〕
始めに、図2乃至図5を参照して、吸水ポンプP〜PのQ−H曲線を計測する際の制御装置10の動作について説明する。
[QH curve measurement method]
First, with reference to FIGS. 5 to describe the operation of the control device 10 when measuring the Q-H curve of the water pump P 1 to P N.

一般に、吸水ポンプP〜PのQ−H曲線は、水処理プラント設備1の挙動をシミュレーションする際に吸水ポンプP〜Pの揚水量Qを求めるために使用される。具体的には、吸水ポンプP〜Pの揚水量Qを求める際には、始めに、吸水ポンプP〜Pの吐出流量qと平均回転数n1,n1,n3(n1>n2>n3)とを変数とする関数として図2に示すようなQ−H曲線LN1〜LN3を算出する。図2に示すQ−H曲線LN1〜LN3はそれぞれ、平均回転数n1〜n3に対応するQ−H曲線である。次に、ポンプ井3内の汚水と吐出渠5内の汚水との水位差Hと開閉バルブV〜Vの平均開度K1,K2,K3(K1<K2<K3)とを変数とする関数として図2に示すような負荷曲線LK1〜LK3を算出する。図2に示す負荷曲線LK1〜LK3はそれぞれ、平均開度K1〜K3に対応する負荷曲線である。次に、吸水ポンプP〜Pの平均回転数nを検出し、検出された平均回転数nに対応するQ−H曲線LNをQ−H曲線LN1〜LN3を利用した補間処理によって算出する。次に、開閉バルブV〜Vの平均開度Kを検出し、検出された平均開度Kに対応する負荷曲線LKを負荷曲線LK1〜LK3を利用した補間処理によって算出する。そして、算出されたQ−H曲線LNと負荷曲線LKとの交点Pに対応する吐出流量q1を吸水ポンプP〜Pの揚水量Qとして算出する。 Generally, the Q-H curve of the water pump P 1 to P N, are used to determine the pumping amount Q 0 of the water pump P 1 to P N when simulating the behavior of the water treatment plant equipment 1. Specifically, when obtaining the pumping amount Q 0 of the water pump P 1 to P N are, first, the average rotational speed and the discharge flow rate q of the water pump P 1 ~P N n1, n1, n3 (n1> n2 QH curves LN1 to LN3 as shown in FIG. 2 are calculated as functions having> n3) as variables. QH curves LN1 to LN3 shown in FIG. 2 are QH curves corresponding to the average rotational speeds n1 to n3, respectively. Next, the water level difference H between the sewage in the pump well 3 and the sewage in the discharge tank 5 and the average opening K1, K2, K3 (K1 <K2 <K3) of the on-off valves V 1 to V N are used as variables. Load curves LK1 to LK3 as shown in FIG. 2 are calculated as functions. Load curves LK1 to LK3 shown in FIG. 2 are load curves corresponding to the average openings K1 to K3, respectively. Next, the average rotation speed n of the water absorption pumps P 1 to P N is detected, and the QH curve LN corresponding to the detected average rotation speed n is calculated by interpolation processing using the QH curves LN 1 to LN 3. . Next, the average opening K of the on-off valves V 1 to V N is detected, and a load curve LK corresponding to the detected average opening K is calculated by an interpolation process using the load curves LK 1 to LK 3. Then, it calculates the discharge flow rate q1 corresponding to the intersection P between the calculated Q-H curve LN and the load curve LK as pumping amount Q 0 of the water pump P 1 to P N.

すなわち、吸水ポンプP〜Pの揚水量Qは、以下の数式1に示すQ−H曲線と以下の数式2に示す負荷曲線との交点を算出することによって求められる。なお、数式1中のパラメータa,a,a,b,b,b,c,c,c,d,d,dは、Q−H曲線の形状を規定するパラメータであり、吸水ポンプP〜Pの運転台数に応じて変化する。たとえば吸水ポンプP〜Pの運転台数がu+1台である場合、これらのパラメータは、以下に示す数式3のように表される。なお、数式3中のパラメータuは、運転台数から1を減算した数を示す。

Figure 2012077701
Figure 2012077701
Figure 2012077701
That is, the pumping amount Q 0 of the water absorption pumps P 1 to P N is obtained by calculating the intersection of the QH curve shown in the following formula 1 and the load curve shown in the following formula 2. Note that the parameters a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , and d 3 in Equation 1 are the shapes of the QH curve. And changes according to the number of operating water pumps P 1 to P N. For example, when the number of operating water pumps P 1 to P N is u + 1, these parameters are expressed as Equation 3 below. In addition, the parameter u in Formula 3 indicates the number obtained by subtracting 1 from the number of operating units.
Figure 2012077701
Figure 2012077701
Figure 2012077701

従って、数式1中のパラメータa,a,a,b,b,b,c,c,c,d,d,dと数式2中のパラメータKとを求めることによって、吸水ポンプP〜PのQ−H曲線及び負荷曲線を算出することができる。そこで、数式2を以下の数式4に示すように変形し、数式4の右辺のパラメータhに数式1を代入する。数式4より、吸水ポンプP〜Pの平均回転数n、揚水量h、及び水位差Hを検出することによって、数式1中のパラメータa,a,a,b,b,b,c,c,c,d,d,dと数式2中のパラメータKとを算出できる。

Figure 2012077701
Therefore, the parameters a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 in Equation 1 and the parameter K in Equation 2 Is obtained, the QH curve and the load curve of the water absorption pumps P 1 to P N can be calculated. Therefore, Formula 2 is transformed as shown in Formula 4 below, and Formula 1 is substituted into the parameter h on the right side of Formula 4. From Equation 4, parameters a 1 , a 2 , a 3 , b 1 , b 2 in Equation 1 are detected by detecting the average rotation speed n, pumping amount h, and water level difference H of the water absorption pumps P 1 to P N. , B 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 and the parameter K in Equation 2 can be calculated.
Figure 2012077701

上記の考えに基づき、本実施形態では、制御装置10は、図3に示すようなマップに基づいて、揚水量センサQS及び回転数センサSA1〜SANから入力される電気信号に従って定常運転中における吸水ポンプP〜Pの揚水量q及び平均回転数nが所定の範囲内にあるか否かを判別する。具体的には、制御装置10は、揚水量qが揚水量q,q,q,q,qから所定範囲Δq内にあり、且つ、平均回転数nが平均回転数n,n,nから所定範囲Δn内にあるか否かを判別する。なお、図3に示すマップは、吸水ポンプP〜Pの運転台数毎に用意され、制御装置10内に予め記憶されている。制御装置10は、電気センサSB1〜SBNから入力される電気信号に従って吸水ポンプP〜Pの運転台数を検出し、検出された運転台数に対応するマップを読み出す。なお、本実施形態では、制御装置10は、吸水ポンプP〜Pの平均回転数nを利用して制御を行うこととしたが、ポンプ井3内の水位制御の際に用いられる回転数を利用してもよい。 Based on the above idea, in the present embodiment, the control unit 10 based on the map shown in FIG. 3, during a steady operation in accordance with an electric signal input from the pumping quantity sensor QS and the rotational speed sensor S A1 to S AN It is determined whether or not the pumping amount q and the average rotation speed n of the water absorption pumps P 1 to P N are within a predetermined range. Specifically, the control device 10 has a pumped amount q within a predetermined range Δq from the pumped amounts q 1 , q 2 , q 3 , q 4 , q 5 , and the average rotational speed n is the average rotational speed n 1. , N 2 , n 3 , it is determined whether or not it is within a predetermined range Δn. Note that the map shown in FIG. 3 is prepared for each operating number of the water absorption pumps P 1 to P N and stored in the control device 10 in advance. The control device 10 detects the number of operating water suction pumps P 1 to PN according to the electric signals input from the electric sensors S B1 to S BN, and reads a map corresponding to the detected operating number. In the present embodiment, the control device 10 performs control by using the average rotation speed n of the water absorption pumps P 1 to P N , but the rotation speed used for water level control in the pump well 3. May be used.

定常運転中における吸水ポンプP〜Pの揚水量q及び平均回転数nが所定範囲内にある場合、制御装置10は、水位センサL及び吐出渠5側に設けられた図示しない水位センサから入力される電気信号に従ってその時のポンプ井3内の汚水と吐出渠5内の汚水との平均水位差h〜h13を検出し、検出された平均水位差h〜h13と吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nの値とを関連付けして記憶する。そして、制御装置10は、関連付けして記憶された平均水位差h〜h13と吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nの値とを図4に示す行列式に代入することによって数式1中のパラメータa,a,a,b,b,b,c,c,c,d,d,dと数式2中のパラメータKとを算出する。これにより、吸水ポンプP〜PのQ−H曲線及び負荷曲線を算出することができる。 When the pumping amount q and the average rotation speed n of the water suction pumps P 1 to P N during the steady operation are within a predetermined range, the control device 10 is connected to a water level sensor L and a water level sensor (not shown) provided on the discharge rod 5 side. According to the input electric signal, the average water level difference h 1 to h 13 between the sewage in the pump well 3 and the sewage in the discharge tank 5 at that time is detected, and the detected average water level difference h 1 to h 13 and the water absorption pump P are detected. 1 to associate the value of the pumping quantity q 1 to q 5 and the average rotational speed n 1 ~n 3 of to P n are stored. Then, the control device 10 calculates the average water level differences h 1 to h 13 stored in association with each other, the pumping amounts q 1 to q 5 of the water absorption pumps P 1 to PN , and the values of the average rotation speeds n 1 to n 3. By substituting into the determinant shown in FIG. 4, parameters a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d in Equation 1 3 and the parameter K in Equation 2 are calculated. Thus, it is possible to calculate the Q-H curve and the load curve of the water pump P 1 to P N.

以上の説明から明らかなように、制御装置10は、吸水ポンプP〜Pの揚水量q及び平均回転数nが所定範囲内にあるか否かを監視し、吸水ポンプP〜Pの揚水量q及び平均回転数nが所定範囲内にある場合、その時の平均水位差h〜h13を検出する。そして、制御装置10は、検出された平均水位差h〜h13と対応する吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nとを関連付けして記憶し、関連付けして記憶された平均水位差h〜h13と吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nとを図4に示す行列式に代入することによって、吸水ポンプP〜PのQ−H曲線及び負荷曲線を算出する。このような構成によれば、水処理プラント設備の稼働を停止することなく吸水ポンプP〜PのQ−H曲線を自動計測することができる。また、図5に示すように、Q−H曲線は、経時変化によって試運転時に得られた曲線Lから曲線L’へと変化し、その結果、Q−H曲線と負荷曲線との交点は点Pから点P’へと変化する。従って、Q−H曲線を自動計測可能にすることによって、経年変化によるQ−H曲線の変化を考慮して水処理プラント設備1の挙動を精度高くシミュレーションすることができる。また、Q−H曲線を長期間収集することによって、Q−H曲線の変化を経年劣化診断に活用することができる。 As apparent from the above description, the control unit 10, pumping of water pump P 1 to P N q and average rotational speed n monitors whether within a predetermined range, water pump P 1 to P N When the amount of pumped water q and the average number of rotations n are within a predetermined range, the average water level difference h 1 to h 13 at that time is detected. Then, the control device 10 associates the detected average water level differences h 1 to h 13 with the pumping amounts q 1 to q 5 and the average rotation speeds n 1 to n 3 of the corresponding water absorption pumps P 1 to P N. The determinant shown in FIG. 4 shows the average water level differences h 1 to h 13 , the pumping amounts q 1 to q 5 of the water absorption pumps P 1 to P N and the average rotation speeds n 1 to n 3 which are stored and associated with each other. By substituting into, the QH curves and load curves of the water absorption pumps P 1 to P N are calculated. According to such a configuration, it is possible to automatically measure the QH curves of the water absorption pumps P 1 to P N without stopping the operation of the water treatment plant facility. Further, as shown in FIG. 5, the QH curve changes from the curve L obtained during the trial run to the curve L ′ due to the change over time. As a result, the intersection of the QH curve and the load curve is a point P. To point P ′. Therefore, by enabling the automatic measurement of the QH curve, the behavior of the water treatment plant facility 1 can be simulated with high accuracy in consideration of the change of the QH curve due to secular change. Further, by collecting the QH curve for a long period of time, the change in the QH curve can be utilized for aging degradation diagnosis.

〔効率曲線の計測方法〕
次に、図6乃至図10を参照して、吸水ポンプP〜Pの効率曲線を計測する際の制御装置10の動作について説明する。
[Measurement method of efficiency curve]
Next, with reference to FIGS. 6-10, the operation of the control device 10 when measuring the efficiency curve of the water pump P 1 to P N.

吸水ポンプP〜Pの効率ηはその吐出流量qに応じて変化する。しかしながら、吸水ポンプP〜Pの回転数が変化する場合には、図6に示すように、吸水ポンプP〜Pの効率曲線LN1〜LN3は回転数に応じて変化し、吐出流量qが同じ場合であってもその効率ηは変化する。また、吸水ポンプP〜Pの吐出側の配管が集合している場合には、図7に示すように、吸水ポンプP〜Pの効率曲線LN1〜LN3は、吐出流量qが同じ場合であっても吸水ポンプP〜Pの運転台数に応じて変化する。図7中、効率曲線LN1〜LN3はそれぞれ、運転台数が1台,2台,及び3台であるときの効率曲線を示す。 The efficiency η of the water absorption pumps P 1 to P N changes according to the discharge flow rate q. However, when the rotation speeds of the water absorption pumps P 1 to P N change, as shown in FIG. 6, the efficiency curves LN 1 to LN 3 of the water absorption pumps P 1 to P N change according to the rotation speed, and the discharge flow rate Even when q is the same, the efficiency η changes. Further, when the discharge side pipes of the water absorption pumps P 1 to PN are gathered, as shown in FIG. 7, the efficiency curves LN 1 to LN 3 of the water absorption pumps P 1 to PN have the same discharge flow rate q. Even in this case, it varies depending on the number of operating water pumps P 1 to P N. In FIG. 7, efficiency curves LN1 to LN3 indicate the efficiency curves when the number of operating units is 1, 2, and 3, respectively.

一般に、吸水ポンプP〜Pの効率曲線は、以下に示す数式5のように表される。数式5中のパラメータK11,K12,K13,K21,K22,K23,K31,K32,K33はそれぞれ、効率曲線の形状を規定するパラメータであり、吸水ポンプP〜Pの運転台数に応じて変化する。たとえば吸水ポンプP〜Pの運転台数がu+1台である場合、数式5中のパラメータK11,K12,K13,K21,K22,K23,K31,K32,K33は、以下に示す数式6のように表される。なお、数式6中のパラメータuは、運転台数から1を減算した数を示す。 In general, the efficiency curves of the water absorption pumps P 1 to P N are expressed as Equation 5 shown below. The parameters K 11 , K 12 , K 13 , K 21 , K 22 , K 23 , K 31 , K 32 , and K 33 in Equation 5 are parameters that define the shape of the efficiency curve, and the water absorption pumps P 1 to It changes according to the number of operating PN . For example, when the number of operating water pumps P 1 to P N is u + 1, the parameters K 11 , K 12 , K 13 , K 21 , K 22 , K 23 , K 31 , K 32 , K 33 in Equation 5 are , Which is expressed as Equation 6 below. In addition, the parameter u in Formula 6 indicates the number obtained by subtracting 1 from the number of operating units.

Figure 2012077701
Figure 2012077701
Figure 2012077701
Figure 2012077701

従って、数式5中のパラメータK11,K12,K13,K21,K22,K23,K31,K32,K33を求めることによって、吸水ポンプP〜Pの効率曲線を算出することができる。そこで、本実施形態では、制御装置10は、図8に示すようなマップに基づいて、揚水量センサQS及び回転数センサSA1〜SANから入力される電気信号に従って定常運転中における吸水ポンプP〜Pの揚水量q及び平均回転数nが所定の範囲内にあるか否かを判別する。具体的には、制御装置10は、揚水量qが揚水量q,q,q,q,qから所定範囲Δq内にあり、且つ、平均回転数nが平均回転数n,n,nから所定範囲Δn内にあるか否かを判別する。図8に示すマップは、吸水ポンプP〜Pの運転台数毎に用意され、制御装置10内に予め記憶されている。制御装置10は、電気センサSB1〜SBNから入力される電気信号に従って吸水ポンプP〜Pの運転台数を検出し、検出された運転台数に対応するマップを読み出す。 Therefore, by calculating the parameters K 11 , K 12 , K 13 , K 21 , K 22 , K 23 , K 31 , K 32 , K 33 in Equation 5, the efficiency curves of the water absorption pumps P 1 to P N are calculated. can do. Therefore, in this embodiment, the control unit 10 based on the map shown in FIG. 8, water pump P during steady operation in accordance with an electric signal input from the pumping quantity sensor QS and the rotational speed sensor S A1 to S AN It is discriminate | determined whether the pumping quantity q and average rotation speed n of 1- PN are in a predetermined range. Specifically, the control device 10 has a pumped amount q within a predetermined range Δq from the pumped amounts q 1 , q 2 , q 3 , q 4 , q 5 , and the average rotational speed n is the average rotational speed n 1. , N 2 , n 3 , it is determined whether or not it is within a predetermined range Δn. The map shown in FIG. 8 is prepared for each operation number of the water absorption pumps P 1 to P N and is stored in the control device 10 in advance. The control device 10 detects the number of operating water suction pumps P 1 to PN according to the electric signals input from the electric sensors S B1 to S BN, and reads a map corresponding to the detected operating number.

定常運転中における吸水ポンプP〜Pの揚水量q及び平均回転数nが所定範囲内にある場合、制御装置10は、電気センサSB1〜SBNから入力される電気信号に従ってその時の吸水ポンプP〜Pの効率η〜ηを検出する。そして、制御装置10は、検出された効率η〜ηと対応する吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nとを関連付けして記憶し、関連付けして記憶された効率η〜ηと吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nとを図9に示す行列式に代入することによって、数式5中のパラメータK11,K12,K13,K21,K22,K23,K31,K32,K33を算出する。これにより、吸水ポンプP〜Pの効率曲線を算出することができる。 When the pumping amount q and the average rotation speed n of the water absorption pumps P 1 to PN during the steady operation are within a predetermined range, the control device 10 absorbs the water at that time according to the electric signals input from the electric sensors S B1 to S BN. detecting the efficiency η 19 of the pump P 1 to P N. Then, the control device 10 stores the detected efficiencies η 1 to η 9 in association with the pumping amounts q 1 to q 5 and the average rotational speeds n 1 to n 3 of the corresponding water absorption pumps P 1 to PN. Substituting the stored efficiency η 1 to η 9 , the pumping amounts q 1 to q 5 of the water absorption pumps P 1 to PN , and the average rotation speed n 1 to n 3 into the determinant shown in FIG. Thus, the parameters K 11 , K 12 , K 13 , K 21 , K 22 , K 23 , K 31 , K 32 , K 33 in Equation 5 are calculated. Thereby, the efficiency curve of the water absorption pumps P 1 to P N can be calculated.

以上の説明から明らかなように、制御装置10は、吸水ポンプP〜Pの揚水量q及び平均回転数nが所定の範囲内にあるか否かを監視し、吸水ポンプP〜Pの揚水量q及び平均回転数nが所定範囲内にある場合、その時の吸水ポンプP〜Pの効率η〜ηを検出する。そして、制御装置10は、検出された吸水ポンプP〜Pの効率η〜ηと対応する吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nの値とを関連付けして記憶し、関連付けして記憶された吸水ポンプP〜Pの効率η〜ηと吸水ポンプP〜Pの揚水量q〜q及び平均回転数n〜nの値とを図9に示す行列式に代入することによって、吸水ポンプP〜Pの効率曲線を算出する。このような構成によれば、水処理プラント設備の稼働を停止することなく吸水ポンプP〜Pの効率曲線を計測することができる。また、図10に示すように、効率曲線は、経時変化によって試運転時に得られた曲線Lから曲線L’へと変化する。従って、負荷曲線を自動計測可能にすることによって、経年変化による負荷曲線の変化を考慮して水処理プラント設備1の挙動を精度高くシミュレーションすることができる。また、効率曲線を長期間収集することによって、効率曲線の変化を経年劣化診断に活用することができる。 As is clear from the above description, the control device 10 monitors whether or not the pumping amount q and the average rotational speed n of the water absorption pumps P 1 to P N are within a predetermined range, and the water absorption pumps P 1 to P When the pumping amount q of N and the average rotation speed n are within a predetermined range, the efficiency η 1 to η 9 of the water suction pumps P 1 to P N at that time is detected. Then, the control unit 10, the detected intake pump P 1 to P N efficiency η 19 and the corresponding pumping quantity q 1 to q 5 and the average rotational speed n 1 ~n of water pump P 1 to P N 3 values and the associated and stored, associated to pumping amount q 1 to q 5 and the average rotation of the efficiency of the stored water pump P 1 ~P N η 1 9 and water pump P 1 to P N The efficiency curves of the water absorption pumps P 1 to P N are calculated by substituting the values of the numbers n 1 to n 3 into the determinant shown in FIG. According to such a configuration, the efficiency curves of the water absorption pumps P 1 to P N can be measured without stopping the operation of the water treatment plant facility. Further, as shown in FIG. 10, the efficiency curve changes from the curve L obtained during the trial operation to the curve L ′ due to the change over time. Therefore, by enabling automatic measurement of the load curve, it is possible to simulate the behavior of the water treatment plant facility 1 with high accuracy in consideration of the change of the load curve due to secular change. Further, by collecting the efficiency curve for a long period of time, the change in the efficiency curve can be used for aging degradation diagnosis.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 水処理プラント設備
2 沈砂池
3 ポンプ井
4 汚水
5 吐出渠
6 水処理設備
〜7 配管
10 制御装置
L 水位センサ
〜P 吸水ポンプ
QS 揚水量センサ
A1〜SAN 回転数センサ
B1〜SBN 電気センサ
〜V 開閉バルブ
1 water treatment plant equipment 2 sand basin 3 the pump well 4 sewage 5 discharge sewer 6 water treatment facility 7 1 to 7-N pipe 10 controller L level sensor P 1 to P N intake pump QS pumping amount sensor S A1 to S AN rpm sensor S B1 to S BN electrical sensors V 1 ~V N-off valve

Claims (4)

第1の貯水槽内の汚水を第2の貯水槽に揚水する揚水するポンプのポンプ特性を計測するポンプ特性計測方法であって、
前記ポンプの定常運転中における回転数及び揚水量を検出する第1検出ステップと、
前記第1検出ステップによって検出された回転数及び揚水量が所定の範囲内にあるか否かを判別する判別ステップと、
前記判別ステップにおいて前記回転数及び前記揚水量が所定の範囲内にあると判別された場合に、前記回転数及び前記揚水量が所定の範囲内にあるときの前記第1の貯水槽内の汚水と前記第2の貯水槽内の汚水との水位差及び前記ポンプの効率の少なくとも一方を検出する第2検出ステップと、
前記第2検出ステップによって検出された前記水位差及び効率の少なくとも一方と対応する前記回転数及び前記揚水量とを関連付けして記憶する記憶ステップと、
前記記憶ステップにおいて関連付けして記憶された前記水位差及び前記効率の少なくとも一方と前記回転数及び前記揚水量とを用いて前記ポンプのQ−H曲線及び効率曲線の少なくとも一方を算出する演算ステップと、
を含むことを特徴とするポンプ特性計測方法。
A pump characteristic measuring method for measuring pump characteristics of a pump for pumping up sewage in a first water tank to a second water tank,
A first detection step for detecting a rotation speed and a pumping amount during steady operation of the pump;
A discriminating step for discriminating whether or not the number of rotations and the amount of pumped water detected by the first detection step are within a predetermined range;
When it is determined in the determination step that the rotational speed and the pumped amount are within a predetermined range, the sewage in the first water storage tank when the rotational speed and the pumped amount are within the predetermined range And a second detection step for detecting at least one of a difference in water level between the sewage in the second water tank and the efficiency of the pump;
A storage step of associating and storing the rotation speed and the pumping amount corresponding to at least one of the water level difference and the efficiency detected by the second detection step;
A calculation step of calculating at least one of a QH curve and an efficiency curve of the pump using at least one of the water level difference and the efficiency stored in association with each other in the storage step, and the rotation speed and the pumping amount; ,
A pump characteristic measuring method comprising:
前記ポンプの運転台数を検出する第3検出ステップを含み、
前記判別ステップは、前記ポンプの運転台数毎に用意された前記回転数及び前記揚水量の所定範囲を示すマップの中から、前記第3検出ステップによって検出された運転台数に対応するマップを読み出し、読み出されたマップに基づいて前記回転数及び前記揚水量が所定の範囲内にあるか否かを判別するステップを含むこと
を特徴とする請求項1に記載のポンプ特性計測方法。
A third detection step of detecting the number of operating pumps;
The determination step reads out a map corresponding to the number of operating units detected by the third detecting step from the map indicating the predetermined range of the rotational speed and the pumped amount prepared for each number of operating pumps, The pump characteristic measuring method according to claim 1, further comprising a step of determining whether or not the rotational speed and the pumped water amount are within a predetermined range based on the read map.
第1の貯水槽内の汚水を第2の貯水槽に揚水する揚水するポンプのポンプ特性を計測するポンプ特性計測装置であって、
前記ポンプの定常運転中における回転数を検出する回転数検出手段と、
前記ポンプの定常運転中における揚水量を検出する揚水量検出手段と、
前記回転数検出手段及び前記揚水量検出手段によって検出された回転数及び揚水量が所定の範囲内にあるか否かを判別する判別手段と、
前記判別手段によって前記回転数及び前記揚水量が所定の範囲内にあると判別された場合に、前記回転数及び前記揚水量が所定の範囲内にあるときの前記第1の貯水槽内の汚水と前記第2の貯水槽内の汚水との水位差及び前記ポンプの効率の少なくとも一方を検出する検出手段と、
前記検出手段によって検出された前記水位差及び効率の少なくとも一方と前記回転数及び前記揚水量とを関連付けして記憶し、関連付けして記憶された前記水位差及び前記効率の少なくとも一方と前記回転数及び前記揚水量とを用いて前記ポンプのQ−H曲線及び効率曲線の少なくとも一方を算出する演算手段と、
を備えることを特徴とするポンプ特性計測装置。
A pump characteristic measuring device for measuring pump characteristics of a pump for pumping up sewage in a first water tank to a second water tank,
A rotational speed detection means for detecting the rotational speed during steady operation of the pump;
Pumping amount detection means for detecting the pumping amount during steady operation of the pump;
Discriminating means for discriminating whether or not the rotational speed and the pumped amount detected by the rotational speed detecting means and the pumped water amount detecting means are within a predetermined range;
When the rotational speed and the pumped amount are determined to be within a predetermined range by the determining means, the sewage in the first water storage tank when the rotational speed and the pumped amount are within the predetermined range Detecting means for detecting at least one of a difference in water level between sewage in the second water tank and the efficiency of the pump;
At least one of the water level difference and efficiency detected by the detection means is stored in association with the rotational speed and the pumped amount, and at least one of the water level difference and efficiency stored in association with the rotational speed is stored. And calculating means for calculating at least one of a QH curve and an efficiency curve of the pump using the pumped amount,
A pump characteristic measuring apparatus comprising:
前記ポンプの運転台数を検出する運転台数検出手段を備え、
前記判別手段は、前記ポンプの運転台数毎に用意された前記回転数及び前記揚水量の所定範囲を示すマップを備え、前記運転台数検出手段によって検出された運転台数に対応するマップを読み出し、読み出されたマップに基づいて前記回転数及び前記揚水量が所定の範囲内にあるか否かを判別すること
を特徴とする請求項3に記載のポンプ特性計測装置。
An operation number detecting means for detecting the number of operating pumps;
The discriminating means includes a map showing a predetermined range of the rotation speed and the pumped amount prepared for each number of operating pumps, and reads and reads a map corresponding to the operating number detected by the operating number detecting means. The pump characteristic measuring device according to claim 3, wherein it is determined whether or not the rotation speed and the pumped water amount are within a predetermined range based on a map that is output.
JP2010224895A 2010-10-04 2010-10-04 Pump characteristic measuring method and pump characteristic measuring apparatus Active JP5613520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224895A JP5613520B2 (en) 2010-10-04 2010-10-04 Pump characteristic measuring method and pump characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224895A JP5613520B2 (en) 2010-10-04 2010-10-04 Pump characteristic measuring method and pump characteristic measuring apparatus

Publications (2)

Publication Number Publication Date
JP2012077701A true JP2012077701A (en) 2012-04-19
JP5613520B2 JP5613520B2 (en) 2014-10-22

Family

ID=46238225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224895A Active JP5613520B2 (en) 2010-10-04 2010-10-04 Pump characteristic measuring method and pump characteristic measuring apparatus

Country Status (1)

Country Link
JP (1) JP5613520B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249978A (en) * 1988-03-31 1989-10-05 Toshiba Corp Rainwater level controller
JPH03145597A (en) * 1989-10-30 1991-06-20 Fuji Electric Co Ltd Method for determining discharge flow rate of rotary pump
JPH03194195A (en) * 1989-12-21 1991-08-23 Toshiba Corp Pump control device
JPH0472496A (en) * 1990-07-12 1992-03-06 Toshiba Corp Pump control device
JP2003166476A (en) * 2001-11-29 2003-06-13 Asmo Co Ltd Method and device for manufacturing pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249978A (en) * 1988-03-31 1989-10-05 Toshiba Corp Rainwater level controller
JPH03145597A (en) * 1989-10-30 1991-06-20 Fuji Electric Co Ltd Method for determining discharge flow rate of rotary pump
JPH03194195A (en) * 1989-12-21 1991-08-23 Toshiba Corp Pump control device
JPH0472496A (en) * 1990-07-12 1992-03-06 Toshiba Corp Pump control device
JP2003166476A (en) * 2001-11-29 2003-06-13 Asmo Co Ltd Method and device for manufacturing pump

Also Published As

Publication number Publication date
JP5613520B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
RU2662268C2 (en) Pumping system, and also the flow rate in the pumping system determining method
CN105424105B (en) Dust pelletizing system is responsible for air volume detecting method and on-line measuring device
CN112329357B (en) Simple diagnosis method and system for vibration fault of clean water centrifugal pump
NL2012415B1 (en) Pump Control.
CN115481838A (en) Pipe network real-time monitoring method and system and storage medium
US9568921B2 (en) Method for approximating a static head of a fluid transfer system
KR101790874B1 (en) Pump consumption power calculation method at revolution per minute in inverter controlled water supply pump
JP5613520B2 (en) Pump characteristic measuring method and pump characteristic measuring apparatus
CN112240579A (en) Range hood and control method thereof
CN207716949U (en) Continuous glueballs counts and glueballs form monitoring device
CN110895201B (en) Helicopter fuel system normal overload ground simulation device and method
EP2589813A1 (en) Entrapment detection for variable speed pump system using load coefficient
CN106460854B (en) The method for closing pump and pump station device
Kallesøe et al. Self calibrating flow estimation in waste water pumping stations
RU2596029C2 (en) Water inflow diagnostic system
CN109199122A (en) A kind of cooking apparatus
RU2557349C1 (en) System of diagnostic of water flowrate
Kallesøe et al. Supervision of pumps and their operating conditions in sewage pumping stations
JP5731163B2 (en) Pump well cross-sectional area estimation method and pump well cross-sectional area estimation device
CN207730081U (en) Glueballs counts and glueballs form monitoring device
CN219101552U (en) Drainage control system of railway vehicle detection equipment
CN105181027B (en) Gas-liquid two-phase reverse flow detection means in pipe
CN117251000B (en) Liquid level control method, system, equipment and medium
CN117804768B (en) Service life testing method and system for waste water valve
Attivissimo et al. Model based control and diagnostic system for centrifugal pumps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5613520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250