JP2012076044A - Catalyst and catalyst structure for treatment of exhaust gas - Google Patents

Catalyst and catalyst structure for treatment of exhaust gas Download PDF

Info

Publication number
JP2012076044A
JP2012076044A JP2010224972A JP2010224972A JP2012076044A JP 2012076044 A JP2012076044 A JP 2012076044A JP 2010224972 A JP2010224972 A JP 2010224972A JP 2010224972 A JP2010224972 A JP 2010224972A JP 2012076044 A JP2012076044 A JP 2012076044A
Authority
JP
Japan
Prior art keywords
catalyst
plate
width
flat plate
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010224972A
Other languages
Japanese (ja)
Other versions
JP5491342B2 (en
Inventor
Hiroshi Urabe
祐 占部
Toshifumi Mukai
利文 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010224972A priority Critical patent/JP5491342B2/en
Publication of JP2012076044A publication Critical patent/JP2012076044A/en
Application granted granted Critical
Publication of JP5491342B2 publication Critical patent/JP5491342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for treatment of exhaust gas and its structure capable of exhibiting the catalyst performance to the maximum by bringing gas flow speed in a crest part close to gas flow speed in a flat plate part, that is, by reducing the maximum gas flow speed in a flow passage.SOLUTION: This plate shaped catalyst for treatment of exhaust gas is so configured that a catalyst component is carried on a plate shaped body with a plurality of rows of projecting line and recessed line parts (crest parts) of a specified height, alternately arranged in the flat plate part with intervals. In the recessed and protruded crest parts arranged on the flat plate part, a width w (width of the crest part) of the foot of a crest flow passage formed from a starting point α from the flat plate part to an end point γ in a position on the flat plate same with the starting point via a vertex β of the crest part is less than the height of the crest part (w<h or w/h<1.0).

Description

本発明は、排ガス処理用触媒および触媒構造体に係り、排ガス中に含まれる有害物質を浄化するための板状触媒およびその構造体に関する。   The present invention relates to a catalyst for exhaust gas treatment and a catalyst structure, and more particularly to a plate-like catalyst for purifying harmful substances contained in exhaust gas and the structure thereof.

排ガスに含まれる有害物質を浄化する触媒の形状としては、板状、ハニカム状、粒状、円筒状、ペレット状など様々なものがあり、通常、板状あるいはハニカム状が適用されている。
石炭焚ボイラ等の排ガスにダストが含まれる場合、ダストによる触媒の閉塞や摩耗が問題となるが、通常の板状触媒としては、図7に示すように、平板部内に凸状および凹状列部とを交互に列状に形成した触媒エレメント1を図8に示すように積層した触媒構造体が知られている(特許文献1および2)。このような板状触媒構造体は、平板状触媒エレメントを積層した構造のために、他の形状よりも端部摩耗に強く、閉塞や摩耗に対して優れた耐久性を有するとともに、他の形状よりも圧力損失が低いという利点を有している。また、板状以外の形状の場合、内部に基板や担体が含まれないために、触媒自体の強度を高く維持しなければならず、触媒の反応効率が犠牲になることがあるのに対し、板状触媒の場合は基板や担体で強度を保持することができ、触媒表面の触媒成分は反応効率を最大限にするような組成にすることができるという利点も有する。
The catalyst for purifying harmful substances contained in the exhaust gas has various shapes such as a plate shape, a honeycomb shape, a granular shape, a cylindrical shape, and a pellet shape, and a plate shape or a honeycomb shape is usually applied.
When dust is contained in exhaust gas such as coal fired boilers, clogging and wear of the catalyst due to dust becomes a problem, but as a normal plate catalyst, as shown in FIG. There is known a catalyst structure in which catalyst elements 1 formed alternately in a row are stacked as shown in FIG. 8 (Patent Documents 1 and 2). Such a plate-like catalyst structure has a structure in which flat-plate catalyst elements are laminated, and thus is more resistant to end wear than other shapes, has excellent durability against clogging and wear, and has other shapes. It has the advantage that the pressure loss is lower than that. Further, in the case of a shape other than a plate shape, since the substrate and the carrier are not included inside, the strength of the catalyst itself must be maintained high, whereas the reaction efficiency of the catalyst may be sacrificed, In the case of a plate-like catalyst, the strength can be maintained by a substrate or a carrier, and the catalyst component on the catalyst surface has an advantage that the composition can maximize the reaction efficiency.

特公昭58-50137号公報Japanese Patent Publication No.58-50137 特開平11-347422号公報Japanese Patent Laid-Open No. 11-347422

従来、凸状および凹状列部(以下、山部ということがある)構造を持つ板状触媒において、通常適用されている山部の高さhと山部の幅wがほぼ等しい場合(w≒h, w/h≒1.0)は、流速分布が図10(a), (b)に示すように局所的に速くなることから、処理ガス量が増加し触媒の性能が最大限発揮されない可能性がある。さらに、積層したときに隣り合う触媒エレメント間の距離(ピッチ)が広く、山部が相似型で大きくなる場合、条件によっては図9(a)に示す山部でガスが吹き抜ける可能性がある。
本発明の課題は、前記山部におけるガス流速を平板部のガス流速に近づけること、すなわち流路内の最大ガス流速を低減することにより、触媒性能を最大限に発揮させることができる排ガス処理用触媒およびその構造体を提供することである。
上記課題を解決するため、本発明者らは従来の板状触媒構造体について検討したところ、図11(a), (b)に示す従来の触媒構造体では、山部の高さが高いなど寸法によっては図9(a)の(8)で示す部分においてガスの吹き抜けが起こる可能性があった。さらに、図10(a)の形状では平板間の流路よりも山型流路部分、図9(a)の(8)のガス流速が高くなる現象が確認され、これらのことから、山型流路における触媒表面積あたりの処理ガス流量が増加し、触媒の性能を最大限に発揮されない可能性があることが分かった。
本発明者らは、上記の山部の寸法を種々検討した結果、ある適正な範囲であれば局所的に速い流速を低減できることを見出した。
Conventionally, in a plate-like catalyst having a convex and concave row portion (hereinafter sometimes referred to as a peak portion) structure, the height h of the peak portion and the width w of the peak portion that are usually applied are substantially equal (w≈ h, w / h ≒ 1.0), because the flow velocity distribution is locally faster as shown in Fig. 10 (a) and (b), there is a possibility that the amount of process gas increases and the performance of the catalyst may not be maximized. There is. Further, when the distance (pitch) between adjacent catalyst elements is wide when stacked, and the peak portion is similar and large, gas may blow through the peak portion shown in FIG. 9 (a) depending on conditions.
An object of the present invention is for exhaust gas treatment capable of maximizing the catalyst performance by bringing the gas flow rate in the peak portion close to the gas flow rate of the flat plate portion, that is, by reducing the maximum gas flow rate in the flow path. It is to provide a catalyst and its structure.
In order to solve the above problems, the present inventors examined a conventional plate-like catalyst structure, and in the conventional catalyst structure shown in FIGS. 11 (a) and 11 (b), the height of the peak portion is high. Depending on the dimensions, there is a possibility that gas blow-through may occur in the portion indicated by (8) in FIG. 9 (a). Furthermore, in the shape of FIG. 10 (a), the phenomenon that the gas flow velocity of the mountain-shaped channel part, (8) of FIG. 9 (a) becomes higher than the channel between the flat plates was confirmed. It has been found that the processing gas flow rate per catalyst surface area in the flow path increases, and the catalyst performance may not be maximized.
As a result of various investigations on the dimensions of the above ridges, the present inventors have found that a fast flow velocity can be locally reduced within a certain appropriate range.

すなわち、本願で特許請求される発明は下記のとおりである。
(1)平板部内に所定高さの凸状列部と凹状列部(山部)を交互に間隔をおいて複数列形成した板状体に触媒成分を担持した板状触媒体であって、平板部上に設置する凹状および凸状各山部において、平板部からの起点αから山部の頂点βを経由して起点と同じ平板の位置となる終点γで形成される山型流路のすその幅w(山部の幅)が山部の高さ未満(w<hまたはw/h<1.0)であることを特徴とする排ガス処理用板状触媒。
(2)前記山部の幅wと山部の高さの比w/hが0.2〜0.7の範囲内であることを特徴とする(1)記載の板状触媒。
(3)前記板状触媒の凸状列部と凹状列部が隣接する板状触媒平板部に接触するように複数枚積層し、前記板状触媒間にガス流路を形成したことを特徴とする(1)または(2)記載の板状触媒を用いた排ガス処理用触媒構造体。
That is, the invention claimed in the present application is as follows.
(1) A plate-like catalyst body in which a catalyst component is supported on a plate-like body in which a plurality of rows of convex rows and concave rows (peaks) having a predetermined height are alternately formed in a flat plate portion, In each of the concave and convex crests installed on the flat plate portion, the mountain-shaped flow path formed by the end point γ that is the same flat plate position as the start point from the start point α from the flat plate portion via the apex β of the peak portion A plate-like catalyst for exhaust gas treatment, wherein the width w (width of the ridge) is less than the height of the ridge (w <h or w / h <1.0).
(2) The plate catalyst according to (1), wherein a ratio w / h between the width w of the peak and the height of the peak is in the range of 0.2 to 0.7.
(3) It is characterized in that a plurality of sheets are laminated so that the convex row portion and the concave row portion of the plate catalyst are in contact with the adjacent plate catalyst flat plate portion, and a gas flow path is formed between the plate catalysts. A catalyst structure for exhaust gas treatment using the plate catalyst according to (1) or (2).

本発明によれば、山型流路におけるガスの吹き抜けを抑制し、吹き抜けに相当する最大ガス流速を抑制できるため、触媒の性能を最大限発揮させることができる。   According to the present invention, it is possible to suppress the gas blow-through in the mountain-shaped flow path and to suppress the maximum gas flow rate corresponding to the blow-through, so that the performance of the catalyst can be maximized.

本発明の実施例1における触媒構造体の説明図。The explanatory view of the catalyst structure in Example 1 of the present invention. 本発明の実施例2における触媒構造体の説明図。Explanatory drawing of the catalyst structure in Example 2 of this invention. 本発明の実施例3における触媒構造体の説明図。Explanatory drawing of the catalyst structure in Example 3 of this invention. 本発明の比較例1における触媒構造体の説明図。Explanatory drawing of the catalyst structure in the comparative example 1 of this invention. 本発明の比較例2における触媒構造体の説明図。Explanatory drawing of the catalyst structure in the comparative example 2 of this invention. (a)本発明における触媒構造体の説明図。(b)本発明における山部の詳細を示す説明図。(a) Explanatory drawing of the catalyst structure in this invention. (b) Explanatory drawing which shows the detail of the peak part in this invention. 本発明における触媒体の説明図。Explanatory drawing of the catalyst body in this invention. 本発明における触媒構造体の説明図。Explanatory drawing of the catalyst structure in this invention. (a)従来の触媒構造体の流路8の説明図。(b)本発明における触媒構造体の流路8の説明図。(a) Explanatory drawing of the flow path 8 of the conventional catalyst structure. (b) Explanatory drawing of the flow path 8 of the catalyst structure in the present invention. (a)板状触媒の山部におけるガス流速測定位置9を説明する図。(b)山部および平板部における流速分布を示す図。(a) The figure explaining the gas flow velocity measurement position 9 in the peak part of a plate-shaped catalyst. (b) The figure which shows the flow-velocity distribution in a peak part and a flat plate part. (a)従来の板状触媒の形状(山部Z型)を示す図。(b)従来の板状触媒の形状(山部W型)を示す図。(a) The figure which shows the shape (mountain Z type) of the conventional plate-shaped catalyst. (b) The figure which shows the shape (mountain W type | mold) of the conventional plate-shaped catalyst. 触媒構造体の説明図。Explanatory drawing of a catalyst structure. 各実施例と比較例におけるw/hと反応速度の関係を示す図。The figure which shows the relationship between w / h and reaction rate in each Example and a comparative example. 各実施例と比較例におけるw/hと最大ガス流速の関係を示す図。The figure which shows the relationship between w / h and the maximum gas flow velocity in each Example and a comparative example.

本発明によれば、前記山部のすその幅wを山部の高さh未満(w/h<1.0)とした触媒構造体にすることにより、図9(b)のように局所的なガスの吹き抜けを抑制し、かつ、山型流路でのガス流速を低減できるために、触媒の性能を最大限発揮させることができる。この効果は、図11(a)のZ型の山部を有する構造体のみならず、図11(b)のW型の山部を有する構造体どちらでも得ることができる。
前記山部の幅wについては、狭くても性能上は問題なく、灰が山部に堆積した場合においてもそれ以外の部分には進展することはない。ただし、山部高さhと山部の幅wの比(w/h)が0.2に達しない場合は触媒面が重なり有効表面積が減少するために実用上は望ましくない。また、山部の幅wが極端に狭くなると構造体製造時における山部の加工工程が従来よりも増える可能性があり、コストアップにもつながる。このため、本発明における山部のすその幅wと山部の高さhの比 (w/h)は1.0未満、実用上は0.2〜0.7の範囲が好ましい。
以下、本発明を実施例によりさらに詳しく説明する。
According to the present invention, by forming a catalyst structure in which the ridge width w of the ridge is less than the height h of the ridge (w / h <1.0), the local structure as shown in FIG. Since the gas blow-through can be suppressed and the gas flow rate in the mountain-shaped channel can be reduced, the performance of the catalyst can be maximized. This effect can be obtained not only in the structure having the Z-shaped peak in FIG. 11 (a) but also in the structure having the W-shaped peak in FIG. 11 (b).
Even if the width w of the peak portion is narrow, there is no problem in performance, and even when ash is deposited on the peak portion, it does not progress to other portions. However, when the ratio (w / h) of the peak height h to the peak width w does not reach 0.2, it is not practically desirable because the catalyst surfaces overlap and the effective surface area decreases. In addition, if the width w of the ridge is extremely narrow, the machining process of the ridge during manufacturing of the structure may increase as compared with the prior art, leading to an increase in cost. For this reason, the ratio (w / h) of the width w of the ridge portion to the height h of the ridge portion in the present invention is preferably less than 1.0, and practically in the range of 0.2 to 0.7.
Hereinafter, the present invention will be described in more detail with reference to examples.

ステンレスエキスパンドメタルに触媒成分を塗布し、その後、プレス加工にて山部の高さが7mmとなるように加工し、触媒ガス流れ方向長さを500mm、幅を150mmに切断し、図1に示す触媒体1とした。このとき、山部2の幅wと山幅wの比が0.2 (w=1.4, h=7)とし、ガス流れ方向に形成した山部の幅はすべて同一とした。その後、該触媒体1を全24枚重ねて図12に示すような150mm角のユニットに組み立てた。
触媒成分は組成比Ti:W:V = 90:5:5の脱硝触媒を用いた。評価項目は、反応速度と圧力損失、灰堆積、ガス流速とした。このうち、反応速度と圧力損失は、表1に示す条件を用い、ベンチ試験装置にて測定した。灰堆積は表2に示すように、灰を含んだガスを24h流通後に触媒構造体を解体して灰堆積状況を評価した。さらに、触媒単位流路における熱移動のシミュレーションを行い、触媒上での熱移動をNOxの反応と仮定し、反応速度と流路内の吹き抜けに相当する最大ガス流速を評価した。測定条件を表3に示す。
得られた測定結果は、山部の幅wと高さhの比が1.0(w/h=1.0)の比較例1を1としたときの反応速度比、圧力損失比、最大ガス流速、ガス灰堆積の状況を含め表4に示した。また、シミュレーション結果による、触媒流路におけるw/hと反応速度の関係を図13に、最大ガス流速とw/hの関係を図14に示す。
実施例1の結果によれば、比較例1に示す従来型の触媒体よりも反応速度が高く、吹き抜けに相当する最大ガス流速が低下していることが分かる。これは、図1に示すように山部の幅を狭くしたことで、ガス流速が均一になったためと考えられる。なお、圧力損失と灰堆積については比較例1と同等であった。
The catalyst component is applied to stainless steel expanded metal, and then processed by pressing so that the height of the crest is 7 mm, and the catalyst gas flow direction length is cut to 500 mm and the width to 150 mm, as shown in Fig. 1. A catalyst body 1 was obtained. At this time, the ratio of the width w of the crest 2 to the crest width w was 0.2 (w = 1.4, h = 7), and the crests formed in the gas flow direction all have the same width. Thereafter, all 24 catalyst bodies 1 were stacked and assembled into a 150 mm square unit as shown in FIG.
As the catalyst component, a denitration catalyst having a composition ratio of Ti: W: V = 90: 5: 5 was used. Evaluation items were reaction rate and pressure loss, ash deposition, and gas flow rate. Among these, the reaction rate and the pressure loss were measured with a bench test apparatus using the conditions shown in Table 1. As shown in Table 2, the ash deposition was evaluated by disassembling the catalyst structure after passing gas containing ash for 24 hours. Furthermore, the heat transfer in the catalyst unit channel was simulated, and the heat transfer on the catalyst was assumed to be a NOx reaction, and the reaction rate and the maximum gas flow rate corresponding to the blow-through in the channel were evaluated. Table 3 shows the measurement conditions.
The measurement results obtained are the reaction rate ratio, the pressure loss ratio, the maximum gas flow rate, the gas when the ratio of the width w to the height h of the ridge is 1.0 (w / h = 1.0). Table 4 shows the situation of ash accumulation. Further, FIG. 13 shows the relationship between w / h and reaction rate in the catalyst flow path, and FIG. 14 shows the relationship between the maximum gas flow rate and w / h based on the simulation results.
According to the results of Example 1, it can be seen that the reaction rate is higher than that of the conventional catalyst body shown in Comparative Example 1, and the maximum gas flow rate corresponding to blow-through is reduced. This is presumably because the gas flow velocity became uniform by narrowing the width of the peak as shown in FIG. The pressure loss and ash accumulation were the same as those in Comparative Example 1.

実施例1と同様に触媒成分をエキスパンドメタルに塗布した後、図2のように山部2の幅wを実施例1よりも広く加工した触媒体1を製造し、積層して図12のような触媒構造体を製作した。このとき山部の幅wと山部高さhの比は0.7(w/h=0.7, w=4.9, h=7)とし、ガス流れ方向に形成した山部の幅wはすべて同一とした。
実施例2の結果によれば、比較例1よりも山部に相当する部分のガス流速が低下しており、さらに反応速度は比較例1よりもやや高い結果となった。圧力損失と灰堆積については比較例1と同等であった。
After the catalyst component was applied to the expanded metal in the same manner as in Example 1, a catalyst body 1 was manufactured in which the width w of the crest 2 was processed wider than in Example 1 as shown in FIG. A simple catalyst structure was manufactured. At this time, the ratio of the peak width w to peak height h is 0.7 (w / h = 0.7, w = 4.9, h = 7), and the width w of the peaks formed in the gas flow direction is all the same. .
According to the result of Example 2, the gas flow velocity in the portion corresponding to the peak portion was lower than that in Comparative Example 1, and the reaction rate was slightly higher than that in Comparative Example 1. The pressure loss and ash accumulation were the same as in Comparative Example 1.

実施例1と同様に触媒成分をエキスパンドメタルに塗布した後、図3のように山部2の幅wを実施例1よりも狭く加工した触媒体1を製造し、積層して図12のような触媒構造体を製作した。このとき山部の幅wは山部高さhの比は約0(w/h≒0,w≒0, h=7)とし、ガス流れ方向に形成した山部の幅wはすべて同一とした。
実施例3の結果によれば、比較例1の結果よりも最大ガス流速が低下しており、さらに反応速度は比較例1よりも高い結果となった。一方、反応速度比は実施例1より若干低い値となっており、これは山部で触媒が重なり、有効表面積が減少したためと考えられる。圧力損失と灰堆積については、比較例1、2と同等であった。なお、本例ではw/h≒0であることから、触媒構造体製造時の加工が他の実施例より困難であったため、生産性はあまりよくなかった。
After applying the catalyst component to the expanded metal in the same manner as in Example 1, a catalyst body 1 having a width w of the ridge portion 2 processed narrower than in Example 1 as shown in FIG. 3 was manufactured and laminated, as shown in FIG. A simple catalyst structure was manufactured. At this time, the ratio of the peak height w to the peak height h is about 0 (w / h≈0, w≈0, h = 7), and the width w of the peaks formed in the gas flow direction is the same. did.
According to the result of Example 3, the maximum gas flow rate was lower than that of Comparative Example 1, and the reaction rate was higher than that of Comparative Example 1. On the other hand, the reaction rate ratio is slightly lower than that in Example 1, which is thought to be because the catalyst overlapped at the peak and the effective surface area decreased. The pressure loss and ash accumulation were the same as in Comparative Examples 1 and 2. In this example, since w / h≈0, the processing at the time of manufacturing the catalyst structure was more difficult than in the other examples, so the productivity was not so good.

[比較例1]
実施例1と同様に触媒成分をエキスパンドメタルに塗布した後、図4のように山部2の幅wを山部高さhと等しく(w/h=1.0)し、かつ、ガス流れ方向に形成した山部すべての幅は同一である、通常用いられている構造と同じ触媒体1を製造し、その後、該触媒体1を24枚重ねて図12に示すような触媒構造体を製作した。この構造は、通常用いられている構造と同じである。
本例では、各実施例よりも山部に相当する部分のガス流速が高く、さらに反応速度は各実施例よりも低い結果となった。圧力損失と灰堆積については類似の形状である実施例1と同等であった。
[比較例2]
実施例1と同様に触媒成分をエキスパンドメタルに塗布した後、図5のように山部の幅wは山部高さh比が1.6(w/h=1.6)とし、かつ、ガス流れ方向に形成した山部すべての幅は同一とした、通常用いられている構造と同じ触媒体を製造した。その後、該触媒体を12枚積層し、図12に示すような触媒構造体を製作した。
本例では、各実施例よりも山部に相当する部分のガス流速が高くなっており、さらに反応速度は低い結果となった。圧力損失と灰堆積については類似の形状である実施例1と同等であった。
[Comparative Example 1]
After applying the catalyst component to the expanded metal in the same manner as in Example 1, the width w of the crest 2 is equal to the crest height h (w / h = 1.0) as shown in FIG. The catalyst body 1 having the same width as that of the commonly used structure is manufactured, and then the catalyst structure body as shown in FIG. 12 is manufactured by stacking 24 sheets of the catalyst bodies 1. . This structure is the same as a commonly used structure.
In this example, the gas flow rate in the portion corresponding to the peak portion was higher than in each example, and the reaction rate was lower than in each example. The pressure loss and ash accumulation were the same as in Example 1 having a similar shape.
[Comparative Example 2]
After applying the catalyst component to the expanded metal in the same manner as in Example 1, the width w of the peak is 1.6 (w / h = 1.6) as shown in FIG. A catalyst body having the same width as that of a commonly used structure was manufactured, in which the widths of all formed peaks were the same. Thereafter, twelve of the catalyst bodies were laminated to produce a catalyst structure as shown in FIG.
In this example, the gas flow rate in the portion corresponding to the peak portion was higher than in each example, and the reaction rate was lower. The pressure loss and ash accumulation were the same as in Example 1 having a similar shape.

Figure 2012076044
Figure 2012076044

Figure 2012076044
Figure 2012076044

Figure 2012076044
Figure 2012076044

Figure 2012076044
Figure 2012076044

1. 触媒体
2. 山部
3. 山部の幅w
4. 山部の高さh
5. 山部の平板からの起点α
6. 山部の頂点β
7. 山部の平板からの終点γ
8. ガスの吹き抜け相当部分
9. ガス流速測定位置
10. 触媒入口ガス流速
11. 触媒出口ガス流速
1. Catalytic body
2. Yamabe
3. Mountain width w
4. Mountain height h
5. Origin α from the flat plate in the mountain
6. Top of the mountain β
7. End point γ from the flat plate of the mountain
8. Corresponding part of gas blow-by
9. Gas flow velocity measurement position
10. Catalyst inlet gas flow rate
11. Catalyst outlet gas flow rate

Claims (3)

平板部内に所定高さの凸状列部と凹状列部(山部)を交互に間隔をおいて複数列形成した板状体に触媒成分を担持した板状触媒体であって、平板部上に設置する凹状および凸状各山部において、平板部からの起点αから山部の頂点βを経由して起点と同じ平板の位置となる終点γで形成される山型流路のすその幅w(山部の幅)が山部の高さ未満(w<hまたはw/h<1.0)であることを特徴とする排ガス処理用板状触媒。 A plate-like catalyst body in which a catalyst component is supported on a plate-like body in which a plurality of rows of convex rows and concave rows (peaks) having a predetermined height are alternately formed in a flat plate portion, The width of the chevron of the mountain-shaped channel formed at the end point γ, which is the same flat plate position as the starting point, from the starting point α from the flat plate part through the apex β of the peak part in each concave and convex peak portion installed in A plate-like catalyst for exhaust gas treatment, wherein w (width of the ridge) is less than the height of the ridge (w <h or w / h <1.0). 前記山部の幅wと山部の高さの比w/hが0.2〜0.7の範囲内であることを特徴とする請求項1記載の板状触媒。 2. The plate catalyst according to claim 1, wherein a ratio w / h between the width w of the peak and the height of the peak is in a range of 0.2 to 0.7. 前記板状触媒の凸状列部と凹状列部が隣接する板状触媒平板部に接触するように複数枚積層し、前記板状触媒間にガス流路を形成したことを特徴とする請求項1または2記載の板状触媒を用いた排ガス処理用触媒構造体。

The plurality of sheets are laminated so that the convex row portion and the concave row portion of the plate catalyst are in contact with the adjacent plate catalyst flat plate portion, and a gas flow path is formed between the plate catalysts. A catalyst structure for exhaust gas treatment using the plate catalyst according to 1 or 2.

JP2010224972A 2010-10-04 2010-10-04 Exhaust gas treatment catalyst and catalyst structure Active JP5491342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224972A JP5491342B2 (en) 2010-10-04 2010-10-04 Exhaust gas treatment catalyst and catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224972A JP5491342B2 (en) 2010-10-04 2010-10-04 Exhaust gas treatment catalyst and catalyst structure

Publications (2)

Publication Number Publication Date
JP2012076044A true JP2012076044A (en) 2012-04-19
JP5491342B2 JP5491342B2 (en) 2014-05-14

Family

ID=46236904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224972A Active JP5491342B2 (en) 2010-10-04 2010-10-04 Exhaust gas treatment catalyst and catalyst structure

Country Status (1)

Country Link
JP (1) JP5491342B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117120A (en) * 1998-10-14 2000-04-25 Babcock Hitachi Kk Catalyst structure body
JP2002113371A (en) * 2000-10-04 2002-04-16 Babcock Hitachi Kk Device and method of manufacturing plate catalyst
JP2008023461A (en) * 2006-07-21 2008-02-07 Babcock Hitachi Kk Catalytic structure
JP2009273981A (en) * 2008-05-13 2009-11-26 Babcock Hitachi Kk Catalyst structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117120A (en) * 1998-10-14 2000-04-25 Babcock Hitachi Kk Catalyst structure body
JP2002113371A (en) * 2000-10-04 2002-04-16 Babcock Hitachi Kk Device and method of manufacturing plate catalyst
JP2008023461A (en) * 2006-07-21 2008-02-07 Babcock Hitachi Kk Catalytic structure
JP2009273981A (en) * 2008-05-13 2009-11-26 Babcock Hitachi Kk Catalyst structure

Also Published As

Publication number Publication date
JP5491342B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US4285838A (en) Method of producing plate-shaped catalyst unit for NOx reduction of exhaust gas
CA2178842C (en) Catalyst unit and gas purifying apparatus
US4307068A (en) Method and apparatus for treating an exhaust gas
US9724683B2 (en) Catalyst structure
CN101796276A (en) Prevent that the surface on the after-treatment device is stopped up in toxic emission
CN105339081B (en) Catalytic conversion reactor
US20090155132A1 (en) Honeycomb catalyst, denitration catalyst of denitration device, and exhaust gas denitration device
JP5491342B2 (en) Exhaust gas treatment catalyst and catalyst structure
EP2666535B1 (en) Flow control grid
US20230073667A1 (en) Denitration catalyst structure
JP5198744B2 (en) Catalyst structure
CN212758637U (en) Regular packing with guide tongues
JP5863371B2 (en) Catalyst structure
JP4977456B2 (en) Catalyst structure and exhaust gas purification apparatus using the catalyst structure
JP5245120B2 (en) Catalyst structure
JP2010253366A (en) Catalytic structure
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
US10737258B2 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof
WO2021010486A1 (en) Catalyst structure, and flow reactor or waste heat recovery boiler using same
CA2162718C (en) Plate catalyst
JP6978827B2 (en) Exhaust gas purification catalyst unit
KR20230043995A (en) Denitration catalyst and exhaust gas purification method
KR20230078399A (en) Metal foam catalyst apparatus using selective catalytic reduction, and apparatus for reducing nitrogen oxide including the same
JPH09239243A (en) Apparatus and method for exhaust gas denitration
WO2019161287A1 (en) Diffuser assemblies and catalytic reactors comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350