JP2012075384A - System for automatic denitrification of closed water area - Google Patents

System for automatic denitrification of closed water area Download PDF

Info

Publication number
JP2012075384A
JP2012075384A JP2010223616A JP2010223616A JP2012075384A JP 2012075384 A JP2012075384 A JP 2012075384A JP 2010223616 A JP2010223616 A JP 2010223616A JP 2010223616 A JP2010223616 A JP 2010223616A JP 2012075384 A JP2012075384 A JP 2012075384A
Authority
JP
Japan
Prior art keywords
water
denitrification
area
circulation
circulation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010223616A
Other languages
Japanese (ja)
Other versions
JP5198532B2 (en
Inventor
Yoichi Tsuji
洋一 辻
Kiichi Koizumi
嘉一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO GIJUTSU CENTER KK
KANKYO GIJUTSU CT KK
TAIYO SUIKEN KK
Original Assignee
KANKYO GIJUTSU CENTER KK
KANKYO GIJUTSU CT KK
TAIYO SUIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO GIJUTSU CENTER KK, KANKYO GIJUTSU CT KK, TAIYO SUIKEN KK filed Critical KANKYO GIJUTSU CENTER KK
Priority to JP2010223616A priority Critical patent/JP5198532B2/en
Publication of JP2012075384A publication Critical patent/JP2012075384A/en
Application granted granted Critical
Publication of JP5198532B2 publication Critical patent/JP5198532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable to exactly and quickly suppress increase in nitric acid concentration without changing water, when breeding fishes in a closed water area.SOLUTION: There is provided a system including denitrification circulation tank 7 taking in water in a closed water area 2 and reducing the nitric acid contained in the taken-in water to be converted into nitrogen gas, a water flooding means 13 for taking in water in the closed water area 2 into the denitrification circulation tank 7, a circulation means 16 for circulating water in the denitrification circulation tank 7, an extrusion means 20 for returning the water in the denitrification circulation tank 7 to the closed water area 2, a water level detection means 23 set in the denitrification circulation tank 7 to detect the water level in the denitrification circulation tank 7, a heater 24 set in the denitrification circulation tank 7, and an oxidation-reduction potentiometer 25 set in the denitrification circulation tank 7 to measure the oxidation-reduction potential of water in the denitrification circulation tank 7, wherein the inside of the denitrification circulation tank 7 is divided into a denitrification area 10 having a denitrification part 12 and a circulation area 11 for circulating water in the denitrification part 12 to the denitrification area again.

Description

本発明は、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域内の硝酸を自動的に還元して窒素ガスにまで変換可能とする閉鎖系水域の自動脱窒システムに係り、より詳しくは、閉鎖系水域内の水の一部を脱窒循環槽に取り込み、この脱窒循環槽に取り込んだ水の中に硝酸が存在するときは硝酸が無くなるまで脱窒処理を繰り返し、硝酸が無くなった後に脱窒循環槽内の水を閉鎖系水域に戻し、これによって、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能とした閉鎖系水域の自動脱窒システムの改良発明に関する。   The present invention relates to an automatic denitrification system for closed water areas that can automatically reduce nitric acid in closed water areas such as aquaculture, sacrifice, and ornamental fish display to convert it into nitrogen gas. Part of the water in the closed water system is taken into the denitrification circulation tank. If nitric acid is present in the water taken into the denitrification circulation tank, the denitrification treatment is repeated until the nitric acid is exhausted, and after the nitric acid is exhausted. The water in the denitrification circulation tank is returned to the closed system water area, which makes it possible to keep the nitric acid concentration in the closed system water area constant at a low value without having to deal with water exchange. The present invention relates to an improved invention of the system.

周知のように、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合には、魚介類から出る老廃物や餌の残渣に由来して発生するアンモニア態窒素は毒性が強いため、飼育している魚介類の死滅等を防止するためには、このアンモニア態窒素の蓄積は許されない。そのため、これらの閉鎖系水域では一般的に、生物濾過と呼ばれる好気性細菌による処理により、魚介類から出る老廃物や餌の残渣に由来して発生するアンモニア態窒素を、毒性の弱い硝酸態窒素にまで酸化(「硝化」)している。   As is well known, when raising seafood in closed waters such as aquaculture, ginger, and ornamental fish display, ammonia nitrogen generated from waste products and food residues from seafood is toxic. Since it is strong, the accumulation of ammonia nitrogen is not allowed in order to prevent the killing of the fish and shellfish reared. For this reason, in these closed waters, ammonia nitrogen generated from waste products from fish and seafood and food residues is generally converted to less toxic nitrate nitrogen by treatment with aerobic bacteria called biofiltration. Has been oxidized ("nitrification").

そして、その具体的な方法としては、例えば、本体内に濾過材としての珊瑚砂を入れ、この珊瑚砂に好気バクテリアを付着させて濾過装置を構成し、ポンプによって、水槽内の水を、濾過装置内を通過させつつ循環させる方法が一般的であり、この方法によれば、水槽水が濾過装置を通過する過程で、水槽水に含まれるアンモニア等の有毒物質を、好気バクテリアによって硝化させて毒性の弱い硝酸態窒素にまで変化させることができる。   And, as a specific method, for example, put sand as a filtering material in the main body, adhere aerobic bacteria to this sand and configure a filtration device, by a pump, the water in the water tank, A general method is to circulate while passing through the filtration device. According to this method, toxic substances such as ammonia contained in the aquarium water are nitrified by aerobic bacteria while the aquarium water passes through the filtration device. It can be changed to nitrate nitrogen which is weakly toxic.

このように、好気性細菌を用いた濾過装置によって、水槽水に含まれるアンモニア等の有毒物質を毒性の弱い硝酸態窒素にまで硝化させることができるが、この硝酸態窒素もまた、過剰に蓄積されて濃度が高くなると弊害が生じるため、濃度についてはある程度の許容範囲が定められている。   In this way, a filtration device using aerobic bacteria can nitrify toxic substances such as ammonia contained in aquarium water to less toxic nitrate nitrogen, but this nitrate nitrogen also accumulates excessively. If the concentration is increased, an adverse effect occurs. Therefore, a certain allowable range is set for the concentration.

一方、硝酸は硝化の最終物質であり、閉鎖系水域に蓄積されていくため、従来は、硝酸態窒素の濃度が許容範囲を超えた場合には、換水しなければならないとされていたが、水産養殖、生け簀、大型の観賞魚ディスプレイ等の場合は、換水作業に要する手間、時間、コスト等が大きいという問題点が指摘されていた。   On the other hand, since nitric acid is the final substance of nitrification and accumulates in closed water bodies, it was previously said that when the concentration of nitrate nitrogen exceeded the allowable range, water had to be replaced. In the case of aquaculture, sacrifice, large-sized ornamental fish display, etc., it has been pointed out that the labor, time, cost, etc. required for water exchange work are large.

そのため、本発明者は過去において、閉鎖系水域で魚介類を飼育する場合において、換水すること無く閉鎖系水域内の硝酸濃度の上昇を完全に抑えることを可能にした自動脱窒システムを提案した。   Therefore, in the past, the present inventor has proposed an automatic denitrification system capable of completely suppressing an increase in the concentration of nitric acid in a closed water area without changing water when raising seafood in the closed water area. .

即ち、この従来の自動脱窒システムでは、閉鎖系水域内の水を取り込むための脱窒循環槽と、この脱窒循環槽内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔とを有するとともに、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒塔を介して脱窒循環槽内の水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段とを有し、閉鎖系水域内の水の一部を脱窒循環槽に取り込み、この脱窒循環槽に取り込んだ水を脱窒塔と脱窒循環槽間で循環しながら、脱窒循環槽に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換し、脱窒循環槽内の水の中の硝酸が無くなった後に、この硝酸が含まれていない脱窒循環槽内の水を閉鎖系水域に戻すこととしており、これにより、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合において、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能とした。   That is, in this conventional automatic denitrification system, the denitrification circulation tank for taking in the water in the closed water system and the nitric acid contained in the water taken into the denitrification circulation tank are reduced and converted to nitrogen gas. And a dewatering tower for taking water in the closed water area into the denitrification circulation tank, and a circulation means for circulating the water in the denitrification circulation tank through the denitrification tower And an extruding means for returning the water in the denitrification circulation tank to the closed system water area, taking a part of the water in the closed system water area into the denitrification circulation tank, and the water taken into this denitrification circulation tank Circulates between the denitrification tower and the denitrification circulation tank, reducing the nitric acid contained in the water taken into the denitrification circulation tank to convert it into nitrogen gas. After running out of water, the water in the denitrification circulation tank that does not contain nitric acid is returned to the closed water area. This makes it possible to keep the nitric acid concentration in the closed water area constant at a low value without having to deal with water changes when raising seafood in closed water areas such as aquaculture, sacrifice, and ornamental fish displays. did.

特開2010−88307号公報JP 2010-88307 A 特開2003−103294号公報JP 2003-103294 A 特開平9−38683号公報JP 9-38683 A 特開平9−155380号公報JP-A-9-155380 特開2002−159244号公報JP 2002-159244 A 特表2000−513224号公報Special Table 2000-513224 特開平03−049630号公報Japanese Patent Laid-Open No. 03-049630 特公平07−055116号公報Japanese Patent Publication No. 07-055116 特許第3769680号公報Japanese Patent No. 3769680

しかしながら、前述の従来の自動脱窒システムでは、閉鎖系水域内の水を取り込むための脱窒循環槽と、この脱窒循環槽内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔とを別個独立に備え、脱窒循環槽と脱窒塔を循環手段によって連通するとともに、循環手段の経路に循環用ポンプを介在し、脱窒循環槽に取り込んだ水を脱窒塔と脱窒循環槽間で循環させる場合には、循環用ポンプによって、脱窒循環槽内の水を脱窒塔内に圧入していたため、循環している過程で循環用ポンプがエアーを巻き込んでしまい循環が停止してしまうことが発生してしまうという問題点があった。   However, in the above-described conventional automatic denitrification system, the denitrification circulation tank for taking in the water in the closed water area and the nitric acid contained in the water taken into the denitrification circulation tank are reduced to nitrogen gas. A denitrification tower for conversion is provided separately and independently, and the denitrification circulation tank and the denitrification tower are communicated by the circulation means, and the water taken into the denitrification circulation tank through the circulation pump in the path of the circulation means Is circulated between the denitrification tower and the denitrification circulation tank, because the water in the denitrification circulation tank has been pressed into the denitrification tower by the circulation pump, There was a problem in that the air was entrained and the circulation stopped.

また、従来の自動脱窒システムにおける脱窒塔では、筒状とした容器(「カラム」)内に、嫌気性細菌としての脱窒菌を着床させるための細菌着床部と、脱窒菌の栄養分としての生分解ポリマーとを交互にサンドイッチ状に充填して構成していたが、このような構成において、脱窒塔内の嫌気性細菌が増えると、ヌメリが発生し、それにより細菌着床部に目詰まりを起こしてしまうため、このような場合には、循環用ポンプの駆動による脱窒循環槽内の水の脱窒塔内への圧入がスムーズに進まないという問題点が発生していた。   In addition, in a denitrification tower in a conventional automatic denitrification system, a bacteria implantation part for implanting denitrification bacteria as anaerobic bacteria in a cylindrical container (“column”), and nutrients of the denitrification bacteria In this configuration, when anaerobic bacteria increase in the denitrification tower, slime is generated, which causes the bacteria implantation part In such a case, there has been a problem that the press-fitting of the water in the denitrification circulation tank into the denitrification tower by driving the circulation pump does not proceed smoothly. .

更に前述の自動脱窒システムでは、脱窒循環槽内に取り込んだ水に含まれる硝酸濃度を検知するための硝酸濃度検知手段として硝酸イオンメーターを用いることとしていたが、特に閉鎖系水域内の水が海水の場合には、硝酸イオンメーターでは硝酸濃度を正確、迅速に検知することができないという問題点があった。   Furthermore, in the aforementioned automatic denitrification system, a nitrate ion meter was used as a nitric acid concentration detection means for detecting the nitric acid concentration contained in the water taken into the denitrification circulation tank. In the case of seawater, the nitrate ion meter cannot detect the nitric acid concentration accurately and quickly.

そこで、本発明は、閉鎖系水域内の水を脱窒循環槽に取り込み、この脱窒循環槽内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換し、脱窒が完了した水を閉鎖系水域に戻し、これにより、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合に、換水によって対応すること無く閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能にする閉鎖系水域の自動脱窒システムにおいて、脱窒循環槽内の硝酸濃度を正確、迅速に検知可能であるとともに、脱窒循環槽内に取り込んだ水の脱窒を確実に行うことを可能にした閉鎖系水域の自動脱窒システムを提供することを課題としている。   Therefore, the present invention takes the water in the closed system water area into the denitrification circulation tank, reduces the nitric acid contained in the water taken into the denitrification circulation tank to convert it into nitrogen gas, and the denitrification is completed. When water is returned to a closed system, and when seafood is bred in a closed system such as aquaculture, sacrifice, and ornamental fish display, the concentration of nitric acid in the closed system is reduced without any need for water exchange. In an automatic denitrification system in a closed water area that makes it possible to keep it constant, the concentration of nitric acid in the denitrification circulation tank can be detected accurately and quickly, and the denitrification of water taken into the denitrification circulation tank can be performed. It is an object to provide an automatic denitrification system for closed water areas that can be reliably performed.

本発明の閉鎖系水域の自動脱窒システムは、
閉鎖系水域の自動脱窒システムであって、
閉鎖系水域内の水を取り込むとともに、取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒循環槽と、
閉鎖系水域内の水を前記脱窒循環槽に取り込むための水張り手段と、
前記脱窒循環槽内の水を循環するための循環手段と、
前記脱窒循環槽内の水を前記閉鎖系水域に戻すための押出手段と、
前記脱窒循環槽内に配設された、前記脱窒循環槽内の水位を検知するための水位検知手段と、
前記脱窒循環槽内に配設されたヒーターと、
前記脱窒循環槽内に配設された、前記脱窒循環槽内の水の酸化還元電位を計測するための酸化還元電位計と、
システム全体の作動を制御するための制御手段と、を具備し、
前記脱窒循環槽は、
その内部を、仕切板によって、閉鎖系水域内の水を取り込むとともに取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒エリアと、該脱窒エリアを通過した水を再び脱窒エリアに循環するための循環エリアとに分割し、
前記脱窒エリア内には、嫌気性細菌を着床させるための細菌着床部と、前記嫌気性細菌の栄養分としての生分解ポリマーとを有して、硝酸を含んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能とした脱窒部を具備し、
前記仕切板は、下部部分において、前記脱窒エリアと循環エリアが互いに連通する連通部を有して、前記脱窒部を通過した水を前記循環エリアへ移動可能とし、
前記水張り手段によって前記脱窒循環槽の脱窒エリア内に閉鎖系水域の水を取り込み、
前記循環手段によって、前記脱窒エリア内に取り込んだ水を、脱窒部を通過させながら循環エリアと脱窒エリア間で循環することで、前記脱窒エリア内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換し、
前記押出手段によって、硝酸が含まれていない前記脱窒循環槽内の水を閉鎖系水域に戻す、ことを可能とした、ことを特徴としている。
The automatic denitrification system for closed water areas of the present invention is
An automatic denitrification system for closed water areas,
A denitrification circulation tank for taking in water in a closed water body and reducing nitric acid contained in the taken-in water to convert it into nitrogen gas;
Water filling means for taking water in a closed system water area into the denitrification circulation tank;
A circulation means for circulating the water in the denitrification circulation tank;
Extrusion means for returning the water in the denitrification circulation tank to the closed water area;
A water level detecting means for detecting a water level in the denitrification circulation tank, disposed in the denitrification circulation tank;
A heater disposed in the denitrification circulation tank;
An oxidation-reduction potentiometer for measuring the oxidation-reduction potential of water in the denitrification circulation tank, disposed in the denitrification circulation tank;
Control means for controlling the operation of the entire system,
The denitrification circulation tank is
The inside of the denitrification area for taking in the water in the closed system water area by the partition plate and reducing nitric acid contained in the taken water to convert it into nitrogen gas, and the water that has passed through the denitrification area Divide it into a circulation area to circulate again to the denitrification area,
The denitrification area has a bacteria implantation part for implanting anaerobic bacteria and a biodegradable polymer as a nutrient for the anaerobic bacteria, and allows water containing nitric acid to pass through. , Comprising a denitrification part that can convert nitric acid contained in water to nitrogen gas,
In the lower part, the partition plate has a communication part in which the denitrification area and the circulation area communicate with each other, and water that has passed through the denitrification part can be moved to the circulation area,
Taking in water from a closed water area into the denitrification area of the denitrification circulation tank by the water filling means,
By circulating the water taken into the denitrification area by the circulation means between the circulation area and the denitrification area while passing through the denitrification part, the nitric acid contained in the water taken into the denitrification area is removed. Reduced to nitrogen gas,
It is possible to return the water in the denitrification circulation tank not containing nitric acid to the closed water body by the extrusion means.

嫌気的な条件の下で嫌気性細菌(「脱窒菌」)が硝酸呼吸をすると、硝酸が還元されて窒素ガスにまで変換されるが(これを「脱窒」という。)、本発明の閉鎖系水域の自動脱窒システムでは、閉鎖系水域内の水を取り込むとともに、取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒循環槽を有するとともに、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒循環槽内の水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段とを有しており、脱窒循環槽は、その内部を、仕切板によって、閉鎖系水域内の水を取り込むとともに取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒エリアと、該脱窒エリアを通過した水を再び脱窒エリアに循環するための循環エリアに分割し、脱窒エリア内には、嫌気性細菌を着床させるための細菌着床部と、前記嫌気性細菌の栄養分としての生分解ポリマーとを有して、硝酸を含んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能とした脱窒部を具備し、仕切板は下部部分において、前記脱窒エリアと循環エリアが互いに連通する連通部を有して脱窒部を通過した水を循環エリアへ移動可能とし、この構成において、脱窒循環槽の脱窒エリア内に閉鎖系水域の水の一部を取り込む水張工程と、脱窒エリア内に取り込んだ水に含まれる硝酸が無くなるまで脱窒エリア内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換する循環工程と、脱窒エリア内の水に含まれていた硝酸が無くなったときに、脱窒循環槽内の水を閉鎖系水域に戻す押出工程を行うこととしている。   When anaerobic bacteria (“denitrifying bacteria”) respirate nitrate under anaerobic conditions, nitrate is reduced and converted to nitrogen gas (this is called “denitrification”), but the closure of the present invention. In the automatic denitrification system of the system water area, it has a denitrification circulation tank for taking in the water in the closed system water area and reducing nitric acid contained in the taken water to convert it into nitrogen gas, and in the closed system water area Water filling means for taking the water in the denitrification circulation tank, circulation means for circulating the water in the denitrification circulation tank, and extrusion means for returning the water in the denitrification circulation tank to the closed system water area The denitrification circulation tank has a denitrification area for taking in the water in the closed system water area by the partition plate and reducing nitric acid contained in the taken water to convert it into nitrogen gas. Then, the water that has passed through the denitrification area is recycled to the denitrification area again. The denitrification area is divided into a circulation area, a bacteria implantation part for implanting anaerobic bacteria, and a biodegradable polymer as a nutrient for the anaerobic bacteria, and nitric acid. A denitrification unit is provided that allows the nitric acid contained in the water to be reduced and converted to nitrogen gas by passing the contained water, and the partition plate communicates with the denitrification area and the circulation area in the lower part. A water filling step that allows the water that has passed through the denitrification section to move to the circulation area, and in this configuration, incorporates a part of the water in the closed water area into the denitrification area of the denitrification circulation tank; In the denitrification area, the nitric acid contained in the water taken into the denitrification area is reduced until the nitric acid contained in the water taken into the denitrification area is reduced and converted to nitrogen gas, and contained in the water in the denitrification area Denitrification when the nitric acid that had been used is gone It is set to be performed an extrusion step of returning the water in the ring chamber in a closed system waters.

そのため、本発明によれば、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系な水域で魚介類を飼育する場合において、硝酸濃度の上昇を完全に抑え、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことが可能である。   Therefore, according to the present invention, when raising seafood in closed water areas such as aquaculture, ginger, ornamental fish display, etc., the increase in nitric acid concentration is completely suppressed, and the closed water area does not respond by changing water. It is possible to keep the nitric acid concentration in the inside constant at a low value.

そしてこのとき、本発明では、仕切板によって、脱窒循環槽の内部を脱窒エリアと循環エリアに分割し、脱窒エリア内には、硝酸を含んだ水を通過させることにより水に含まれる硝酸を還元して窒素ガスにまで変換可能とした脱窒部を具備し、これによって、脱窒循環槽において、閉鎖系水域内の水の取り込みと取り込んだ水に含まれる硝酸の還元を行うこととしているため、閉鎖系水域内の水を取り込むための脱窒循環槽とこの脱窒循環槽内に取り込んだ水に含まれる硝酸を還元する脱窒塔を別個独立に備え、脱窒循環槽と脱窒塔を循環手段によって連通するとともに循環手段の経路に循環用ポンプを介在し、この循環用ポンプによって脱窒循環槽内の水を脱窒塔内に圧入していた従来の自動脱窒システムと異なり、循環が停止してしまうことを防止できる。   And at this time, in this invention, the inside of a denitrification circulation tank is divided | segmented into a denitrification area and a circulation area by a partition plate, and the denitrification area is contained in water by allowing the water containing nitric acid to pass through. It is equipped with a denitrification unit that can convert nitric acid into nitrogen gas by reducing it, and in this way, in the denitrification circulation tank, it takes in water in the closed water area and reduces nitric acid contained in the taken-in water Therefore, a denitrification circulation tank for taking in the water in the closed system water area and a denitrification tower for reducing nitric acid contained in the water taken into the denitrification circulation tank are provided separately, A conventional automatic denitrification system in which a denitrification tower is connected by a circulation means and a circulation pump is interposed in the circulation means, and water in the denitrification circulation tank is pressed into the denitrification tower by this circulation pump. Unlike that, the circulation stops Theft can be prevented.

また、本発明の自動脱窒システムでは、脱窒エリア内に、嫌気性細菌を着床させるための細菌着床部と、嫌気性細菌の栄養分としての生分解ポリマーとを有した脱窒部を具備しているため、カラム内に細菌着床部と生分解ポリマーを交互にサンドイッチ状に充填して脱窒塔を構成した従来の自動脱窒システムと異なり、嫌気性細菌が増えた場合でも、取り込んだ水が脱窒部を通過することに支障が生じることが無く、更に脱窒菌を確実に繁殖させることが可能である。   Further, in the automatic denitrification system of the present invention, a denitrification part having a bacteria implantation part for implanting anaerobic bacteria and a biodegradable polymer as a nutrient for anaerobic bacteria in the denitrification area. Unlike conventional automatic denitrification systems in which a denitrification tower is configured by alternately packing bacteria in the column and biodegradable polymer in a sandwich shape in the column, even when anaerobic bacteria increase, There is no hindrance to the taken-in water passing through the denitrification section, and denitrifying bacteria can be reliably propagated.

更にまた、本発明の自動脱窒システムでは、脱窒循環槽内に、脱窒循環槽内の水の酸化還元電位を計測するための酸化還元電位計を配設し、この酸化還元電位計の計測結果に基づいて、脱窒循環槽内に取り込んだ水に含まれる硝酸の有無を判断することとしているため、硝酸イオンメーターを用いて脱窒循環槽内に取り込んだ水に含まれる硝酸濃度を検知していた従来の自動脱窒システムと異なり、閉鎖系水域内の水が海水の場合でも、硝酸濃度を正確、迅速に検知することが可能である。   Furthermore, in the automatic denitrification system of the present invention, an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of water in the denitrification circulation tank is disposed in the denitrification circulation tank. Based on the measurement results, the presence or absence of nitric acid contained in the water taken into the denitrification circulation tank is judged, so the concentration of nitric acid contained in the water taken into the denitrification circulation tank using a nitrate ion meter is determined. Unlike the conventional automatic denitrification system that has been detected, the concentration of nitric acid can be detected accurately and quickly even when the water in the closed system is seawater.

また、本発明の閉鎖系水域の自動脱窒システムでは、閉鎖系水域内の水の一部を脱窒循環槽に移動する水張工程と、脱窒循環槽内の水を循環する循環工程とを別々の工程としてバッチ処理しているために、循環工程においては、脱窒循環槽内に外部から酸素が入り込むことがないとともに、好気性細菌の酸素呼吸によって溶存酸素はすぐに枯渇し嫌気化するため、脱窒循環槽内の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   Moreover, in the automatic denitrification system for closed system water areas of the present invention, a water filling process for moving a part of the water in the closed system water area to the denitrification circulation tank, and a circulation process for circulating the water in the denitrification circulation tank; In the circulation process, oxygen is not introduced from the outside into the denitrification circulation tank, and dissolved oxygen is immediately depleted by anaerobic bacterial oxygen respiration. Therefore, it is possible to quickly increase the denitrification activity of anaerobic bacteria in the denitrification circulation tank.

本発明の閉鎖的水域の自動脱窒システムの実施例のシステム全体を説明するための図である。It is a figure for demonstrating the whole system of the Example of the automatic denitrification system of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒システムの実施例の制御系を説明するための図である。It is a figure for demonstrating the control system of the Example of the automatic denitrification system of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒システムの実施例の作用を説明するためのフローチャートである。It is a flowchart for demonstrating the effect | action of the Example of the automatic denitrification system of the closed water area of this invention. 脱窒によってORPが減少していく様子を示した波形である。It is the waveform which showed a mode that ORP decreased by denitrification.

本発明の閉鎖系水域の自動脱窒システムでは、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域内の水を取り込み、この取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒循環槽を有するとともに、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒循環槽内の水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段とを有している。   In the automatic denitrification system for closed water areas of the present invention, water in closed water areas such as aquaculture, sacrifice, and ornamental fish display is taken in, and nitric acid contained in the taken water is reduced and converted to nitrogen gas. A denitrification circulation tank, a water filling means for taking water in the closed water area into the denitrification circulation tank, a circulation means for circulating the water in the denitrification circulation tank, and a denitrification circulation tank And an extrusion means for returning the water to the closed water area.

また、前記脱窒循環槽内には、脱窒循環槽内の水位を検知するための水位検知手段と、脱窒循環槽内の水温を一定以上に維持するためのヒーターが配設されており、更に、前記脱窒循環槽内には、脱窒循環槽内の水の酸化還元電位を計測するための酸化還元電位計が配設されており、これらの水位検知手段、ヒーター、及び酸化還元電位計は、システム全体の作動を制御するための制御手段に接続されている。   Further, in the denitrification circulation tank, a water level detection means for detecting the water level in the denitrification circulation tank and a heater for maintaining the water temperature in the denitrification circulation tank above a certain level are arranged. Further, an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of water in the denitrification circulation tank is disposed in the denitrification circulation tank, and these water level detection means, heater, and oxidation-reduction The electrometer is connected to control means for controlling the operation of the entire system.

そして、前記脱窒循環槽の内部は、仕切板によって、脱窒エリアと循環エリアに分割しており、脱窒エリアは、閉鎖系水域内の水を取り込むとともに取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するエリアとしており、その内部には、嫌気性細菌を着床させるための細菌着床部と、嫌気性細菌の栄養分としての生分解ポリマーとを有した脱窒部を具備しており、これによりこの脱窒部は、閉鎖系水域内から取り込んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能としている。   The inside of the denitrification circulation tank is divided into a denitrification area and a circulation area by a partition plate. The denitrification area takes in water in the closed water area and reduces nitric acid contained in the taken-in water. In this area, there is a denitrification section that has a bacteria implantation section for implanting anaerobic bacteria and a biodegradable polymer as a nutrient for anaerobic bacteria. Thus, the denitrification section allows the water taken from the closed water area to pass through, thereby reducing nitric acid contained in the water and converting it into nitrogen gas.

一方、循環エリアは、脱窒部を通過した水を再び脱窒エリアに循環して脱窒部を通過させるためのエリアとしている。   On the other hand, the circulation area is an area for circulating the water that has passed through the denitrification unit again to the denitrification area and passing through the denitrification unit.

また、前記仕切板は、下部部分において、前記脱窒エリアと循環エリアが互いに連通する連通部を有しており、前記脱窒部を通過した水を、この連通部を通って前記循環エリアへ移動可能としている。   In addition, the partition plate has a communication portion in the lower portion where the denitrification area and the circulation area communicate with each other, and water that has passed through the denitrification portion passes through the communication portion to the circulation area. It can be moved.

そして、本発明の閉鎖系水域の自動脱窒システムは、このような構成において、水張り手段によって脱窒循環槽の脱窒エリア内に閉鎖系水域の水を取り込んで水張りを行い、水張りの後に、前記脱窒エリア内に取り込んだ水を、脱窒部を通過させることで取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するとともに、脱窒エリア内に取り込んだ水に硝酸が無くなったと判断するまで、循環手段によって、脱窒部を通過した水を、循環エリアと脱窒エリア間で循環し、脱窒エリア内の水に硝酸が含まれていなくなったと判断したときは、押出手段によって、脱窒循環槽内の水を閉鎖系水域に戻すこととしている。   And the automatic denitrification system of the closed system water area of the present invention, in such a configuration, the water of the closed system water area is taken into the denitrification area of the denitrification circulation tank by the water filling means, and after the water filling, The water taken into the denitrification area is converted to nitrogen gas by passing through the denitrification section to reduce the nitric acid contained in the water, and the water taken into the denitrification area is free of nitric acid. Until it is determined that the water passed through the denitrification section is circulated between the circulation area and the denitrification area by the circulation means, and when it is determined that the water in the denitrification area is no longer containing nitric acid, the extrusion means Therefore, the water in the denitrification circulation tank is returned to the closed water area.

ここで、前記水張り手段、循環手段、及び押出手段の作動を制御手段により自動制御し、これにより、自動的に水張工程、循環工程、及び押出工程を実行するとよく、それにより、最小限度の労力で各工程を行うことが可能である。   Here, the operation of the water filling means, the circulation means, and the extrusion means is automatically controlled by the control means, whereby the water filling step, the circulation step, and the extrusion step may be automatically executed, thereby minimizing the minimum amount. Each process can be performed with effort.

そして、自動制御の例としては、例えば、水位検知手段が脱窒循環槽内の水位の低下を検知したときに、水張り手段によって脱窒循環槽内に閉鎖系水域の水を取り込む方法が考えられ、これによれば自動的に水張りを行うことができる。   As an example of automatic control, for example, when the water level detection means detects a decrease in the water level in the denitrification circulation tank, a method of taking water in the closed water area into the denitrification circulation tank by the water filling means can be considered. According to this, water filling can be performed automatically.

また、自動制御の例としては、その他に、酸化還元電位計による脱窒循環槽内の水の酸化還元電位の値に基づいて、脱窒循環槽内の水に硝酸が存在していると判断しているときは、脱窒循環槽内の水に硝酸が存在しなくなったと判断するまで、循環手段によって、脱窒エリア内の水を、脱窒部を通過させながら循環エリアと脱窒エリア間で循環し、脱窒循環槽内の水に硝酸が存在していないと判断したときは、押出手段によって脱窒循環槽内の水を閉鎖系水域に戻す方法が考えられ、これによれば、酸化還元電位計による計測結果に基づいて、自動的に循環工程、押出工程を実行することが可能となる。   In addition, as an example of automatic control, it is determined that nitric acid is present in the water in the denitrification circulation tank based on the oxidation-reduction potential value of the water in the denitrification circulation tank by the oxidation-reduction potentiometer. If the water in the denitrification circulation tank is determined to be no longer present in the water in the denitrification circulation tank, the water in the denitrification area is passed between the circulation area and the denitrification area while passing through the denitrification section by the circulation means. When it is judged that nitric acid is not present in the water in the denitrification circulation tank, a method of returning the water in the denitrification circulation tank to the closed system water area by an extrusion means can be considered, Based on the measurement result obtained by the oxidation-reduction potentiometer, the circulation process and the extrusion process can be automatically executed.

また、循環手段は、循環エリア内に配設された水中ポンプと、この水中ポンプに基端部が連結されるとともに先端部が脱窒エリアに連通し、その経路の途中に三方弁が介在された循環用流路で構成し、水張り手段は、基端が閉鎖系水域に連通するとともに先端部が脱窒エリアに連通した水張り用流路と、この水張り用流路を介して閉鎖系水域の水を脱窒エリアに取り込むための取込み用ポンプで構成し、押出手段は、先端が閉鎖系水域に連通し、基端が前記三方弁を介して循環用流路に連結した押出用流路で構成し、脱窒循環槽内に閉鎖系水域の水を取り込むときは、水張り用流路と取込み用ポンプを介して閉鎖系水域内の水を脱窒循環槽内に取り込み、脱窒循環槽内の水を脱窒エリアと循環エリア間で循環させるときは、三方弁の切り替えにより循環用流路を介して循環エリアと脱窒エリアを連通し、脱窒部を通過させながら、水中ポンプ及び循環用流路を介して、脱窒循環槽内の水を脱窒エリアと循環エリア間で循環し、脱窒循環槽内の水を閉鎖系水域に戻すときには、前記三方弁の切り替えにより、循環用流路における基端部から三方弁までの部分と押出用流路とを連通して、水中ポンプ、循環用流路における基端部から三方弁までの部分、及び押出用流路を介して脱窒循環槽内の水を閉鎖系水域に押し出すようにしてもよく、これによりシステム全体の構成を簡素化してコストを抑えることができる。   The circulation means includes a submersible pump disposed in the circulation area, a base end portion connected to the submersible pump, a tip end portion communicating with the denitrification area, and a three-way valve interposed in the middle of the path. The water filling means comprises a water filling passage whose base end communicates with the closed water area and the tip communicates with the denitrification area, and the water filling means of the closed water area through the water filling flow path. Constructed by a take-in pump for taking water into the denitrification area, the extruding means is an extruding flow path whose leading end communicates with the closed water area and whose proximal end is connected to the circulating flow path via the three-way valve. When the water in the closed system water area is taken into the denitrification circulation tank, the water in the closed system water area is taken into the denitrification circulation tank via the water filling channel and the intake pump. The three-way valve when circulating the water between the denitrification area and the circulation area. The water in the denitrification circulation tank is circulated with the denitrification area through the submersible pump and the circulation channel while allowing the circulation area and the denitrification area to communicate with each other through the circulation channel and passing through the denitrification unit. When circulating between areas and returning the water in the denitrification circulation tank to the closed system water area, the part from the base end to the three-way valve in the circulation channel and the extrusion channel are communicated by switching the three-way valve. Then, the water in the denitrification circulation tank may be pushed out to the closed system water area through the submersible pump, the part from the base end to the three-way valve in the circulation channel, and the extrusion channel. It is possible to reduce the cost by simplifying the configuration of the entire system.

また、脱窒部に有する生分解ポリマーとしては、植物油由来のポリマーを用いるとよく、これにより、安全性の高い脱窒システムにすることが可能である。   In addition, as a biodegradable polymer in the denitrification part, a polymer derived from vegetable oil may be used, and thus a highly safe denitrification system can be obtained.

本発明の閉鎖系水域の自動脱窒システム(以下単に「自動脱窒システム」という。)の実施例について図面を参照して説明すると、図1は本実施例の自動脱窒システムの全体を説明するための図であり、図において点線で示す1が本実施例の自動脱窒システムの主要部分である。   An embodiment of an automatic denitrification system (hereinafter simply referred to as “automatic denitrification system”) according to the present invention will be described with reference to the drawings. FIG. 1 illustrates the entire automatic denitrification system of this embodiment. 1 indicated by a dotted line in the figure is a main part of the automatic denitrification system of the present embodiment.

また、図1において2は、閉鎖系水域としての水槽であり、本実施例の自動脱窒システムは、この水槽2内の水に含まれる硝酸を自動で脱窒することを目的としている。   In FIG. 1, reference numeral 2 denotes a water tank as a closed system water area, and the automatic denitrification system of this embodiment is intended to automatically denitrify nitric acid contained in the water in the water tank 2.

更に、図において3は濾過装置であり、この濾過装置3は、その内部に、好気性細菌を付着させた珊瑚砂等の着床部を有しており、前記水槽2内の水を濾過装置3を通して循環させることで、着床部に付着させた好気性細菌によって、水槽2内に存在する、魚介類から出る老廃物や餌の残渣に由来して発生するアンモニア態窒素を毒性の弱い硝酸態窒素にまで酸化することとしている。   Further, in the figure, reference numeral 3 denotes a filtration device, and this filtration device 3 has a landing portion such as dredged sand to which aerobic bacteria are adhered, and the water in the water tank 2 is filtered. 3 circulates through the aerobic bacteria adhering to the landing area, and the ammonia nitrogen generated in the aquarium 2 that originates from waste products from seafood and food residues is present in the weakly toxic nitric acid It is supposed to be oxidized to nitrogen.

即ち、前記濾過装置3は、循環路4によって水槽2に連通しており、循環路4は、基端部を前記水槽2に連通して先端部を濾過装置3に連通した第1循環路401と、基端部を濾過装置3に連通して先端部を前記水槽2に連通した第2循環路402を有し、第2循環路402の経路には濾過用ポンプ5を介在している。   That is, the filtration device 3 communicates with the water tank 2 by a circulation path 4, and the circulation path 4 has a first circulation path 401 having a base end portion communicating with the water tank 2 and a distal end portion communicating with the filtration device 3. And a second circulation path 402 having a base end communicated with the filtration device 3 and a distal end communicated with the water tank 2, and a filtration pump 5 is interposed in the path of the second circulation path 402.

そして濾過用ポンプ5を駆動と、水槽2内の水が、第1循環路401、濾過装置3、及び第2循環路402を通って循環されることとしており、本実施例の自動脱窒システムは、このような濾過装置3を備えた水槽を前提としている。   Then, when the filtration pump 5 is driven, the water in the water tank 2 is circulated through the first circulation path 401, the filtration device 3, and the second circulation path 402, and the automatic denitrification system of the present embodiment. Assumes a water tank equipped with such a filtering device 3.

なお、好気性細菌を用いた濾過装置は従来周知であるために詳細な説明は省略する。また、周知のように、図1において601はエアレーションであり、また602はエアレーションを発生させるためのエアストーンである。   In addition, since the filtration apparatus using aerobic bacteria is conventionally well-known, detailed description is abbreviate | omitted. As is well known, in FIG. 1, reference numeral 601 denotes aeration, and reference numeral 602 denotes an aeration stone for generating aeration.

次に、図において7は脱窒循環槽である。即ち、本実施例の自動脱窒システムでは、内部に水を蓄えることが可能な形状の脱窒循環槽7を有しており、この脱窒循環槽7内に、前記水槽2内の水の一部を取り込み、更に、この取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換することとしている。   Next, in the figure, 7 is a denitrification circulation tank. That is, the automatic denitrification system of the present embodiment has a denitrification circulation tank 7 having a shape capable of storing water therein, and the water in the water tank 2 is contained in the denitrification circulation tank 7. Part of it is taken in and nitric acid contained in the taken-in water is reduced and converted to nitrogen gas.

ここで、前記脱窒循環槽7について説明すると、本実施例において前記脱窒循環槽7は、その内部に仕切板8を配設しており、この仕切板8によって、前記脱窒循環槽7の内部は、脱窒エリアと循環エリアに分割されている。   Here, the denitrification circulation tank 7 will be described. In the present embodiment, the denitrification circulation tank 7 has a partition plate 8 disposed therein, and the partition plate 8 allows the denitrification circulation tank 7 to be disposed therein. The interior is divided into a denitrification area and a circulation area.

即ち、図において10が脱窒エリアであり、この脱窒エリア10は、閉鎖系水域内の水を取り込むとともに、この取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するためのエリアとしており、その底部には、脱窒エリア10に取り込んだ水の脱窒を行うための脱窒部を具備している。   That is, in the figure, 10 is a denitrification area, and this denitrification area 10 is an area for taking in water in a closed system water area and reducing nitric acid contained in the taken water to convert it into nitrogen gas. And a denitrification section for denitrifying water taken into the denitrification area 10 is provided at the bottom.

即ち図において12が脱窒部であり、本実施例において前記脱窒部12は、嫌気性細菌を着床させるための細菌着床部1201と、前記嫌気性細菌の栄養分としての生分解ポリマー1202を積層して構成されており、前記脱窒エリア10に取り込んだ水が通過すると、脱窒部12を通過した水に含まれる硝酸を還元して窒素ガスにまで変換することとしている。   That is, 12 is a denitrification part in the figure, and in the present embodiment, the denitrification part 12 includes a bacteria implantation part 1201 for implanting anaerobic bacteria, and a biodegradable polymer 1202 as a nutrient of the anaerobic bacteria. When the water taken into the denitrification area 10 passes, nitric acid contained in the water that has passed through the denitrification unit 12 is reduced and converted to nitrogen gas.

即ち、嫌気的な条件の下で、嫌気性細菌である脱窒菌が硝酸呼吸をし、それにより硝酸を還元して窒素ガスにする作用を脱窒というが、本実施例の自動脱窒システムでは、前記脱窒エリア10の底部に、嫌気性細菌である脱窒菌を着床させるための細菌着床部1201を有した脱窒部12を配設し、前記脱窒エリア10に取り込んだ水が脱窒部12を通過することで、脱窒菌によって、前記脱窒循環槽5内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換することとしている。   That is, under anaerobic conditions, denitrifying bacteria, which are anaerobic bacteria, respire nitrate, thereby denitrifying the action of reducing nitric acid to nitrogen gas. In the automatic denitrification system of this embodiment, A denitrification unit 12 having a bacteria implantation part 1201 for implanting denitrification bacteria, which are anaerobic bacteria, is arranged at the bottom of the denitrification area 10, and water taken into the denitrification area 10 By passing through the denitrification unit 12, the nitric acid contained in the water taken into the denitrification circulation tank 5 is reduced and converted to nitrogen gas by denitrifying bacteria.

なお、本実施例においては、前記細菌着床部1201としては、脱窒菌を効率的に着床させることが可能な珊瑚砂を用いており、また、前記生分解ポリマーと1202としては、植物油由来のポリマーを用いて、安全性を確保している。即ち、本実施例においては、生分解ポリマーとして天然原料を使用しているために、食材である養殖魚に懸念すべき化学物質が捕り込まれず、対人的な危険性も極めて低く、魚自体への化学物質による影響も極めて低く、閉鎖系水域の水が閉鎖系の外に流出した際に環境に対する負荷が極めて低いという利点がある。   In this example, as the bacterial implantation part 1201, cinnabar sand capable of efficiently depositing denitrifying bacteria is used, and the biodegradable polymer and 1202 are derived from vegetable oil. Using this polymer, safety is ensured. That is, in this example, since a natural raw material is used as a biodegradable polymer, a chemical substance that should be a concern is not trapped in the cultured fish, which is a food material, and the danger to humans is extremely low. There is also an advantage that the impact on the environment is extremely low when the water of the closed water system flows out of the closed system.

更に、本実施例において前記植物油由来の生分解ポリマーとしては、イタリアのノバモント社製の商品名マタービーKF−01U/130を使用しており、これにより、硫化水素の発生も防止している。   Furthermore, in this example, as the vegetable oil-derived biodegradable polymer, the trade name Matterby KF-01U / 130 manufactured by Novamont, Italy is used, thereby preventing the generation of hydrogen sulfide.

即ち、例えば海水を嫌気条件化におくと、嫌気性細菌である硫酸還元菌によって硫酸が還元されるために猛毒の硫化水素が発生することがあり、かかる場合には、水槽内の魚介類が死滅に至る場合も考えられる。しかしながら、本発明者による実験の結果、前記マタービーKF−01U/130を生分解ポリマーとして使用した場合には硫化水素の発生が見られなかった。従って、生分解ポリマーとして前記マタービーKF−01U/130を使用している本実施例の自動脱窒システムでは、海水を循環した場合でも、猛毒な硫化水素が発生することもない。   That is, for example, when seawater is subjected to anaerobic conditions, sulfuric acid is reduced by the anaerobic bacterium, sulfate-reducing bacteria, so that highly toxic hydrogen sulfide may be generated. It may be killed. However, as a result of experiments by the inventor, no hydrogen sulfide was generated when the above-mentioned Matterby KF-01U / 130 was used as a biodegradable polymer. Therefore, in the automatic denitrification system of this embodiment using the Matterby KF-01U / 130 as a biodegradable polymer, even when seawater is circulated, no toxic hydrogen sulfide is generated.

なお図において25は、脱窒循環槽7内に取り込んだ水の酸化還元電位を計測するための酸化還元電位計であり、2501は酸化還元電位計の電極部であり、本実施例の自動脱窒システムでは、後述するように、酸化還元電位計25によって脱窒循環槽7内の酸化還元電位を計測し、その計測結果に基づいて、脱窒循環槽7内の水の中の硝酸の有無を判断することとしている。   In the figure, 25 is an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the water taken into the denitrification circulation tank 7, and 2501 is an electrode part of the oxidation-reduction potentiometer. In the nitrogen system, as will be described later, the oxidation-reduction potential meter 25 measures the oxidation-reduction potential in the denitrification circulation tank 7, and based on the measurement result, the presence or absence of nitric acid in the water in the denitrification circulation tank 7 Is going to judge.

次に、前記循環エリア11について説明すると、図において11が循環エリアである。即ち、本実施例においては、前記仕切板8によって前記脱窒循環槽7内を左右に分割しており、前記脱窒エリア10に隣り合う配置で循環エリア11を形成している。   Next, the circulation area 11 will be described. In the figure, 11 is a circulation area. That is, in this embodiment, the inside of the denitrification circulation tank 7 is divided into left and right by the partition plate 8, and the circulation area 11 is formed in an arrangement adjacent to the denitrification area 10.

そして、前記脱窒エリア10とこれに隣り合う循環エリア11は互いに、前記仕切板8の下端部分に形成した連通部9によって連通し、これにより、脱窒エリア10において脱窒部12を通過した水を循環エリアへ移動可能としている。   The denitrification area 10 and the circulation area 11 adjacent to the denitrification area 10 communicate with each other by a communication portion 9 formed at the lower end portion of the partition plate 8, thereby passing the denitrification portion 12 in the denitrification area 10. Water can be moved to the circulation area.

なお、図において23は、脱窒循環槽7内に取り込んだ水の水位を検知するための水位検知手段であり、本実施例においてこの水位検知手段7としてはフロートスイッチを用いている。   In the figure, reference numeral 23 denotes a water level detecting means for detecting the water level of the water taken into the denitrification circulation tank 7, and a float switch is used as the water level detecting means 7 in this embodiment.

また、図において24はヒーターであり、このヒーター24によって、脱窒循環槽7内の水の温度を一定以上に維持することとしている。即ち、脱窒菌は水温が25℃を下回ると極端に活性が低下して脱窒するスピードが遅くなるため、本実施例においては、冬場の水温対策として、前記ヒーター24を脱窒循環槽7内に配設し、脱窒循環槽7内の水温を25℃以上に保てるようにしている。   In the figure, reference numeral 24 denotes a heater, and the heater 24 maintains the temperature of water in the denitrification circulation tank 7 at a certain level or more. That is, when the water temperature falls below 25 ° C., the activity of the denitrifying bacteria is extremely lowered and the speed of denitrification is slowed. Therefore, in this embodiment, the heater 24 is placed in the denitrification circulation tank 7 as a countermeasure for the water temperature in winter. The water temperature in the denitrification circulation tank 7 can be kept at 25 ° C. or higher.

次に、図において13は、前記水槽2内の水を前記脱窒循環槽7に取り込んで脱窒循環槽7の水張りを行なうための水張り手段であり、本実施例においてこの水張り手段13は、基端部が前記第2循環路402に連通し、先端が前記脱窒循環槽7に連通した水張り用流路14と、この水張り用流路14の経路の途中に介在させた二方弁15で構成している。   Next, in the figure, reference numeral 13 denotes water filling means for taking the water in the water tank 2 into the denitrification circulation tank 7 and filling the denitrification circulation tank 7, and in this embodiment, the water filling means 13 is: A water filling passage 14 having a proximal end communicating with the second circulation path 402 and a tip communicating with the denitrification circulation tank 7, and a two-way valve 15 interposed in the middle of the path of the water filling passage 14. It consists of.

そしてこの構成において、濾過用ポンプ5を駆動して水槽2内の水を濾過装置3経由で循環している状態で前記二方弁15を開放することで、濾過装置3を通過して水槽2へ戻る水の一部を、前記脱窒循環槽7へ取り込むこととしている。   In this configuration, the filtration pump 5 is driven to open the two-way valve 15 in a state where the water in the water tank 2 is circulated through the filtration device 3, so that the water tank 2 passes through the filtration device 3. A part of the water that returns to is taken into the denitrification circulation tank 7.

但し、必ずしも循環路4を兼用して水張り手段を構成する必要は無く、水張り用流路14の基端を水槽2に連通させ、水張り用流路14の経路に取り込み用ポンプを介在し、取り込み用ポンプを駆動することで、水槽2の水を直接、脱窒循環槽7に取り込んでもよい。   However, it is not always necessary to configure the water filling means also using the circulation path 4. The base end of the water filling flow path 14 is communicated with the water tank 2, and the intake pump is interposed in the path of the water filling flow path 14. The water in the water tank 2 may be directly taken into the denitrification circulation tank 7 by driving the pump.

次に、図において16は循環手段である。即ち、本実施例においては、循環手段16によって、前記脱窒エリア10において脱窒部12を通過した水を循環エリアへ移動させるとともに、循環エリア11内へ移動させた水を再び脱窒エリア10へ循環させることとしている。   Next, in the figure, 16 is a circulation means. That is, in the present embodiment, the water that has passed through the denitrification unit 12 in the denitrification area 10 is moved to the circulation area by the circulation means 16 and the water that has been moved into the circulation area 11 is again removed. It is going to circulate to.

即ち、本実施例において前記循環手段16は、前記循環エリア11の内部に配設した水中ポンプ17と、基端部をこの水中ポンプ17に連結するとともに先端部を前記脱窒エリア10に連通させた循環用流路18を有している。   That is, in this embodiment, the circulation means 16 connects the submersible pump 17 disposed inside the circulation area 11 and the base end portion to the submersible pump 17 and communicates the tip end portion with the denitrification area 10. The circulation channel 18 is provided.

そして、この構成により、水中ポンプ17を駆動すると、水中ポンプ17は、循環エリア11内の水を吸い込むとともに、この吸い込んだ水を、循環用流路18を介して脱窒エリア10へ戻し、これにより脱窒循環槽7内の水を循環することが可能となる。   With this configuration, when the submersible pump 17 is driven, the submersible pump 17 sucks the water in the circulation area 11 and returns the sucked water to the denitrification area 10 via the circulation channel 18. This makes it possible to circulate the water in the denitrification circulation tank 7.

そうするとそれとともに、循環エリア11内の水の減少に伴って、脱窒エリア10内の水は、脱窒部12を通過しつつ、矢印に示すように、仕切板8の下端部分に形成した連通部9を通って循環エリア11へ移動していく。   Then, along with this, as the water in the circulation area 11 decreases, the water in the denitrification area 10 passes through the denitrification section 12 and is formed at the lower end portion of the partition plate 8 as indicated by the arrow. It moves to the circulation area 11 through the part 9.

そのため、この循環を繰り返すことによって、脱窒循環槽7に取り込んだ水に含まれる硝酸を無くするが可能となる。   Therefore, it is possible to eliminate nitric acid contained in the water taken into the denitrification circulation tank 7 by repeating this circulation.

従って、本実施例によれば、水中ポンプ17を駆動するのみで、脱窒エリア10内の水を、脱窒部12を通過させつつ、脱窒エリア10と循環エリア11間で循環し、これにより脱窒循環槽7内の水を脱窒することができるため、換水によって対応すること無く、水槽内の硝酸濃度の上昇を完全に抑え、硝酸濃度を低い値で一定に保つことが可能である。   Therefore, according to the present embodiment, the water in the denitrification area 10 is circulated between the denitrification area 10 and the circulation area 11 while passing through the denitrification section 12 only by driving the submersible pump 17. Since the water in the denitrification circulation tank 7 can be denitrified, it is possible to completely suppress the increase in the nitric acid concentration in the water tank and keep the nitric acid concentration constant at a low value without dealing with water exchange. is there.

次に、図において20は、前記脱窒循環槽5内の水を水槽2に戻すための押出手段であり、本実施例においてこの押出手段20は、先端が水槽2に連通した押出用流路20としており、この押出用流路20の基端は、三方弁19を介して循環用流路18に連結している。即ち、本実施例において循環用流路18は、その経路に三方弁19を介在させており、この三方弁19を境にして、基端部に水中ポンプ17が連結された基端側循環用流路18aと、先端部が脱窒エリア10に連通された先端側循環用流路18bに分かれており、脱窒循環槽5内の水を水槽2に戻す際には、基端側循環用流路18aを利用している。   Next, in the figure, 20 is an extrusion means for returning the water in the denitrification circulation tank 5 to the water tank 2. In this embodiment, the extrusion means 20 is a flow path for extrusion whose tip communicates with the water tank 2. The base end of the extrusion flow path 20 is connected to the circulation flow path 18 via a three-way valve 19. In other words, in the present embodiment, the circulation flow path 18 has a three-way valve 19 interposed in the path, and the three-way valve 19 is used as a boundary, and the proximal end side circulation-use circulation pump 17 is connected to the proximal end portion. When the water in the denitrification circulation tank 5 is returned to the water tank 2 when the water is returned to the water tank 2, the flow path 18a and the front end portion are separated into a flow path 18b for leading end circulation. The flow path 18a is used.

即ち、脱窒循環槽5内の水を水槽2に戻すときには、三方弁19を切り替えて基端側循環用流路18aと押出用流路20を連通し、この状態で水中ポンプ17を駆動する。そうすると、水中ポンプ17が循環エリア11内の水を吸い込むとともに、この吸い込んだ水は、基端側循環用流路18a及び押出用流路20を通って水槽2に戻される。   That is, when the water in the denitrification circulation tank 5 is returned to the water tank 2, the three-way valve 19 is switched to connect the proximal-end circulation flow path 18 a and the extrusion flow path 20, and the submersible pump 17 is driven in this state. . Then, the submersible pump 17 sucks the water in the circulation area 11, and the sucked water is returned to the water tank 2 through the proximal-end circulation flow path 18 a and the extrusion flow path 20.

但し、必ずしも循環用流路18の一部を用いて押出を行う必要はなく、押出用流路20の基端を循環エリア11又は脱窒エリア10に連通させ、押出用流路20の経路に押出用ポンプを介在し、押出用ポンプを駆動することで、脱窒循環槽7内の水を水槽2に戻しても良い。   However, it is not always necessary to perform extrusion using a part of the circulation channel 18, and the base end of the extrusion channel 20 communicates with the circulation area 11 or the denitrification area 10, The water in the denitrification circulation tank 7 may be returned to the water tank 2 by interposing an extrusion pump and driving the extrusion pump.

次に、図において21は制御手段を収納した制御盤であり、本実施例の自動脱窒システム1では、制御手段による制御によって、前記水張、循環、押出の各工程を自動的に行なうとともに、制御手段がシステム全体の作動を制御している。   Next, reference numeral 21 in the figure denotes a control panel containing control means. In the automatic denitrification system 1 of this embodiment, the water filling, circulation and extrusion processes are automatically performed under the control of the control means. The control means controls the operation of the entire system.

ここで、本実施例の自動脱窒システム1の制御系について図2のブロック図を参照して説明すると、本実施例の自動脱窒システム1では、制御手段22としてのマイコンを有しており、この制御手段22に、前記フロートスイッチ23、ヒーター24、酸化還元電位計25、水中ポンプ17を接続している。   Here, the control system of the automatic denitrification system 1 of this embodiment will be described with reference to the block diagram of FIG. 2. The automatic denitrification system 1 of this embodiment has a microcomputer as the control means 22. The float switch 23, the heater 24, the oxidation-reduction potentiometer 25, and the submersible pump 17 are connected to the control means 22.

また、本実施例では、前記二方弁15、及び三方弁19として電動の二方弁、三方弁を用いるとともに、この二方弁15、三方弁19を前記制御手段22に接続しており、更にその他、操作スイッチ26、電源27等が制御手段22に接続されている。   In this embodiment, as the two-way valve 15 and the three-way valve 19, an electric two-way valve and a three-way valve are used, and the two-way valve 15 and the three-way valve 19 are connected to the control means 22, In addition, an operation switch 26, a power source 27, and the like are connected to the control means 22.

そして、制御手段22は、脱窒循環槽7内の水位が予め設定した値以下になったことをフロートスイッチ23が検知したときに、前記二方弁15を開放して前記水張りを行い、脱窒循環槽7内に取り込んだ水の中の硝酸が無くなるまで水中ポンプ17を駆動して循環を行い、脱窒循環槽7内に取り込んだ水の中の硝酸が無くなったと判断したときに、水中ポンプ17の駆動を継続しながら三方弁19の切替で押出用流路20と基端側循環用流路18aを連通して押出を行い、更に冬場には、ヒーター24を作動させて脱窒循環槽7内の水温が25℃以上に維持することとしている。   Then, when the float switch 23 detects that the water level in the denitrification circulation tank 7 has become equal to or less than a preset value, the control means 22 opens the two-way valve 15 to perform the water filling, and removes the water. The water pump 17 is driven to circulate until the nitric acid in the water taken into the nitrification circulation tank 7 runs out, and when it is determined that the nitric acid in the water taken into the denitrification circulation tank 7 has run out, While the pump 17 is continuously driven, the three-way valve 19 is switched so that the extrusion flow path 20 and the proximal-side circulation flow path 18a communicate with each other, and in the winter, the heater 24 is operated to denitrify and circulate. The water temperature in the tank 7 is to be maintained at 25 ° C. or higher.

次に、このように構成される本実施例の自動脱窒システム1を用いて水槽2内の水を自動で脱窒する方法について、図3のフローチャートを参照して説明すると、本実施例の自動脱窒方法ではまず、脱窒循環槽7への水張りを行う。即ち、ステップ1において制御手段22は、濾過用ポンプ5が駆動している状態で、所定時間だけ、水張り用流路14を介して第2循環路402と脱窒循環槽7が連通するように二方弁15を切り替えて、これにより、濾過装置3を通過して水槽2へ戻る水の一部を、所定量、前記脱窒循環槽7へ取り込んで水張りを行う。なお、取り込む水の量は特に限定されず、脱窒循環槽7の容量に応じて予め、前記二方弁15を制御する時間を制御手段22に設定しておくとよい。   Next, a method for automatically denitrifying water in the water tank 2 using the automatic denitrification system 1 of the present embodiment configured as described above will be described with reference to the flowchart of FIG. In the automatic denitrification method, first, the denitrification circulation tank 7 is filled with water. That is, in step 1, the control means 22 keeps the second circulation path 402 and the denitrification circulation tank 7 in communication through the water filling flow path 14 for a predetermined time while the filtration pump 5 is driven. By switching the two-way valve 15, a predetermined amount of water that passes through the filtration device 3 and returns to the water tank 2 is taken into the denitrification circulation tank 7 to be filled with water. Note that the amount of water to be taken in is not particularly limited, and it is preferable to set the time for controlling the two-way valve 15 in the control means 22 in advance according to the capacity of the denitrification circulation tank 7.

次に制御手段22は、酸化還元電位計25の計測結果に基づいて脱窒循環槽7内の硝酸の有無を判断し、硝酸が存在すると判断したときは循環を行い、硝酸が無いと判断したか、あるいは循環によって硝酸が無くなったと判断したときは、押出を行う。   Next, the control means 22 determines the presence or absence of nitric acid in the denitrification circulation tank 7 based on the measurement result of the oxidation-reduction potentiometer 25. When it is determined that nitric acid is present, the controller 22 circulates and determines that nitric acid is not present. Or when it is judged that nitric acid has been exhausted by the circulation, extrusion is performed.

即ち制御手段22は、脱窒循環槽7内に硝酸が存在すると判断したときは、硝酸が存在しないと判断するまで、ステップ2において、基端側循環用流路18aと先端側循環用流路18bが連通するように三方弁19を切り替えるとともに水中ポンプ17を駆動して、脱窒エリア10内の水を、脱窒部12を通過させながら、脱窒エリア10と循環エリア11間で循環して脱窒循環槽7内の水の脱窒を行う。   That is, when the control means 22 determines that nitric acid is present in the denitrification circulation tank 7, in step 2, the proximal-side circulation channel 18 a and the distal-side circulation channel are determined until it is determined that nitric acid is not present. The three-way valve 19 is switched so that 18 b communicates and the submersible pump 17 is driven to circulate the water in the denitrification area 10 between the denitrification area 10 and the circulation area 11 while passing through the denitrification section 12. Then, the water in the denitrification circulation tank 7 is denitrified.

そして、制御手段22は、脱窒循環槽7内に取り込んだ水に硝酸が無いか、あるいは循環によって硝酸が無くなったときは、基端側循環用流路18aと押出用流路20が連通するように三方弁19を切り替えるとともに水中ポンプ17を駆動し、循環エリア11内の水を水槽2に戻す(ステップ3の押出)。   When the water taken into the denitrification circulation tank 7 has no nitric acid or no nitric acid has been removed by the circulation, the control means 22 communicates with the proximal-side circulation flow path 18a and the extrusion flow path 20. Thus, the three-way valve 19 is switched and the submersible pump 17 is driven to return the water in the circulation area 11 to the water tank 2 (extrusion in step 3).

そして、ステップ3の押出により脱窒循環槽7内の水位が予め設定した所定値まで低下したときは、前記ステップ1からステップ3を繰り返し行い、これにより、水槽2内の水の脱窒を自動的に行っていく。   When the water level in the denitrification circulation tank 7 is reduced to a predetermined value set in advance by the extrusion in step 3, the above steps 1 to 3 are repeated, thereby automatically denitrifying the water in the water tank 2. Go on.

ここで、脱窒循環槽7内に取り込んだ水の酸化還元電位(「ORP」)に基づいて硝酸の有無を判断する方法について説明すると、従来、脱窒反応の管理制御の手法の一つとして酸化還元電位を用いる方法が提案されているが、本実施例においては特に、脱窒循環槽7内に取り込まれた水槽2内の水のORPが、脱窒循環槽7内の脱窒によって、3つのステージを経て減少していくことに着目し、このステージに応じて硝酸の有無を判断することとしている。   Here, a method for determining the presence or absence of nitric acid based on the redox potential (“ORP”) of water taken into the denitrification circulation tank 7 will be described. Although a method using an oxidation-reduction potential has been proposed, particularly in this embodiment, the ORP of water in the water tank 2 taken into the denitrification circulation tank 7 is denitrified in the denitrification circulation tank 7, Focusing on the decrease through three stages, the presence or absence of nitric acid is determined according to this stage.

即ち、脱窒循環槽7に取り込まれた直後の水には溶存酸素(「DO」)と硝酸が含まれているために、ORPは概ね+100以上であるが、脱窒循環槽7内で脱窒菌により脱窒が始まると、脱窒循環槽7内の脱窒菌によってDOが消費されてDOが低下していき、それに伴ってORPの低下が始まり、DOがゼロになるまで、ORPは急激に低下する。これが第1ステージであり、DOが完全に消費されたときのORPは概ね+50程度である。   That is, since the water immediately after being taken into the denitrification circulation tank 7 contains dissolved oxygen (“DO”) and nitric acid, the ORP is approximately +100 or more. When denitrification is started by nitrifying bacteria, DO is consumed by the denitrifying bacteria in the denitrification circulation tank 7 and the DO decreases, and the ORP starts to decrease accordingly, until the DO becomes zero. descend. This is the first stage, and the ORP when DO is completely consumed is approximately +50.

次に、第1ステージの終了によって水の中のDOが枯渇するために、脱窒菌は硝酸から酸素を奪って呼吸するようになり、これによって硝酸が減少を始める。そしてそれに伴って、硝酸が完全に消費されるまで、ORPは緩やかに減少していく。これが第2ステージであり、硝酸が完全に消費されたときのORPは概ね0以下である。   Next, since the DO in the water is depleted at the end of the first stage, the denitrifying bacteria take respiration by depriving oxygen from the nitric acid, thereby starting to decrease the nitric acid. Along with this, the ORP gradually decreases until the nitric acid is completely consumed. This is the second stage, and the ORP when the nitric acid is completely consumed is approximately 0 or less.

そして、硝酸が完全に消費された後は、ORPは再び急激に低下し始め、マイナス450程度で低下が止まり、その後は、硫酸の還元が始まり、これにより、猛毒の硫化水素が発生してくる。このORPの減少を示した波形が図4であり、図においてA地点が第1ステージ終了地点であり、概ねこのA地点においてDOが枯渇していき、Bの部分が、硝酸が消費されていく第2ステージであり、C地点が、第2ステージが終了して第3ステージが始まる概ねの地点である。   After the nitric acid is completely consumed, the ORP starts to decrease rapidly again, stops decreasing at about minus 450, and thereafter, the reduction of sulfuric acid starts, thereby generating highly toxic hydrogen sulfide. . FIG. 4 shows a waveform showing the decrease in the ORP. In the figure, the point A is the first stage end point, the DO is almost exhausted at the point A, and the portion B is consumed with nitric acid. In the second stage, the point C is an approximate point where the second stage ends and the third stage starts.

そこで、本実施例の自動脱窒システムでは、このように、脱窒循環槽7内に取り込まれた水槽2内の水のORPが脱窒循環槽7内の脱窒によって3つのステージを経て減少していくことに着目し、硝酸が完全に消費されたと思われるときのORPを一つの目安にして、酸化還元電位計による計測結果が、0以下になったときに、脱窒循環槽7内に取り込んだ水に含まれる硝酸が無くなったと判断し、そのときを循環の終了及び押出の開始の目安としている。   Therefore, in the automatic denitrification system of this embodiment, the ORP of the water in the water tank 2 taken into the denitrification circulation tank 7 is reduced through three stages by denitrification in the denitrification circulation tank 7 in this way. Focusing on the process, the ORP when it is assumed that the nitric acid is completely consumed is taken as one guideline, and when the measurement result by the oxidation-reduction potentiometer becomes 0 or less, the inside of the denitrification circulation tank 7 It is judged that the nitric acid contained in the water taken in is no longer present, and that time is used as a measure for the end of circulation and the start of extrusion.

このように、本実施例の自動脱窒システムでは、脱窒循環槽7内に酸化還元電位計25を配設して脱窒循環槽7内の水の酸化還元電位を計測し、その計測結果に基づいて、脱窒循環槽7内に取り込んだ水に含まれる硝酸の有無を判断することとしているため、硝酸イオンメーターを用いて脱窒循環槽内に取り込んだ水に含まれる硝酸濃度を検知していた従来の自動脱窒システムと異なり、閉鎖系水域内の水が海水の場合でも、硝酸濃度を正確、迅速に検知することが可能である。   Thus, in the automatic denitrification system of the present embodiment, the redox potential meter 25 is disposed in the denitrification circulation tank 7 to measure the redox potential of water in the denitrification circulation tank 7, and the measurement result Therefore, the presence of nitric acid contained in the water taken into the denitrification circulation tank 7 is judged, so the concentration of nitric acid contained in the water taken into the denitrification circulation tank is detected using a nitrate ion meter. Unlike conventional automatic denitrification systems, the concentration of nitric acid can be detected accurately and quickly even when the water in the closed system is seawater.

なお、前述のように、脱窒循環槽7内に取り込まれた水槽2内の水のORPは脱窒循環槽7内の脱窒によって、3つのステージを経て減少していくが、各ステージ終了時のORPの値は水質によって異なってくるため、ORPが示す波形の変曲点を捉えて硝酸の有無を判断してもよい。   As described above, the ORP of water in the water tank 2 taken into the denitrification circulation tank 7 decreases through three stages due to denitrification in the denitrification circulation tank 7, but each stage ends. Since the ORP value at the time varies depending on the water quality, the presence or absence of nitric acid may be determined by capturing the inflection point of the waveform indicated by the ORP.

即ち前述のように、第2ステージにおいて硝酸が減少を始めると、硝酸が完全に消費されるまでORPは緩やかに減少していき、硝酸が完全に消費された後のC地点以後はORPが再び急激に低下し始める。そのため、ORPが緩やかに減少した後に急激に減少したときを捉えて、硝酸が無くなったと判断してもよい。   That is, as described above, when nitric acid starts decreasing in the second stage, the ORP gradually decreases until the nitric acid is completely consumed, and after the point C after the nitric acid is completely consumed, the ORP is again reduced. It begins to decline rapidly. Therefore, it may be determined that the nitric acid has been exhausted by capturing the time when the ORP has decreased slowly and then decreased rapidly.

このように、本実施例の自動脱窒システムによれば、水槽内の水の脱窒を行うことが可能であるため、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合において、換水を行うことなく、閉鎖系水域内の硝酸濃度を低い値で一定に保つことが可能である。   As described above, according to the automatic denitrification system of the present embodiment, it is possible to denitrify water in the aquarium, so that seafood is raised in closed water areas such as aquaculture, sacrifice, and ornamental fish display. In this case, it is possible to keep the nitric acid concentration in the closed water area constant at a low value without performing water exchange.

そしてこのとき、本実施例の自動脱窒システムでは、水槽内の水の一部を脱窒循環槽に移動する水張工程と、脱窒循環槽内の水を循環する循環工程とを別々の工程としてバッチ処理しているために、脱窒循環槽の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   And at this time, in the automatic denitrification system of the present embodiment, the water filling step for moving a part of the water in the water tank to the denitrification circulation tank and the circulation step for circulating the water in the denitrification circulation tank are separated. Since batch processing is performed as a process, it is possible to quickly increase the denitrification activity of anaerobic bacteria in the denitrification circulation tank.

即ち、例えば溶存酸素を豊富に含む海水を脱窒循環槽に取り込んで水張りを行った場合には、脱窒循環槽内に酸素が入り込んでしまう。このとき、一般的に脱窒菌は、酸素に少しでもふれると死滅してしまう偏性嫌気性菌と異なり、通性嫌気細菌であるために酸素が存在していても死滅することはないが、活動が弱くなってしまう。そのため、例えば、水張りと循環とを並行して行った場合には、脱窒循環槽内に次々に酸素が供給されるため、脱窒菌の活性を高めることができず、有効な脱窒を行うことが困難になってしまう。   That is, for example, when seawater rich in dissolved oxygen is taken into a denitrification circulation tank and water filling is performed, oxygen enters the denitrification circulation tank. At this time, in general, denitrifying bacteria are facultative anaerobic bacteria that die when exposed to even a little oxygen, so they will not die even if oxygen is present. Activity becomes weak. Therefore, for example, when water filling and circulation are performed in parallel, oxygen is successively supplied into the denitrification circulation tank, so that the activity of the denitrifying bacteria cannot be increased and effective denitrification is performed. It becomes difficult.

しかしながら、本実施例では、水張工程と循環工程とを別々の工程としてバッチ処理しているため、循環工程においては、脱窒循環槽内に外部から酸素が入り込むことがないとともに、好気性細菌の酸素呼吸によって、水張りによって脱窒循環槽5内に取り込んだ水は、溶存酸素がすぐに枯渇し嫌気化するため、脱窒循環槽内の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   However, in this example, since the water filling process and the circulation process are batch-processed as separate processes, in the circulation process, oxygen does not enter the denitrification circulation tank from the outside, and aerobic bacteria The water taken into the denitrification circulation tank 5 by water filling due to oxygen respiration is immediately depleted of dissolved oxygen and becomes anaerobic, so that the denitrification activity of anaerobic bacteria in the denitrification circulation tank can be quickly increased. Is possible.

更に、本実施例では、仕切板によって、脱窒循環槽の内部を脱窒エリアと循環エリアに分割し、脱窒エリア内には、硝酸を含んだ水を通過させることにより水に含まれる硝酸を還元して窒素ガスにまで変換可能とした脱窒部を具備し、循環エリアには水中ポンプを備えて、水中ポンプを駆動することで、脱窒エリア内の水を、脱窒部を通過させつつ、脱窒エリアと循環エリア間で循環し、これにより、脱窒循環槽において、閉鎖系水域内の水の取り込みと取り込んだ水に含まれる硝酸の還元を行うこととしているため、閉鎖系水域内の水を取り込むための脱窒循環槽とこの脱窒循環槽内に取り込んだ水に含まれる硝酸を還元する脱窒塔を別個独立に備え、脱窒循環槽と脱窒塔を循環手段によって連通するとともに循環手段の経路に循環用ポンプを介在し、この循環用ポンプによって脱窒循環槽内の水を脱窒塔内に圧入していた従来の自動脱窒システムと異なり、循環が停止してしまうことを防止できる。   Furthermore, in the present embodiment, the partitioning plate divides the inside of the denitrification circulation tank into a denitrification area and a circulation area, and the nitric acid contained in the water by passing water containing nitric acid through the denitrification area. Is equipped with a denitrification unit that can convert the nitrogen gas into nitrogen gas, and the circulation area is equipped with a submersible pump. By driving the submersible pump, the water in the denitrification area passes through the denitrification unit. Circulated between the denitrification area and the circulation area, and in this way, in the denitrification circulation tank, water in the closed system water area is reduced and nitric acid contained in the taken-in water is reduced. A denitrification circulation tank for taking in water in the water area and a denitrification tower for reducing nitric acid contained in the water taken into the denitrification circulation tank are separately provided, and the denitrification circulation tank and the denitrification tower are circulated. And a circulation pump in the circulation means path. Intervening, unlike the conventional automatic denitrification system water was pressed into a de 窒塔 denitrification circulating tank by the circulation pump, the circulation can be prevented from stopping.

また、本実施例の自動脱窒システムでは、脱窒エリア内に、嫌気性細菌を着床させるための細菌着床部と、嫌気性細菌の栄養分としての生分解ポリマーとを有した脱窒部を具備しているため、カラム内に細菌着床部と生分解ポリマーを交互にサンドイッチ状に充填して脱窒塔を構成した従来の自動脱窒システムと異なり、嫌気性細菌が増えた場合でも、取り込んだ水が脱窒部を通過することに支障が生じることが無く、更に脱窒菌を確実に繁殖させることが可能である。   Further, in the automatic denitrification system of the present embodiment, a denitrification section having a bacteria implantation section for implanting anaerobic bacteria and a biodegradable polymer as a nutrient for anaerobic bacteria in the denitrification area. Unlike conventional automatic denitrification systems in which denitrification towers are constructed by alternately packing bacteria in the column and biodegradable polymers in a sandwich shape, even when anaerobic bacteria increase In addition, there is no hindrance to the taken-in water passing through the denitrification section, and it is possible to reliably propagate the denitrification bacteria.

更にまた、本実施例の自動脱窒システムでは、脱窒循環槽内に、脱窒循環槽内の水の酸化還元電位を計測するための酸化還元電位計を配設し、この酸化還元電位計の計測結果に基づいて、脱窒循環槽内に取り込んだ水に含まれる硝酸の有無を判断することとしているため、硝酸イオンメーターを用いて脱窒循環槽内に取り込んだ水に含まれる硝酸濃度を検知していた従来の自動脱窒システムと異なり、閉鎖系水域内の水が海水の場合でも、硝酸濃度を正確、迅速に検知することが可能である。   Furthermore, in the automatic denitrification system of the present embodiment, an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of water in the denitrification circulation tank is disposed in the denitrification circulation tank, and this oxidation-reduction potentiometer. The concentration of nitric acid contained in the water taken into the denitrification circulation tank using a nitrate ion meter is determined based on the measurement results of Unlike conventional automatic denitrification systems that have detected water, the concentration of nitric acid can be detected accurately and quickly even when the water in the closed water system is seawater.

本発明の自動脱窒システムによれば、換水を行うこと無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能にしているため、硝酸濃度が高くなる可能性のある水域の全般に適用可能である。   According to the automatic denitrification system of the present invention, it is possible to keep the nitric acid concentration in the closed water area constant at a low value without performing water exchange. Applicable in general.

1 自動脱窒システム
2 水槽
3 濾過装置
4 循環路
401 第1循環路
402 第2循環路
5 濾過用ポンプ
601 エアレーション
602 エアストーン
7 脱窒循環槽
8 仕切板
9 連通部
10 脱窒エリア
11 循環エリア
12 脱窒部
1201 細菌着床部
1202 生分解ポリマー
13 水張り手段
14 水張り用流路
15 二方弁
16 循環手段
17 水中ポンプ
18 循環用流路
18a 基端側循環用流路
18b 先端側循環用流路
19 三方弁
20 押出手段(押出用流路)
21 制御版
22 制御手段
23 フロートスイッチ
24 ヒーター
25 酸化還元電位計
2501 電極部
26 操作スイッチ
27 電源
DESCRIPTION OF SYMBOLS 1 Automatic denitrification system 2 Water tank 3 Filtration apparatus 4 Circulation path 401 1st circulation path 402 2nd circulation path 5 Filtration pump 601 Aeration 602 Air stone 7 Denitrification circulation tank 8 Partition plate 9 Communication part 10 Denitrification area 11 Circulation area DESCRIPTION OF SYMBOLS 12 Denitrification part 1201 Bacteria implantation part 1202 Biodegradation polymer 13 Water filling means 14 Water filling flow path 15 Two-way valve 16 Circulation means 17 Submersible pump 18 Circulation flow path 18a Base end side circulation flow path 18b Front end side circulation flow Channel 19 Three-way valve 20 Extrusion means (Extrusion channel)
21 Control plate 22 Control means 23 Float switch 24 Heater 25 Redox potentiometer 2501 Electrode part 26 Operation switch 27 Power supply

Claims (6)

閉鎖系水域の自動脱窒システムであって、
閉鎖系水域(2)内の水を取り込むとともに、取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒循環槽(7)と、
閉鎖系水域(2)内の水を前記脱窒循環槽(7)に取り込むための水張り手段(13)と、
前記脱窒循環槽(7)内の水を循環するための循環手段(16)と、
前記脱窒循環槽(7)内の水を前記閉鎖系水域(2)に戻すための押出手段(20)と、
前記脱窒循環槽(7)内に配設された、前記脱窒循環槽(7)内の水位を検知するための水位検知手段(23)と、
前記脱窒循環槽(7)内に配設されたヒーター(24)と、
前記脱窒循環槽(7)内に配設された、前記脱窒循環槽(7)内の水の酸化還元電位を計測するための酸化還元電位計(25)と、
システム全体の作動を制御するための制御手段(22)と、を具備し、
前記脱窒循環槽(7)は、
その内部を、仕切板(8)によって、閉鎖系水域内(2)の水を取り込むとともに取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒エリア(10)と、該脱窒エリア(10)を通過した水を再び脱窒エリア(10)に循環するための循環エリア(11)とに分割し、
前記脱窒エリア(10)内には、嫌気性細菌を着床させるための細菌着床部(1201)と、前記嫌気性細菌の栄養分としての生分解ポリマー(1202)と、を有して、硝酸を含んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能とした脱窒部(12)を具備し、
前記仕切板(8)は、下部部分において、前記脱窒エリア(10)と循環エリア(11)が互いに連通する連通部(9)を有して、前記脱窒部(12)を通過した水を前記循環エリア(11)へ移動可能とし、
前記水張り手段(13)によって前記脱窒循環槽(7)の脱窒エリア(10)内に閉鎖系水域(2)の水を取り込み、
前記循環手段(16)によって、前記脱窒エリア(10)内に取り込んだ水を、脱窒部(12)を通過させながら循環エリア(11)と脱窒エリア(10)間で循環することで、前記脱窒エリア(10)内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換し、
前記押出手段(20)によって、硝酸が含まれていない前記脱窒循環槽(7)内の水を閉鎖系水域(2)に戻す、ことを可能とした閉鎖系水域の自動脱窒システム。
An automatic denitrification system for closed water areas,
A denitrification circulation tank (7) for taking in the water in the closed water area (2) and reducing nitric acid contained in the taken-in water to convert it into nitrogen gas;
Water filling means (13) for taking the water in the closed water area (2) into the denitrification circulation tank (7);
A circulation means (16) for circulating water in the denitrification circulation tank (7);
Extrusion means (20) for returning the water in the denitrification circulation tank (7) to the closed water area (2);
A water level detection means (23) disposed in the denitrification circulation tank (7) for detecting the water level in the denitrification circulation tank (7);
A heater (24) disposed in the denitrification circulation tank (7);
An oxidation-reduction potentiometer (25) disposed in the denitrification circulation tank (7) for measuring the oxidation-reduction potential of water in the denitrification circulation tank (7);
Control means (22) for controlling the operation of the entire system,
The denitrification circulation tank (7)
The denitrification area (10) for reducing the inside of the closed system water area (2) by the partition plate (8) and reducing the nitric acid contained in the taken water into nitrogen gas by the partition plate (8); The water that has passed through the denitrification area (10) is divided again into a circulation area (11) for circulation to the denitrification area (10),
In the denitrification area (10), there are a bacteria implantation part (1201) for implanting anaerobic bacteria, and a biodegradable polymer (1202) as a nutrient of the anaerobic bacteria, The denitrification part (12) which reduced the nitric acid contained in water by making the water containing nitric acid pass, and was able to convert it into nitrogen gas was provided,
The partition plate (8) has a communication part (9) in which the denitrification area (10) and the circulation area (11) communicate with each other in the lower part, and the water that has passed through the denitrification part (12). Can be moved to the circulation area (11),
The water filling means (13) takes in water in the closed water system (2) into the denitrification area (10) of the denitrification circulation tank (7),
By circulating the water taken into the denitrification area (10) by the circulation means (16) between the circulation area (11) and the denitrification area (10) while passing through the denitrification section (12). The nitric acid contained in the water taken into the denitrification area (10) is reduced and converted to nitrogen gas,
An automatic denitrification system for a closed water system that enables the water in the denitrification circulation tank (7) not containing nitric acid to be returned to the closed water system (2) by the extrusion means (20).
前記水張り手段(13)、循環手段(16)、及び押出手段(20)の作動を前記制御手段(22)により自動制御することとしたことを特徴とする請求項1に記載の閉鎖系水域の自動脱窒システム。   The operation of the water filling means (13), the circulation means (16), and the pushing means (20) is automatically controlled by the control means (22). Automatic denitrification system. 前記制御手段(22)の制御により、前記水位検知手段(23)が脱窒循環槽(7)内の水位が予め設定した所定値まで低下したことを検知したときに、前記水張り手段(13)によって前記脱窒循環槽(7)内に閉鎖系水域(2)の水を取り込むことを特徴とする請求項2に記載の閉鎖系水域の自動脱窒システム。   When the control means (22) controls that the water level detection means (23) detects that the water level in the denitrification circulation tank (7) has dropped to a preset value, the water filling means (13) The automatic denitrification system for closed system water areas according to claim 2, wherein water in the closed system water area (2) is taken into the denitrification circulation tank (7) by means of the above. 前記制御手段(22)の制御により、前記酸化還元電位計(25)による前記脱窒循環槽(7)内の水の酸化還元電位の値に基づいて、
前記脱窒循環槽(7)内の水に硝酸が存在していると判断しているときは、前記循環手段(16)によって、前記脱窒エリア(10)内の水を、脱窒部(12)を通過させながら循環エリア(11)と脱窒エリア(10)間で循環し、
前記脱窒循環槽(7)内の水に硝酸が存在していないと判断したときは、前記押出手段(20)によって、前記脱窒循環槽(7)内の水を閉鎖系水域(2)に戻す、ことを特徴とする請求項2に記載の閉鎖系水域の自動脱窒システム。
Based on the control of the control means (22), based on the redox potential of water in the denitrification circulation tank (7) by the redox potentiometer (25),
When it is determined that nitric acid is present in the water in the denitrification circulation tank (7), the circulation means (16) causes the water in the denitrification area (10) to be denitrified ( 12) circulate between the circulation area (11) and the denitrification area (10) while passing through
When it is determined that nitric acid is not present in the water in the denitrification circulation tank (7), the extrusion means (20) causes the water in the denitrification circulation tank (7) to be closed in the closed water area (2). The automatic denitrification system for closed water bodies according to claim 2, wherein
前記循環手段(16)は、前記脱窒エリア(10)内において前記脱窒部(12)を通過した水を再び脱窒エリア(10)に戻すための、
前記循環エリア(11)内に配設された水中ポンプ(17)と、
該水中ポンプ(17)に基端部が連結されるとともに先端部が前記脱窒エリア(10)に連通し、その経路の途中に三方弁(19)が介在された循環用流路(18)と、を具備し、
前記水張り手段(13)は、基端が前記閉鎖系水域(2)に連通するとともに先端部が前記脱窒エリア(10)に連通した水張り用流路(14)と、該水張り用流路(14)を介して前記閉鎖系水域(2)の水を前記脱窒エリア(10)に取り込むための取込み用ポンプ(5)と、を具備し、
前記押出手段(20)は、先端が前記閉鎖系水域(2)に連通し、基端が前記三方弁(19)を介して前記循環用流路(18)に連結した押出用流路(20)を具備し、
前記脱窒循環槽(7)内に閉鎖系水域の水を取り込むときは、前記水張り用流路(13)と取込み用ポンプ(5)を介して閉鎖系水域(2)内の水を脱窒循環槽(7)内に取り込み、
前記脱窒循環槽(7)内の水を循環させるときは、前記三方弁(19)の切り替えにより、前記循環用流路(18)を介して循環エリア(11)と脱窒エリア(10)を連通し、脱窒部(12)を通過させながら、水中ポンプ(17)及び循環用流路(18)を介して脱窒循環槽(7)内の水を循環エリア(11)と脱窒エリア(10)間で循環し、
前記脱窒循環槽(7)内の水を閉鎖系水域(2)に戻すときには、前記三方弁(19)の切り替えにより、前記循環用流路(18)における基端部から三方弁(19)までの部分と前記押出用流路(20)とを連通して、水中ポンプ(17)、前記循環用流路(18)における基端部から三方弁(19)までの部分、及び前記押出用流路(20)を介して前記脱窒循環槽(7)内の水を閉鎖系水域(2)に押し出す、ことを特徴とする請求項1乃至請求項4のいずれかに記載の閉鎖系水域の自動脱窒システム。
The circulation means (16) is for returning the water that has passed through the denitrification section (12) in the denitrification area (10) to the denitrification area (10) again.
A submersible pump (17) disposed in the circulation area (11);
A circulation channel (18) having a base end connected to the submersible pump (17) and a tip communicating with the denitrification area (10), and a three-way valve (19) interposed in the path. And comprising
The water filling means (13) includes a water filling channel (14) having a proximal end communicating with the closed water body (2) and a distal end communicating with the denitrification area (10), and the water filling channel ( 14) a pump for intake (5) for taking water from the closed water area (2) into the denitrification area (10) via 14),
The extrusion means (20) has a distal end communicating with the closed water body (2) and a proximal end connected to the circulation passage (18) via the three-way valve (19). )
When the water in the closed system water area is taken into the denitrification circulation tank (7), the water in the closed water area (2) is denitrified through the water filling channel (13) and the intake pump (5). Into the circulation tank (7),
When circulating the water in the denitrification circulation tank (7), the circulation area (11) and the denitrification area (10) are switched via the circulation channel (18) by switching the three-way valve (19). The water in the denitrification circulation tank (7) is denitrified with the circulation area (11) via the submersible pump (17) and the circulation channel (18) while passing through the denitrification section (12). Circulate between areas (10)
When returning the water in the denitrification circulation tank (7) to the closed system water area (2), the three-way valve (19) is switched from the proximal end of the circulation channel (18) by switching the three-way valve (19). To the extrusion flow path (20), the submersible pump (17), the part from the proximal end to the three-way valve (19) in the circulation flow path (18), and the extrusion flow The closed system water area according to any one of claims 1 to 4, wherein water in the denitrification circulation tank (7) is pushed out to a closed system water area (2) through a flow path (20). Automatic denitrification system.
前記脱窒部(12)に備えた生分解ポリマー(1202)が、植物油由来のポリマーであることを特徴とする請求項1乃至請求項5のいずれかに記載の閉鎖系水域の自動脱窒システム。   The automatic denitrification system for a closed water system according to any one of claims 1 to 5, wherein the biodegradable polymer (1202) provided in the denitrification section (12) is a polymer derived from vegetable oil. .
JP2010223616A 2010-10-01 2010-10-01 Automatic denitrification system for closed waters Active JP5198532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010223616A JP5198532B2 (en) 2010-10-01 2010-10-01 Automatic denitrification system for closed waters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010223616A JP5198532B2 (en) 2010-10-01 2010-10-01 Automatic denitrification system for closed waters

Publications (2)

Publication Number Publication Date
JP2012075384A true JP2012075384A (en) 2012-04-19
JP5198532B2 JP5198532B2 (en) 2013-05-15

Family

ID=46236411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010223616A Active JP5198532B2 (en) 2010-10-01 2010-10-01 Automatic denitrification system for closed waters

Country Status (1)

Country Link
JP (1) JP5198532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084691A (en) * 2013-10-29 2015-05-07 株式会社大洋水研 Filtration system of closed system water area and filtration method of closed system water area using the same
CN107568138A (en) * 2017-09-12 2018-01-12 胡鑫海 A kind of preservation of fishery is with changing water air interchanger
KR20210059175A (en) * 2019-11-15 2021-05-25 에프엔에스 주식회사 Grid tank module and Live fish transport vehicle with grid tank module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284000U (en) * 1975-12-19 1977-06-22
JPS5374000U (en) * 1976-11-24 1978-06-20
JPH0647397A (en) * 1992-07-17 1994-02-22 Ebara Infilco Co Ltd Biological nitrifying and denitrifing apparatus
JPH0938683A (en) * 1995-07-27 1997-02-10 Hitachi Ltd Biological water treating device
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2010088307A (en) * 2008-10-03 2010-04-22 Taiyo Suiken:Kk System for automatic denitrification of closed water area

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284000U (en) * 1975-12-19 1977-06-22
JPS5374000U (en) * 1976-11-24 1978-06-20
JPH0647397A (en) * 1992-07-17 1994-02-22 Ebara Infilco Co Ltd Biological nitrifying and denitrifing apparatus
JPH0938683A (en) * 1995-07-27 1997-02-10 Hitachi Ltd Biological water treating device
JP2003103294A (en) * 2001-09-28 2003-04-08 Aquas Corp Method and apparatus for removing nitrate nitrogen in water
JP2010088307A (en) * 2008-10-03 2010-04-22 Taiyo Suiken:Kk System for automatic denitrification of closed water area

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084691A (en) * 2013-10-29 2015-05-07 株式会社大洋水研 Filtration system of closed system water area and filtration method of closed system water area using the same
CN107568138A (en) * 2017-09-12 2018-01-12 胡鑫海 A kind of preservation of fishery is with changing water air interchanger
CN107568138B (en) * 2017-09-12 2020-12-01 棠香铁山(重庆)智慧农业科技有限公司 Water-changing and air-changing device for aquatic product preservation
KR20210059175A (en) * 2019-11-15 2021-05-25 에프엔에스 주식회사 Grid tank module and Live fish transport vehicle with grid tank module
KR102306409B1 (en) 2019-11-15 2021-09-30 에프엔에스 주식회사 Grid tank module and Live fish transport vehicle with grid tank module

Also Published As

Publication number Publication date
JP5198532B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
US20110039321A1 (en) Methods for the conversion of fish waste from aquaculture systems to methane via a modified uasb reactor
CN108430216B (en) Denitrification device and aquatic organism feeding system
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP4602446B2 (en) Automatic denitrification system for closed waters
CN106455527A (en) Circulating fish culture method and circulating fish culture device
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP5198532B2 (en) Automatic denitrification system for closed waters
KR101883172B1 (en) Biofloc aquaculture system specialized for fish
JP5115252B2 (en) Activated sludge treatment method and activated sludge treatment apparatus for wastewater
TWI487674B (en) Biological purifier for water to be treated, biological purifying system, and method of biological purifying
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
CN103739071B (en) Micro-polluted surface water denitrifying method
Uemoto et al. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station
US20140346125A1 (en) Desalting Salty Sludge System and Method
JP6742128B2 (en) Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method
JP6369245B2 (en) Sludge concentration method
CN105906058A (en) Anoxic denitriding biofilter and using method thereof
KR101581291B1 (en) Artificial light installed biological wastewater treatment process
JP6219126B2 (en) Filtration system for closed water area and method for filtering closed water area using the same
JP6384168B2 (en) Sludge treatment method
JP2015116554A (en) Automated denitrification system
JPH11128987A (en) Microbe reaction tank and wastewater treatment
JP2011139982A (en) Method and apparatus for treating nitrogen-containing water biologically
JP5686465B2 (en) Water treatment method and water treatment system using the same
KR102200986B1 (en) Apparatus for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250