JP2012074768A - Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method - Google Patents

Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method Download PDF

Info

Publication number
JP2012074768A
JP2012074768A JP2010215922A JP2010215922A JP2012074768A JP 2012074768 A JP2012074768 A JP 2012074768A JP 2010215922 A JP2010215922 A JP 2010215922A JP 2010215922 A JP2010215922 A JP 2010215922A JP 2012074768 A JP2012074768 A JP 2012074768A
Authority
JP
Japan
Prior art keywords
signal
polarization
replica
processing target
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010215922A
Other languages
Japanese (ja)
Other versions
JP5493084B2 (en
Inventor
Atsushi Masuno
淳 増野
Junichi Abe
阿部  順一
Takatoshi Sugiyama
隆利 杉山
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
ATR Advanced Telecommunications Research Institute International
Original Assignee
Nippon Telegraph and Telephone Corp
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, ATR Advanced Telecommunications Research Institute International filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010215922A priority Critical patent/JP5493084B2/en
Publication of JP2012074768A publication Critical patent/JP2012074768A/en
Application granted granted Critical
Publication of JP5493084B2 publication Critical patent/JP5493084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To turn a polarization multiplex number of orthogonal polarization multiplex to be equal to or larger than 3.SOLUTION: A transmitter obtains mapping components to an H polarization axis and a V polarization axis of P_θpolarization signals, and transmits multiplex signals of V polarization signals and the mapping component to the V polarization axis of the P_θpolarization signals by a V polarization antenna and multiplex signals of H polarization signals and the mapping component to the H polarization axis of the P_θpolarization signals by an H polarization antenna by the same frequency. A receiver demodulates and decodes the V polarization signals from the multiplex signals of V polarization and removes replica V polarization signals from the multiplex signals of the V polarization in the case that the signal power of the multiplex signals of the V polarization is higher than that of the multiplex signals of H polarization. When the signal power of the multiplex signals of the V polarization after replica removal is higher than that of the multiplex signals of the H polarization, the P_θpolarization signals are demodulated and decoded from the mapping components for which the multiplex signals of the V polarization after the replica removal are projected to a P_θpolarization axis, and the mapping components to the V polarization axis and the H polarization axis of the P_θpolarization signals are respectively removed from the multiplex signals of the V polarization after the replica removal and the multiplex signals of the H polarization.

Description

本発明は、偏波多重伝送システム、受信装置、偏波多重伝送方法、及び、受信方法に関する。   The present invention relates to a polarization multiplexing transmission system, a receiving apparatus, a polarization multiplexing transmission method, and a reception method.

近年、無線通信システムの普及によりマイクロ波帯を中心として周波数資源が枯渇しており、高い周波数利用効率を達成する伝送技術が求められている。直交偏波多重技術は、アンテナから放射される電波の波面方向に着目し、互いに直交する波面をもつ独立した信号を同一周波数で伝送する。この直交偏波多重技術を適用すると、固定無線通信等で使用される直線偏波の場合、垂直(V)偏波と水平(H)偏波を用いたVH偏波多重を実現できる。この場合、直交偏波多重技術を適用しない場合と比して、周波数利用効率は二倍となる(例えば、非特許文献1参照)。VH偏波多重信号は、例えば、2つの直線状放射素子を十字型に直交配置することにより送受信することができる。   In recent years, with the spread of wireless communication systems, frequency resources have been depleted mainly in the microwave band, and transmission techniques that achieve high frequency utilization efficiency are required. The orthogonal polarization multiplexing technology pays attention to the wavefront direction of the radio wave radiated from the antenna, and transmits independent signals having wavefronts orthogonal to each other at the same frequency. When this orthogonal polarization multiplexing technique is applied, VH polarization multiplexing using vertical (V) polarization and horizontal (H) polarization can be realized in the case of linear polarization used in fixed wireless communication or the like. In this case, the frequency utilization efficiency is doubled compared to the case where the orthogonal polarization multiplexing technique is not applied (see, for example, Non-Patent Document 1). The VH polarization multiplexed signal can be transmitted / received by, for example, arranging two linear radiating elements orthogonally in a cross shape.

Yamashita, F.; Kobayashi, K.; Ueba, M.; Takeda, Y.; Ando, K., “Variable Polarization/Frequency Division Multiplexing (VPFDM) for Satellite Communications,” IEEE VTC2006-Fall, pp.1-5Yamashita, F .; Kobayashi, K .; Ueba, M .; Takeda, Y .; Ando, K., “Variable Polarization / Frequency Division Multiplexing (VPFDM) for Satellite Communications,” IEEE VTC2006-Fall, pp.1-5

上述したように、アンテナの構成上、直交関係となるのは二軸までであり、直交偏波多重の偏波多重数は2が上限となっていた。同一偏波面上で信号多重数を増加させ、高い周波数利用効率を達成する伝送技術として受信レプリカ信号生成を伴う干渉補償を用いる技術があるが、直交成分に非直交偏波成分を多重させた場合にそのまま適用することはできない。   As described above, due to the antenna configuration, the orthogonal relationship is limited to two axes, and the number of orthogonal multiplexing multiplexing is 2 is the upper limit. There is a technique that uses interference compensation with reception replica signal generation as a transmission technique that increases the number of multiplexed signals on the same polarization plane and achieves high frequency utilization efficiency, but when non-orthogonal polarization components are multiplexed on orthogonal components It cannot be applied as it is.

本発明は、このような事情を考慮してなされたものであり、その目的は、直交偏波多重の偏波多重数を3以上とすることができる偏波多重伝送システム、受信装置、偏波多重伝送方法、及び、受信方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a polarization multiplexing transmission system, a receiving apparatus, and a polarization device capable of increasing the number of polarization multiplexing of orthogonal polarization multiplexing to 3 or more. It is to provide a multiplex transmission method and a reception method.

上述した課題を解決するために、本発明は、第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう送信装置及び受信装置からなる偏波多重伝送システムであって、前記送信装置は、前記非直交偏波信号を前記第1の偏波へ投影して第1写像成分を生成し、前記非直交偏波信号を前記第2の偏波へ投影して第2写像成分を生成する投影部と、前記第1偏波信号と、前記投影部により生成された第1写像成分とを同じ周波数で送信する第1偏波送信部と、前記第2偏波信号と、前記投影部により生成された第2写像成分とを前記同じ周波数で送信する第2偏波送信部とを備え、前記受信装置は、前記第1偏波信号及び前記第1写像成分が多重された第1の多重信号を受信する第1偏波受信部と、前記第2偏波信号及び前記第2写像成分が多重された第2の多重信号を受信する第2偏波受信部と、前記第1偏波受信部が受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2偏波受信部が受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較部と、前記比較部が前記第1の処理対象信号の品質が高いと判断した場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較部が前記第2の処理対象信号の品質が高いと判断した場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号部と、前記復調復号部により復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成部と、前記レプリカ信号生成部が前記非直交偏波信号のレプリカ信号を生成した場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影部と、前記復調復号部により前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力し、前記復調復号部により前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力し、前記復調復号部により前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影部が生成した前記第1レプリカ写像成分を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力するとともに、前記第2の処理対象信号から前記レプリカ信号投影部が生成した前記第2レプリカ写像成分を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力する減算部とを備える、ことを特徴とする偏波多重伝送システムである。   In order to solve the above-described problem, the present invention provides a first polarization signal using a first polarization and a second polarization signal using a second polarization orthogonal to the first polarization. And a polarization multiplexing transmission system comprising a transmission device and a reception device for multiplexing and transmitting non-orthogonal polarization signals using non-orthogonal polarization with the first polarization and the second polarization. The transmitting apparatus projects the non-orthogonal polarization signal onto the first polarization to generate a first mapping component, and projects the non-orthogonal polarization signal onto the second polarization. A projection unit that generates a second mapping component; a first polarization transmission unit that transmits the first polarization signal; and the first mapping component generated by the projection unit at the same frequency; and the second polarization A second polarization transmission unit that transmits a signal and the second mapping component generated by the projection unit at the same frequency, and the reception device includes: A first polarization receiver for receiving a first multiplexed signal in which the first polarization signal and the first mapping component are multiplexed, and a second in which the second polarization signal and the second mapping component are multiplexed. A first polarization signal received by the first polarization receiver, or a signal obtained by removing a replica signal from the first multiplexed signal. And the second multiplexed signal received by the second polarization receiver, or the second processed signal, which is a signal obtained by removing a replica signal from the second multiplexed signal. When the comparison unit and the comparison unit determine that the quality of the first processing target signal is high, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal. The comparison unit determines that the quality of the second processing target signal is high. A demodulation decoding unit that demodulates and decodes the second polarization signal or the non-orthogonal polarization signal from the second processing target signal, the first polarization signal demodulated and decoded by the demodulation decoding unit, A non-orthogonal polarization signal, or a replica signal generation unit that generates a replica signal of the non-orthogonal polarization signal and the replica signal generation unit generates a replica signal of the non-orthogonal polarization signal. A first replica mapping component that is a projection conversion of the replica signal of the signal to the first polarization, and a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization. When the first polarization signal is demodulated and decoded by the replica signal projection unit that generates two replica mapping components and the demodulation and decoding unit, the first signal generated by the replica signal generation unit from the first processing target signal Polarization signal When the new first processing target signal generated by removing the replica signal of the signal is output to the comparison unit, and the second polarization signal is demodulated and decoded by the demodulation and decoding unit, the second processing is performed. The new second processing target signal generated by removing the replica signal of the second polarization signal generated by the replica signal generation unit from the target signal is output to the comparison unit, and the non-demodulation decoding unit When the orthogonal polarization signal is demodulated and decoded, the new first processing target signal generated by removing the first replica mapping component generated by the replica signal projection unit from the first processing target signal is compared with the first processing target signal. And outputting a new second processing target signal generated by removing the second replica mapping component generated by the replica signal projection unit from the second processing target signal to the comparison unit. And a calculation unit, a polarization multiplexing transmission system, characterized in that.

また本発明は、上述した偏波多重伝送システムであって、前記復調復号部は、前記第1の処理対象信号または前記第2の処理対象信号を前記非直交の偏波へ投影した信号から前記非直交偏波信号を復調復号することを特徴とする。   Further, the present invention is the polarization multiplexing transmission system described above, wherein the demodulation and decoding unit is configured to output the first processing target signal or the second processing target signal from the signal projected on the non-orthogonal polarization. The non-orthogonal polarization signal is demodulated and decoded.

また本発明は、上述した偏波多重伝送システムであって、前記第1の処理対象信号、前記第2の処理対象信号、あるいは、前記比較部により品質が高いと判断された前記第1の処理対象信号または前記第2の処理対象信号を前記非直交の偏波へ投影した信号から伝送路推定を行う伝送路推定部と、前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号に前記伝送路推定部が前記第1の処理対象信号から推定した伝送路推定値を作用させて前記減算部に出力し、前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号に前記伝送路推定部が前記第2の処理対象信号から推定した伝送路推定値を作用させて前記減算部に出力し、前記レプリカ信号生成部が生成した前記非直交偏波信号のレプリカ信号に、前記伝送路推定部が前記非直交の偏波へ投影した信号から推定した伝送路推定値を作用させて前記レプリカ信号投影部に出力する振幅位相調整部とをさらに備える、ことを特徴とする。   Further, the present invention is the polarization multiplexing transmission system described above, wherein the first process, the second process target signal, or the first process determined to be high by the comparison unit. A transmission path estimation unit that performs transmission path estimation from a target signal or a signal obtained by projecting the second processing target signal onto the non-orthogonal polarization, and a replica signal of the first polarization signal generated by the replica signal generation unit The transmission path estimation unit operates the transmission path estimation value estimated from the first processing target signal and outputs it to the subtraction unit, and the replica signal generation unit generates the replica signal of the second polarization signal generated by the replica signal generation unit. The transmission path estimation unit operates the transmission path estimation value estimated from the second processing target signal and outputs it to the subtraction unit, and the replica signal generation unit generates a replica signal of the non-orthogonal polarization signal, The transmission path estimation Parts further comprises an amplitude phase adjusting unit for outputting the said replica signal projection unit by the action of the transmission path estimation value estimated from the projection signal to the polarization of the non-orthogonal, and wherein the.

また本発明は、上述した偏波多重伝送システムであって、前記比較部は、信号電力または信号対干渉雑音比により信号の品質を判断することを特徴とする。   In addition, the present invention is the polarization multiplexing transmission system described above, wherein the comparison unit determines signal quality based on signal power or a signal-to-interference noise ratio.

また本発明は、第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう偏波多重伝送システムにおける受信装置であって、前記第1偏波信号と、前記第1の偏波へ前記非直交偏波信号を投影した第1写像成分とが多重された第1の多重信号を受信する第1偏波受信部と、前記第2偏波信号と、前記第2の偏波へ前記非直交偏波信号を投影した第2写像成分とが多重された第2の多重信号を受信する第2偏波受信部と、前記第1偏波受信部が受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2偏波受信部が受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較部と、前記比較部が前記第1の処理対象信号の品質が高いと判断した場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較部が前記第2の処理対象信号の品質が高いと判断した場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号部と、前記復調復号部により復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成部と、前記レプリカ信号生成部が前記非直交偏波信号のレプリカ信号を生成した場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影部と、前記復調復号部により前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力し、前記復調復号部により前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力し、前記復調復号部により前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影部が生成した前記第1レプリカ写像成分を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力するとともに、前記第2の処理対象信号から前記レプリカ信号投影部が生成した前記第2レプリカ写像成分を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力する減算部と、を備えることを特徴とする受信装置である。   The present invention also provides the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A receiving device in a polarization multiplexing transmission system that multiplexes and transmits a wave and a non-orthogonal polarization signal that uses a non-orthogonal polarization with the second polarization, the first polarization signal, A first polarization reception unit that receives a first multiplexed signal in which a first mapping component obtained by projecting the non-orthogonal polarization signal onto a first polarization is multiplexed; the second polarization signal; A second polarization receiving unit that receives a second multiplexed signal in which the second mapping component obtained by projecting the non-orthogonal polarization signal onto two polarizations is received, and the first polarization receiving unit receives the second multiplexed signal. The first multiplexed signal or the first signal to be processed, which is a signal obtained by removing the replica signal from the first multiplexed signal, and the second polarization receiving unit receive the first multiplexed signal. A comparison unit that compares the second multiplexed signal or a quality of a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal, and the comparison unit is the first processing target. When it is determined that the quality of the signal is high, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the comparison unit determines that the quality of the second processing target signal is When it is determined that the signal is high, a demodulation decoding unit that demodulates and decodes the second polarization signal or the non-orthogonal polarization signal from the second processing target signal, and the first polarization that is demodulated and decoded by the demodulation decoding unit A replica signal generating unit that generates a signal, the second polarization signal, or a replica signal of the non-orthogonal polarization signal, and the replica signal generation unit generates a replica signal of the non-orthogonal polarization signal, Non-orthogonal polarization signal rep A second replica that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization, and a first replica mapping component that is a projection conversion of the signal to the first polarization. When the first polarization signal is demodulated and decoded by the replica signal projection unit that generates the mapping component and the demodulation and decoding unit, the first polarization generated by the replica signal generation unit from the first processing target signal When the new first processing target signal generated by removing the replica signal is output to the comparison unit, and the second polarization signal is demodulated and decoded by the demodulation and decoding unit, the second processing is performed. The new second processing target signal generated by removing the replica signal of the second polarization signal generated by the replica signal generation unit from the target signal is output to the comparison unit, and the non-demodulation decoding unit Orthogonal polarization signal recovery When the decoding is performed, the first processing target signal generated by removing the first replica mapping component generated by the replica signal projection unit from the first processing target signal is output to the comparison unit. And a subtractor for outputting the second second processing target signal generated by removing the second replica mapping component generated by the replica signal projection unit from the second processing target signal to the comparison unit; It is provided with the receiving apparatus characterized by the above-mentioned.

また本発明は、第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう送信装置及び受信装置からなる偏波多重伝送システムの偏波多重伝送方法であって、前記送信装置が、前記非直交偏波信号を前記第1の偏波へ投影して第1写像成分を生成し、前記非直交偏波信号を前記第2の偏波へ投影して第2写像成分を生成する投影過程と、前記第1偏波信号と、前記投影過程において生成された第1写像成分とを同じ周波数により送信する第1偏波送信過程と、前記第2偏波信号と、前記投影過程において生成された第2写像成分とを前記同じ周波数で送信する第2偏波送信過程と、前記受信装置が、前記第1偏波信号及び前記第1写像成分が多重された第1の多重信号を受信する第1偏波受信過程と、前記第2偏波信号及び前記第2写像成分が多重された第2の多重信号を受信する第2偏波受信過程と、前記第1の偏波受信過程において受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2の偏波受信過程において受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較過程と、前記比較過程において前記第1の処理対象信号の品質が高いと判断された場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較過程において前記第2の処理対象信号の品質が高いと判断された場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号過程と、前記復調復号過程において復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成過程と、前記レプリカ信号生成過程において前記非直交偏波信号のレプリカ信号が生成された場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影過程と、前記復調復号過程において前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成過程において生成された前記第1偏波信号のレプリカ信号を除去して新たな前記第1の処理対象信号を生成し、前記復調復号過程において前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成過程において生成された前記第2偏波信号のレプリカ信号を除去して新たな前記第2の処理対象信号を生成し、前記復調復号過程において前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影過程において生成された前記第1レプリカ写像成分を除去して新たな前記第1の処理対象信号を生成するとともに、前記第2の処理対象信号から前記レプリカ信号投影過程において生成された前記第2レプリカ写像成分を除去して新たな前記第2の処理対象信号を生成する減算過程とを有し、前記減算過程の後、前記比較過程からの処理を繰り返す、ことを特徴とする偏波多重伝送方法である。   The present invention also provides the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A polarization multiplexing transmission method for a polarization multiplexing transmission system comprising a transmitter and a receiver for multiplexing and transmitting a wave and a non-orthogonal polarization signal using a non-orthogonal polarization with the second polarization, The transmitting apparatus projects the non-orthogonal polarization signal onto the first polarization to generate a first mapping component, and projects the non-orthogonal polarization signal onto the second polarization. A projection process for generating a mapping component; a first polarization transmission process for transmitting the first polarization signal and the first mapping component generated in the projection process at the same frequency; and the second polarization signal; A second polarization transmission process for transmitting the second mapping component generated in the projection process at the same frequency, and the receiver A first polarization receiving process for receiving the first multiplexed signal in which the first polarization signal and the first mapping component are multiplexed, and a second in which the second polarization signal and the second mapping component are multiplexed. A second polarization receiving process for receiving two multiplexed signals and the first multiplexed signal received in the first polarization receiving process or a signal obtained by removing a replica signal from the first multiplexed signal. A first signal to be processed and a second signal to be processed which is a signal obtained by removing a replica signal from the second multiplexed signal received in the second polarization reception process or the second multiplexed signal; A comparison process for comparing the quality of the first processing target signal, and the first processing target signal from the first polarization signal or the non-orthogonal polarization when it is determined that the quality of the first processing target signal is high The signal is demodulated and decoded. When the quality of the second processing target signal is determined to be high, a demodulation decoding process for demodulating and decoding the second polarization signal or the non-orthogonal polarization signal from the second processing target signal, and the demodulation A replica signal generation process for generating a replica signal of the first polarization signal, the second polarization signal, or the non-orthogonal polarization signal demodulated and decoded in the decoding process, and the non-orthogonal signal in the replica signal generation process When a replica signal of a polarization signal is generated, a first replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization is generated, and the non-orthogonal polarization signal A replica signal projection process for generating a second replica mapping component, which is a projection conversion of the replica signal to the second polarization, and a case where the first polarization signal is demodulated and decoded in the demodulation and decoding process Removing the replica signal of the first polarization signal generated in the replica signal generation process from the first process target signal to generate a new first process target signal, and in the demodulation and decoding process, When the second polarization signal is demodulated and decoded, the replica signal of the second polarization signal generated in the replica signal generation process is removed from the second processing target signal to obtain a new second processing target. When a signal is generated and the non-orthogonal polarization signal is demodulated and decoded in the demodulation and decoding process, the first replica mapping component generated in the replica signal projecting process is removed from the first processing target signal and a new signal is generated. And generating the first processing target signal and removing the second replica mapping component generated in the replica signal projection process from the second processing target signal. And a subtraction process of generating a new second processing signal Te, after the subtraction process, the process is repeated from the comparison step, it is polarization multiplexing transmission method according to claim.

また本発明は、第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう偏波多重伝送システムにおける受信装置の受信方法であって、前記第1偏波信号と、前記第1の偏波へ前記非直交偏波信号を投影した第1写像成分とが多重された第1の多重信号を受信する第1偏波受信過程と、
前記第2偏波信号と、前記第2の偏波へ前記非直交偏波信号を投影した第2写像成分とが多重された第2の多重信号を受信する第2偏波受信過程と、前記第1の偏波受信過程において受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2の偏波受信過程において受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較過程と、前記比較過程において前記第1の処理対象信号の品質が高いと判断された場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較過程において前記第2の処理対象信号の品質が高いと判断された場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号過程と、前記復調復号過程において復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成過程と、前記レプリカ信号生成過程において前記非直交偏波信号のレプリカ信号が生成された場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影過程と、前記復調復号過程において前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成過程において生成された前記第1偏波信号のレプリカ信号を除去して新たな前記第1の処理対象信号を生成し、前記復調復号過程において前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成過程において生成された前記第2偏波信号のレプリカ信号を除去して新たな前記第2の処理対象信号を生成し、前記復調復号過程において前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影過程において生成された前記第1レプリカ写像成分を除去して新たな前記第1の処理対象信号を生成するとともに、前記第2の処理対象信号から前記レプリカ信号投影過程において生成された前記第2レプリカ写像成分を除去して新たな前記第2の処理対象信号を生成する減算過程とを有し、前記減算過程の後、前記比較過程からの処理を繰り返す、ことを特徴とする受信方法である。
The present invention also provides the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A reception method of a receiving apparatus in a polarization multiplexing transmission system that multiplexes and transmits a wave and a non-orthogonal polarization signal that uses a non-orthogonal polarization with the second polarization, the first polarization signal Receiving a first multiplexed signal in which a first mapping component obtained by projecting the non-orthogonal polarization signal onto the first polarization is received; and
Receiving a second multiplexed signal obtained by multiplexing the second polarization signal and a second mapping component obtained by projecting the non-orthogonal polarization signal onto the second polarization; and The first multiplexed signal received in the first polarization reception process, or a first processing target signal that is a signal obtained by removing a replica signal from the first multiplexed signal, and the second polarization reception process A comparison process for comparing the quality of the second multiplexed signal received in step S2 or a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal; When it is determined that the quality of the processing target signal is high, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the second processing target is compared in the comparison process. When it is judged that the signal quality is high A demodulation decoding process for demodulating and decoding the second polarization signal or the non-orthogonal polarization signal from the second signal to be processed; the first polarization signal demodulated and decoded in the demodulation decoding process; A replica signal generation process for generating a wave signal or a replica signal of the non-orthogonal polarization signal, and when the replica signal of the non-orthogonal polarization signal is generated in the replica signal generation process, the non-orthogonal polarization signal Generating a first replica mapping component which is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization, and a second conversion of the replica signal of the non-orthogonal polarization signal to the second polarization When the first polarization signal is demodulated and decoded in the replica signal projection process for generating a replica mapping component and the demodulation and decoding process, the replica signal generation process from the first processing target signal If the replica signal of the first polarization signal generated in step 1 is removed to generate a new first processing target signal, and the second polarization signal is demodulated and decoded in the demodulation and decoding process, A replica signal of the second polarization signal generated in the replica signal generation process is removed from a second process target signal to generate a new second process target signal, and the non-orthogonal in the demodulation decoding process When the polarization signal is demodulated and decoded, the first replica mapping component generated in the replica signal projection process is removed from the first processing target signal to generate a new first processing target signal, A subtraction process for generating a new second processing target signal by removing the second replica mapping component generated in the replica signal projection process from the second processing target signal; A receiving method, wherein after the subtraction process, the process from the comparison process is repeated.

本発明によれば、直交する2偏波多重用アンテナを用いて3偏波以上の偏波多重を実現し、周波数利用効率を高めることができる。また、これらのアンテナ素子間の受信レベルに差がある場合においても復調誤りを回避し、正常な各偏波信号の情報系列を復元することが可能となる。   According to the present invention, polarization multiplexing of three or more polarizations can be realized using orthogonal two-polarization multiplexing antennas, and frequency use efficiency can be improved. Further, even when there is a difference in the reception levels between these antenna elements, it is possible to avoid demodulation errors and restore a normal information sequence of each polarization signal.

本発明の一実施形態による偏波多重伝送システムにおける送信装置の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the transmitter in the polarization multiplexing transmission system by one Embodiment of this invention. 同実施形態による偏波多重伝送システムにおける受信装置の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the receiver in the polarization multiplexing transmission system by the embodiment. 同実施形態による偏波多重伝送システムにおける受信装置の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the receiver in the polarization multiplexing transmission system by the embodiment. 同実施形態による偏波多重伝送システムにおける受信装置の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the receiver in the polarization multiplexing transmission system by the embodiment. 同実施形態による偏波多重伝送システムにおける受信装置の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of the receiver in the polarization multiplexing transmission system by the embodiment. 同実施形態による送信装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the transmitter by the same embodiment. 図6に示す送信装置の信号送信処理の流れを表すフローチャートである。It is a flowchart showing the flow of the signal transmission process of the transmitter shown in FIG. 同実施形態による送信装置の他の構成例を示す機能ブロック図である。It is a functional block diagram which shows the other structural example of the transmitter by the same embodiment. 図8に示す信号送信処理の流れを表すフローチャートである。It is a flowchart showing the flow of the signal transmission process shown in FIG. 同実施形態による送信装置のさらに他の構成例を示す機能ブロック図である。It is a functional block diagram which shows the further another example of a structure of the transmitter by the same embodiment. 図10に示す送信装置の信号送信処理の流れを表すフローチャートである。It is a flowchart showing the flow of the signal transmission process of the transmitter shown in FIG. 同実施形態による受信装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the receiver by the same embodiment. 同実施形態による受信装置のV偏波信号、H偏波信号の復調復号処理部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the demodulation decoding process part of V polarization signal of the receiver by the same embodiment, and H polarization signal. 同実施形態による受信装置のP_θ偏波信号の復調復号処理部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the demodulation decoding process part of the P_theta i polarization signal of the receiver by the same embodiment. 同実施形態による受信装置の信号受信処理の流れを表すフローチャートである。It is a flowchart showing the flow of the signal reception process of the receiver by the same embodiment. 同実施形態による受信装置の信号受信処理を説明するための図である。It is a figure for demonstrating the signal reception process of the receiver by the same embodiment. 同実施形態による受信装置の信号受信処理を説明するための図である。It is a figure for demonstrating the signal reception process of the receiver by the same embodiment. 同実施形態による受信装置の信号受信処理を説明するための図である。It is a figure for demonstrating the signal reception process of the receiver by the same embodiment. 同実施形態による受信装置の信号受信処理を説明するための図である。It is a figure for demonstrating the signal reception process of the receiver by the same embodiment. 従来の偏波多重伝送システムの偏波多重を示す図である。It is a figure which shows the polarization multiplexing of the conventional polarization multiplexing transmission system.

以下、図面を参照しながら本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図20は、従来の偏波多重伝送システムにおける偏波多重を示す図である。同図に示すように、従来の偏波多重伝送システムでは、同じ周波数の直交する2つの偏波である垂直偏波(以下、「V偏波」と記載する。)と水平偏波(以下、「H偏波」と記載する。)を用いたVH偏波多重を行なっており、V偏波、H偏波のそれぞれで異なる信号系列を送受信する。V偏波は、大地に対して垂直方向の波面を持ち、H偏波は、大地に対して平行方向の波面を持つ。V偏波とH偏波とは、同一又は一部が重複する周波数帯域で伝送される。VH偏波多重を行なうために、従来の偏波多重伝送システムの送信装置は、送信アンテナとしてVH偏波多重用の二素子アンテナを具備し、受信装置は、受信アンテナとしてVH偏波多重用の二素子アンテナを具備する。VH偏波多重用の二素子アンテナは、2偏波多重用アンテナである。VH偏波多重用の二素子アンテナは、互いに直交するV偏波アンテナ及びH偏波アンテナを具備する。   FIG. 20 is a diagram illustrating polarization multiplexing in a conventional polarization multiplexing transmission system. As shown in the figure, in a conventional polarization multiplexing transmission system, two orthogonally polarized waves having the same frequency, which are orthogonally polarized waves (hereinafter referred to as “V polarized waves”) and horizontal polarized waves (hereinafter referred to as “V polarized waves”). VH polarization multiplexing using “H polarization” is performed, and different signal sequences are transmitted and received for each of the V polarization and the H polarization. The V polarization has a wavefront perpendicular to the ground, and the H polarization has a wavefront parallel to the ground. The V polarization and the H polarization are transmitted in the same or partially overlapping frequency band. In order to perform VH polarization multiplexing, a transmission device of a conventional polarization multiplexing transmission system includes a two-element antenna for VH polarization multiplexing as a transmission antenna, and a reception device for VH polarization multiplexing as a reception antenna. A two-element antenna is provided. The two-element antenna for VH polarization multiplexing is a two-polarization multiplexing antenna. The two-element antenna for VH polarization multiplexing includes a V-polarization antenna and an H-polarization antenna that are orthogonal to each other.

本実施形態の偏波多重伝送システムでは、従来技術の偏波多重伝送システムと同様に、送信装置は、送信アンテナとしてVH偏波多重用の二素子アンテナを具備し、受信装置は、受信アンテナとしてVH偏波多重用の二素子アンテナを具備する。しかし、本実施形態の偏波多重伝送システムは、非直交偏波多重伝送を実施するため、V偏波とH偏波に加えて、大地に対して角度θ度(0<θ<180)の波面を持つP_θ偏波(i=1,2,…,n;nは正の整数)を伝送する。P_θ偏波は、V偏波及びH偏波と同一又は一部が重複する周波数帯域で伝送される。 In the polarization multiplexing transmission system of the present embodiment, the transmission device includes a two-element antenna for VH polarization multiplexing as a transmission antenna, and the reception device as a reception antenna, as in the polarization multiplexing transmission system of the prior art. A two-element antenna for VH polarization multiplexing is provided. However, since the polarization multiplexing transmission system of this embodiment performs non-orthogonal polarization multiplexing transmission, in addition to the V polarization and the H polarization, the angle θ i degrees (0 <θ i <180) with respect to the ground. ) Wavefront of P_θ i polarization (i = 1, 2,..., N; n is a positive integer). The P_θ i polarization is transmitted in a frequency band that is the same as or partially overlapping with the V polarization and the H polarization.

図1は、本実施形態による偏波多重伝送システムの送信装置における信号送信処理の概要を説明するための図である。同図に示すように、送信装置は、偏波軸zのP_θ偏波信号をV偏波の波面へ投影してV偏波軸(y軸)の写像成分を得る。また、送信装置は、偏波軸zのP_θ偏波信号をH偏波の波面へ投影してH偏波軸(x軸)の写像成分を得る。すなわち、送信装置は、P_θ偏波信号をV偏波及びH偏波にベクトル分解する。P_θ偏波信号の偏波軸zの信号成分がp_θである場合、H偏波軸への写像成分Hは、p_θ・cosθとなり、V偏波軸への写像成分Vは、p_θ・cos(π/2−θ)=p_θ・sinθとなる。送信装置は、V偏波信号VとP_θ偏波信号のV偏波軸への写像成分V(i=1〜n)とを多重してV偏波アンテナにより伝送し、H偏波信号HとP_θ偏波信号のH偏波軸への写像成分H(i=1〜n)とをH偏波アンテナにより多重して伝送する。これによって、二素子アンテナにより、3以上の偏波を多重して伝送することが可能となる。
なお、M(A→B)は、A偏波からB偏波への投射変換を表す。A偏波とB偏波が直交関係にある場合、変換結果は零となり、非直交関係にある場合、一般に変換結果は非零となる。
FIG. 1 is a diagram for explaining the outline of signal transmission processing in the transmission apparatus of the polarization multiplexing transmission system according to this embodiment. As shown in the figure, the transmitting apparatus projects a P_θ i polarization signal with a polarization axis z onto the wavefront of the V polarization to obtain a mapping component with the V polarization axis (y axis). Further, the transmission apparatus projects the P_θ i polarization signal of the polarization axis z onto the wavefront of the H polarization to obtain a mapping component of the H polarization axis (x axis). That is, the transmission apparatus vector-decomposes the P_θ i polarization signal into V polarization and H polarization. When the signal component of the polarization axis z of the P_θ i polarization signal is p_θ i , the mapping component H i to the H polarization axis is p_θ i · cos θ i , and the mapping component V i to the V polarization axis is , P_θ i · cos (π / 2−θ i ) = p_θ i · sin θ i . The transmitting apparatus multiplexes the V polarization signal V 0 and the mapping component V i (i = 1 to n) of the P_θ i polarization signal onto the V polarization axis and transmits the multiplexed signal by the V polarization antenna. The signal H 0 and the mapping component H i (i = 1 to n) of the P_θ i polarization signal to the H polarization axis are multiplexed and transmitted by the H polarization antenna. Thereby, it is possible to multiplex and transmit three or more polarized waves by the two-element antenna.
M (A → B) represents the projection conversion from the A polarization to the B polarization. When the A polarization and the B polarization are orthogonal, the conversion result is zero. When the A polarization is non-orthogonal, the conversion result is generally non-zero.

図2〜5は、本実施形態による偏波多重伝送システムの受信装置における信号受信処理の概要を説明するための示す図である。
図1に示すように多重されて送信された偏波は、受信装置において、干渉除去処理を用いることによって復調することができる。干渉除去処理とは、複数信号が多重された受信信号から何れか1信号の復調及び復号を行なった後、得られた信号のレプリカ信号を生成して受信信号から除去し、レプリカ信号が除去された受信信号からさらに何れか1信号の復調及び復号を行なうことを繰り返して、多重された各信号を得る処理である。
2 to 5 are diagrams illustrating an outline of signal reception processing in the reception apparatus of the polarization multiplexing transmission system according to the present embodiment.
As shown in FIG. 1, the multiplexed polarization transmitted can be demodulated in the receiving apparatus by using interference cancellation processing. Interference cancellation processing is to demodulate and decode any one signal from a received signal in which a plurality of signals are multiplexed, generate a replica signal of the obtained signal, remove it from the received signal, and remove the replica signal. In this process, one of the received signals is further demodulated and decoded to obtain each multiplexed signal.

一方、「Ulaby, F.T.; Wilson, E.A., "Microwave Attenuation Properties of Vegetation Canopies," IEEE Transactions on Geoscience and Remote Sensing, Volume: GE-23 , Issue: 5 pp.746-753, 1985.」(文献A)に記載の例や、V偏波、H偏波各々のRF(Radio Frequency:高周波)回路における熱雑音量の違い、パワーアンプ特性の違い等に起因して、V偏波及びH偏波それぞれの受信SNR(Signal to Noise ratio:S/N比)に不均等が生じることがある。V偏波及びH偏波の受信SNRに不均等が生じたことによって、干渉除去処理の初段復調復号操作であるV偏波信号またはH偏波信号の復調・復号に失敗してしまった場合、非直交偏波多重されたP_θ偏波信号を復元できなくなる場合がある。そこで受信装置は、受信したSINR(Signal to Interference and Noise Ratio:信号対干渉雑音比)または受信レベルの高いアンテナ素子によって受信したV偏波またはH偏波の一方を復調復号する。 On the other hand, “Ulaby, FT; Wilson, EA,“ Microwave Attenuation Properties of Vegetation Canopies, ”IEEE Transactions on Geoscience and Remote Sensing, Volume: GE-23, Issue: 5 pp.746-753, 1985.” (Reference A) Due to the difference in thermal noise in the RF (Radio Frequency) circuit of each of V polarization and H polarization, the difference in power amplifier characteristics, etc. There may be non-uniformity in the received SNR (Signal to Noise ratio). When the reception and SNR of the V polarization and the H polarization are uneven, the demodulation and decoding of the V polarization signal or the H polarization signal, which is the first-stage demodulation and decoding operation of the interference cancellation processing, has failed. In some cases, it is impossible to restore a non-orthogonal polarization multiplexed P_θ i polarization signal. Therefore, the receiving apparatus demodulates and decodes either the received SINR (Signal to Interference and Noise Ratio) or the V-polarized wave or the H-polarized wave received by the antenna element having a high reception level.

ここでは、図2に示すように、受信SNRに不均等が生じ、受信装置において信号を受信したときに、V偏波素子の方の受信レベルが高く、受信したV偏波信号を第一に復調復号する場合を説明する。このとき、非直交偏波多重されているP_θ偏波信号〜P_θ偏波信号は、所望波であるV偏波信号Vにとっては干渉雑音成分、つまり、雑音となる。しかしながら、所望波であるV偏波信号VよりもP_θ偏波信号のV偏波軸への写像成分V(i=1〜n)のレベルが十分低い場合は、干渉除去処理によってV偏波信号Vの復調が可能である。これは、H偏波信号Hの場合も同様である。P_θ偏波信号はV偏波、H偏波にベクトル分解されているため、V偏波信号V、H偏波信号Hへの影響が抑えられている。V偏波アンテナの受信信号、すなわち、V偏波信号Vと、P_θ偏波信号のV偏波軸への写像成分V(i=1〜n)とが多重された受信信号をV偏波処理対象信号RVとし、H偏波アンテナの受信信号、すなわち、H偏波信号Hと、P_θ偏波信号のH偏波軸への写像成分H(i=1〜n)とが多重された受信信号をH偏波処理対象信号RHとする。図2〜5では、簡単のため、n=1の場合、すなわち、V偏波信号V及びH偏波信号HにP_θ偏波信号のみが多重されている場合の受信処理概要について示している。 Here, as shown in FIG. 2, the reception SNR is uneven, and when the signal is received by the receiving apparatus, the reception level of the V polarization element is higher, and the received V polarization signal is the first. A case of demodulating and decoding will be described. At this time, the non-orthogonal polarization multiplexed P_θ 1 polarization signal to P_θ n polarization signal becomes an interference noise component, that is, noise for the V polarization signal V 0 which is a desired wave. However, when the level of the mapping component V i (i = 1 to n) of the P_θ i polarization signal on the V polarization axis is sufficiently lower than the V polarization signal V 0 which is the desired wave, V V is obtained by interference cancellation processing. it is possible to demodulate the polarized signals V 0. This is also the case for the H polarization signal H 0. Since the P_θ i polarization signal is vector-decomposed into V polarization and H polarization, the influence on the V polarization signal V 0 and the H polarization signal H 0 is suppressed. A reception signal of the V polarization antenna, that is, a reception signal in which the V polarization signal V 0 and the mapping component V i (i = 1 to n) of the P_θ i polarization signal to the V polarization axis are multiplexed is represented by V The polarization processing target signal RV 0 is used, and the received signal of the H polarization antenna, that is, the H polarization signal H 0 and the mapping component H i of the P_θ i polarization signal to the H polarization axis (i = 1 to n). And the received signal multiplexed with is defined as the H polarization processing target signal RH 0 . In Figure 2-5, for simplicity, when n = 1, i.e., it shows the reception processing overview in the case where only P_shita 1 polarized signals to the V polarization signal V 0 and H polarization signal H 0 is multiplexed ing.

受信装置は、V偏波処理対象信号RVを復調復号してV偏波信号Vの情報系列を復元し、この復元された情報系列を元に再符号化・再変調を行ってV偏波信号Vのレプリカ信号であるレプリカV偏波信号V’を生成する。 The receiving apparatus demodulates and decodes the V-polarization processing target signal RV 0 to restore the information sequence of the V-polarization signal V 0 , and performs re-encoding and re-modulation based on the restored information sequence to obtain the V polarization. a replica signal of the wave signal V 0 generates a replica V polarization signal V 0 '.

次に、図3に示すように、受信装置は、V偏波処理対象信号RVからレプリカV偏波信号V’を除去してV偏波処理対象信号RVを生成する。V偏波処理対象信号RVには、P_θ偏波信号の写像成分Vのみが含まれる。また、レプリカV偏波信号V’をH偏波軸に投影した場合の写像成分は0であるため、H偏波処理対象信号RHは、そのままH偏波処理対象信号RHとなる。H偏波処理対象信号RHには、H偏波信号HとP_θ偏波信号のH偏波軸への写像成分Hが多重されている。 Next, as illustrated in FIG. 3, the reception apparatus generates the V polarization processing target signal RV 1 by removing the replica V polarization signal V 0 ′ from the V polarization processing target signal RV 0 . The V polarization processing target signal RV 1 includes only the mapping component V 1 of the P_θ 1 polarization signal. Further, since the mapping component when the replica V-polarized signal V 0 ′ is projected onto the H-polarization axis is 0, the H-polarization processing target signal RH 0 becomes the H-polarization processing target signal RH 1 as it is. The H-polarized wave processed signal RH 1, mapping component H 1 to H axis of polarization of the H polarization signal H 0 and P_shita 1 polarized signal are multiplexed.

続いて、図4に示すように、受信装置は、V偏波処理対象信号RVとH偏波処理対象信号RHの信号電力を比較し、信号電力の高いV偏波処理対象信号RVを次の復調復号対象として決定する。受信装置は、V偏波処理対象信号RVをP_θ偏波面に投影する。V偏波処理対象信号RVの信号成分をyとすると、P_θ偏波面に投影したときのz軸成分は、z=y/cosθとなる。受信装置は、V偏波処理対象信号RVをP_θ偏波面に投影した信号を復調復号してP_θ偏波信号の情報系列を復元し、この復元された情報系列をもとに再符号化・再変調を行ってレプリカP_θ偏波信号を生成する。受信装置は、レプリカP_θ偏波信号をH偏波面に投影したレプリカ写像成分H’を生成する。 Subsequently, as illustrated in FIG. 4, the reception device compares the signal powers of the V polarization processing target signal RV 1 and the H polarization processing target signal RH 1 , and the V polarization processing target signal RV 1 having high signal power. Are determined as the next demodulation and decoding targets. The receiving apparatus projects the V polarization processing target signal RV 1 onto the P_θ 1 polarization plane. When the signal component of the V polarization processing target signal RV 1 is y, the z-axis component when projected onto the P_θ 1 polarization plane is z = y / cos θ 1 . The receiving apparatus demodulates and decodes a signal obtained by projecting the V polarization processing target signal RV 1 onto the P_θ 1 polarization plane, restores the information sequence of the P_θ 1 polarization signal, and re-encodes the signal based on the restored information sequence. Then, a replica P_θ 1 polarization signal is generated. The receiving apparatus generates a replica mapping component H 1 ′ obtained by projecting the replica P_θ 1 polarization signal onto the H polarization plane.

そして、図5に示すように、受信装置は、H偏波処理対象信号RHから、レプリカP_θ偏波信号をH偏波面に投影したレプリカ写像成分H’を除去してH偏波処理対象信号RHを生成する。H偏波処理対象信号RHには、H偏波信号Hのみが含まれる。受信装置は、H偏波処理対象信号RHを復調復号してH偏波信号Hの情報系列を復元する。 Then, as illustrated in FIG. 5, the reception apparatus removes the replica mapping component H 1 ′ obtained by projecting the replica P_θ 1 polarization signal onto the H polarization plane from the H polarization processing target signal RH 1 , and performs H polarization processing. generating a target signal RH 2. The H polarization processing target signal RH 2 includes only the H polarization signal H 0 . The receiving apparatus demodulates and decodes the H polarization processing target signal RH 2 to restore the information sequence of the H polarization signal H 0 .

なお、iが2以上である場合、図4に示すレプリカP_θ偏波信号生成の後、以下のように動作する。すなわち、受信装置は、レプリカP_θ偏波信号をV偏波面に投影したレプリカ写像成分V’をV偏波処理対象信号RVから除去してV偏波処理対象信号RVを生成するとともに、レプリカP_θ偏波信号をH偏波面に投影したレプリカ写像成分H1’をH偏波処理対象信号RHから除去してH偏波処理対象信号RHを生成する。 In the case i is 2 or more, after the replica P_shita 1 polarized signal generator shown in FIG. 4, operates as follows. That is, the receiving apparatus removes the replica mapping component V 1 ′ obtained by projecting the replica P_θ 1 polarization signal on the V polarization plane from the V polarization processing target signal RV 1 to generate the V polarization processing target signal RV 2. , by removing the replica P_shita 1 polarized signal replica mapping component projected in the H-polarized wave surface H1 'from the H polarization processing signal RH 1 generates the H polarization processing signal RH 2.

以後、iを2から1ずつ増加させ、全ての偏波信号の情報系列が得られるまで、V偏波処理対象信号RVとH偏波処理対象信号RHのうち信号電力の高い方を偏波軸へ投影して偏波信号の復調・復号を行ない、復元された情報系列から生成したレプリカ偏波信号をVH波面へ投影して得たV偏波軸、H偏波軸への写像成分をそれぞれ、V偏波処理対象信号RV、H偏波処理対象信号RHから除去してV偏波処理対象信号RV(i+1)とH偏波処理対象信号RH(i+1)を生成する処理を繰り返す。 Thereafter, i is incremented by 1 from 2, and the higher of the signal power of the V polarization processing target signal RV i and the H polarization processing target signal RH i is biased until the information sequences of all polarization signals are obtained. Projected onto the wave axis to demodulate / decode the polarization signal, and project the replica polarization signal generated from the restored information sequence onto the VH wavefront, and map it to the V polarization axis and H polarization axis each, V polarization processing signal RV i, the process of generating is removed from the H polarization processing signal RH i V polarization processing signal RV (i + 1) and the H polarization processing signal RH (i + 1) repeat.

なお、復調・復号を行なう順番は、予め決められており、例えば、V偏波信号VとP_θ偏波信号〜P_θ偏波信号ではV偏波信号Vを最初とし、H偏波信号HとP_θ偏波信号〜P_θ偏波信号ではH偏波信号Hを最初とする。また、P_θ偏波信号〜P_θ偏波信号の中では、P_θ偏波信号、P_θ偏波信号、…、P_θ偏波信号の順とする。このとき、V偏波信号Vは、P_θ偏波信号〜P_θ偏波信号のV偏波軸への写像成分V〜Vが多重されても復調が可能な電力レベルとし、H偏波信号Hは、P_θ偏波信号〜P_θ偏波信号のH偏波軸への写像成分H〜Hが多重されても復調が可能な電力レベルとする。同様に、P_θ偏波信号(j=1〜(n−1))のV偏波軸への写像成分Vは、P_θ(j+1)偏波信号〜P_θ偏波信号のV偏波軸への写像成分V(j+1)〜Vが多重されても復調が可能な電力レベルとし、P_θ偏波信号(j=1〜(n−1))のH偏波軸への写像成分Hは、P_θ(j+1)偏波信号〜P_θ偏波信号のH偏波軸への写像成分H(j+1)〜Hが多重されても復調が可能な電力レベルとする。各偏波の復調・復号の順番は予め送信装置及び受信装置に記憶されてもよく、送信装置が決定した順番を制御信号により受信装置へ通知してもよい。 Note that the order of demodulation and decoding is determined in advance. For example, in the V polarization signal V 0 and the P_θ 1 polarization signal to P_θ n polarization signal, the V polarization signal V 0 is the first, and the H polarization In the signal H 0 and the P_θ 1 polarization signal to P_θ n polarization signal, the H polarization signal H 0 is the first. Among the P_θ 1 polarization signal to P_θ n polarization signal, the order is P_θ 1 polarization signal, P_θ 2 polarization signal,..., P_θ n polarization signal. At this time, the V polarization signal V 0 has a power level that can be demodulated even if the mapping components V 1 to V n of the P_θ 1 polarization signal to P_θ n polarization signal onto the V polarization axis are multiplexed, The polarization signal H 0 has a power level that can be demodulated even if the mapping components H 1 to H n of the P_θ 1 polarization signal to P_θ n polarization signal onto the H polarization axis are multiplexed. Similarly, the mapping component V j of the P_θ j polarization signal (j = 1 to (n−1)) to the V polarization axis is P_θ (j + 1) polarization signal to P_θ V polarization axis of the n polarization signal. The mapping component H to the H polarization axis of the P_θ j polarization signal (j = 1 to (n−1)) is set to a power level that can be demodulated even if the mapping components V (j + 1) to V n are multiplexed. j is, P_θ (j + 1) and polarized signal ~P_shita n polarization signal mapping component H to H polarization axis (j + 1) ~H n can be demodulated be multiplexed power level. The order of demodulation and decoding of each polarization may be stored in advance in the transmission device and the reception device, and the order determined by the transmission device may be notified to the reception device by a control signal.

以下では、「V偏波処理対象信号」と記載した場合にはV偏波処理対象信号RV〜V偏波処理対象信号RV(n+1)のいずれかを選択して示したものとし、「H偏波処理対象信号」と記載した場合にはH偏波処理対象信号RH〜V偏波処理対象信号RH(n+1)のいずれかを選択して示したものとし、「処理対象信号」と記載した場合にはV偏波処理対象信号とH偏波処理対象信号のいずれかを選択して示したものとする。 Hereinafter, when “V polarization processing target signal” is described, it is assumed that one of the V polarization processing target signals RV 0 to V polarization processing target signal RV (n + 1) is selected and shown. In the case of “polarization processing target signal”, it is assumed that one of the H polarization processing target signal RH 0 to V polarization processing target signal RH (n + 1) is selected and shown, and “processing target signal” is described. In this case, it is assumed that either the V polarization processing target signal or the H polarization processing target signal is selected and shown.

次に、偏波多重伝送システムの送信装置及び受信装置の構成及び詳細な動作について説明する。   Next, the configuration and detailed operation of the transmitter and receiver of the polarization multiplexing transmission system will be described.

図6は、本発明の一実施形態による送信装置の構成を示すブロック図である。
同図に示すように、送信装置100は、1筐体内に、符号化器110−0〜110−(n+1)、変調器120−0〜120−(n+1)、投影器130a−1〜130a−n、投影器130b−1〜130b−n、加算器140a、加算器140b、V偏波用アンテナ150a、及び、H偏波用アンテナ150bを含んで構成される。
FIG. 6 is a block diagram showing a configuration of a transmission apparatus according to an embodiment of the present invention.
As shown in the figure, the transmission apparatus 100 includes encoders 110-0 to 110- (n + 1), modulators 120-0 to 120- (n + 1), and projectors 130a-1 to 130a- in one housing. n, projectors 130b-1 to 130b-n, an adder 140a, an adder 140b, a V polarization antenna 150a, and an H polarization antenna 150b.

符号化器110−0にはV偏波信号Vにより送信すべきビットストリームである情報系列が入力され、符号化器110−i(i=1〜n)には、P_θ偏波信号により送信すべき情報系列が入力され、符号化器110−(n+1)にはH偏波信号Hにより送信すべき情報系列が入力される。符号化器110−k(k=0〜(n+1))は、入力された情報系列に対して、予め定められた誤り訂正符号化を行い、誤り訂正符号化をした情報系列を変調器120−kに出力する。誤り訂正符号には、例えば、リード・ソロモン符号、ターボ符号、低密度パリティ検査符号などを用いることができる。 The encoder 110-0 is input information sequence is a bit stream to be transmitted by the V polarization signal V 0, the encoder 110-i (i = 1~n) , by P_shita i polarization signal The information sequence to be transmitted is input, and the information sequence to be transmitted by the H polarization signal H 0 is input to the encoder 110- (n + 1). Encoder 110-k (k = 0 to (n + 1)) performs a predetermined error correction encoding on the input information sequence, and converts the error correction encoded information sequence into modulator 120-. output to k. As the error correction code, for example, a Reed-Solomon code, a turbo code, a low density parity check code, or the like can be used.

変調器120−k(k=0〜(n+1))は、符号化器110−kから入力された誤り訂正符号化された情報系列を、予め定められた変調方式により変調し、変調信号を出力する。変調方式には、例えば、BPSK(Binary phase-shift keying;2位相偏移変調)、16QAM(16 Quadrature amplitude modulation;16値直交振幅変調)などを用いることができる。変調器120−0は、V偏波を用いた変調信号であるV偏波信号Vを出力し、変調器120−i(i=1〜n)は、P_θ偏波を用いた変調信号であるP_θ偏波信号を出力し、変調器120−(n+1)は、H偏波を用いた変調信号であるH偏波信号Hを出力する。 Modulator 120-k (k = 0 to (n + 1)) modulates the error correction coded information sequence input from encoder 110-k using a predetermined modulation method, and outputs a modulated signal. To do. As the modulation method, for example, BPSK (Binary phase-shift keying), 16QAM (16 Quadrature amplitude modulation), or the like can be used. The modulator 120-0 outputs a V polarization signal V 0 that is a modulation signal using V polarization, and the modulator 120-i (i = 1 to n) is a modulation signal using P_θ i polarization. P_θ i polarization signal is output, and the modulator 120- (n + 1) outputs an H polarization signal H 0 which is a modulation signal using H polarization.

投影器130a−i(i=1〜n)は、変調器120−iから入力されたP_θ偏波の変調信号をV偏波の波面に投影して得られたV偏波軸への写像成分Vを加算器140aへ出力する。また、投影器130b−i(i=1〜n)は、変調器120−iから入力されたP_θ偏波の変調信号をH偏波の波面に投影して得られたH偏波軸への写像成分Hを加算器140bへ出力する。 Projectors 130a-i (i = 1 to n) map to the V polarization axis obtained by projecting the modulation signal of P_θ i polarization input from modulator 120-i onto the wavefront of V polarization. The component V i is output to the adder 140a. Further, the projectors 130b-i (i = 1 to n) are directed to the H polarization axis obtained by projecting the P_θ i polarization modulation signal input from the modulator 120-i onto the H polarization wavefront. and it outputs the mapping component H i to the adder 140b.

加算器140aは、変調器120−0から入力されたV偏波信号Vと、投影器130a−i(i=1〜n)から入力された写像成分Vを加算してV偏波多重信号を生成し、V偏波用アンテナ150aに出力する。加算器140bは、変調器120−(n+1)から入力されたH偏波信号Hと、投影器130b−i(i=1〜n)から入力された写像成分Hを加算してH偏波多重信号を生成し、H偏波用アンテナ150bに出力する。V偏波用アンテナ150aは、加算器140aから入力されたV偏波多重信号を無線により送信する。H偏波用アンテナ150bは、加算器140bから入力されたH偏波多重信号を無線により送信する。 The adder 140a includes a V polarization signal V 0 inputted from the modulator 120 - 0, V polarization multiplexing by adding the mapping component V i input from the projector 130a-i (i = 1~n) A signal is generated and output to the V polarization antenna 150a. The adder 140b is an H polarization signal H 0 inputted from the modulator 120- (n + 1), H polarized by adding the mapping component H i input from the projector 130b-i (i = 1~n) A wave multiplexed signal is generated and output to the H polarization antenna 150b. The V polarization antenna 150a wirelessly transmits the V polarization multiplexed signal input from the adder 140a. The H polarization antenna 150b wirelessly transmits the H polarization multiplexed signal input from the adder 140b.

続いて、送信装置100の信号送信処理を説明する。図7は、送信装置100の信号送信処理の流れを表すフローチャートである。
符号化器110−k(k=0〜(n+1))は、入力された情報系列の誤り訂正符号化を行い(ステップS101)、変調器120−kは、符号化器110−kにより誤り訂正符号化された情報系列を変調する(ステップS102)。投影器130a−i(i=1〜n)は、変調器120−iにより変調されたP_θ偏波の変調信号からV偏波軸への写像成分Vを生成し(ステップS103a)、投影器130b−iは、変調器120−iにより変調されたP_θ偏波の変調信号からH偏波軸への写像成分Hを生成する(ステップS103b)。
Subsequently, a signal transmission process of the transmission device 100 will be described. FIG. 7 is a flowchart showing the flow of signal transmission processing of the transmission apparatus 100.
The encoder 110-k (k = 0 to (n + 1)) performs error correction encoding of the input information sequence (step S101), and the modulator 120-k corrects the error by the encoder 110-k. The encoded information sequence is modulated (step S102). The projectors 130a-i (i = 1 to n) generate the mapping component V i to the V polarization axis from the modulation signal of the P_θ i polarization modulated by the modulator 120-i (step S103a), and the projection The generator 130b-i generates a mapping component H i to the H polarization axis from the modulation signal of P_θ i polarization modulated by the modulator 120-i (step S103b).

加算器140aは、変調器120−0が生成したV偏波信号Vの変調信号と、投影器130a−i(i=1〜n)が生成したP_θ偏波の変調信号の写像成分V〜Vを加算してV偏波多重信号を生成し(ステップS104a)、V偏波用アンテナ150aに出力する。加算器140bは、変調器120−(n+1)が生成したH偏波信号Hの変調信号と、投影器130b−i(i=1〜n)が生成したP_θ偏波の変調信号の写像成分H〜Hを加算してH偏波多重信号を生成し(ステップS104b)、H偏波用アンテナ150bに出力する。V偏波用アンテナ150aは、加算器140aから入力されたV偏波多重信号を無線により送信する(ステップS105a)。H偏波用アンテナ150bは、加算器140bから出力されたH偏波多重信号を無線により送信する(ステップS105b)。V偏波用アンテナ150aと、H偏波用アンテナ150bとは、同じ周波数の無線により同時に信号を送信する。 The adder 140a is a mapping component V of the modulation signal of the V polarization signal V 0 generated by the modulator 120-0 and the modulation signal of the P_θ i polarization generated by the projectors 130a-i (i = 1 to n). 1 ~V n by adding to generate a V polarization multiplexing signal (step S104a), and outputs the V-polarized wave antenna 150a. The adder 140b maps the modulation signal of the H polarization signal H 0 generated by the modulator 120- (n + 1) and the modulation signal of the P_θ i polarization generated by the projectors 130b-i (i = 1 to n). The components H 1 to H n are added to generate an H polarization multiplexed signal (step S104b) and output to the H polarization antenna 150b. The V polarization antenna 150a wirelessly transmits the V polarization multiplexed signal input from the adder 140a (step S105a). The H polarization antenna 150b wirelessly transmits the H polarization multiplexed signal output from the adder 140b (step S105b). The V polarization antenna 150a and the H polarization antenna 150b transmit signals simultaneously by radio of the same frequency.

図8は、送信装置の他の構成を示すブロック図である。
同図に示すように、送信装置200は、それぞれが1筐体により構成される(n+2)台の送信部201−0〜201−(n+1)からなる。送信部201−0は、V偏波信号Vを送信し、送信部201−i(i=1〜n)は、P_θ偏波信号を送信し、送信部201−(n+1)は、H偏波信号Hを送信する。図6に示す送信装置100は、筐体内で偏波信号を多重して送信するが、図8に示す送信装置200では、各送信部201−0〜201−(n+1)のそれぞれが偏波信号を送信する。これにより、受信装置側のV偏波用アンテナでは、各偏波信号のV偏波軸への写像成分を多重したV偏波多重信号が受信され、H偏波用アンテナでは、各偏波信号のH偏波軸への写像成分を多重したH偏波多重信号が受信される。送信装置200は、固定通信や、衛星通信を対象とし、偏波角は、手調整により設営時に設定される。なお、送信部201−0〜201−(n+1)の各筐体は、同一の使用者によって使用されても良いし、それぞれ異なる使用者によって使用されても良い。また、送信部201−0〜201−(n+1)の各筐体は、同一の場所に設置されても良いし、それぞれ異なる場所に設置されても良い。
FIG. 8 is a block diagram showing another configuration of the transmission apparatus.
As shown in the figure, the transmission apparatus 200 includes (n + 2) transmission units 201-0 to 201- (n + 1) each configured by one housing. Transmitting unit 201-0 transmits the V polarization signal V 0, the transmitting unit 201-i (i = 1~n) transmits P_shita i polarized signal, the transmission unit 201- (n + 1) is H to send a polarized signal H 0. 6 multiplexes and transmits polarization signals within the housing, but in the transmission device 200 illustrated in FIG. 8, each of the transmission units 201-0 to 201- (n + 1) is a polarization signal. Send. As a result, the V polarization antenna on the receiver side receives the V polarization multiplexed signal obtained by multiplexing the mapping component of each polarization signal on the V polarization axis, and the H polarization antenna receives each polarization signal. An H polarization multiplexed signal obtained by multiplexing the mapping components of the H polarization axis is received. The transmission device 200 is intended for fixed communication and satellite communication, and the polarization angle is set at the time of installation by manual adjustment. In addition, each housing | casing of the transmission parts 201-0-0-201- (n + 1) may be used by the same user, and may be used by a respectively different user. Moreover, each housing | casing of the transmission parts 201-0-0-201- (n + 1) may be installed in the same place, and may be installed in a respectively different place.

送信部201−k(k=0〜(n+1))は、符号化器210−k、変調器220−kを備える。さらに、送信部201−0はV偏波用アンテナ250−0を備え、送信部201−i(i=1〜n)はP_θ偏波用アンテナ250−iを備え、送信部201−(n+1)0はH偏波用アンテナ250−(n+1)を備える。各P_θ偏波用アンテナ250−iは、偏波角θに応じて角度が調整されて設置される。 The transmission unit 201-k (k = 0 to (n + 1)) includes an encoder 210-k and a modulator 220-k. Further, the transmission unit 201-0 includes a V polarization antenna 250-0, the transmission unit 201-i (i = 1 to n) includes a P_θ i polarization antenna 250-i, and the transmission unit 201- (n + 1). ) 0 includes an H-polarized antenna 250- (n + 1). Each P_θ i polarization antenna 250-i is installed with the angle adjusted according to the polarization angle θ i .

符号化器210−k(k=0〜(n+1))は、図6に示す送信装置100の符号化器110−kと同様の誤り訂正符号化処理を、変調器220−kは、図6に示す送信装置100の変調器120−kと同様の変調を行う。V偏波用アンテナ250−0は、変調器220−0から入力されたV偏波信号を無線により送信し、P_θ偏波用アンテナ250−i(i=1〜n)は、変調器220−iから入力されたP_θ偏波信号を無線により送信し、H偏波用アンテナ250−(n+1)は、変調器220−(n+1)から出力されたH偏波信号を無線により送信する。 The encoder 210-k (k = 0 to (n + 1)) performs error correction encoding processing similar to that of the encoder 110-k of the transmission apparatus 100 illustrated in FIG. The same modulation as that of the modulator 120-k of the transmission apparatus 100 shown in FIG. The V polarization antenna 250-0 wirelessly transmits the V polarization signal input from the modulator 220-0, and the P_θ i polarization antenna 250-i (i = 1 to n) is the modulator 220. The P_θ i polarization signal input from −i is transmitted by radio, and the H polarization antenna 250- (n + 1) transmits the H polarization signal output from the modulator 220- (n + 1) by radio.

続いて、送信装置200の信号送信処理を説明する。図9は、送信装置200の信号送信処理の流れを表すフローチャートである。なお、各送信部201−k(k=0〜(n+1))における送信処理の流れを表すフローチャートは同じフローチャートとなる。そのため、送信部201−k(k=0〜(n+1))に対応するフローチャートをまとめて図9に示す。
送信部201−0において、符号化器210−0は、入力された情報系列の誤り訂正符号化を行い(ステップS201)、変調器220−0は、符号化器210−0により誤り訂正符号化された情報系列を変調し(ステップS202)、V偏波用アンテナ250−0に出力する。
一方、送信部201−i(i=1〜n)において、符号化器210−iは、入力された情報系列の誤り訂正符号化を行い(ステップS201)、変調器220−iは、符号化器210−iにより誤り訂正符号化された情報系列を変調し(ステップS202)、P_θ偏波用アンテナ250−iに出力する。
Subsequently, a signal transmission process of the transmission device 200 will be described. FIG. 9 is a flowchart showing the flow of signal transmission processing of the transmission apparatus 200. In addition, the flowchart showing the flow of the transmission process in each transmitting unit 201-k (k = 0 to (n + 1)) is the same flowchart. Therefore, a flowchart corresponding to the transmitting unit 201-k (k = 0 to (n + 1)) is collectively shown in FIG.
In transmission section 201-0, encoder 210-0 performs error correction encoding of the input information sequence (step S201), and modulator 220-0 performs error correction encoding by encoder 210-0. The modulated information series is modulated (step S202) and output to the V polarization antenna 250-0.
On the other hand, in the transmission unit 201-i (i = 1 to n), the encoder 210-i performs error correction encoding of the input information sequence (step S201), and the modulator 220-i performs encoding. The information sequence that has been subjected to error correction coding by the device 210-i is modulated (step S202), and is output to the P_θ i polarization antenna 250-i.

また、送信部201−(n+1)において、符号化器210−(n+1)は、情報系列の誤り訂正符号化を行い(ステップS201)、変調器220−(n+1)は、符号化器210−(n+1)により誤り訂正符号化された情報系列を変調し(ステップS202)、H偏波用アンテナ250−(n+1)に出力する。
V偏波用アンテナ250−0はV偏波信号Vを無線により送信する(ステップS203)。P_θ偏波用アンテナ250−i(i=1〜n)はP_θ偏波信号を無線により送信する(ステップS203)。H偏波用アンテナ250−(n+1)はH偏波信号Hを無線により送信する(ステップS203)。V偏波用アンテナ250−0と、P_θ偏波用アンテナ250−i(i=1〜n)と、H偏波用アンテナ250−(n+1)とは、同じ周波数の無線により同時に信号を送信する。
Also, in the transmission unit 201- (n + 1), the encoder 210- (n + 1) performs error correction encoding of the information sequence (step S201), and the modulator 220- (n + 1) is the encoder 210- ( n + 1) modulates the error correction-encoded information sequence (step S202), and outputs it to the H polarization antenna 250- (n + 1).
V polarized wave antenna 250-0 transmits wirelessly V polarization signal V 0 (step S203). The P_θ i polarization antenna 250-i (i = 1 to n) transmits the P_θ i polarization signal by radio (step S203). H polarization antenna 250- (n + 1) transmits by radio the H polarization signal H 0 (step S203). V-polarized antenna 250-0, P_θ i- polarized antenna 250-i (i = 1 to n), and H-polarized antenna 250- (n + 1) transmit signals simultaneously by radio of the same frequency. To do.

図10は、送信装置のさらに他の構成を示すブロック図である。同図において、図8に示す送信装置200と同一の部分には同一の符号を付し、その説明を省略する。この図に示す送信装置300が図8に示す送信装置200と異なる点は、送信部201−1〜201−nに代えて、送信部301−1〜301−nが設けられている点である。図6に示す送信装置100では、1つの送信装置においてVH偏波多重用の二素子アンテナを具備しているが、図10に示す送信装置300では、送信部301−1〜301−nのそれぞれが、VH偏波多重用の二素子アンテナを具備し、V偏波信号、H偏波信号をそれぞれ空中線上で多重する。   FIG. 10 is a block diagram showing still another configuration of the transmission apparatus. In this figure, the same parts as those of the transmitting apparatus 200 shown in FIG. The transmission apparatus 300 shown in this figure is different from the transmission apparatus 200 shown in FIG. 8 in that transmission units 301-1 to 301-n are provided instead of the transmission units 201-1 to 201-n. . In the transmission apparatus 100 illustrated in FIG. 6, one transmission apparatus includes a two-element antenna for VH polarization multiplexing, but in the transmission apparatus 300 illustrated in FIG. 10, each of the transmission units 301-1 to 301-n. However, it has a two-element antenna for VH polarization multiplexing, and multiplexes the V polarization signal and the H polarization signal on the antenna.

送信部301−i(i=1〜n)は、符号化器310−i、変調器320−i、投影器330a−i、投影器330b−i、V偏波用アンテナ350a−i、及び、H偏波用アンテナ350b−iを含んで構成される。   The transmitter 301-i (i = 1 to n) includes an encoder 310-i, a modulator 320-i, a projector 330a-i, a projector 330b-i, a V polarization antenna 350a-i, and It includes an H-polarization antenna 350b-i.

符号化器310−i(i=1〜n)は、図8に示す送信装置200の符号化器210−iと同様の処理を、変調器320−iは、図8に示す送信装置200の変調器220−iと同様の処理を行う。
投影器330a−i(i=1〜n)は、変調器320−iから入力されたP_θ偏波の変調信号をV偏波の波面に投影して得られたV偏波軸への写像成分Vを出力する。また、投影器330b−i(i=1〜n)は、変調器320−iから入力されたP_θ偏波の変調信号をH偏波の波面に投影して得られたH偏波軸への写像成分Hを出力する。
The encoder 310-i (i = 1 to n) performs the same processing as the encoder 210-i of the transmission apparatus 200 shown in FIG. 8, and the modulator 320-i performs the process of the transmission apparatus 200 shown in FIG. The same processing as that of the modulator 220-i is performed.
Projector 330a-i (i = 1~n) is mapping the modulated signal P_shita i polarized input from the modulator 320-i to the V-polarized wave axes obtained by projecting the wavefront of the V-polarized wave The component V i is output. Further, the projector 330b-i (i = 1~n) includes a modulator 320-i to P_shita i polarization modulated signal inputted from the H polarization axis obtained by projecting the wavefront of H polarization The mapping component H i is output.

続いて、送信装置300の信号送信処理を説明する。図11は、送信装置300の信号送信処理の流れを表すフローチャートである。なお、送信部201−0及び送信部201−(n+1)における送信処理の流れは、いずれも図9に示す通りである。そのため、送信部201−0及び送信部201−(n+1)における送信処理の流れについては、フローチャートを用いた説明を省略する。また、各送信部301−i(i=1〜n)における送信処理の流れを表すフローチャートは同じフローチャートとなる。そのため、送信部301−i(i=1〜n)に対応するフローチャートをまとめて図11に示す。
送信部201−0、送信部201−(n+1)は、送信装置200と同様に動作し、V偏波用アンテナ250−0、H偏波用アンテナ250−(n+1)に変調信号が入力される。
Subsequently, a signal transmission process of the transmission device 300 will be described. FIG. 11 is a flowchart showing a flow of signal transmission processing of the transmission apparatus 300. Note that the flow of transmission processing in the transmission unit 201-0 and the transmission unit 201- (n + 1) is as shown in FIG. Therefore, the description using the flowchart is omitted for the flow of the transmission processing in the transmission unit 201-0 and the transmission unit 201- (n + 1). Moreover, the flowchart showing the flow of the transmission process in each transmitter 301-i (i = 1 to n) is the same flowchart. Therefore, a flowchart corresponding to the transmission unit 301-i (i = 1 to n) is collectively shown in FIG.
The transmission unit 201-0 and the transmission unit 201- (n + 1) operate in the same manner as the transmission device 200, and a modulation signal is input to the V polarization antenna 250-0 and the H polarization antenna 250- (n + 1). .

一方、送信部301−i(i=1〜n)において、符号化器310−iは、入力された情報系列の誤り訂正符号化を行い(ステップS301)、変調器320−iは、符号化器310−iにより誤り訂正符号化された情報系列を変調する(ステップS302)。投影器330a−i(i=1〜n)は、変調器320−iが変調したP_θ偏波の変調信号からV偏波軸への写像成分Vを生成し(ステップS303a)、V偏波用アンテナ350a−iに出力する。また、投影器330b−i(i=1〜n)は、変調器320−iが変調したP_θ偏波の変調信号からH偏波軸への写像成分Hを生成し(ステップS303b)、H偏波用アンテナ350b−iに出力する。 On the other hand, in the transmission unit 301-i (i = 1 to n), the encoder 310-i performs error correction encoding on the input information sequence (step S301), and the modulator 320-i performs encoding. The information sequence that has been subjected to error correction coding by the device 310-i is modulated (step S302). The projectors 330a-i (i = 1 to n) generate the mapping component V i to the V polarization axis from the modulation signal of the P_θ i polarization modulated by the modulator 320-i (step S303a). It outputs to the wave antenna 350a-i. Further, the projector 330b-i (i = 1 to n) generates a mapping component H i to the H polarization axis from the modulation signal of the P_θ i polarization modulated by the modulator 320-i (Step S303b). Output to the H polarization antenna 350b-i.

V偏波用アンテナ250−0はV偏波信号Vを無線により送信する。V偏波用アンテナ350a−i(i=1〜n)は、P_θ偏波信号のV偏波軸への写像成分Vを無線により送信する(ステップS304a)。H偏波用アンテナ350b−i(i=1〜n)は、P_θ偏波信号のH偏波軸への写像成分Hを無線により送信する(ステップS304b)。H偏波用アンテナ250−(n+1)は、H偏波信号Hを無線により送信する。V偏波用アンテナ250−0と、V偏波用アンテナ350a−i(i=1〜n)と、H偏波用アンテナ250−(n+1)とは、同じ周波数の無線により同時に信号を送信する。 V polarized wave antenna 250-0 transmits wirelessly V polarization signal V 0. The V polarization antenna 350a-i (i = 1 to n) wirelessly transmits the mapping component V i of the P_θ i polarization signal to the V polarization axis (step S304a). The H polarization antenna 350b-i (i = 1 to n) wirelessly transmits the mapping component H i of the P_θ i polarization signal to the H polarization axis (step S304b). H polarization antenna 250- (n + 1) transmits the H polarization signal H 0 wirelessly. V-polarized antenna 250-0, V-polarized antenna 350a-i (i = 1 to n), and H-polarized antenna 250- (n + 1) transmit signals simultaneously by radio of the same frequency. .

図12は、本発明の一実施形態による受信装置500の構成を示すブロック図である。
同図に示すように、受信装置500は、V偏波用アンテナ501、H偏波用アンテナ502、電力測定器503、電力測定器504、比較器505、選択器506、及び、復調復号処理部510−0〜510−(n+1)を備えて構成される。
FIG. 12 is a block diagram illustrating a configuration of a receiving device 500 according to an embodiment of the present invention.
As shown in the figure, the receiving device 500 includes a V-polarized antenna 501, an H-polarized antenna 502, a power measuring device 503, a power measuring device 504, a comparator 505, a selector 506, and a demodulation / decoding processing unit. 510-0 to 510- (n + 1).

V偏波用アンテナ501は、V偏波多重信号を受信し、H偏波用アンテナ502は、H偏波多重信号を受信する。電力測定器503は、V偏波用アンテナ501が受信したV偏波多重信号の信号電力を測定し、電力測定器504は、H偏波用アンテナ502が受信したH偏波多重信号の信号電力を測定する。比較器505は、電力測定器503、504により測定された信号電力を比較し、電力レベルが高いほうの受信信号を復調復号対象として選択するよう制御信号により選択器506に指示する。   The V polarization antenna 501 receives the V polarization multiplexed signal, and the H polarization antenna 502 receives the H polarization multiplexed signal. The power measuring device 503 measures the signal power of the V polarization multiplexed signal received by the V polarization antenna 501, and the power measuring device 504 receives the signal power of the H polarization multiplexed signal received by the H polarization antenna 502. Measure. The comparator 505 compares the signal power measured by the power measuring devices 503 and 504, and instructs the selector 506 by the control signal to select the received signal having the higher power level as the demodulation decoding target.

選択器506は、復調復号対象としてV偏波多重信号を選択した場合、V偏波多重信号であるV偏波処理対象信号RVを復調復号対象信号として、H偏波多重信号であるH偏波処理対象信号RHを復調復号非対象信号として復調復号処理部510−0に出力し、復調復号対象としてH偏波多重信号を選択した場合、H偏波多重信号であるH偏波処理対象信号RHを復調復号対象信号として、V偏波多重信号であるV偏波処理対象信号RVを復調復号非対象信号として復調復号処理部510−(n+1)に出力する。復調復号処理部510−0は、復調復号対象信号であるV偏波処理対象信号からV偏波信号Vの復調復号を行ない、復調復号処理部510−i(i=1〜n)は、復調復号対象信号であるV偏波処理対象信号またはH偏波処理対象信号からP_θ偏波信号の復調復号を行い、復調復号処理部510−(n+1)は、復調復号対象信号であるH偏波処理対象信号からH偏波信号Hの復調復号を行なう。 When the V polarization multiplexed signal is selected as a demodulation and decoding target, the selector 506 uses the V polarization processing target signal RV 0 that is a V polarization multiplexed signal as a demodulation decoding target signal and the H polarization that is an H polarization multiplexed signal. If the wave processed signal RH 0 and outputs to the demodulation decoding section 510-0 as demodulation and decoding non-target signals, and selects the H polarization multiplexing signal as a demodulated decoded, the H-polarized wave processed is H polarization multiplexing signal The signal RH 0 is output as a demodulation decoding target signal, and the V polarization processing target signal RV 0 which is a V polarization multiplexed signal is output as a demodulation decoding non-target signal to the demodulation decoding processing unit 510- (n + 1). Demodulation decoding unit 510-0 performs a demodulating and decoding of the V polarization signal V 0 from the V polarization processing signal is demodulated decoded signal, demodulation decoding unit 510-i (i = 1~n) is The P_θ i polarization signal is demodulated and decoded from the V polarization processing target signal or the H polarization processing target signal that is the demodulation decoding target signal, and the demodulation decoding processing unit 510- (n + 1) performs the H polarization that is the demodulation decoding target signal. Demodulation decoding of the H polarization signal H 0 is performed from the wave processing target signal.

図13は、図12に示す復調復号処理部510−0の構成を示すブロック図である。なお、復調復号処理部510−(n+1)は、復調復号処理部510−0の内部構成の各部の符号の「−0」を「−(n+1)」に置き換えた構成である。以下、復調復号処理部510−0の構成を説明する。   FIG. 13 is a block diagram illustrating a configuration of the demodulation / decoding processing unit 510-0 illustrated in FIG. The demodulation / decoding processing unit 510- (n + 1) has a configuration in which “−0” of the code of each part of the internal configuration of the demodulation / decoding processing unit 510-0 is replaced with “− (n + 1)”. Hereinafter, the configuration of the demodulation / decoding processor 510-0 will be described.

同図に示すように、復調復号処理部510−0は、遅延器511−0、遅延器512−0、伝送路推定器514−0、復調器515−0、復号器516−0、再符号化器517−0、再変調器518−0、振幅位相調整器519−0、減算器521−0、電力測定器524−0、電力測定器525−0、比較器526−0、及び、選択器527−0を備えて構成される。   As shown in the figure, the demodulation / decoding processing unit 510-0 includes a delay unit 511-0, a delay unit 512-0, a transmission path estimator 514-0, a demodulator 515-0, a decoder 516-0, and a re-encoding. 517-0, remodulator 518-0, amplitude phase adjuster 519-0, subtractor 521-0, power meter 524-0, power meter 525-0, comparator 526-0, and selection And 527-0.

遅延器511−0は、復調復号非対象信号であるH偏波処理対象信号を記憶し、時間的遅延を付加する。遅延器512−0は、復調復号対象信号であるV偏波処理対象信号を記憶し、時間的遅延を付加する。伝送路推定器514−0は、V偏波処理対象信号に含まれるパイロット信号などから伝送路特性を推定する。復調器515−0は、伝送路推定器514−0により推定された伝送路特性を用いて、V偏波処理対象信号を復調してV偏波信号Vの情報系列の尤度を算出する。復号器516−0は、復調器515−0により算出された尤度に基づき誤り訂正処理及び復号処理を行い、V偏波信号Vの情報系列を得る。 The delay device 511-0 stores the H polarization processing target signal, which is a demodulation / decoding non-target signal, and adds a time delay. The delay unit 512-0 stores the V polarization processing target signal, which is a demodulation decoding target signal, and adds a time delay. The transmission path estimator 514-0 estimates transmission path characteristics from a pilot signal or the like included in the V polarization processing target signal. Demodulator 515-0 using the transmission path characteristic estimated by the transmission path estimator 514-0, calculates the likelihood information sequence of the V polarization signal V 0 demodulates the V polarization signal being processed . Decoder 516-0 performs error correction processing and decoding processing based on the likelihood calculated by the demodulator 515-0, obtain information sequence of the V polarization signal V 0.

再符号化器517−0は、復号器516−0により復号された情報系列に、当該情報系列を送信した送信装置において用いられた符号化と同じ符号化を行う。再変調器518−0は、再符号化器517−0が符号化した情報系列を、当該情報系列を送信した送信装置において用いられた変調方式と同じ変調方式で変調を行う。振幅位相調整器519−0は、伝送路推定器514−0により推定された伝送路特性の推定値を再変調器518−0が変調した信号に乗算し、送信元の送信装置が送信したV偏波信号Vを自受信装置において受信したときの推定信号であるレプリカV偏波信号V’を生成する。 The re-encoder 517-0 performs the same coding on the information sequence decoded by the decoder 516-0 as the coding used in the transmission apparatus that has transmitted the information sequence. The re-modulator 518-0 modulates the information sequence encoded by the re-encoder 517-0 with the same modulation method as that used in the transmission apparatus that transmitted the information sequence. The amplitude / phase adjuster 519-0 multiplies the estimated value of the transmission path characteristic estimated by the transmission path estimator 514-0 by the signal modulated by the remodulator 518-0, and transmits the V transmitted by the transmission apparatus as the transmission source. A replica V polarization signal V 0 ′, which is an estimation signal when the polarization signal V 0 is received by the receiving device, is generated.

減算器521−0は、遅延器512−0が出力するV偏波処理対象信号から、振幅位相調整器519−0により生成されたレプリカV偏波信号V’を除去して新たなV偏波処理対象信号を生成する。電力測定器524−0は、減算器521−0から出力されたV偏波処理対象信号の信号電力を測定し、電力測定器525−0は、遅延器511−0から出力されたH偏波処理対象信号の信号電力を測定する。比較器526−0は、電力測定器524−0、526−0により測定されたV偏波処理対象信号、H偏波処理対象信号の信号電力を比較し、電力レベルが高いほうを復調復号対象信号として選択するよう制御信号により選択器527−0へ指示する。また、比較器526−0は、次の復調復号処理によりP_θ〜P_θのいずれかの情報系列を得る場合、次に復調復号動作を行う復調復号処理部510−1〜510−nへ、復調復号対象信号がV偏波処理対象信号あるいはH偏波処理対象信号である旨を制御信号により通知する。選択器527−0は、比較器526−0からの指示に従って、復調復号処理部510−1〜(n+1)のうち次に復調復号動作を行う復調復号部に、復調復号対象信号、復調復号非対象信号としてV偏波処理対象信号、H偏波処理対象信号を出力する。 The subtractor 521-0 removes the replica V polarization signal V 0 ′ generated by the amplitude phase adjuster 519-0 from the V polarization processing target signal output from the delay unit 512-0, and creates a new V polarization. A wave processing target signal is generated. The power measuring device 524-0 measures the signal power of the V polarization processing target signal output from the subtractor 521-0, and the power measuring device 525-0 outputs the H polarized wave output from the delay device 511-0. Measure the signal power of the signal to be processed. The comparator 526-0 compares the signal power of the V polarization processing target signal and the H polarization processing target signal measured by the power measuring devices 524-0 and 526-0, and the higher power level is demodulated and decoded. The selector 527-0 is instructed by the control signal to select as a signal. Further, when the comparator 526-0 obtains any one of the information sequences P_θ 1 to P_θ n by the next demodulation and decoding process, the comparator 526-0 proceeds to the demodulation and decoding processing units 510-1 to 510-n that perform the demodulation and decoding operation next. The control signal notifies that the demodulation and decoding target signal is the V polarization processing target signal or the H polarization processing target signal. In accordance with an instruction from the comparator 526-0, the selector 527-0 sends the demodulated decoding target signal and the demodulating / decoding signal to the demodulating / decoding unit that performs the next demodulating / decoding operation among the demodulating / decoding processing units 510-1 to 510-1 A V polarization processing target signal and an H polarization processing target signal are output as target signals.

なお、復調復号処理部510−(n+1)の場合、上記の各部の符号の「−0」を「−(n+1)」に、「V偏波処理対象信号」を「H偏波処理対象信号」に、「H偏波処理対象信号」を「V偏波処理対象信号」に、「V偏波信号V」を「H偏波信号H」に、「レプリカV偏波信号V’」を「レプリカH偏波信号H’」に読み替える。 In the case of the demodulation / decoding processing unit 510- (n + 1), “−0” of the code of each unit is set to “− (n + 1)”, and “V polarization processing target signal” is set to “H polarization processing target signal”. In addition, “H polarization processing target signal” is “V polarization processing target signal”, “V polarization signal V 0 ” is “H polarization signal H 0 ”, and “replica V polarization signal V 0 ′”. Is read as “replica H polarization signal H 0 ′”.

図14は、図12に示す復調復号処理部510−i(i=1〜n)の構成を示すブロック図である。復調復号処理部510−i(i=1〜n)は、遅延器511−i、遅延器512−i、投影器513−i、伝送路推定器514−i、復調器515−i、復号器516−i、再符号化器517−i、再変調器518−i、振幅位相調整器519−i、投影器520−i、減算器521−i、投影器522−i、減算器523−i、電力測定器524−i、電力測定器525−i、比較器526−i、及び、選択器527−iを備えて構成される。   FIG. 14 is a block diagram illustrating a configuration of the demodulation / decoding processing unit 510-i (i = 1 to n) illustrated in FIG. The demodulation decoding processing unit 510-i (i = 1 to n) includes a delay unit 511-i, a delay unit 512-i, a projector 513-i, a transmission path estimator 514-i, a demodulator 515-i, and a decoder. 516-i, re-encoder 517-i, re-modulator 518-i, amplitude phase adjuster 519-i, projector 520-i, subtractor 521-i, projector 522-i, subtractor 523-i , Power meter 524-i, power meter 525-i, comparator 526-i, and selector 527-i.

遅延器511−iは、復調復号非対象信号を記憶し、時間的遅延を付加する。遅延器512−iは、復調復号対象信号を記憶し、時間的遅延を付加する。投影器513−iは、受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知された場合、復調復号対象信号をV偏波軸からP_θ偏波軸へ投影した写像成分を生成し、復調復号対象信号がH偏波処理対象信号である旨が通知された場合、復調復号対象信号をH偏波軸からP_θ偏波軸へ投影した写像成分を得る。伝送路推定器514−iは、投影器513−iから出力されたP_θ偏波軸への写像成分に含まれるパイロット信号などから伝送路特性を推定する。復調器515−iは、伝送路推定器514−iにより推定された伝送路特性を用いて、投影器513−iから出力されたP_θ偏波軸への写像成分からP_θ偏波信号の情報系列の尤度を算出する。復号器516−iは、復調器515−iにより算出された尤度に基づき誤り訂正処理及び復号処理を行い、P_θ偏波信号の情報系列を得る。 The delay unit 511-i stores the demodulation / decoding non-target signal and adds a time delay. The delay unit 512-i stores the demodulation decoding target signal and adds a time delay. When the received control signal notifies that the demodulation target signal is a V polarization processing target signal, the projector 513-i projects the demodulation decoding target signal from the V polarization axis to the P_θ i polarization axis. When a mapping component is generated and it is notified that the signal to be demodulated and decoded is an H polarization processing target signal, a mapping component obtained by projecting the signal to be demodulated and decoded from the H polarization axis to the P_θ i polarization axis is obtained. The transmission path estimator 514-i estimates transmission path characteristics from a pilot signal or the like included in the component mapped to the P_θ i polarization axis output from the projector 513-i. Demodulator 515-i, using the transmission path characteristic estimated by the transmission path estimator 514-i, the mapping component to P_shita i polarization axis output from the projector 513-i of P_shita i polarized signal The likelihood of the information series is calculated. The decoder 516-i performs error correction processing and decoding processing based on the likelihood calculated by the demodulator 515-i, and obtains an information sequence of the P_θ i polarization signal.

再符号化器517−iは、復号器516−iにより復号された情報系列に、当該情報系列を送信した送信装置において用いられた符号化と同じ符号化を行う。再変調器518−iは、再符号化器517−iが符号化した情報系列を、当該情報系列を送信した送信装置において用いられた変調方式と同じ変調方式で変調を行う。振幅位相調整器519−iは、伝送路推定器514−iにより推定された伝送路特性の推定値を再変調器518−iが変調した信号に乗算し、送信元の送信装置が送信したP_θ偏波信号を自受信装置において受信したときの推定信号であるレプリカP_θ偏波信号を生成する。 The re-encoder 517-i performs the same coding on the information sequence decoded by the decoder 516-i as the coding used in the transmission apparatus that has transmitted the information sequence. The remodulator 518-i modulates the information sequence encoded by the reencoder 517-i using the same modulation method as that used in the transmission apparatus that transmitted the information sequence. The amplitude / phase adjuster 519-i multiplies the signal modulated by the remodulator 518-i by the estimated value of the transmission channel characteristic estimated by the transmission channel estimator 514-i, and transmits P_θ transmitted by the transmission device of the transmission source A replica P_θ i- polarization signal, which is an estimation signal when the i- polarization signal is received by the receiving device, is generated.

投影器520−iは、受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知された場合、振幅位相調整器519−iにより生成されたレプリカP_θ偏波信号をP_θ偏波軸からV偏波軸へ投影したレプリカ写像成分V’を生成し、復調復号対象信号がH偏波処理対象信号である旨が通知された場合、振幅位相調整器519−iにより生成されたレプリカP_θ偏波信号をP_θ偏波軸からH偏波軸へ投影したレプリカ写像成分H’を生成する。減算器521−iは、遅延器512−iが出力する復調復号対象信号から、投影器520−iにより生成されたレプリカP_θ偏波信号の写像成分V’またはH’を減算した結果である処理対象信号を出力する。 When the received control signal notifies that the demodulation and decoding target signal is the V polarization processing target signal, the projector 520-i receives the replica P_θ i polarization signal generated by the amplitude and phase adjuster 519-i. When the replica mapping component V i ′ projected from the P_θ i polarization axis to the V polarization axis is generated and it is notified that the demodulation decoding target signal is the H polarization processing target signal, the amplitude phase adjuster 519-i A replica mapping component H i ′ is generated by projecting the replica P_θ i polarization signal generated by the above process from the P_θ i polarization axis to the H polarization axis. The subtractor 521-i subtracts the mapping component V i ′ or H i ′ of the replica P_θ i polarization signal generated by the projector 520-i from the demodulation decoding target signal output from the delay unit 512-i. The processing target signal is output.

投影器522−iは、受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知された場合、振幅位相調整器519−iにより生成されたレプリカP_θ偏波信号をP_θ偏波軸からH偏波軸へ投影したレプリカ写像成分H’を生成し、復調復号対象信号がH偏波処理対象信号である旨が通知された場合、振幅位相調整器519−iにより生成されたレプリカP_θ偏波信号をP_θ偏波軸からV偏波軸へ投影したレプリカ写像成分V’を生成する。減算器523−iは、遅延器511−iが出力する復調復号非対象信号から、投影器522−iにより生成されたレプリカP_θ偏波信号の写像成分H’またはV’を減算した結果である処理対象信号を出力する。 When the received control signal notifies that the demodulation and decoding target signal is the V polarization processing target signal, the projector 522-i receives the replica P_θ i polarization signal generated by the amplitude and phase adjuster 519-i. When the replica mapping component H i ′ projected from the P_θ i polarization axis to the H polarization axis is generated and it is notified that the demodulation decoding target signal is the H polarization processing target signal, the amplitude phase adjuster 519-i A replica mapping component V i ′ is generated by projecting the replica P_θ i polarization signal generated by the above process from the P_θ i polarization axis to the V polarization axis. The subtractor 523-i subtracts the mapping component H i ′ or V i ′ of the replica P_θ i polarization signal generated by the projector 522-i from the demodulation / decoding non-target signal output from the delay unit 511-i. The processing target signal that is the result is output.

電力測定器524−iは、減算器521−iから出力された処理対象信号の信号電力を測定し、電力測定器525−iは、減算器523−iから出力された処理対象信号の信号電力を測定する。比較器526−iは、電力測定器524−i、526−iにより測定された処理対象信号の信号電力を比較し、電力レベルが高いほうの処理対象信号を出力するよう制御信号により選択器527−iへ指示する。次の復調復号処理によりP_θ(i+1)の情報系列を得る場合、次に復調復号処理を行う復調復号処理部510−(i+1)へ、復調復号対象信号がV偏波処理対象信号あるいはH偏波処理対象信号である旨を制御信号により通知する。選択器527−iは、比較器526−iからの指示に従って、次に復調復号処理を行う復調復号処理部510−0、510−(i+1)、510−(n+1)のいずれかに、復調復号対象信号、復調復号非対象信号となる処理対象信号を出力する。 The power measuring device 524-i measures the signal power of the processing target signal output from the subtractor 521-i, and the power measuring device 525-i outputs the signal power of the processing target signal output from the subtractor 523-i. Measure. The comparator 526-i compares the signal powers of the processing target signals measured by the power measuring devices 524-i and 526-i, and selects the selector 527 based on the control signal so as to output the processing target signal having the higher power level. Instruct -i. When an information sequence of P_θ (i + 1) is obtained by the next demodulation / decoding process, the demodulation / decoding target signal is a V-polarization processing target signal or an H-polarization signal to the demodulation / decoding processing unit 510- (i + 1) that performs the demodulation / decoding process The control signal notifies that it is a signal to be processed. In accordance with an instruction from the comparator 526-i, the selector 527-i performs demodulation decoding in any of the demodulation decoding processing units 510-0, 510-(i + 1), and 510-(n + 1) that perform demodulation decoding processing next. A target signal and a target signal to be processed as a demodulation / decoding non-target signal are output.

続いて、受信装置500の信号受信処理を説明する。
図15は、受信装置500の信号受信処理の流れを表すフローチャートであり、図16〜図19は、受信装置500の信号受信処理を説明するための図である。
以下では、受信装置500が、V偏波信号V、P_θ偏波信号のV偏波軸への写像成分V、及び、P_θ偏波信号のV偏波軸への写像成分Vが多重されたV偏波多重信号と、H偏波信号H、P_θ偏波信号のH偏波軸への写像成分H、及び、P_θ偏波信号のH偏波軸への写像成分Hが多重されたH偏波多重信号を受信した場合について説明する。
Subsequently, a signal reception process of the reception device 500 will be described.
FIG. 15 is a flowchart showing the flow of signal reception processing of the reception device 500, and FIGS. 16 to 19 are diagrams for explaining signal reception processing of the reception device 500.
Hereinafter, the receiving apparatus 500, V polarization signal V 0, P_θ 1 mapping component V 1 of the the V axis of polarization of polarized signals, and the mapping component V 2 to V polarization axis of P_shita 2 polarized signal Is a mapping of the V polarization multiplexed signal, the H polarization signal H 0 , the mapping component H 1 of the P_θ 1 polarization signal to the H polarization axis, and the mapping of the P_θ 2 polarization signal to the H polarization axis A case where an H polarization multiplexed signal in which the component H 2 is multiplexed will be described.

(処理1):図16において、受信装置500のV偏波用アンテナ501は受信したV偏波多重信号を電力測定器503及び選択器506に出力し、H偏波用アンテナ502は受信したH偏波多重信号を電力測定器504及び選択器506に出力する(図15のステップS501)。   (Process 1): In FIG. 16, the V polarization antenna 501 of the receiving apparatus 500 outputs the received V polarization multiplexed signal to the power measuring device 503 and the selector 506, and the H polarization antenna 502 receives the received H polarization. The polarization multiplexed signal is output to the power measuring device 504 and the selector 506 (step S501 in FIG. 15).

(処理2):電力測定器503は、V偏波用アンテナ501から入力されたV偏波多重信号の信号電力を測定し、電力測定器504は、H偏波用アンテナ502から入力されたH偏波多重信号の信号電力を測定する(図15のステップS502)。   (Process 2): The power measuring device 503 measures the signal power of the V polarization multiplexed signal input from the V polarization antenna 501, and the power measuring device 504 receives the H power input from the H polarization antenna 502. The signal power of the polarization multiplexed signal is measured (step S502 in FIG. 15).

(処理3):比較器505は、電力測定器503により測定されたV偏波多重信号の受信信号電力と、電力測定器504により測定されたH偏波多重信号の受信信号電力とを比較する。ここでは、V偏波多重信号の受信信号電力が高いと判断したとする。比較器505は、V偏波多重信号を復調復号対象とするよう制御信号により選択器506へ指示する(図15のステップS503)。   (Process 3): Comparator 505 compares the received signal power of the V polarization multiplexed signal measured by power meter 503 with the received signal power of the H polarization multiplexed signal measured by power meter 504. . Here, it is assumed that the received signal power of the V polarization multiplexed signal is high. The comparator 505 instructs the selector 506 by a control signal so that the V polarization multiplexed signal is to be demodulated and decoded (step S503 in FIG. 15).

(処理4)選択器506は、比較器505から受信した制御信号に従って、復調復号対象信号としてV偏波多重信号を選択する。V偏波多重信号の復調復号順番の最初はV偏波信号Vであるため(図15のステップS504:YES)、V偏波信号Vの復調を行う復調復号処理部510−0に、復調復号対象信号として、V偏波用アンテナ501から出力されたV偏波多重信号であるV偏波処理対象信号RVを出力するとともに、復調復号非対象信号として、H偏波用アンテナ502から出力されたH偏波多重信号であるH偏波処理対象信号RHを出力する。 (Process 4) The selector 506 selects a V polarization multiplexed signal as a signal to be demodulated and decoded according to the control signal received from the comparator 505. Since the first of the demodulation and decoding order of the V polarization multiplexed signal is the V polarization signal V 0 (step S504 in FIG. 15: YES), the demodulation decoding processing unit 510-0 that demodulates the V polarization signal V 0 A V-polarization processing target signal RV 0 that is a V-polarized multiplexed signal output from the V-polarization antenna 501 is output as a demodulation / decoding target signal, and an H-polarization antenna 502 is used as a demodulation / decoding non-target signal. An H polarization processing target signal RH 0 that is the output H polarization multiplexed signal is output.

(処理5):復調復号処理部510−0の遅延器511−0にH偏波処理対象信号RHが入力され、遅延器512−0、伝送路推定器514−0、及び、復調器515−0にV偏波処理対象信号RVが入力される。伝送路推定器514−0は、V偏波処理対象信号RVから伝送路特性を推定し(図15のステップS505)、復調器515−0は、伝送路推定器514−0により推定された伝送路特性を用いて、V偏波処理対象信号RVを復調して情報系列の尤度を算出する(図15のステップS506)。復号器516−0は、復調器515−0により算出された尤度に基づき誤り訂正処理及び復号処理を行い、V偏波信号Vの情報系列を得て、上位レイヤ等に出力するとともに、再符号化器517−0へ出力する(図15のステップS507)。 (Process 5): The H polarization processing target signal RH 0 is input to the delay unit 511-0 of the demodulation / decoding processing unit 510-0, and the delay unit 512-0, the transmission path estimator 514-0, and the demodulator 515 The V polarization processing target signal RV 0 is input to −0. The transmission path estimator 514-0 estimates the transmission path characteristics from the V polarization processing target signal RV 0 (step S505 in FIG. 15), and the demodulator 515-0 is estimated by the transmission path estimator 514-0. Using the transmission path characteristic, the V polarization processing target signal RV 0 is demodulated to calculate the likelihood of the information sequence (step S506 in FIG. 15). Decoder 516-0 performs error correction processing and decoding processing based on the likelihood calculated by the demodulator 515-0, with the information sequence of the V polarization signal V 0, and outputs to the upper layer or the like, The data is output to the re-encoder 517-0 (step S507 in FIG. 15).

(処理6):情報系列が得られていない偏波信号があるため(図15のステップS508:NO)、再符号化器517−0は、復号器516−0により復号された情報系列に、V偏波信号Vの送信元の送信装置と同様の符号化を行ない(図15のステップS509)、再変調器518−0は、再符号化器517−0が符号化した信号に、V偏波信号Vの送信元送信装置と同様の変調を行なう(図15のステップS510)。 (Process 6): Since there is a polarization signal for which an information sequence is not obtained (step S508 in FIG. 15: NO), the re-encoder 517-0 adds the information sequence decoded by the decoder 516-0 to the information sequence. The same encoding as that of the transmission device of the transmission source of the V polarization signal V 0 is performed (step S509 in FIG. 15), and the remodulator 518-0 applies the V encoded signal to the signal encoded by the reencoder 517-0. The same modulation as that of the transmission source device of the polarization signal V 0 is performed (step S510 in FIG. 15).

(処理7):振幅位相調整器519−0は、伝送路推定器514−0により推定された伝送路特性の推定値を再変調器518−0が変調した信号に乗算し、レプリカV偏波信号V’を生成する(図15のステップS511)。減算器521−0は、遅延器512−0が出力したV偏波処理対象信号RVからレプリカV偏波信号V’を除去してV偏波処理対象信号RVを生成する(図15のステップS512)。V偏波処理対象信号RVには、V偏波信号V、P_θ偏波信号へのV偏波軸への写像成分V、及び、P_θ偏波信号のV偏波軸への写像成分Vが多重されているため、レプリカV偏波信号V’を除去することにより、写像成分V及びVが多重されたV偏波処理対象信号RVが生成される。 (Processing 7): The amplitude phase adjuster 519-0 multiplies the signal modulated by the remodulator 518-0 by the estimated value of the transmission path characteristic estimated by the transmission path estimator 514-0, thereby replica V polarization. A signal V 0 ′ is generated (step S511 in FIG. 15). The subtractor 521-0 removes the replica V-polarization signal V 0 ′ from the V-polarization processing target signal RV 0 output from the delay unit 512-0 and generates the V-polarization processing target signal RV 1 (FIG. 15). Step S512). The V polarization processing target signal RV 0 includes a V polarization signal V 0 , a mapping component V 1 to the V polarization axis to the P_θ 1 polarization signal, and a P_θ 2 polarization signal to the V polarization axis. Since the mapping component V 2 is multiplexed, the V polarization processing target signal RV 1 in which the mapping components V 1 and V 2 are multiplexed is generated by removing the replica V polarization signal V 0 ′.

(処理8):電力測定器524−0は、減算器521−0から出力されたV偏波処理対象信号RVの信号電力を測定する。遅延器511−0は、時間遅延を付加したH偏波処理対象信号RHをH偏波処理対象信号RHとして出力する。H偏波処理対象信号RHは、H偏波信号H、P_θ偏波信号のH偏波軸への写像成分H、及び、P_θ偏波信号のH偏波軸への写像成分Hが多重された信号である。電力測定器525−0は、遅延器511−0から出力されたH偏波処理対象信号RHの信号電力を測定する(図15のステップS502)。 (Process 8): Power meter 524-0 measures the signal power of the V polarization processing signal RV 1 output from the subtracter 521-0. The delay unit 511-0 outputs the H polarization processing target signal RH 0 to which the time delay is added as the H polarization processing target signal RH 1 . The H-polarization processing target signal RH 1 includes an H-polarization signal H 0 , a mapping component H 1 of the P_θ 1 polarization signal to the H-polarization axis, and a mapping component of the P_θ 2 polarization signal to the H-polarization axis. H 2 is a multiplexed signal. Power meter 525-0 measures the signal power of the H polarization processing signal RH 1 output from the delay unit 511-0 (step S502 in FIG. 15).

(処理9):比較器526−0は、電力測定器524−0により測定されたV偏波処理対象信号RVの信号電力と、電力測定器525−0により測定されたH偏波処理対象信号RHの信号電力とを比較する。ここでは、V偏波処理対象信号RVの信号電力が高いと判断したとする。比較器526−0は、V偏波処理対象信号RVを復調復号対象とするよう選択器527−0へ制御信号により指示する(図15のステップS503)。V偏波処理対象信号RVに多重されている中で、P_θ偏波信号の復調復号の順番が最も早いため(図15のステップS504:NO)、P_θ偏波信号の復調復号を行なう復調復号処理部510−1に、復調復号対象信号がV偏波処理対象信号である旨を制御信号により通知する。 (Processing 9): Comparator 526-0 receives a signal power of the V polarization processing signal RV 1, which is measured by the power measuring device 524-0, H polarization processing target measured by the power meter 525-0 The signal power of the signal RH 1 is compared. Here, it is assumed that the signal power of the V polarization processing target signal RV 1 is determined to be high. Comparator 526-0 instructs the control signal to the selector 527-0 to the V-polarization processing signal RV 1 and demodulating decoded (step S503 in FIG. 15). In multiplexed in the V polarization processing signal RV 1, since the earliest order of demodulation and decoding of P_shita 1 polarized signal (step of FIG. 15 S504: NO), performs demodulation and decoding of P_shita 1 polarized signal The demodulation / decoding processing unit 510-1 is notified by the control signal that the demodulation / decoding target signal is the V polarization processing target signal.

(処理10)選択器527−0は、比較器526−0から受信した制御信号に従って、復調復号対象信号としてV偏波処理対象信号RVを選択する。選択器527−0は、次に復調復号処理を行なう復調復号処理部510−1に、復調復号対象信号としてV偏波処理対象信号RVを出力するとともに、復調復号非対象信号としてH偏波処理対象信号RHを出力する。 (Process 10) selector 527-0 in accordance with the control signal received from the comparator 526-0 selects the V-polarized signal being processed RV 1 as demodulated decoded signal. The selector 527-0 outputs the V polarization processing target signal RV 1 as a demodulation decoding target signal to the demodulation decoding processing unit 510-1 that performs demodulation decoding processing next, and also H polarization as a demodulation decoding non-target signal The processing target signal RH 1 is output.

(処理11):図17において、復調復号処理部510−1の遅延器511−1にH偏波処理対象信号RHが入力され、遅延器512−1及び投影器513−1にV偏波処理対象信号RVが入力される。投影器513−1は、比較器526−0から受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知されたため、V偏波処理対象信号RVをV偏波軸からP_θ偏波軸へ投影した写像成分を生成し、伝送路推定器514−1及び復調器515−1に出力する(図15のステップS513)。 (Processing 11): In FIG. 17, H polarized wave processed signal RH 1 is inputted to the delay unit 511-1 of the demodulation decoding section 510-1, V polarized wave to the delay unit 512-1 and projectors 513-1 A processing target signal RV 1 is input. Projector 513-1, since demodulation decoding target signal by a control signal received from the comparator 526-0 is notified that a V polarization processing signal, a V-polarized signal being processed RV 1 V Henhajiku from generating a mapping component projected to P_shita 1 polarization axes, and outputs to the transmission path estimator 514-1 and the demodulator 515-1 (step S513 in FIG. 15).

(処理12):伝送路推定器514−1は、P_θ偏波軸への写像成分から伝送路特性を推定し(図15のステップS514)、復調器515−1は、伝送路推定器514−1により推定された伝送路特性を用いて、P_θ偏波軸への写像成分の情報系列の尤度を算出する(図15のステップS515)。復号器516−1は、復調器515−1により算出された尤度に基づき誤り訂正処理及び復号処理を行い、P_θ偏波信号の情報系列を得て、上位レイヤ等に出力するとともに、再符号化器517−1へ出力する(図15のステップS516)。 (Processing 12): The transmission path estimator 514-1 estimates a channel characteristic from the mapping component to P_shita 1 polarization axis (step S514 in FIG. 15), the demodulator 515-1, the transmission path estimator 514 -1 using the transmission path characteristic estimated by, it calculates the likelihood information sequence mapping components to P_shita 1 polarization axis (step S515 in FIG. 15). Decoder 516-1 performs error correction processing and decoding processing based on the likelihood calculated by the demodulator 515-1, to obtain information sequence P_shita 1 polarized signal, and outputs to the upper layer or the like, re The data is output to the encoder 517-1 (step S516 in FIG. 15).

(処理13):情報系列が得られていない偏波信号があるため(図15のステップS517:NO)、再符号化器517−1は、復号器516−1により復号された情報系列に、P_θ偏波信号の送信元の送信装置と同様の符号化を行ない(図15のステップS518)、再変調器518−1は、再符号化器517−1が符号化した信号に、P_θ偏波信号の送信元送信装置と同様の変調を行なう(図15のステップS519)。 (Process 13): Since there is a polarization signal for which an information sequence is not obtained (step S517 of FIG. 15: NO), the re-encoder 517-1 includes the information sequence decoded by the decoder 516-1. P_shita 1 polarized signal transmission source performs the same encoding and transmitting device (step S518 in FIG. 15), re-modulator 518-1 is the signal re-encoder 517-1 is encoded, P_shita 1 The same modulation as that of the transmission device of the polarization signal is performed (step S519 in FIG. 15).

(処理14):振幅位相調整器519−1は、伝送路推定器514−1により推定された伝送路特性の推定値を再変調器518−1が変調した信号に乗算してレプリカP_θ偏波信号を生成し、投影器520−1及び522−1に出力する(図15のステップS520)。 (Processing 14): the amplitude and phase adjuster 519-1, the transmission path estimator 514-1 is remodulator 518-1 of the estimated values of the transmission path characteristic estimated by multiplying the modulated signal by a replica P_shita 1 with polarized A wave signal is generated and output to the projectors 520-1 and 522-1 (step S520 in FIG. 15).

(処理15):投影器520−1は、比較器526−0から受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知されたため、振幅位相調整器519−1により生成されたレプリカP_θ偏波信号をP_θ偏波軸からV偏波軸へ投影したレプリカ写像成分V’を生成する(図15のステップS521)。減算器521−1は、遅延器512−1が出力したV偏波処理対象信号RVから、投影器520−1により生成されたレプリカ写像成分V’を減算した結果であるV偏波処理対象信号RVを出力する。V偏波処理対象信号RVには、P_θ偏波信号のV偏波軸への写像成分V、及び、P_θ偏波信号のV偏波軸への写像成分Vが多重されているため、レプリカ写像成分V’を除去することにより、写像成分Vのみが含まれるV偏波処理対象信号RVが生成される(図15のステップS522)。 (Processing 15): Since the projector 520-1 is notified by the control signal received from the comparator 526-0 that the demodulation decoding target signal is a V polarization processing target signal, the amplitude phase adjuster 519-1 A replica mapping component V 1 ′ is generated by projecting the generated replica P_θ 1 polarization signal from the P_θ 1 polarization axis to the V polarization axis (step S521 in FIG. 15). The subtractor 521-1 subtracts the replica mapping component V 1 ′ generated by the projector 520-1 from the V polarization processing target signal RV 1 output from the delay unit 512-1, and performs V polarization processing. The target signal RV 2 is output. The V polarization processing signal RV 1, mapping component V 1 of the the V axis of polarization of P_shita 1 polarization signal, and the mapping component V 2 to V polarization axis of P_shita 2 polarization signal are multiplexed because you are, by removing the replica mapping component V 1 ', V polarization processing signal RV 2 contains only mapping component V 2 is generated (step S522 of FIG. 15).

(処理16):投影器522−1は、比較器526−0から受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知されたため、振幅位相調整器519−1により生成されたレプリカP_θ偏波信号をP_θ偏波軸からH偏波軸へ投影したレプリカ写像成分H’を生成する(図15のステップS521)。減算器523−1は、遅延器511−1が出力したH偏波処理対象信号RHから、投影器522−1により生成されたレプリカ写像成分H’を減算した結果であるH偏波処理対象信号RHを出力する。H偏波処理対象信号RHには、H偏波信号H、P_θ偏波信号のH偏波軸への写像成分H、及び、P_θ偏波信号のH偏波軸への写像成分Hが多重されているため、レプリカ写像成分H’を除去することにより、H偏波信号H及び写像成分Hが多重されたH偏波処理対象信号RHが生成される(図15のステップS522)。 (Processing 16): Since the projector 522-1 is notified by the control signal received from the comparator 526-0 that the demodulation decoding target signal is the V polarization processing target signal, the amplitude phase adjuster 519-1 A replica mapping component H 1 ′ is generated by projecting the generated replica P_θ 1 polarization signal from the P_θ 1 polarization axis to the H polarization axis (step S521 in FIG. 15). The subtractor 523-1 is a result of subtracting the replica mapping component H 1 ′ generated by the projector 522-1 from the H polarization processing target signal RH 1 output from the delay unit 511-1. and it outputs a target signal RH 2. The H polarization processing target signal RH 1 includes an H polarization signal H 0 , a mapping component H 1 of the P_θ 1 polarization signal to the H polarization axis, and a mapping of the P_θ 2 polarization signal to the H polarization axis. Since the component H 2 is multiplexed, the H polarization processing target signal RH 2 in which the H polarization signal H 0 and the mapping component H 2 are multiplexed is generated by removing the replica mapping component H 1 ′ ( Step S522 in FIG. 15).

(処理17):電力測定器524−1は、減算器521−1から出力されたV偏波処理対象信号RVの信号電力を測定し、電力測定器525−1は、減算器523−1から出力されたH偏波処理対象信号RHの信号電力を測定する(図15のステップS502)。 (Processing 17): Power meter 524-1 is the signal power of the V polarization processing signal RV 2 output from the subtracter 521-1 is measured, the power meter 525-1 includes a subtractor 523-1 The signal power of the H-polarization processing target signal RH 2 output from is measured (step S502 in FIG. 15).

(処理18):比較器526−1は、電力測定器524−1により測定されたV偏波処理対象信号RVの信号電力と、電力測定器525−1により測定されたH偏波処理対象信号RHの信号電力とを比較する。ここでは、H偏波処理対象信号RHの信号電力が高いと判断したとする(図15のステップS503)。また、比較器526−1は、H偏波処理対象信号RHに多重されている中で、H偏波信号Hが最も復調復号の順番が早いため(図15のステップS504:YES)、次にH偏波信号の復調を行う復調復号処理部510−(n+1)が動作すると判断する。比較器526−1は、H偏波処理対象信号RHを復調復号対象とするよう選択器527−1へ制御信号により指示する。 (Processing 18): comparator 526-1 is the signal power of the V polarization processing signal RV 2, which is measured by the power measuring device 524-1, H polarization processing target measured by the power meter 525-1 The signal power of the signal RH 2 is compared. Here, it is determines that the signal power of the H polarization processing signal RH 2 is high (step S503 in FIG. 15). Further, the comparator 526-1, among which are multiplexed on the H polarization processing signal RH 2, since the earlier order of the most demodulation decoding the H polarization signal H 0 (step of FIG. 15 S504: YES), Next, it is determined that the demodulation / decoding processing unit 510- (n + 1) that demodulates the H polarization signal operates. Comparator 526-1 instructs the control signal to the selector 527-1 to the H polarization processing signal RH 2 demodulation decoding target.

(処理19)選択器527−1は、比較器526−1から受信した制御信号に従って、復調復号対象信号としてH偏波処理対象信号RHを選択する。選択器527−1は、次に復調復号処理を行なう復調復号処理部510−(n+1)に、復調復号対象信号としてH偏波処理対象信号RHを出力するとともに、復調復号非対象信号としてV偏波処理対象信号RVを出力する。 (Process 19) selector 527-1 in accordance with the control signal received from the comparator 526-1 selects the H-polarized wave processed signal RH 2 as a demodulated decoded signal. Selector 527-1 is the demodulation decoding unit then performs demodulation and decoding processing 510- (n + 1), and outputs the H-polarized wave processed signal RH 2 as a demodulated decoded signal, V as a demodulated decoded non target signal The polarization processing target signal RV 2 is output.

(処理20):図18において、復調復号処理部510−(n+1)の遅延器511−(n+1)にV偏波処理対象信号RVが入力され、遅延器512−(n+1)、伝送路推定器514−(n+1)、及び、復調器515−(n+1)にH偏波処理対象信号RHが入力される。伝送路推定器514−(n+1)は、H偏波処理対象信号RHから伝送路特性を推定し(図15のステップS505)、復調器515−(n+1)は、伝送路推定器514−(n+1)により推定された伝送路特性を用いて、H偏波処理対象信号RHを復調して情報系列の尤度を算出する(図15のステップS506)。復号器516−(n+1)は、復調器515−(n+1)により算出された尤度に基づき誤り訂正処理及び復号処理を行い、H偏波信号Hの情報系列を得て、上位レイヤ等に出力するとともに、再符号化器517−(n+1)へ出力する(図15のステップS507)。 (Processing 20): 18, the V-polarized signal being processed RV 2 are input to the delay unit 511- (n + 1) of the demodulation decoding section 510-(n + 1), delayer 512- (n + 1), channel estimation instrument 514- (n + 1), and, H polarization processing signal RH 2 is input to a demodulator 515- (n + 1). The transmission path estimator 514- (n + 1) estimates the channel characteristics from the H polarization processing signal RH 2 (step S505 in FIG. 15), a demodulator 515- (n + 1), the transmission path estimator 514- ( n + 1) using the transmission path characteristic estimated by demodulates the H polarization processing signal RH 2 calculates the likelihood information sequence (step S506 of FIG. 15). Decoder 516- (n + 1) performs error correction and decoding based on the likelihood calculated by the demodulator 515- (n + 1), to obtain information sequence H polarization signal H 0, the upper layer or the like At the same time, it is output to the re-encoder 517- (n + 1) (step S507 in FIG. 15).

(処理21):情報系列が得られていない偏波信号があるため(図15のステップS508:NO)、再符号化器517−(n+1)は、復号器516−(n+1)により復号された情報系列に、H偏波信号Hの送信元の送信装置と同様の符号化を行ない(図15のステップS509)、再変調器518−(n+1)は、再符号化器517−(n+1)が符号化した信号に、H偏波信号Hの送信元送信装置と同様の変調を行なう(図15のステップS510)。 (Process 21): Since there is a polarization signal for which no information series is obtained (step S508 in FIG. 15: NO), the re-encoder 517- (n + 1) is decoded by the decoder 516- (n + 1). The information sequence is encoded in the same manner as the transmission apparatus that is the transmission source of the H polarization signal H 0 (step S509 in FIG. 15), and the remodulator 518- (n + 1) is the reencoder 517- (n + 1). Is subjected to the same modulation as that of the transmission device of the H polarization signal H 0 (step S510 in FIG. 15).

(処理22):振幅位相調整器519−(n+1)は、伝送路推定器514−(n+1)により推定された伝送路特性の推定値を再変調器518−(n+1)が変調した信号に乗算し、レプリカH偏波信号H’を生成する(図15のステップS511)。減算器521−(n+1)は、遅延器512−(n+1)が出力したH偏波処理対象信号RHからレプリカH偏波信号H’を除去してH偏波処理対象信号RHを生成する(図15のステップS512)。H偏波処理対象信号RHには、H偏波信号H、及び、P_θ偏波信号のH偏波軸への写像成分Hが多重されているため、レプリカH偏波信号H’を除去することにより、写像成分HのみからなるH偏波処理対象信号RHが生成される。 (Process 22): The amplitude / phase adjuster 519- (n + 1) multiplies the signal modulated by the remodulator 518- (n + 1) by the estimated value of the transmission path characteristic estimated by the transmission path estimator 514- (n + 1). Then, the replica H polarization signal H 0 ′ is generated (step S511 in FIG. 15). The subtractor 521- (n + 1) removes the replica H-polarization signal H 0 ′ from the H-polarization processing target signal RH 2 output from the delay unit 512- (n + 1) to generate the H-polarization processing target signal RH 3 . (Step S512 in FIG. 15). Since the H polarization signal H 0 and the mapping component H 2 of the P_θ 2 polarization signal to the H polarization axis are multiplexed in the H polarization processing target signal RH 2 , the replica H polarization signal H 0 By removing ', the H-polarization processing target signal RH 3 consisting only of the mapping component H 2 is generated.

(処理23):電力測定器524−(n+1)は、減算器521−(n+1)から出力されたV偏波処理対象信号RVの信号電力を測定する。遅延器511−(n+1)は、時間遅延を付加したV偏波処理対象信号RVをV偏波処理対象信号RVとして出力する。電力測定器525−(n+1)は、遅延器511−(n+1)から出力されたV偏波処理対象信号RVの信号電力を測定する(図15のステップS502)。 (Processing 23): Power meter 524- (n + 1) measures the signal power of the subtracter 521- (n + 1) V polarization processing signal RV 3 output from. Delayer 511- (n + 1) outputs the V-polarized processing signal RV 2 obtained by adding a time delay as a V polarization processing signal RV 3. Power meter 525 - (n + 1) measures the signal power of the delayer 511- (n + 1) V polarization processing signal RV 3 output from the (step S502 in FIG. 15).

(処理24):比較器526−(n+1)は、電力測定器524−(n+1)により測定されたH偏波処理対象信号RHの信号電力と、電力測定器525−(n+1)により測定されたV偏波処理対象信号RVの信号電力とを比較する。ここでは、V偏波処理対象信号RVが高いと判断したとする。比較器526−(n+1)は、V偏波処理対象信号RVを復調復号対象とするよう選択器527−(n+1)へ制御信号により指示する(図15のステップS503)。V偏波処理対象信号RVには、P_θ偏波信号のV偏波軸への写像成分Vのみが含まれるため(図15のステップS504:NO)、比較器526−(n+1)は、次に復調復号処理を行なう復調復号処理部510−2に、復調復号対象信号がV偏波処理対象信号である旨を制御信号により通知する。 (Processing 24): comparator 526- (n + 1) includes a signal power of the H polarization processing signal RH 3 measured by the power measuring instrument 524- (n + 1), is measured by the power meter 525 - (n + 1) The signal power of the V polarization processing target signal RV 3 is compared. Here, it is determined that there is a high V polarization processing signal RV 3. Comparator 526- (n + 1) is indicated by the control signal to the selector 527- (n + 1) to the V-polarization processing signal RV 3 and the demodulation decoding target (step S503 in FIG. 15). The V polarization processing signal RV 3, because it only includes mapping component V 2 to V polarization axis of P_shita 2 polarized signal (step of FIG. 15 S504: NO), the comparator 526- (n + 1) is Then, the control signal notifies the demodulation / decoding processing unit 510-2 that performs the demodulation / decoding process that the demodulation / decoding target signal is the V polarization processing target signal.

(処理25)選択器527−(n+1)は、比較器526−(n+1)から受信した制御信号に従って、復調復号対象信号としてV偏波処理対象信号RVを選択する。選択器527−(n+1)は、次に復調復号処理を行なう復調復号処理部510−2に、復調復号対象信号としてV偏波処理対象信号RVを出力する。なお、復調復号対象信号であるV偏波処理対象信号RV、復調復号非対象信号であるH偏波処理対象信号RHとも多重されておらず、次の復調復号処理部510−2における復調復号によって、全ての偏波信号が得られるため、復調復号非対象信号は出力しなくともよい。 (Process 25) selector 527- (n + 1) in accordance with a control signal received from the comparator 526- (n + 1), selects the V-polarized signal being processed RV 3 as a demodulated decoded signal. Selector 527- (n + 1) is next demodulation decoding section 510-2 which performs demodulation and decoding processing, and outputs the V-polarized signal being processed RV 3 as a demodulated decoded signal. Note that neither the V-polarization processing target signal RV 3 that is a demodulation decoding target signal nor the H-polarization processing target signal RH 3 that is a demodulation decoding non-target signal is multiplexed, and is demodulated in the next demodulation decoding processing unit 510-2. Since all the polarization signals are obtained by decoding, it is not necessary to output the demodulation / decoding non-target signal.

(処理26):図19において、復調復号処理部510−2の投影器513−2にV偏波処理対象信号RVが入力される。投影器513−2は、比較器526−(n+1)から受信した制御信号により復調復号対象信号がV偏波処理対象信号である旨が通知されたため、V偏波処理対象信号RVをV偏波軸からP_θ偏波軸へ投影した写像成分を生成し、伝送路推定器514−2及び復調器515−2に出力する(図15のステップS513)。 (Processing 26): 19, the V-polarized signal being processed RV 3 is input to the projector 513-2 of the demodulation decoding section 510-2. Projector 513-2, the comparator 526- (n + 1) for demodulating decoded signal by a control signal received is notified that a V polarization processing signal from the V polarization processing signal RV 3 V polarization generating a mapping component projected from the wave axis to P_shita 2 polarization axes, and outputs to the transmission path estimator 514-2 and the demodulator 515-2 (step S513 in FIG. 15).

(処理27):伝送路推定器514−2は、P_θ偏波軸への写像成分から伝送路特性を推定し(図15のステップS514)、復調器515−2は、伝送路推定器514−2により推定された伝送路特性を用いて、P_θ偏波軸への写像成分の情報系列の尤度を算出する(図15のステップS515)。復号器516−2は、復調器515−2により算出された尤度に基づき誤り訂正処理及び復号処理を行い、P_θ偏波信号の情報系列を得て、上位レイヤ等に出力する(図15のステップS516)。受信装置500は、全ての偏波信号の情報系列が得られたため、処理を終了する(ステップS517:YES)。 (Processing 27): The transmission path estimator 514-2 estimates a channel characteristic from the mapping component to P_shita 2 polarization axes (step S514 in FIG. 15), the demodulator 515-2, the transmission path estimator 514 -2 with a transmission path characteristic estimated by, calculates the likelihood information sequence mapping components to P_shita 2 polarization axes (step S515 in FIG. 15). Decoder 516-2 performs error correction processing and decoding processing based on the likelihood calculated by the demodulator 515-2, to obtain information sequence P_shita 2 polarized signal, and outputs to the upper layer or the like (FIG. 15 Step S516). The receiving apparatus 500 ends the process because all the polarization signal information sequences have been obtained (step S517: YES).

なお、(処理18)において、V偏波処理対象信号RVの信号電力が高いと判断した場合、以下の(処理18’)以降のように動作する。 Note that in (process 18), if it is determined that the signal power of the V polarization processing signal RV 2 is high, operates as the following (process 18 ') later.

(処理18’):比較器526−1は、V偏波処理対象信号RVの信号電力がH偏波処理対象信号RHの信号電力より高いと判断する。比較器526−1は、V偏波処理対象信号RVを復調復号対象とするよう選択器527−1へ制御信号により指示し、復調復号処理部510−2に、復調復号対象信号がV偏波処理対象信号である旨を制御信号により通知する(図15のステップS503)。選択器527−1は、復調復号処理部510−2に、復調復号対象信号としてV偏波処理対象信号RVを出力するとともに、復調復号非対象信号としてH偏波処理対象信号RHを出力する(図15のステップS504:NO)。 (Process 18 '): the comparator 526-1 is the signal power of the V polarization processing signal RV 2 is determined to be higher than the signal power of the H polarization processing signal RH 2. The comparator 526-1 is the V polarization processing signal RV 2 instructs the control signal to the selector 527-1 to a demodulation decoding target, the demodulation decoding unit 510-2, the demodulation decoding target signal V polarized It is notified by a control signal that it is a wave processing target signal (step S503 in FIG. 15). Selector 527-1 is the demodulation and decoding unit 510-2, an output outputs the V-polarized signal being processed RV 2 as a demodulated decoded signal, the H polarization processing signal RH 2 as demodulation and decoding non-target signal (Step S504 in FIG. 15: NO).

(処理19’):復調復号処理部510−2の遅延器511−1にH偏波処理対象信号RHが入力され、遅延器512−2及び投影器513−2にV偏波処理対象信号RVが入力される。投影器513−1は、V偏波処理対象信号RVをV偏波軸からP_θ偏波軸へ投影した写像成分を生成する(図15のステップS513)。伝送路推定器514−2は、P_θ偏波軸への写像成分から伝送路特性を推定し(図15のステップS514)、復調器515−2は、この推定された伝送路特性を用いて、P_θ偏波軸への写像成分の情報系列の尤度を算出する(図15のステップS515)。復号器516−2は、この算出された尤度に基づき誤り訂正処理及び復号処理を行い、P_θ偏波信号の情報系列を得る(図15のステップS516)。 (Processing 19 ′): The H polarization processing target signal RH 2 is input to the delay unit 511-1 of the demodulation / decoding processing unit 510-2, and the V polarization processing target signal is input to the delay unit 512-2 and the projector 513-2. RV 2 is input. Projector 513-1 generates a mapping component obtained by projecting the V polarization processing signal RV 2 from the V polarization axes P_shita 2 to polarization axes (step S513 in FIG. 15). Transmission path estimator 514-2 estimates a channel characteristic from the mapping component to P_shita 2 polarization axes (step S514 in FIG. 15), the demodulator 515-2, using the estimated channel characteristics , and calculates the likelihood information sequence mapping components to P_shita 2 polarization axes (step S515 in FIG. 15). Decoder 516-2 performs error correction processing and decoding processing based on the calculated likelihood, obtain information sequence P_shita 2 polarized signal (step S516 in FIG. 15).

(処理20’):情報系列が得られていない偏波信号があるため(図15のステップS517:NO)、再符号化器517−2は、復号器516−2により復号された情報系列に、P_θ偏波信号の送信元の送信装置と同様の符号化を行ない(図15のステップS518)、再変調器518−2は、再符号化器517−2が符号化した信号に、P_θ偏波信号の送信元送信装置と同様の変調を行なう(図15のステップS519)。振幅位相調整器519−2は、伝送路推定器514−2により推定された伝送路特性の推定値を再変調器518−2が変調した信号に乗算し、レプリカP_θ偏波信号を生成する(図15のステップS520)。 (Process 20 ′): Since there is a polarization signal for which an information sequence is not obtained (step S517 of FIG. 15: NO), the re-encoder 517-2 applies the information sequence decoded by the decoder 516-2. , P_θ is encoded in the same manner as the transmission device that is the transmission source of the two polarization signals (step S518 in FIG. 15), and the remodulator 518-2 converts the signal encoded by the reencoder 517-2 into P_θ. Modulation similar to that performed by the transmission source transmission device for the two polarized signals is performed (step S519 in FIG. 15). Amplitude and phase adjuster 519-2 multiplies the signal remodulator 518-2 is obtained by modulating the estimation values of the transmission path characteristic estimated by the transmission path estimator 514-2 generates a replica P_shita 2 polarization signal (Step S520 in FIG. 15).

(処理21’):投影器520−2は、レプリカP_θ偏波信号をP_θ偏波軸からV偏波軸へ投影したレプリカ写像成分V’を生成する(図15のステップS521)。減算器521−2は、遅延器512−2が出力したV偏波処理対象信号RVから、レプリカ写像成分V’を減算した結果であるV偏波処理対象信号RVを出力する(図15のステップS522)。 (Processing 21 ′): The projector 520-2 generates a replica mapping component V 2 ′ obtained by projecting the replica P_θ 2 polarization signal from the P_θ 2 polarization axis to the V polarization axis (step S521 in FIG. 15). The subtractor 521-2 outputs a V polarization processing target signal RV 3 which is a result of subtracting the replica mapping component V 2 ′ from the V polarization processing target signal RV 2 output from the delay unit 512-2 (FIG. 15 step S522).

(処理22’):投影器522−2は、レプリカP_θ偏波信号をP_θ偏波軸からH偏波軸へ投影したレプリカ写像成分H’を生成する(図15のステップS521)。減算器523−2は、遅延器511−2が出力したH偏波処理対象信号RHから、レプリカ写像成分H’を減算した結果であるH偏波処理対象信号RHを出力する(図15のステップS522)。 (Process 22 ′): The projector 522-2 generates a replica mapping component H 2 ′ obtained by projecting the replica P_θ 2 polarization signal from the P_θ 2 polarization axis to the H polarization axis (step S521 in FIG. 15). Subtractor 523-2 outputs the H-polarized wave processing signal RH 2 to the delay unit 511-2 has output, the H polarization processing signal RH 3 is a result of subtracting the replica mapping component H 2 '(FIG. 15 step S522).

(処理23’):比較器526−2は、電力測定器524−2により測定されたV偏波処理対象信号RVの信号電力より、電力測定器525−2により測定されたH偏波処理対象信号RHの信号電力が高いと判断する(図15のステップS502)。比較器526−2は、H偏波処理対象信号RHを復調復号対象とするよう選択器527−2へ制御信号により指示する(図15のステップS503)。選択器527−2は、復調復号処理部510−(n+1)に、復調復号対象信号としてH偏波処理対象信号RHを出力する(図15のステップS504:YES)。 (Processing 23 ′): The comparator 526-2 uses the signal power of the V-polarization processing target signal RV 3 measured by the power measuring device 524-2 to measure the H-polarization processing measured by the power measuring device 525-2. It is determined that the signal power of the target signal RH 3 is high (step S502 in FIG. 15). Comparator 526-2 instructs the control signal to the selector 527-2 to the H polarization processing signal RH 3 and demodulation decoding target (step S503 in FIG. 15). Selector 527-2 is the demodulation decoding unit 510- (n + 1), and outputs the H-polarized wave processed signal RH 3 as a demodulated decoded signal (step of FIG. 15 S504: YES).

(処理24’):復調復号処理部510−(n+1)の伝送路推定器514−(n+1)は、H偏波処理対象信号RHから伝送路特性を推定し(図15のステップS505)、復調器515−(n+1)は、推定された伝送路特性を用いて、H偏波処理対象信号RHを復調して情報系列の尤度を算出する(図15のステップS506)。復号器516−(n+1)は、この算出された尤度に基づき誤り訂正処理及び復号処理を行い、H偏波信号Hの情報系列を得て、上位レイヤ等に出力する(図15のステップS507)。受信装置500は、全ての偏波信号の情報系列が得られたため、処理を終了する(ステップS508:YES)。 (Process 24 ′): The transmission path estimator 514- (n + 1) of the demodulation / decoding processing unit 510- (n + 1) estimates the transmission path characteristics from the H polarization processing target signal RH 3 (step S505 in FIG. 15). demodulator 515- (n + 1), using the estimated channel characteristics, and demodulates the H polarization processing signal RH 3 calculates the likelihood information sequence (step S506 of FIG. 15). Decoder 516- (n + 1) performs error correction processing and decoding processing based on the calculated likelihood, step of obtaining the information sequence H polarization signal H 0, and outputs to the upper layer or the like (FIG. 15 S507). The receiving apparatus 500 ends the process because all the polarization signal information sequences have been obtained (step S508: YES).

上記により、V偏波信号V、H偏波信号H、P_θ偏波信号、P_θ偏波信号の全ての情報系列を得ることができる。 As described above, all information sequences of the V polarization signal V 0 , the H polarization signal H 0 , the P_θ 1 polarization signal, and the P_θ 2 polarization signal can be obtained.

なお、受信装置500は、あるタイミングで受信したV偏波多重信号とH偏波多重信号について復調復号しながら、次のタイミングで受信したV偏波多重信号とH偏波多重信号について、復調復号することも可能である。   The receiving apparatus 500 performs demodulation decoding on the V polarization multiplexed signal and the H polarization multiplexed signal received at the next timing while performing demodulation decoding on the V polarization multiplexed signal and the H polarization multiplexed signal received at a certain timing. It is also possible to do.

なお、上記実施形態では、復調復号処理部510−i(i=1〜n)は、V偏波処理対象信号またはH偏波処理対象信号のいずれかをP_θ偏波軸に投影した写像成分からP_θ偏波信号の復調復号を行なっているが、V偏波処理対象信号からV偏波信号Vが除去さており、かつ、H偏波処理対象信号からH偏波信号Hが除去さている場合は、V偏波処理対象信号をP_θ偏波軸に投影した写像成分と、H偏波処理対象信号をP_θ偏波軸に投影した写像成分とを合成した写像成分からP_θ偏波信号の復調復号を行なってもよい。 In the above embodiment, the demodulation / decoding processing unit 510-i (i = 1 to n) is a mapping component obtained by projecting either the V polarization processing target signal or the H polarization processing target signal onto the P_θ i polarization axis. P_θ i- polarization signal is demodulated and decoded from the V-polarization processing target signal, but the V-polarization signal V 0 is removed from the V-polarization processing target signal, and the H-polarization signal H 0 is removed from the H-polarization processing target signal. Now if you are in, P_shita the V polarization processing signal and mapping component obtained by projecting the P_shita i polarization axes, and a mapping component from synthesized mapping component obtained by projecting the H polarization processing signal to P_shita i polarization axes i Demodulation and decoding of the polarization signal may be performed.

例えば、上記の(処理25)において、選択器527−(n+1)は、V偏波処理対象信号RV及びH偏波処理対象信号RHを復調復号処理部510−2に出力する。そして、(処理26)において、復調復号処理部510−2は、V偏波処理対象信号RVをV偏波軸からP_θ偏波軸へ投影した写像成分と、H偏波処理対象信号RHをH偏波軸からP_θ偏波軸へ投影した写像成分を生成し、これらの写像成分を合成して、伝送路推定器514−2及び復調器515−2に出力する。
合成手段として最大比合成、同相合成、選択合成など各種合成手段を使用することができ、これによりダイバーシチ合成利得が得られる。
For example, in the (process 25) above, selectors 527- (n + 1) outputs the V-polarized signal being processed RV 3 and the H polarization processing signal RH 3 to the demodulation decoding section 510-2. Then, in the (process 26), a demodulation decoding unit 510-2, a mapping component obtained by projecting the V polarization processing signal RV 3 from V polarization axes P_shita 2 to polarization axis, H polarized wave processed signal RH 3 was generated and projected mapping component from H polarization axes P_shita 2 to polarization axis, by combining these mapping components and outputs the transmission path estimator 514-2 and the demodulator 515-2.
Various combining means such as maximum ratio combining, in-phase combining, and selective combining can be used as combining means, and thereby a diversity combining gain can be obtained.

また、上記実施形態では、信号の品質の比較に信号電力を用いているが、SINRを用いてもよい。この場合、受信装置500の電力測定器に代えてSINR測定器を備え、比較器は、SINRのよい方を選択するように指示する。   In the above embodiment, signal power is used for comparison of signal quality, but SINR may be used. In this case, an SINR measuring device is provided instead of the power measuring device of receiving apparatus 500, and the comparator instructs to select the better SINR.

なお、V偏波用アンテナ、H偏波用アンテナの代わりに右旋円偏波アンテナ、左旋円偏波アンテナを利用し、右旋円偏波信号、左旋円偏波信号に対し第3〜第Nの偏波信号を多重しても良い。
また、第3〜第Nの偏波信号は直線偏波である必要はなく、一般には楕円偏波を用いることができる。楕円偏波には直線偏波や円偏波が含まれる。
Note that a right-handed circularly polarized wave antenna and a left-handed circularly polarized wave antenna are used in place of the V-polarized antenna and the H-polarized antenna, and third through third right-handed circularly polarized signals and left-handed circularly polarized signals are used. N polarization signals may be multiplexed.
Further, the third to Nth polarization signals do not need to be linearly polarized waves, and generally elliptically polarized waves can be used. The elliptically polarized wave includes a linearly polarized wave and a circularly polarized wave.

上述した実施形態によれば、直交するV偏波、H偏波を送受信する2偏波多重用アンテナを用いて3偏波以上の偏波多重を実現し、周波数利用効率を高めることができる。そして、これらのアンテナ素子間の受信レベルに差がある場合においても復調誤りを回避し、正常な情報系列を復元することが可能となる。   According to the embodiment described above, it is possible to realize polarization multiplexing of three or more polarizations using a dual polarization multiplexing antenna that transmits and receives orthogonal V-polarized waves and H-polarized waves, thereby improving frequency utilization efficiency. Even when there is a difference in the reception level between these antenna elements, it is possible to avoid demodulation errors and restore a normal information sequence.

100、200、300…送信装置
110−0〜110−(n+1)、210−0〜210−(n+1)、310−1〜310−n…符号化器
120−0〜120−(n+1)、220−0〜220−(n+1)、320−1〜320−n…変調器
130a−1〜130a−n、130b−1〜130b−n、330a−1〜330a−n、330b−1〜330b−n…投影器(投影部)
140a、140b…加算器
150a、250−0、350a−1〜350a−n…V偏波用アンテナ(第1偏波送信部)
150b、250−(n+1)、350b−1〜350b−n…H偏波用アンテナ(第2偏波送信部)
201−0〜201−(n+1)、301−1〜301−n…送信部
250−1〜250−n…P_θ1偏波用アンテナ〜P_θn偏波用アンテナ
500…受信装置
501…V偏波用アンテナ(第1偏波受信部)
502…H偏波用アンテナ(第2偏波受信部)
503、504、524−0〜524−(n+1)、525−0〜525−(n+1)…電力測定器
513−1〜513−n、520−1〜520−n、522−1〜522−n…投影器(投影部)
505、526−0〜526−(n+1)…比較器(比較部)
506、527−0〜527−(n+1)…選択器
510−0〜510−(n+1)…復調復号処理部
511−0〜511−(n+1)、512−0〜512−(n+1)…遅延器
514−0〜514−(n+1)…伝送路推定器
515−0〜515−(n+1)…復調器(復調復号部)
516−0〜516−(n+1)…復号器(復調復号部)
517−0〜517−(n+1)…再符号化器(レプリカ信号生成部)
518−0〜518−(n+1)…再変調器(レプリカ信号生成部)
519−0〜519−(n+1)…振幅位相調整器(振幅位相調整部)
521−0〜521−(n+1)、522−1〜521−n、523−1〜523−n…減算器(減算部)
100, 200, 300 ... Transmitters 110-0 to 110- (n + 1), 210-0 to 210- (n + 1), 310-1 to 310-n ... Encoders 120-0 to 120- (n + 1), 220 -0 to 220- (n + 1), 320-1 to 320-n ... modulators 130a-1 to 130a-n, 130b-1 to 130b-n, 330a-1 to 330a-n, 330b-1 to 330b-n ... Projector (projector)
140a, 140b ... adders 150a, 250-0, 350a-1 to 350a-n ... V-polarized antenna (first polarized wave transmitter)
150b, 250- (n + 1), 350b-1 to 350b-n... H polarization antenna (second polarization transmission unit)
201-0 to 201- (n + 1), 301-1 to 301-n ... transmitting units 250-1 to 250-n ... P_θ1 polarization antenna to P_θn polarization antenna 500 ... reception device 501 ... V polarization antenna (First polarization receiver)
502 ... H polarization antenna (second polarization receiving section)
503, 504, 524-0 to 524- (n + 1), 525-0 to 525- (n + 1) ... power measuring devices 513-1 to 513-n, 520-1 to 520-n, 522-1 to 522-n ... Projector (projector)
505, 526-0 to 526- (n + 1)... Comparator (comparator)
506, 527-0 to 527- (n + 1)... Selectors 510-0 to 510- (n + 1)... Demodulation decoding processing units 511-0 to 511- (n + 1), 512-0 to 512- (n + 1). 514-0 to 514- (n + 1) ... transmission path estimators 515-0 to 515- (n + 1) ... demodulator (demodulation decoding unit)
516-0 to 516- (n + 1)... Decoder (demodulation decoding unit)
517-0 to 517- (n + 1) ... re-encoder (replica signal generator)
518-0 to 518- (n + 1) ... remodulator (replica signal generator)
519-0 to 519- (n + 1)... Amplitude phase adjuster (amplitude phase adjuster)
521-0 to 521- (n + 1), 522-1 to 521-n, 5233-1 to 523-n... Subtracter (subtraction unit)

Claims (7)

第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう送信装置及び受信装置からなる偏波多重伝送システムであって、
前記送信装置は、
前記非直交偏波信号を前記第1の偏波へ投影して第1写像成分を生成し、前記非直交偏波信号を前記第2の偏波へ投影して第2写像成分を生成する投影部と、
前記第1偏波信号と、前記投影部により生成された第1写像成分とを同じ周波数で送信する第1偏波送信部と、
前記第2偏波信号と、前記投影部により生成された第2写像成分とを前記同じ周波数で送信する第2偏波送信部とを備え、
前記受信装置は、
前記第1偏波信号及び前記第1写像成分が多重された第1の多重信号を受信する第1偏波受信部と、
前記第2偏波信号及び前記第2写像成分が多重された第2の多重信号を受信する第2偏波受信部と、
前記第1偏波受信部が受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2偏波受信部が受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較部と、
前記比較部が前記第1の処理対象信号の品質が高いと判断した場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較部が前記第2の処理対象信号の品質が高いと判断した場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号部と、
前記復調復号部により復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成部と、
前記レプリカ信号生成部が前記非直交偏波信号のレプリカ信号を生成した場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影部と、
前記復調復号部により前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力し、前記復調復号部により前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力し、前記復調復号部により前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影部が生成した前記第1レプリカ写像成分を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力するとともに、前記第2の処理対象信号から前記レプリカ信号投影部が生成した前記第2レプリカ写像成分を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力する減算部とを備える、
ことを特徴とする偏波多重伝送システム。
The first polarization signal and the second polarization signal using the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A polarization multiplexing transmission system comprising a transmitter and a receiver for multiplexing and transmitting non-orthogonal polarization signals using non-orthogonal polarization,
The transmitter is
Projecting the non-orthogonal polarization signal onto the first polarization to generate a first mapping component, and projecting the non-orthogonal polarization signal onto the second polarization to generate a second mapping component And
A first polarization transmission unit that transmits the first polarization signal and the first mapping component generated by the projection unit at the same frequency;
A second polarization transmission unit that transmits the second polarization signal and the second mapping component generated by the projection unit at the same frequency;
The receiving device is:
A first polarization receiver for receiving a first multiplexed signal in which the first polarization signal and the first mapping component are multiplexed;
A second polarization receiver for receiving a second multiplexed signal in which the second polarization signal and the second mapping component are multiplexed;
The first multiplexed signal received by the first polarization receiver, or a first processing target signal that is a signal obtained by removing a replica signal from the first multiplexed signal; and the second polarization receiver A comparison unit that compares the quality of the received second multiplexed signal or a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal;
When the comparison unit determines that the quality of the first processing target signal is high, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the comparison unit A demodulation decoding unit that demodulates and decodes the second polarization signal or the non-orthogonal polarization signal from the second processing target signal when it is determined that the quality of the second processing target signal is high;
A replica signal generation unit that generates a replica signal of the first polarization signal, the second polarization signal, or the non-orthogonal polarization signal demodulated and decoded by the demodulation decoding unit;
When the replica signal generation unit generates a replica signal of the non-orthogonal polarization signal, it generates a first replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization. And a replica signal projection unit that generates a second replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization;
When the first polarization signal is demodulated and decoded by the demodulation decoding unit, a new signal generated by removing the replica signal of the first polarization signal generated by the replica signal generation unit from the first processing target signal The first signal to be processed is output to the comparison unit, and when the second polarization signal is demodulated and decoded by the demodulation and decoding unit, the replica signal generation unit generates from the second signal to be processed The new second processing target signal generated by removing the replica signal of the second polarization signal is output to the comparison unit, and when the non-orthogonal polarization signal is demodulated and decoded by the demodulation and decoding unit, The first processing target signal generated by removing the first replica mapping component generated by the replica signal projection unit from the first processing target signal is output to the comparison unit, and the second processing is performed. Subject And a subtraction unit which outputs the replica signal new second processing signal generated by removing the second replica image component projection unit has generated to the comparison unit from,
A polarization multiplexing transmission system characterized by that.
前記復調復号部は、前記第1の処理対象信号または前記第2の処理対象信号を前記非直交の偏波へ投影した信号から前記非直交偏波信号を復調復号することを特徴とする請求項1に記載の偏波多重伝送システム。   The demodulating and decoding unit demodulates and decodes the non-orthogonal polarization signal from a signal obtained by projecting the first processing target signal or the second processing target signal onto the non-orthogonal polarization. 1. A polarization multiplexing transmission system according to 1. 前記第1の処理対象信号、前記第2の処理対象信号、あるいは、前記比較部により品質が高いと判断された前記第1の処理対象信号または前記第2の処理対象信号を前記非直交の偏波へ投影した信号から伝送路推定を行う伝送路推定部と、
前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号に前記伝送路推定部が前記第1の処理対象信号から推定した伝送路推定値を作用させて前記減算部に出力し、前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号に前記伝送路推定部が前記第2の処理対象信号から推定した伝送路推定値を作用させて前記減算部に出力し、前記レプリカ信号生成部が生成した前記非直交偏波信号のレプリカ信号に、前記伝送路推定部が前記非直交の偏波へ投影した信号から推定した伝送路推定値を作用させて前記レプリカ信号投影部に出力する振幅位相調整部とをさらに備える、
ことを特徴とする請求項1または請求項2に記載の偏波多重伝送システム。
The first processing target signal, the second processing target signal, or the first processing target signal or the second processing target signal that has been determined to have high quality by the comparison unit is converted to the non-orthogonal bias. A transmission path estimator that performs transmission path estimation from the signal projected on the wave;
The transmission path estimation unit operates the transmission path estimation value estimated from the first processing target signal on the replica signal of the first polarization signal generated by the replica signal generation section, and outputs it to the subtraction section. The replica estimation signal generated by the replica signal generator is applied to the replica signal of the second polarization signal, and the transmission path estimation value estimated from the second processing target signal by the transmission path estimation unit is output to the subtractor. The transmission path estimation value estimated from the signal projected by the transmission path estimation unit to the non-orthogonal polarization is applied to the replica signal of the non-orthogonal polarization signal generated by the signal generation unit to the replica signal projection unit. An output amplitude phase adjustment unit,
The polarization multiplexing transmission system according to claim 1 or 2, wherein the system is a polarization multiplexing transmission system.
前記比較部は、信号電力または信号対干渉雑音比により信号の品質を判断することを特徴とする請求項1から請求項3のいずれか1項に記載の偏波多重伝送システム。   4. The polarization multiplexing transmission system according to claim 1, wherein the comparison unit determines a signal quality based on a signal power or a signal-to-interference / noise ratio. 5. 第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう偏波多重伝送システムにおける受信装置であって、
前記第1偏波信号と、前記第1の偏波へ前記非直交偏波信号を投影した第1写像成分とが多重された第1の多重信号を受信する第1偏波受信部と、
前記第2偏波信号と、前記第2の偏波へ前記非直交偏波信号を投影した第2写像成分とが多重された第2の多重信号を受信する第2偏波受信部と、
前記第1偏波受信部が受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2偏波受信部が受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較部と、
前記比較部が前記第1の処理対象信号の品質が高いと判断した場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較部が前記第2の処理対象信号の品質が高いと判断した場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号部と、
前記復調復号部により復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成部と、
前記レプリカ信号生成部が前記非直交偏波信号のレプリカ信号を生成した場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影部と、
前記復調復号部により前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成部が生成した前記第1偏波信号のレプリカ信号を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力し、前記復調復号部により前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成部が生成した前記第2偏波信号のレプリカ信号を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力し、前記復調復号部により前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影部が生成した前記第1レプリカ写像成分を除去して生成した新たな前記第1の処理対象信号を前記比較部に出力するとともに、前記第2の処理対象信号から前記レプリカ信号投影部が生成した前記第2レプリカ写像成分を除去して生成した新たな前記第2の処理対象信号を前記比較部に出力する減算部と、
を備えることを特徴とする受信装置。
The first polarization signal and the second polarization signal using the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A receiving device in a polarization multiplexing transmission system for multiplexing and transmitting non-orthogonal polarization signals using non-orthogonal polarization,
A first polarization receiving unit that receives a first multiplexed signal in which the first polarization signal and a first mapping component obtained by projecting the non-orthogonal polarization signal onto the first polarization are multiplexed;
A second polarization receiving unit that receives a second multiplexed signal in which the second polarization signal and a second mapping component obtained by projecting the non-orthogonal polarization signal onto the second polarization are multiplexed;
The first multiplexed signal received by the first polarization receiver, or a first processing target signal that is a signal obtained by removing a replica signal from the first multiplexed signal; and the second polarization receiver A comparison unit that compares the quality of the received second multiplexed signal or a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal;
When the comparison unit determines that the quality of the first processing target signal is high, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the comparison unit A demodulation decoding unit that demodulates and decodes the second polarization signal or the non-orthogonal polarization signal from the second processing target signal when it is determined that the quality of the second processing target signal is high;
A replica signal generation unit that generates a replica signal of the first polarization signal, the second polarization signal, or the non-orthogonal polarization signal demodulated and decoded by the demodulation decoding unit;
When the replica signal generation unit generates a replica signal of the non-orthogonal polarization signal, it generates a first replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization. And a replica signal projection unit that generates a second replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization;
When the first polarization signal is demodulated and decoded by the demodulation decoding unit, a new signal generated by removing the replica signal of the first polarization signal generated by the replica signal generation unit from the first processing target signal The first signal to be processed is output to the comparison unit, and when the second polarization signal is demodulated and decoded by the demodulation and decoding unit, the replica signal generation unit generates from the second signal to be processed The new second processing target signal generated by removing the replica signal of the second polarization signal is output to the comparison unit, and when the non-orthogonal polarization signal is demodulated and decoded by the demodulation and decoding unit, The first processing target signal generated by removing the first replica mapping component generated by the replica signal projection unit from the first processing target signal is output to the comparison unit, and the second processing is performed. Subject A subtraction unit for outputting a new second processing signal generated by removing the replica said second replica mapping component signal projection unit has generated to the comparison unit from,
A receiving apparatus comprising:
第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう送信装置及び受信装置からなる偏波多重伝送システムの偏波多重伝送方法であって、
前記送信装置が、
前記非直交偏波信号を前記第1の偏波へ投影して第1写像成分を生成し、前記非直交偏波信号を前記第2の偏波へ投影して第2写像成分を生成する投影過程と、
前記第1偏波信号と、前記投影過程において生成された第1写像成分とを同じ周波数により送信する第1偏波送信過程と、
前記第2偏波信号と、前記投影過程において生成された第2写像成分とを前記同じ周波数で送信する第2偏波送信過程と、
前記受信装置が、
前記第1偏波信号及び前記第1写像成分が多重された第1の多重信号を受信する第1偏波受信過程と、
前記第2偏波信号及び前記第2写像成分が多重された第2の多重信号を受信する第2偏波受信過程と、
前記第1の偏波受信過程において受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2の偏波受信過程において受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較過程と、
前記比較過程において前記第1の処理対象信号の品質が高いと判断された場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較過程において前記第2の処理対象信号の品質が高いと判断された場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号過程と、
前記復調復号過程において復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成過程と、
前記レプリカ信号生成過程において前記非直交偏波信号のレプリカ信号が生成された場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影過程と、
前記復調復号過程において前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成過程において生成された前記第1偏波信号のレプリカ信号を除去して新たな前記第1の処理対象信号を生成し、前記復調復号過程において前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成過程において生成された前記第2偏波信号のレプリカ信号を除去して新たな前記第2の処理対象信号を生成し、前記復調復号過程において前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影過程において生成された前記第1レプリカ写像成分を除去して新たな前記第1の処理対象信号を生成するとともに、前記第2の処理対象信号から前記レプリカ信号投影過程において生成された前記第2レプリカ写像成分を除去して新たな前記第2の処理対象信号を生成する減算過程とを有し、
前記減算過程の後、前記比較過程からの処理を繰り返す、
ことを特徴とする偏波多重伝送方法。
The first polarization signal and the second polarization signal using the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A polarization multiplexing transmission method for a polarization multiplexing transmission system comprising a transmitter and a receiver for multiplexing and transmitting non-orthogonal polarization signals using non-orthogonal polarization,
The transmitting device is
Projecting the non-orthogonal polarization signal onto the first polarization to generate a first mapping component, and projecting the non-orthogonal polarization signal onto the second polarization to generate a second mapping component Process,
A first polarization transmission process for transmitting the first polarization signal and the first mapping component generated in the projection process at the same frequency;
A second polarization transmission process for transmitting the second polarization signal and the second mapping component generated in the projection process at the same frequency;
The receiving device is
A first polarization reception process for receiving a first multiplexed signal in which the first polarization signal and the first mapping component are multiplexed;
A second polarization receiving process for receiving a second multiplexed signal in which the second polarization signal and the second mapping component are multiplexed;
The first multiplexed signal received in the first polarization reception process, or a first processing target signal that is a signal obtained by removing a replica signal from the first multiplexed signal, and the second polarization reception A comparison process for comparing the quality of the second multiplexed signal received in the process or a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal;
When it is determined that the quality of the first processing target signal is high in the comparison process, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the comparison process A demodulation and decoding process for demodulating and decoding the second polarization signal or the non-orthogonal polarization signal from the second processing target signal,
A replica signal generation process for generating a replica signal of the first polarization signal, the second polarization signal, or the non-orthogonal polarization signal demodulated and decoded in the demodulation and decoding process;
When a replica signal of the non-orthogonal polarization signal is generated in the replica signal generation process, a first replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization is generated. And a replica signal projection process for generating a second replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization,
When the first polarization signal is demodulated and decoded in the demodulation and decoding process, a replica signal of the first polarization signal generated in the replica signal generation process is removed from the first processing target signal and a new signal is generated. When the first processing target signal is generated and the second polarization signal is demodulated and decoded in the demodulation and decoding process, the second bias generated in the replica signal generating process from the second processing target signal is generated. When the non-orthogonal polarization signal is demodulated and decoded in the demodulation and decoding process, the replica signal is removed from the first signal to be processed. The first replica mapping component generated in the projection process is removed to generate a new first processing target signal, and the replica is generated from the second processing target signal. And a subtraction process of generating a No. new second processed signal by removing the second replica mapping components produced in the projection process,
After the subtraction process, the process from the comparison process is repeated.
A polarization multiplexing transmission method.
第1の偏波を用いた第1偏波信号と、前記第1の偏波と直交する第2の偏波を用いた第2偏波信号とに、前記第1の偏波及び前記第2の偏波と非直交の偏波を用いた非直交偏波信号を多重して伝送を行なう偏波多重伝送システムにおける受信装置の受信方法であって、
前記第1偏波信号と、前記第1の偏波へ前記非直交偏波信号を投影した第1写像成分とが多重された第1の多重信号を受信する第1偏波受信過程と、
前記第2偏波信号と、前記第2の偏波へ前記非直交偏波信号を投影した第2写像成分とが多重された第2の多重信号を受信する第2偏波受信過程と、
前記第1の偏波受信過程において受信した前記第1の多重信号、または、前記第1の多重信号からレプリカ信号を除去した信号である第1の処理対象信号と、前記第2の偏波受信過程において受信した前記第2の多重信号、または、前記第2の多重信号からレプリカ信号を除去した信号である第2の処理対象信号との品質を比較する比較過程と、
前記比較過程において前記第1の処理対象信号の品質が高いと判断された場合、前記第1の処理対象信号から前記第1偏波信号または前記非直交偏波信号を復調復号し、前記比較過程において前記第2の処理対象信号の品質が高いと判断された場合、前記第2の処理対象信号から前記第2偏波信号または前記非直交偏波信号を復調復号する復調復号過程と、
前記復調復号過程において復調復号された前記第1偏波信号、前記第2偏波信号、または、前記非直交偏波信号のレプリカ信号を生成するレプリカ信号生成過程と、
前記レプリカ信号生成過程において前記非直交偏波信号のレプリカ信号が生成された場合、前記非直交偏波信号のレプリカ信号の前記第1の偏波への投射変換である第1レプリカ写像成分を生成するとともに、前記非直交偏波信号のレプリカ信号の前記第2の偏波への投射変換である第2レプリカ写像成分を生成するレプリカ信号投影過程と、
前記復調復号過程において前記第1偏波信号が復調復号された場合、前記第1の処理対象信号から前記レプリカ信号生成過程において生成された前記第1偏波信号のレプリカ信号を除去して新たな前記第1の処理対象信号を生成し、前記復調復号過程において前記第2偏波信号が復調復号された場合、前記第2の処理対象信号から前記レプリカ信号生成過程において生成された前記第2偏波信号のレプリカ信号を除去して新たな前記第2の処理対象信号を生成し、前記復調復号過程において前記非直交偏波信号復調復号された場合、前記第1の処理対象信号から前記レプリカ信号投影過程において生成された前記第1レプリカ写像成分を除去して新たな前記第1の処理対象信号を生成するとともに、前記第2の処理対象信号から前記レプリカ信号投影過程において生成された前記第2レプリカ写像成分を除去して新たな前記第2の処理対象信号を生成する減算過程とを有し、
前記減算過程の後、前記比較過程からの処理を繰り返す、
ことを特徴とする受信方法。
The first polarization signal and the second polarization signal using the first polarization signal using the first polarization and the second polarization signal using the second polarization orthogonal to the first polarization. A receiving method of a receiving device in a polarization multiplexing transmission system that multiplexes and transmits non-orthogonal polarization signals using non-orthogonal polarization,
Receiving a first multiplexed signal obtained by multiplexing the first polarization signal and a first mapping component obtained by projecting the non-orthogonal polarization signal onto the first polarization;
A second polarization receiving process for receiving a second multiplexed signal obtained by multiplexing the second polarization signal and a second mapping component obtained by projecting the non-orthogonal polarization signal onto the second polarization;
The first multiplexed signal received in the first polarization reception process, or a first processing target signal that is a signal obtained by removing a replica signal from the first multiplexed signal, and the second polarization reception A comparison process for comparing the quality of the second multiplexed signal received in the process or a second processing target signal that is a signal obtained by removing a replica signal from the second multiplexed signal;
When it is determined that the quality of the first processing target signal is high in the comparison process, the first polarization signal or the non-orthogonal polarization signal is demodulated and decoded from the first processing target signal, and the comparison process A demodulation and decoding process for demodulating and decoding the second polarization signal or the non-orthogonal polarization signal from the second processing target signal,
A replica signal generation process for generating a replica signal of the first polarization signal, the second polarization signal, or the non-orthogonal polarization signal demodulated and decoded in the demodulation and decoding process;
When a replica signal of the non-orthogonal polarization signal is generated in the replica signal generation process, a first replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the first polarization is generated. And a replica signal projection process for generating a second replica mapping component that is a projection conversion of the replica signal of the non-orthogonal polarization signal to the second polarization,
When the first polarization signal is demodulated and decoded in the demodulation and decoding process, a replica signal of the first polarization signal generated in the replica signal generation process is removed from the first processing target signal and a new signal is generated. When the first processing target signal is generated and the second polarization signal is demodulated and decoded in the demodulation and decoding process, the second bias generated in the replica signal generating process from the second processing target signal is generated. When the non-orthogonal polarization signal is demodulated and decoded in the demodulation and decoding process, the replica signal is removed from the first signal to be processed. The first replica mapping component generated in the projection process is removed to generate a new first processing target signal, and the replica is generated from the second processing target signal. And a subtraction process of generating a No. new second processed signal by removing the second replica mapping components produced in the projection process,
After the subtraction process, the process from the comparison process is repeated.
And a receiving method.
JP2010215922A 2010-09-27 2010-09-27 Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method Expired - Fee Related JP5493084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215922A JP5493084B2 (en) 2010-09-27 2010-09-27 Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215922A JP5493084B2 (en) 2010-09-27 2010-09-27 Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method

Publications (2)

Publication Number Publication Date
JP2012074768A true JP2012074768A (en) 2012-04-12
JP5493084B2 JP5493084B2 (en) 2014-05-14

Family

ID=46170562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215922A Expired - Fee Related JP5493084B2 (en) 2010-09-27 2010-09-27 Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method

Country Status (1)

Country Link
JP (1) JP5493084B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517549A (en) * 2000-12-28 2004-06-10 ノーテル・ネットワークス・リミテッド MIMO wireless communication system
JP2007506291A (en) * 2003-07-31 2007-03-15 モトローラ・インコーポレイテッド Polarization state technology for wireless communication
WO2009069798A1 (en) * 2007-11-30 2009-06-04 Nec Corporation Wireless communication system, receiver, transmitter, warless communication method, receiving method, and transmitting method
JP2009536797A (en) * 2006-05-11 2009-10-15 ローク マナー リサーチ リミテッド Quad polar transmission
JP2010166316A (en) * 2009-01-15 2010-07-29 Japan Radio Co Ltd Mimo communication system
JP2010187068A (en) * 2009-02-10 2010-08-26 Nippon Telegr & Teleph Corp <Ntt> Radio apparatus and polarization plane control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517549A (en) * 2000-12-28 2004-06-10 ノーテル・ネットワークス・リミテッド MIMO wireless communication system
JP2007506291A (en) * 2003-07-31 2007-03-15 モトローラ・インコーポレイテッド Polarization state technology for wireless communication
JP2009536797A (en) * 2006-05-11 2009-10-15 ローク マナー リサーチ リミテッド Quad polar transmission
WO2009069798A1 (en) * 2007-11-30 2009-06-04 Nec Corporation Wireless communication system, receiver, transmitter, warless communication method, receiving method, and transmitting method
JP5317021B2 (en) * 2007-11-30 2013-10-16 日本電気株式会社 Wireless communication system, receiving device, transmitting device, wireless communication method, receiving method, and transmitting method
JP2010166316A (en) * 2009-01-15 2010-07-29 Japan Radio Co Ltd Mimo communication system
JP2010187068A (en) * 2009-02-10 2010-08-26 Nippon Telegr & Teleph Corp <Ntt> Radio apparatus and polarization plane control method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CSNC201110015618; Ericsson, ST-Ericsson: 'Antenna mechanical tilt model' 3GPP R1-092932 , 20090703 *
JPN6013063721; Jianxun Liu et al.: 'Research on transition matrix between non-standard polarization base defined by a polarimetric radar' Radar Conference, 2009 IET International , 20090422 *
JPN6013063722; 山下 史洋 外6名: '偏波周波数可変分割多重通信の衛星実験検証' 電子情報通信学会論文誌 B Vol. J94-B, No.3, 20110301, pp.362-372 *
JPN6013063723; Ericsson, ST-Ericsson: 'Antenna mechanical tilt model' 3GPP R1-092932 , 20090703 *

Also Published As

Publication number Publication date
JP5493084B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US7792495B2 (en) Radio apparatus, transmission control method and transmission control program
US10063264B2 (en) Real time polarization compensation for dual-polarized millimeter wave communication
JP2007506291A (en) Polarization state technology for wireless communication
US8107888B2 (en) Communication operating mode selection based on multi-path signal power measurement
US9876668B2 (en) Communication apparatus, demodulation apparatus, carrier reproduction apparatus, phase error compensation apparatus, phase error compensation method, and storage medium on which phase error compensation program has been stored
JP5697795B2 (en) Wireless transmission device, wireless reception device, and data transmission method
Li et al. Outage performance for satellite-assisted cooperative NOMA systems with coordinated direct and relay transmission
US11139896B2 (en) Signal processing device and signal processing method
US9203555B2 (en) Optimum signal constellation design and mapping for few-mode fiber based LDPC-coded CO-OFDM
JP5493083B2 (en) Polarization multiplexing transmission system, transmission device, reception device, polarization multiplexing transmission method, reception method, and transmission method
US20170353247A1 (en) Constellation design for use in communication systems
JP5493084B2 (en) Polarization multiplex transmission system, receiver, polarization multiplex transmission method, and reception method
US9048906B2 (en) Beamforming precoding matrix using non-uniform angles quantization
US7830983B2 (en) Method to minimize degradation in a D-MPSK hierarchical modulation system
CN110611525A (en) Signal transmission and receiving method and device based on rate splitting
JP5493082B2 (en) Polarization multiplexing transmission system, transmission device, reception device, polarization multiplexing transmission method, reception method, and transmission method
EP3257108B1 (en) Microwave radio transmitter and receiver for polarization misalignment compensation
CN112425086A (en) Method and apparatus for interference mitigation for MU-MIMO wireless communication networks
JP6271931B2 (en) Wireless receiver
Fedosov et al. Adaptive algorithm for wireless data transmission (including images) based on SISO system and OFDM technique
JP2017139606A (en) Wireless communication device and delay processing method
Dexiang et al. Fusion of polarization image based on directionlets transform
JP6171137B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
JP7486305B2 (en) Wireless receiving device
EP3244548B1 (en) Method and apparatus for revising estimates of symbols carried by modulated signals transmitted on a mimo radio relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5493084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees