JP2012074560A - 気相成長装置 - Google Patents

気相成長装置 Download PDF

Info

Publication number
JP2012074560A
JP2012074560A JP2010218602A JP2010218602A JP2012074560A JP 2012074560 A JP2012074560 A JP 2012074560A JP 2010218602 A JP2010218602 A JP 2010218602A JP 2010218602 A JP2010218602 A JP 2010218602A JP 2012074560 A JP2012074560 A JP 2012074560A
Authority
JP
Japan
Prior art keywords
gas
substrate
material gas
nozzle
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010218602A
Other languages
English (en)
Inventor
Masahiko Mogi
正彦 茂木
Tadashi Horio
直史 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010218602A priority Critical patent/JP2012074560A/ja
Publication of JP2012074560A publication Critical patent/JP2012074560A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】
2フローリアクタにおいて排気間に再び材料ガス流への中間反応ガスの巻き込みを防止し半導体素子の製造歩留まりを高める気相成長装置を提供することを目的とする。
【解決手段】
気相成長装置は、基板を担持して、これを加熱および回転するサセプタと、基板へ向かう材料ガス噴出口を有し、材料ガス噴出口から基板上に沿って材料ガスの層流を供給する材料ガスノズルと、基板へ向かう押さえガス噴出口を有し、押さえガス噴出口から押さえガスを、基板の法線方向から所定角度範囲で且つ基板の面積より広い面積で、押さえガス流として基板上に供給する押さえガス噴出器と、を備え、材料ガス噴出口および押さえガス噴出口から離れた材料ガスノズルの上方に離間して配置され且つ、押さえガス噴出口および材料ガス噴出口の間隙へ向かう遮断ガスを噴出する遮断ガス噴出口を有する遮断ガスノズルを有する。
【選択図】図4

Description

本発明は、発光素子やレーザーダイオードなどに用いられる半導体結晶のエピタキシャル成長を行う気相成長装置、特に2フローリアクタに関する。
エピタキシャル成長(気相成長)を行う結晶成長装置は、その反応容器(リアクタ)内に導入された反応ガス(材料ガス)が加熱された基板(ウエハ)上で熱分解反応して、化合物やその固溶体結晶となり、その時、基板の結晶面方位を維持したまま同じ結晶面の単結晶層が該基板上に成長するようにした気相成長装置である。
気相成長装置には大別して縦型と横型がある。横型の装置の1つにフローチャネル型のリアクタが知られており、たとえば、特許文献1には、上向きに基板をサセプタに保持し、石英や金属部品で囲まれた経路(フローチャネル)の一部に露呈させ基板下から加熱し、材料ガスを横方向に流し斜め下向き水素のパージガスで材料ガスを基板へ押し付け基板上で反応させGaN薄膜を堆積させるものがある(特許文献1、参照)。一般に、フローチャネル型のリアクタではガス流がフローチャネルで制限されているため一定圧力のガス流であれば上流部から押し出されることになり、未反応ガスの上流部への戻りは起こらない。しかし、基板下から加熱されるフローチャネルは下が高温、上が低温になり対流が激しく材料ガスが舞い上がるので、特許文献1のフローチャネル型装置では、斜め下向き水素ガスで材料ガスを下向きに押さえ付け基板に強制的に接触させている。
横型の気相成長装置には押さえガスを用いるオープンフロー型の2フローリアクタも知られている。オープンフロー型の2フローリアクタは、広い空間のリアクタにガス供給管およびガス排気管が設けられていて、フローチャネルがなくガス流方向が決められていない構造を有している。
かかる2フローリアクタでは、基板上の材料ガスの層流と押さえガス流の2つのガス流(2フロー)の合成流で成膜ガス流が形成され、材料ガスは基板と平行に、且つ直上に流される(特許文献2、参照)。そして、押さえガス流は材料ガス流に垂直、または垂直から所定角度程度まで傾けた角度で流される(特許文献3、参照)。その結果、材料ガスが基板に押し付けられるように流れる。この2フローリアクタ構成により、たとえば、GaN結晶成長において、加熱後、材料ガスが基板上で高温1000℃程度(1350K程度)になり、供給直後から約4.5倍の体積膨張が起こっても、押さえガスにより基板上で安定的な材料ガス流が保たれる。
特開平10−167897 特開平04−284623 特開2003−173981
図1は従来の2フローリアクタの排気可能な反応容器10の内部構造の一例を示す概略断面図である。同図において、11は材料ガスを供給する材料ガスノズルであり、12は材料ガス層流を押さえる押さえガスを供給する押さえガス噴出器であり、13は材料ガスを誘導するフロー補助板であり、14はフロー補助板と共に水平にて回転自在に配置されたサセプタであり、15はサセプタに保持された半導体の基板であり、17はサセプタを輻射加熱する加熱器である。図2はかかる2フローリアクタ内部のサセプタ15と材料ガスノズル11の関係を示す概略上面図である。
図1に示すように、押さえガス噴出器12は水平な基板15に対して略垂直方向にガスを流し、基板15上の材料ガスを押さえ込む役割をしている。よって、図2に示すように、材料ガスノズル11から流れる材料ガスや中間反応ガスなどは、押さえガスにより基板15の外側へ広げられ、フロー補助板13上へ流れ、噴出された押さえガスの有効面積領域(図2の基板15の上の矩形EE)を越えて流出する。
反応容器10の内部にて中間反応ガスや未反応の材料ガスと押さえガスは、基板15に吹き付けられた後に排気管から排出される。それらの一部のガスは、図3に示すように、排気管から排気されるまでの期間に反応容器内部を不定なガス流(乱流)となり乱れ戻るように流れる。乱流となったガスの一部は押さえガスや材料ガスにより、材料ガスノズル11と押さえガス噴出器12の間隙Oに向かって押し出されたものである。ここでの間隙Oとは図1にあるように材料ガスノズル11の上面の押さえ噴出器12側の縁と、押さえガス噴出器12の底辺の材料ガスノズル11側の縁とを結ぶ領域のことを指す。材料ガスノズル11の先端部の一部が押さえガス噴出器12の底面下に入り込む形態も考えられるが、その時の間隙Oとは上面から見たときに材料ガスノズル11の先端と押さえガス噴出器12とが重なっている領域となる。この場合も乱流が間隙Oに向かって押し出されることには変わりない。また乱流となったガスの別の一部は押さえガスや材料ガスにより基板側面に押し出され、それらガスが材料ガスノズル11と押さえガス噴出器12それぞれの横側から回りこんできたものである。いずれの乱流であつてもさらに一部のガスが再び材料ガスや押さえガスの流れに取り込まれる。このような乱流となったガスには主に材料ガスにより生じる中間反応ガス中には生成物(GaN、他)の微粒子(パーティクル)が多く含まれている。これらの中間反応ガスが材料ガスや押さえガスと一緒になり、再度、基板15上に供給されると結晶成長層にパーティクルが含まれることになり、成膜上の結晶性に不具合を起こす。具体的にはパーティクルを含むことにより、そのパーティクル上部に成長した結晶層のピットを形成するトリガーとなる。また、各種欠陥の形成の源となる。ピットを含む基板は後の半導休デバイス工程のプロセス後において半導体素子の短絡不良を発生し、製造歩留まりを低下させるので問題となる。
そこで本発明は、2フローリアクタにおいて材料ガスと押さえガスが基板に吹き付けられた後に排気されるまでの期間に再び材料ガス流に中間反応ガスが巻き込まれる現象を防止し成長層のピット密度を減少し半導体素子の製造歩留まりを向上することができる気相成長装置を提供することを目的とする。
本発明の気相成長装置は、基板を担持して、これを加熱および回転するサセプタと、基板へ向かう材料ガス噴出口を有し、材料ガス噴出口から基板上に沿って材料ガスの層流を供給する材料ガスノズルと、基板へ向かう押さえガス噴出口を有し、押さえガス噴出口から押さえガスを、基板の法線方向から所定角度範囲で且つ基板の面積より広い面積で、押さえガス流として基板上に供給する押さえガス噴出器と、を備え、材料ガス噴出口および押さえガス噴出口から離れた材料ガスノズルの上方に離間して配置され且つ、押さえガス噴出口および材料ガス噴出口の間隙へ向かう遮断ガスを噴出する遮断ガス噴出口を有する遮断ガスノズルを有することを特徴とする。
本発明によれば、基板を保持するサセプタに対し水平方向に材料ガスを供給する材料ガスノズルと、サセプタ上方の押さえガス噴出器と、を有する2フロータイプの気相成長装置において、一実施形態として、材料ガスノズル幅以上の長さの管体の遮断ガスノズルが材料ガスノズルと押さえガス噴出器から別体として設けられているので、材料ガスより後方且つやや上方から遮断ガスが供給できるため材料ガスノズル11と押さえガス噴出器12の間隙Oに向かって押し出される乱流を押し返すことが可能となる。
さらに、本発明の実施形態によれば、管体の遮断ガスノズルに穿孔され複数の穴などにより遮断ガス噴出口は構成され、少なくともその1つは材料ガスノズル幅よりも外側で押さえガス噴出器の押さえガス噴出口の幅の両側に配置できる。材料ガスノズル噴出口の幅方向に通された管の複数の穴から遮断ガスを噴出させる。押さえガス噴出口の幅に亘る広い範囲で側面方向からも遮断ガスが供給できるので、材料ガスノズル11と押さえガス噴出器12それぞれの横側から回りこんでくる乱流を押し返すもしくは乱流自体の発生を防止することが可能となる。よって、本発明の2フローリアクタタイプの装置では、材料ガスノズルと他の部品(主に押さえガス噴出器)の隙間に乱流が発生することを防止する、もしくは発生し、中間反応ガスが乱流に乗り材料ガスノズル方向に戻されることによって、もう一度、基板に供給されてしまう現象が生じても、本発明では乱流を押し戻す遮断ガスによって押し返すことにより、基板上に供給されることを防止できる。
従来の2フローリアクタの内部構造を示す概略断面図である。 従来の2フローリアクタのサセプタと材料ガスノズルの関係を示す概略上面図である。 従来の2フローリアクタの内部の材料ガスなどの乱流を説明する概略斜視図である。 本発明による実施形態の2フローリアクタの内部構造を示す概略断面図である。 本発明による実施形態の2フローリアクタの内部を説明する概略斜視図である。 本発明による他の実施形態の2フローリアクタの内部構造を示す概略断面図である。 本発明による他の実施形態の2フローリアクタの内部構造を示す概略断面図である。 本発明による他の実施形態の2フローリアクタの内部構造を示す概略断面図である。
以下に、本発明による一実施形態の気相成長装置について、図面を用いて説明する。
図4は、横形の成長炉として構成された実施形態の2フローリアクタの排気可能な反応容器(図示せず)の要部の内部構造を示す概略断面図である。同図において、2フローリアクタは、材料ガスノズル11、押えガス噴出器12、フロー補助板13、サセプタ14、基板15、遮熱板16、加熱器17、水冷ジャケット20および上部遮断ガスノズル31を備えている。フロー補助板13は、サセプタ14に同心に組合わされており一緒に回転する。
円盤形状で中心に回転軸を持つサセプタ14上に基板15が同一平面となるように載置され、サセプタ14は、たとえば、10回/min〜30回/minで回転される。サセプタ14はカーボン材料で作られ、加熱状態でリアクタ内のガスを汚染せず、且つ雰囲気ガスにより反応しない材料、たとえば炭化珪素などでコーティングされている。
材料ガスノズル11は、サセプタ上基板に対し水平もしくは水平から数度、基板側に傾斜した状態で設置されている。材料ガスノズル11は、結晶成膜材料およびキャリアガスの混合ガス(材料ガス)を基板15の上面に平行に層流として吹付ける。ここで、材料ガスには、窒素(N)、水素(H)、アンモニアガス(NH)、n型ドーパントガス(モノシランガス(SiH)、ジシランガス(Si))、有機金属ガス(TMGa(トリメチルガリウム)、TEGa(トリエチルガリウム)、TMAl(トリメチルアルミニウム)、TMIn(トリメチルインジウム)、Cp2Mg(シクロペンタジエニルマグネシウム))が含まれる。
押さえガス噴出器12は基板15の中央部(回転中心)上面に設置され基板15に対し垂直もしくは垂直から数度で材料ガスの下流部方向に傾斜した状態で設置されている。具体的には、押さえガス噴出器12より、基板15を覆う有効面積で、基板と垂直(0度)からやや斜めの所定角度範囲の角度θ(0度<θ<50度)で押さえガスを基板15の上面に吹付ける。押さえガス噴出器12は、材料ガスの層流を基板15の全面に押さえるためにある。押さえガス噴出器から噴出される押さえガスは窒素ガス(N)、水素ガス(H)またはその混合ガスであり、それ以外の材料ガスは含まない。
なお、加熱器17は、サセプタ14の下面に取り付けられており、サセプタ14より面積が若干大きくサセプタを均一な温度に1000℃以上に加熱できる。加熱器17の近傍には、熱電対が設置され、その値から温度制御してサセプタ14を設定温度に加熱する。
遮熱板16は、加熱器17の外周に位置し、加熱器17からの輻射熱でノズル11が加熱されないように遮断する。なお、遮熱板16の外周に水冷ジャケット20が設けると更に断熱性は向上する。また、水冷ジャケット20の上端はフロー補助板13の直下まで延長されている。但し、フロー補助板13の回転を妨げないように僅かな隙間を設けてある。
図4に示すように、上部遮断ガスノズル31は、材料ガス噴出口11Sおよび押さえガス噴出口12Gから離れた材料ガスノズル11の上方に離間して配置されている。上部遮断ガスノズル31より遮断ガス流LFとして、NガスもしくはHガスを、押さえガス噴出口12Gおよび材料ガス噴出口11Sの間隙Oへ吹付ける。なお、上記の各種ノズルは、それぞれ独立に制御される所定の供給系統(図示せず)に接続されている。このように、上部遮断ガスノズル31は押さえガス噴出口および材料ガス噴出口の間隙へ向かう遮断ガスの層流LFを噴出する遮断ガス噴出口31Sを有する。実施形態においては、材料ガスノズル11の上部に離間して材料ガスノズル上面に平行に少なくとも1本の上部遮断ガスノズル31の管体を設けて、押さえガス噴出器12および材料ガスノズル11先端の噴出口の間隙Oへ遮断ガスを噴出して、中間反応ガスが基板に再度到達することを防止する。遮断ガスノズルの設置位置は材料ガスノズル11の上部のみでも効果は得られるが、上下に設置する方が望ましい。上部ほどではないが材料ガスノズル11の下部においても同様に乱流によって中間反応ガスが押し戻されているからである。遮断ガスノズルは、複数個設置することも可能である。
遮断ガスノズル31の前後方向(図4のX方向)における設置位置は、材料ガス噴出口11Sより前方に設置すると材料ガスと干渉するため、材料ガス噴出口より後方に設置する必要がある。また、後述する噴射角度を持たせるためでもある。図4においては距離D分後方に設置されている。
遮断ガスノズル31の上下方向(図4のZ方向)における設置位置は材料ガスノズル11と押さえガス噴出器の間隙Oに遮断ガスの噴射が可能であれば材料ガスノズル11上部のどこであってもかまわないが、押さえガス噴出口12Gの位置よりも上方、さらに好ましくは同等程度に設置することが好ましい。これは、材料ガスノズル11と押さえガス噴出器12の間隙Oからの乱流に対し、より正面に近い角度で遮断ガスを噴射するためである。押さえガス噴出口12Gよりも下方から材料ガスノズル11と押さえガス噴出器12の間隙Oに向かって噴射すると水平に近くなってしまう。
上下方向の遮断ガスの噴出角度として好ましいのは、例えば図4のように、遮断ガス噴出口31Sの中心角度が、水平方向を0度として30〜60度の範囲内である。このような範囲内に限らずある程度の噴射角度を持たせるためには、上下方向のみならず、遮断ガスノズルの位置を前述のように材料ガス噴射口より後方にすることも必要である。
左右方向(図5のY方向)の遮断ガス噴出範囲は材料ガスノズル11幅よりも広い範囲であることが好ましく、さらには押さえガス噴出口12の幅よりも広いことが好ましい。
図5に示すように、上部遮断ガスノズル31の管体の長さW1は、材料ガスノズル11の幅W2を越えるものであり、遮断ガスノズル幅全体から遮断ガスが噴出す構造となっている。これは後述の補助遮断ガスノズルである下部遮断ガスノズル32でも同様である。このような幅の関係にすることで、材料ガスノズル11よりも左右位置から噴出される遮断ガスは、基板側面方向から材料ガスノズル11幅よりも左右に広がって回りこむ中間反応ガスを抑制することができる。さらに、遮断ガスノズル幅W1を押さえガス噴出口の幅W3を超えるようにすると、押さえガス噴出口12よりも左右に広がって回り込む中間反応ガスを抑制することが出来る。よって、遮断ガスノズル31の長さに関しては、材料ガスノズル11よりも長く(W2<W1)、さらに、押えガス噴出器12の噴出口サイズより長く(W3<W1)することが望ましい。ただし、遮断ガスノズル31が材料ガスノズル11より短い(W2<W1)もしくは押さえガス噴出器12の噴出口サイズより短い(W3<W1)場合であっても、遮断ガス噴射範囲を左右方向に広げるように斜めに、例えば扇子状に拡散できるように設計すればガス噴出範囲が広がり左右方向から回り込む中間反応ガスを抑制できる。
遮断ガスノズル31の噴出口形状は、複数の穴、スリット、メッシュまたはその組み合わせなど必要な方向に噴出できればどのようなものでも良いが、方向制御が容易な穴もしくはスリットが好ましい。
遮断ガスノズル31は材料ガスノズル11と独立した構造をとり、材料ガスノズル11と押さえガス噴出器12の間隙Oに対し遮断ガスを噴出できさえすれば、円柱や長方形など周辺の部材に対して自由な形状を取ることができる。例えば材料ガスノズル11のような形状であっても良い。しかし、設置が容易であることから側面に噴出口が設けられた管体であることが好ましい。また、遮断ガス噴出方向は自由に設計することが出来る。
遮断ガスの流量は2L/min〜10L/minであることが好ましい。これより流速が小さいと遮断ガスとしての効果が期待できず、大きいと基板上の材料ガスにまで影響を与える恐れがあるからである。
また、上部遮断ガスノズル31は、図6に示すように、押さえガス噴出器12及び材料ガスノズル11へ向かう方向に遮断ガスの層流LF1、LF2を噴出するサイド遮断ガス噴出口311、312を、さらに、有することができる。なお、サイド遮断ガス噴出口は少なくとも一方だけを設けても良い。図6においては、押さえガス噴出器12へ向かう水平方向のサイド遮断ガスLF1によって遮断ガスノズル31と押さえガス噴出器12の間にガスによる壁が形成され、図5のように遮断ガスのみの形態では防ぎきれなかった分の乱流も防ぐことが可能となる。材料ガスノズル11に向かう垂直方向のサイド遮断ガスLF2も同様に遮断ガスノズル31と材料ガスノズル11の間にガスによる壁が形成する。さらにサイド遮断ガスは例え押さえガス噴出器12もしくは材料ガスノズル11に材料ガスが到達したとしても堆積する前に吹き飛ばすため汚染防止効果も期待できる。材料ガスノズル11に向かうサイド遮断ガスの場合には材料ガスノズル11を冷やし、材料ガスノズル内で中間反応が起こってしまうことを抑制するという効果も期待できる。尚、サイド遮断ガスは図6においては水平と垂直としたが押さえガス噴出器12、材料ガスノズル11に向かうのならばこれに限らない。
また、上部遮断ガスノズル31は、図7に示すように上記の噴出口のほかに、遮断ガスの上流側方向へ向かう副噴出ガスを噴出する副噴出口313を、さらに、有することができる。副噴出口313のガス噴出方向としては、基板に対して逆方向方面を含む全周囲のいずれであっても良い。つまり、遮断ガスノズル31からの遮断ガス以外のガスは全て副噴出ガスとみなせる。前述のサイド遮断ガスも同様の効果を有し、副噴出ガスの一形態としてみなすことも出来る。副噴出ガスによりリアクタ内の材料ガスノズル11と押さえガス噴出器12で区画される領域において圧力を高めに保つことができ、材料ガスは自然と排気側に押し出され誘導されやすくなる。また、ガスノズル周辺の汚染が抑制される。ただし前方へのガス流が減るため、流量増加もしくは穴径の検討など工夫が必要となる。
図8に示すように、材料ガスノズル11の上部と下部に離間してリアクタに固定された上部遮断ガスノズル31および下部遮断ガスノズル32(補助遮断ガスノズル)を設置する。下部遮断ガスノズル32に関しては、遮断ガス噴出方向はフロー補助板13と材料ガスノズル11の隙間に向かう方向に基本的に設定する。材料ガスノズル11の下部に離間して設置された下部遮断ガスノズル32からの噴出方向は基板方向のみならずノズル方向(すなわち、材料ガスノズル11に向かう方向)に噴出することにより、ノズル下部が冷却され、ノズル内のガス自体も冷却されることになり、ガスの中間反応を抑制することができる。ガスの中間反応は、材料の消費効率を悪くするだけでなく、基板への結晶性の悪化も引き起こすため、抑制することは非常に効果的なこととなる。また、さらなる下部遮断ガスノズル32のガス噴出方向として、上部遮断ガスノズル31と同様に材料ガスノズル11とフロー補助板13の間隙以外の方向、例えば基板に対して逆方向もしくは下方向に流すことにより、上部遮断ガスノズル31と同様な効果が得られ、リアクタ内の材料ガスノズルとフロー補助板13、水冷ジャケット20によって区画される領域において圧力を高めに保つことができ、材料ガスは自然と排気側に押し出されるように誘導されやすくなる。尚、材料ガスノズル11とフロー補助板13の間隙とは、正面から見たときに材料ガスノズル11の先端とフロー補助板13とが重なっている領域である。また、ガスノズル周辺の汚染が抑制される。遮断ガス噴出流量は上部遮断ガスノズル31で2L/min〜10L/min、下部遮断ガスノズル32で1L/min〜5L/min流しているが、遮断ガスノズル形状により流量を変動させてもよい。
従来においては、反応済みガスには、結晶成長に使われなかった材料ガスが熱分解したメタル成分および反応生成した微結晶、さらには副生成物が含まれており、これらが材料ガスに巻き込まれると基板表面で成長障害によるピットまたは異常成長によるヒルロックなどを形成していた。またピットまたはヒルロックなどが形成されない場合であっても転移や欠陥の発生源となっていた。しかし、本発明によれば、遮断ガスを流すことにより、反応済みガスが反応容器上流部へ逆流し、再び材料ガス流に巻き込まれることを防止できる。遮断ガスノズルによる遮断ガスで、リアクタ内の圧力を高めに保ち、ガス流を自然に排気側へ押し出す効果がある。ノズル周辺にガスが流れるため、ノズル周辺の汚染防止効果がある。
材料ガスノズル11に対して冷却効果が得られるため、中間反応を低減できる。
本実施形態は、Si結晶などの他材料よりもGaN結晶の結合エネルギーはより高く、結晶の融点が高いため、上記の2フローリアクタを用いた、TMGa、TEGa、TMAl、TMIn、Cp2MgとNH、SiH、Siなどを材料として成長する窒化物半導体の結晶成長に特に適している。
上記実施形態の2フローリアクタ装置によりGaN結晶を成長させた。
(基板)
成長用の基板には、2インチφのc面サファイア単結晶基板、厚みt=0.43mm、面方位が<10−10>方向へ0.05°傾いた0.05°オフ基板、いわゆる(0001)0.05°off to<10−10>基板を用いた。
(成長)
基板熱処理工程として、材料ガスノズルからH(水素)を10L/min流し、押さえガスとしてH(水素)+N(窒素)を1:1の混合比で30L/min流し、1000℃で10分熱処理した。
緩衝層の形成工程として、材料ガスノズルからTMGa(トリメチルガリウム)を20μmol/min、NH(アンモニア)2L/min、そして総量が10L/minになるようにH(水素)を加えて流した。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流し、成長温度約550℃で10分成長し、低温GaN層を成長した。
緩衝層の熱処理工程として、材料ガスノズルからH(水素)を10L/min流し、押さえガスとしてH(水素)+N(窒素)を1:1の混合比で30L/min流し、1050℃で10分熱処理し低温GaN層を熱処理した。
次に、高温GaN層の形成工程として、材料ガスノズルよりTMGa(トリメチルガリウム)を40μmol/minとNH(アンモニア)4L/min、総量が10L/minになるようにH(水素)を加えて流した。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流した。成長温度約1050℃で1時間成長し、膜厚約3μmのGaNエピタキシャル結晶層を得た。n型GaN層にするには、SiH(モノシラン)またはSi(ジシラン)をSi不純物密度が5×1018(個/cm)程度になるように添加することができる。
11 材料ガスノズル
14 サセプタ
15 基板
16 遮熱板
20 水冷ジャケット
12 押さえガス噴出器
13 フロー補助板
17 加熱器
31 上部遮断ガスノズル
32 下部遮断ガスノズル

Claims (6)

  1. 基板を担持して、これを加熱および回転するサセプタと、
    前記基板へ向かう材料ガス噴出口を有し、前記材料ガス噴出口から前記基板上に沿って材料ガスの層流を供給する材料ガスノズルと、
    前記基板へ向かう押さえガス噴出口を有し、前記押さえガス噴出口から押さえガスを、前記基板の法線方向から所定角度範囲で且つ前記基板の面積より広い面積で、押さえガス流として前記基板上に供給する押さえガス噴出器と、を備え、
    前記材料ガス噴出口および前記押さえガス噴出口から離れた前記材料ガスノズルの上方に離間して配置され且つ、前記押さえガス噴出口および前記材料ガス噴出口の間隙へ向かう遮断ガスを噴出する遮断ガス噴出口を有する遮断ガスノズルを有することを特徴とする気相成長装置。
  2. 前記遮断ガスノズルは側面に噴出口が設けられた管体に設けられていることを特徴とする請求項1に記載の気相成長装置。
  3. 前記遮断ガスの左右方向の噴出範囲は前記材料ガスノズルの幅よりも大きいことを特徴とする請求項1または2に記載の気相成長装置。
  4. 前記遮断ガスノズルはさらに副噴出ガスを噴出する副噴出口を有することを特徴とする請求項1乃至3のいずれか1に記載の気相成長装置。
  5. 前記副噴出口の少なくとも1つは、前記押さえガス噴出器および前記材料ガスノズルの少なくとも一方へガスを噴出するサイド遮断ガス噴出口であることを特徴とする請求項4に記載の気相成長装置。
  6. 前記材料ガス噴出口および前記押さえガス噴出口から離れた前記材料ガスノズルの下方に離間して配置され且つ前記材料ガス噴出口へ向かう遮断ガスを噴出する噴出口を有する補助遮断ガスノズルを、さらに、有することを特徴とする請求項1乃至5のいずれか1に記載の気相成長装置。
JP2010218602A 2010-09-29 2010-09-29 気相成長装置 Pending JP2012074560A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218602A JP2012074560A (ja) 2010-09-29 2010-09-29 気相成長装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218602A JP2012074560A (ja) 2010-09-29 2010-09-29 気相成長装置

Publications (1)

Publication Number Publication Date
JP2012074560A true JP2012074560A (ja) 2012-04-12

Family

ID=46170429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218602A Pending JP2012074560A (ja) 2010-09-29 2010-09-29 気相成長装置

Country Status (1)

Country Link
JP (1) JP2012074560A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127669A (ja) * 2012-12-27 2014-07-07 Showa Denko Kk 成膜装置および膜の製造方法
JP2014127670A (ja) * 2012-12-27 2014-07-07 Showa Denko Kk 成膜装置および膜の製造方法
JP2017055105A (ja) * 2015-09-11 2017-03-16 ユ−ジーン テクノロジー カンパニー.リミテッド 基板処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127669A (ja) * 2012-12-27 2014-07-07 Showa Denko Kk 成膜装置および膜の製造方法
JP2014127670A (ja) * 2012-12-27 2014-07-07 Showa Denko Kk 成膜装置および膜の製造方法
JP2017055105A (ja) * 2015-09-11 2017-03-16 ユ−ジーン テクノロジー カンパニー.リミテッド 基板処理装置
US10161036B2 (en) 2015-09-11 2018-12-25 Eugene Technology Co., Ltd. Substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP4700602B2 (ja) 一方を前処理した2種のプロセスガスを用いた半導体蒸着プロセス及び装置
JP5546287B2 (ja) 気相成長装置
JP3068075B2 (ja) 化合物半導体製造用水平反応炉
KR20120053003A (ko) 할로우 캐소드 샤워헤드
US8491720B2 (en) HVPE precursor source hardware
JP2008028270A (ja) 結晶成長方法及び結晶成長装置
JP2011171325A (ja) 窒化物半導体結晶膜成長装置及び窒化物半導体結晶膜の製造方法
KR20110134389A (ko) 플라즈마 증착
KR20120083495A (ko) 기상 성장 장치, 기상 성장 방법 및 반도체 소자의 제조 방법
JP5490584B2 (ja) 気相成長装置
JP2024051144A (ja) Iii族窒化物半導体結晶の製造装置
JP2012074560A (ja) 気相成長装置
KR20100132442A (ko) Ⅲ족 질화물 반도체의 기상 성장 장치
JP5443223B2 (ja) 気相成長装置および窒化物系半導体発光装置の製造方法
JP2005340784A (ja) エピタキシャル成長装置
JP3953984B2 (ja) 半導体製造装置
JP2012244044A (ja) 材料ガス供給ノズル、気相成長装置および半導体膜の製造方法
JP2008053636A (ja) 気相成長装置、化合物半導体膜及びその成長方法
JP2012074578A (ja) 気相成長装置
JP5490597B2 (ja) 気相成長装置、エピタキシャル成長層の製造方法、及び気相成長用サセプタ
JP2013070016A (ja) 窒化物半導体結晶成長装置およびその成長方法
JP5848170B2 (ja) 気相成長装置
JP5251720B2 (ja) 化学気相成長半導体膜形成装置および化学気相成長半導体膜形成方法
JP2000091246A (ja) 結晶成長装置及び結晶成長方法
US20220403547A1 (en) Manufacturing apparatus for group-iii compound semiconductor crystal