JP2012074246A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012074246A
JP2012074246A JP2010218060A JP2010218060A JP2012074246A JP 2012074246 A JP2012074246 A JP 2012074246A JP 2010218060 A JP2010218060 A JP 2010218060A JP 2010218060 A JP2010218060 A JP 2010218060A JP 2012074246 A JP2012074246 A JP 2012074246A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218060A
Other languages
Japanese (ja)
Other versions
JP5830236B2 (en
Inventor
Tomoya Inoue
智哉 井上
Tokuji Ueda
上田  篤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010218060A priority Critical patent/JP5830236B2/en
Publication of JP2012074246A publication Critical patent/JP2012074246A/en
Application granted granted Critical
Publication of JP5830236B2 publication Critical patent/JP5830236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity and high output characteristics simultaneously.SOLUTION: In the nonaqueous electrolyte secondary battery, a mixture of a positive electrode active material particle (A) and a positive electrode active material particle (B) is used as a positive electrode active material. The positive electrode active material particle (A) is represented as LiNiMnCoO(where, 1.05≤α≤1.15, 0.5≤x≤0.6 and 0.2≤y≤0.3), and has an average particle size of 10 to 20 μm and a specific surface area of 0.4 to 0.6 m/g, while the positive electrode active material particle (B) is represented by general formula: LiNiMnCoO(where, 1.05≤β≤1.10, 0.2≤s≤0.4 and s+t=1.0), and has an average particle size of 5 to 10 μm and a specific surface area of 0.8 to 1.2 m/g. Further, a specific surface area of the mixed positive electrode active material is maintained in a range of 0.6 to 1.0 m/g. Accordingly, a nonaqueous electrolyte secondary battery having high capacity and high output characteristics can be provided.

Description

本発明は、非水電解質二次電池用の正極及び非水電解質二次電池に関する。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

近年、容量密度が高く、高出力な特性を示すリチウムイオン二次電池の開発が進められている。車載用リチウムイオン電池の正極活物質には、熱的安定性の高いリチウム・マンガン複合酸化物が汎用されている。また、単位重量当たりの容量が大きいリチウム・ニッケル複合酸化物を正極活物質に用いることで、電池の高容量化を図ることが検討されている。しかし、リチウム・ニッケル複合酸化物は、リチウム・マンガン複合酸化物に比べ、充電状態での発熱が大きく、熱的安定性に課題がある。   In recent years, development of lithium ion secondary batteries having high capacity density and high output characteristics has been promoted. Lithium-manganese composite oxides with high thermal stability are widely used as positive electrode active materials for in-vehicle lithium ion batteries. Further, it has been studied to increase the capacity of a battery by using a lithium / nickel composite oxide having a large capacity per unit weight as a positive electrode active material. However, the lithium / nickel composite oxide generates more heat in the charged state than the lithium / manganese composite oxide, and there is a problem in thermal stability.

特開2005−197004号公報(特許文献1)には、高容量化と熱的安定性の両立を目的とし、リチウム・マンガン・ニッケル・コバルト複合酸化物を用いた車載用リチウムイオン電池の開発がなされている。リチウム・ニッケル・マンガン・コバルト複合酸化物は、ニッケル,マンガン,コバルトの構成比率で容量と出力特性と熱的安定性の特性を制御できることから、車載用電池用正極活物質として注目されている。Niを多く含有したリチウム・ニッケル・マンガン・コバルト複合酸化物(以下、Niリッチ正極材)は、重量あたりの容量が大きく有望視されている。   JP 2005-197004 (Patent Document 1) describes the development of an in-vehicle lithium ion battery using a lithium / manganese / nickel / cobalt composite oxide for the purpose of achieving both high capacity and thermal stability. Has been made. Lithium / nickel / manganese / cobalt composite oxide is attracting attention as a positive electrode active material for in-vehicle batteries because it can control capacity, output characteristics and thermal stability characteristics by the composition ratio of nickel, manganese and cobalt. A lithium / nickel / manganese / cobalt composite oxide (hereinafter referred to as Ni-rich positive electrode material) containing a large amount of Ni is considered promising because of its large capacity per weight.

特開2005−197004号公報JP 2005-197004 A

Niリッチ正極材は、活物質の残アルカリ成分が多いために、作製した塗料がゲル化するなど、安定性が悪く、量産性に課題がある。しかしながら、残アルカリ成分を減らす試みとして、活物質の粒径を大きくして比表面積を低下させると、電池の出力特性が低下する。   Since the Ni-rich positive electrode material has a large amount of residual alkali component in the active material, the produced coating material is gelled and has poor stability and has a problem in mass productivity. However, as an attempt to reduce the residual alkali component, when the particle size of the active material is increased to reduce the specific surface area, the output characteristics of the battery are deteriorated.

そこで本発明の目的は、容量が大きく、高出力特性を備えた車載用の非水電解質二次電池を提供することにある。   Therefore, an object of the present invention is to provide a vehicle-mounted nonaqueous electrolyte secondary battery having a large capacity and high output characteristics.

本発明は、非水電解質二次電池の正極活物質として、LiαNixMn(1-x-y)Coy2(但し、1.05≦α≦1.15,0.5≦x≦0.6,0.2≦y≦0.3)で表され、平均粒径が10から20μmで、比表面積が0.4から0.6m2/gである正極活物質粒子Aと、一般式LiβNi(1-s-t)MnsCot2(但し、1.05≦β≦1.10,0.2≦s≦0.4)で表され、平均粒径が5から10μmで、比表面積が0.8から1.2m2/gである正極活物質粒子Bの混合物を用いるものである。このような混合正極活物質の比表面積を0.6から1.0m2/gに調整することで、高容量・高出力特性の非水電解質二次電池が提供可能となる。 In the present invention, Li α Ni x Mn (1-xy) Co y O 2 (where 1.05 ≦ α ≦ 1.15, 0.5 ≦ x ≦ 0 ) is used as a positive electrode active material of a nonaqueous electrolyte secondary battery. Positive active material particles A having an average particle size of 10 to 20 μm and a specific surface area of 0.4 to 0.6 m 2 / g, represented by the following formula: 0.6, 0.2 ≦ y ≦ 0.3) Li β Ni (1-st) Mn s Co t O 2 (where 1.05 ≦ β ≦ 1.10, 0.2 ≦ s ≦ 0.4), the average particle size is 5 to 10 μm, A mixture of positive electrode active material particles B having a specific surface area of 0.8 to 1.2 m 2 / g is used. By adjusting the specific surface area of such a mixed positive electrode active material from 0.6 to 1.0 m 2 / g, a non-aqueous electrolyte secondary battery having high capacity and high output characteristics can be provided.

本発明によれば、高容量で、高出力の非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a high capacity | capacitance and a high output nonaqueous electrolyte secondary battery can be provided.

円筒型電池の概略断面図。The schematic sectional drawing of a cylindrical battery. 正極活物質の混合工程を示す図。The figure which shows the mixing process of a positive electrode active material. 混合正極活物質の概念図。The conceptual diagram of a mixed positive electrode active material. 容量密度とNi組成比との関係を示す図。The figure which shows the relationship between a capacity density and Ni composition ratio. 混合正極活物質の比表面積とDCRの関係を示す図。The figure which shows the relationship between the specific surface area of a mixed positive electrode active material, and DCR.

二酸化炭素等の温室効果ガスによる地球温暖化や、化石燃料の枯渇問題が深刻化してきている状況の中で、電気自動車(EV)や2種類の駆動源(ガソリンエンジンとモーター)を組み合わせたハイブリッド車(HEV)が注目されている。また、最近では家庭用のコンセントからなど、充電可能なプラグインハイブリッド車(PHEV)の実用化が期待されている。   A hybrid that combines an electric vehicle (EV) and two types of driving sources (gasoline engine and motor) in a situation where global warming due to greenhouse gases such as carbon dioxide and the problem of exhaustion of fossil fuels are becoming more serious. Cars (HEV) are attracting attention. Recently, it is expected that a plug-in hybrid vehicle (PHEV) that can be charged, such as from a household outlet, will be put to practical use.

このような車載用に供されるリチウムイオン二次電池は、電池の残量が少ないときにも多いときにも(広範囲の充電状態(SOC)で)高出力が求められる。また、1回の充電で走行可能な距離を長くするためには、電池のエネルギー密度が高いことが重要となる。
特に、PHEVではEV走行距離が長い。従って、容量密度が高く、高出力な特性を示すリチウムイオン二次電池の開発が進められている。
Such a lithium ion secondary battery used for in-vehicle use is required to have a high output both when the remaining amount of the battery is low and when it is high (in a wide state of charge (SOC)). Moreover, in order to lengthen the distance which can be drive | worked by one charge, it is important that the energy density of a battery is high.
In particular, EV travel distance is long in PHEV. Therefore, development of a lithium ion secondary battery having a high capacity density and high output characteristics is in progress.

非水電解質二次電池の高容量化を達成するため、種々の試みが為されている。例えば正極においては正極合剤層の密度を増大させ正極活物質の充填量を増やす方法、充電電圧を高める方法などによる高容量化が挙げられる。正極合剤層の密度を増大させる方法では、正極合剤層への電解液の浸透性が低下し、直流抵抗(DCR)の上昇による電池特性の劣化の可能性がある。また、充電電圧を高める方法では、高電圧充電時の安全性維持に課題がある。   Various attempts have been made to achieve high capacity of nonaqueous electrolyte secondary batteries. For example, in the positive electrode, the capacity can be increased by increasing the density of the positive electrode mixture layer to increase the filling amount of the positive electrode active material, increasing the charging voltage, or the like. In the method of increasing the density of the positive electrode mixture layer, the permeability of the electrolytic solution to the positive electrode mixture layer is lowered, and there is a possibility that the battery characteristics are deteriorated due to an increase in direct current resistance (DCR). Moreover, the method for increasing the charging voltage has a problem in maintaining safety during high-voltage charging.

上述の通り、単位重量当たりの容量が高容量なNiリッチ正極材は有望視されているものの、残アルカリ成分が多く含まれるという課題がある。アルカリ成分が多く、例えばpHが11.0以上であると、スラリーのバインダ成分としてポリフッ化ビニリデン(PVdF)を使用する場合、経時的に重合反応が起こり、ゲル化し、スラリーの流動性が低下するため、量産が困難となる。一方、残アルカリ成分低減のため、活物質の粒径を大きくして比表面積を低下させると、逆に反応面積が減少することで、電流が流れにくくなり見た目の抵抗値が上がって電池の出力特性が低下してしまう。   As described above, although the Ni-rich cathode material having a high capacity per unit weight is considered promising, there is a problem that a large amount of residual alkali component is contained. When there are many alkali components, for example, when the pH is 11.0 or more, when polyvinylidene fluoride (PVdF) is used as the binder component of the slurry, a polymerization reaction occurs over time, gelation occurs, and the fluidity of the slurry decreases. Therefore, mass production becomes difficult. On the other hand, if the specific surface area is reduced by increasing the particle size of the active material in order to reduce the residual alkali component, the reaction area is decreased, which makes it difficult for current to flow and increases the apparent resistance value, thereby increasing the output of the battery. The characteristics will deteriorate.

そこで本発明者らは、Al集電体上に活物質として高容量なNiリッチ正極活物質Aと高出力なニッケル・マンガン・コバルト三成分系正極活物質Bを含有する合剤から形成された正極と、Cu集電体上に負極活物質を含有する合剤から形成された負極と、電解液を備えた非水電解質二次電池を発明した。リチウム・ニッケル・マンガン・コバルト複合酸化物を用い、その組成とともに粉体物性を制御することで、容量が大きく、出力特性の優れた車載用リチウムイオン電池を実現した。ニッケル含有率を高くし、高容量化したリチウム・ニッケル・マンガン・コバルト複合酸化物で、その残アルカリ値の影響を下げるために粒径を大きくした正極活物質(正極活物質A)と、残アルカリ値が低いリチウム・ニッケル・マンガン・コバルト複合酸化物で、粒径を小さくして高比表面積化した正極活物質(正極活物質B)との正極混合物を作製し、比表面積と残アルカリ値を規定することで、容量が大きく、非水電解質二次電池の高出力化を達成できる。   Accordingly, the present inventors formed a mixture containing a high-capacity Ni-rich positive electrode active material A and a high-power nickel-manganese-cobalt ternary positive electrode active material B as active materials on an Al current collector. A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode formed from a mixture containing a negative electrode active material on a Cu current collector, and an electrolytic solution was invented. By using lithium / nickel / manganese / cobalt composite oxide and controlling its powder properties as well as its composition, we have achieved a large capacity lithium-ion battery with excellent output characteristics. A lithium-nickel-manganese-cobalt composite oxide with a high nickel content and a high capacity, a positive electrode active material (positive electrode active material A) having a large particle size to reduce the effect of its residual alkali value, A positive electrode mixture of a lithium / nickel / manganese / cobalt composite oxide having a low alkali value and a high specific surface area by reducing the particle size is prepared. The specific surface area and the residual alkali value By defining the above, the capacity is large, and high output of the nonaqueous electrolyte secondary battery can be achieved.

さらに、正極活物質Bの粒子径が正極活物質Aの粒子径のおよそ1/2である場合、活物質の充填率を上げ、高容量化するためには、正極活物質B/(正極活物質A+正極活物質B)で表される重量比率を20から50%とすることが望ましく、その中でも30から40%がより好ましい。特に、正極活物質AとBの混合物は、混合物のpH値(残アルカリ値)をpH10.5から11.0に調整することが望ましい。この程度の正極活物質の残アルカリ成分とすることで、(水酸化リチウム成分)を低減し、量産性を向上することができる。   Furthermore, when the particle diameter of the positive electrode active material B is approximately ½ of the particle diameter of the positive electrode active material A, the positive electrode active material B / (positive electrode active material) can be used to increase the active material filling rate and increase the capacity. The weight ratio represented by the substance A + the positive electrode active material B) is preferably 20 to 50%, and more preferably 30 to 40%. In particular, in the mixture of the positive electrode active materials A and B, it is desirable to adjust the pH value (residual alkali value) of the mixture from pH 10.5 to 11.0. By using the remaining alkali component of the positive electrode active material at this level, (lithium hydroxide component) can be reduced and mass productivity can be improved.

電池の低温時の直流抵抗(DCR)は比表面積の高い材料に依存する傾向がある。一方、反応面積が大きくなりすぎると、電子伝導性を確保するための炭素導電助剤の含有率を増加させる必要が生じ、電極密度が低下するために容量密度に関しては逆効果となる。そのため、正極活物質の比表面積は0.6から1.0m2/gの範囲が好ましい。 The direct current resistance (DCR) of a battery at a low temperature tends to depend on a material having a high specific surface area. On the other hand, when the reaction area becomes too large, it is necessary to increase the content of the carbon conductive auxiliary agent for ensuring the electron conductivity, and the electrode density is lowered, which has an adverse effect on the capacity density. Therefore, the specific surface area of the positive electrode active material is preferably in the range of 0.6 to 1.0 m 2 / g.

本発明を適用する非水電解質二次電池は、集電体上に活物質を含有する合剤を備えた正極と、集電体上に負極活物質を含有する合剤を備えた負極と、電解液を有する。図1に円筒型電池の概略断面図を示す。樹脂製の軸芯7の周囲に捲回された電極群8には、正極,負極の集電板5,6が取り付けられて、電池容器1内に収納されている。電極群8のうち、負極の電極は負極の集電板6に溶接等で接続され、負極のリード10を介して、電池容器1に電気的に接続されている。   A nonaqueous electrolyte secondary battery to which the present invention is applied includes a positive electrode including a mixture containing an active material on a current collector, a negative electrode including a mixture containing a negative electrode active material on a current collector, Has electrolyte. FIG. 1 shows a schematic sectional view of a cylindrical battery. Positive electrode and negative electrode current collector plates 5 and 6 are attached to an electrode group 8 wound around a resin-made shaft core 7 and housed in the battery container 1. In the electrode group 8, the negative electrode is connected to the negative collector plate 6 by welding or the like, and is electrically connected to the battery container 1 via the negative lead 10.

電池容器1内に電極群8と正極,負極の集電板5,6が収納された後、軸芯7の中央に溶接冶具を通して、電池容器1の缶底と負極のリード10を溶接する。その後、電池容器1内に電解液が注入される。正極の集電板5の上には電池容器1の開口部を封口するように設けられた電導性を有する上蓋部があり、上蓋部は上蓋3と上蓋ケース4からなる。上蓋ケース4に正極リード9の一方が溶接され、他方が正極集電部品5に溶接されることによって上蓋部と電極群8の正極が電気的に接続される。電池容器1と上蓋ケース4との間にはガスケット2が設けられ、このガスケット2により電池容器1の開口部を封口するとともに電池容器1と上蓋ケース4とを電気的に絶縁する。これにより、二次電池が構成される。   After the electrode group 8 and the positive and negative current collecting plates 5 and 6 are housed in the battery container 1, the bottom of the battery container 1 and the negative electrode lead 10 are welded to the center of the shaft core 7 through a welding jig. Thereafter, an electrolytic solution is injected into the battery container 1. On the positive current collecting plate 5, there is an upper lid portion having conductivity provided so as to seal the opening of the battery container 1, and the upper lid portion is composed of an upper lid 3 and an upper lid case 4. One of the positive electrode leads 9 is welded to the upper lid case 4 and the other is welded to the positive electrode current collector component 5, whereby the upper lid portion and the positive electrode of the electrode group 8 are electrically connected. A gasket 2 is provided between the battery container 1 and the upper cover case 4, and the gasket 2 seals the opening of the battery container 1 and electrically insulates the battery container 1 and the upper cover case 4. Thereby, a secondary battery is comprised.

正極に用いられる導電助剤は、正極合剤中におけるリチウムイオンの吸蔵放出反応で生じた電子の正極電極への伝達を補助できる物質であれば制限はない。正極導電助剤としては、例えば、黒鉛やアセチレンブラックなどが挙げられる。正極に用いられるバインダは、活物質と導電助剤、及び合剤と集電体を結着させることが可能であり、非水電解液との接触により劣化しないことが望ましい。正極バインダの例としては、ポリフッ化ビニリデン(PVdF)やフッ素ゴムなどが挙げられる。分散溶液としては、N−メチル−2−ピロリドン(NMP)や水が挙げられる。   The conductive auxiliary agent used for the positive electrode is not limited as long as it is a substance that can assist the transmission of electrons generated by the occlusion / release reaction of lithium ions in the positive electrode mixture to the positive electrode. Examples of the positive electrode conductive assistant include graphite and acetylene black. The binder used for the positive electrode can bind the active material and the conductive additive, and the mixture and the current collector, and is preferably not deteriorated by contact with the non-aqueous electrolyte. Examples of the positive electrode binder include polyvinylidene fluoride (PVdF) and fluororubber. Examples of the dispersion solution include N-methyl-2-pyrrolidone (NMP) and water.

負極は、負極活物質,負極バインダ、及び増粘剤から構成される。本発明では、負極活物質として、ハードカーボン,ソフトカーボン,黒鉛炭素を用いることが好ましく、その中でも、黒鉛炭素を用いることにより、大容量が要求されるプラグインハイブリッド用や電気自動車用二次電池が作製できる。   The negative electrode is composed of a negative electrode active material, a negative electrode binder, and a thickener. In the present invention, it is preferable to use hard carbon, soft carbon, and graphite carbon as the negative electrode active material, and among them, secondary batteries for plug-in hybrids and electric vehicles that require large capacity by using graphite carbon. Can be made.

非水電解質としては、例えば、下記の非水系溶媒中に、リチウム塩を溶解させることで調整した非水電解液を使用することが好ましい。   As the non-aqueous electrolyte, for example, it is preferable to use a non-aqueous electrolytic solution prepared by dissolving a lithium salt in the following non-aqueous solvent.

溶媒としては、例えば、エチレンカーボネート(EC),プロピレンカーボネート(PC),ジメチルカーボネート(DMC),メチルエチルカーボネート(MEC)等の非プロトン性有機溶媒を1種単独で、あるいは2種以上を混合した混合溶媒として用いることができる。   As the solvent, for example, an aprotic organic solvent such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) or the like is used alone, or two or more kinds are mixed. It can be used as a mixed solvent.

非水電解質に係わるリチウム塩としては、例えば、LiPF6,LiBF4が挙げられる。これらの電解質塩は1種単独、あるいは2種以上混合して用いることも可能である。 Examples of the lithium salt related to the nonaqueous electrolyte include LiPF 6 and LiBF 4 . These electrolyte salts can be used alone or in combination of two or more.

正極合剤中に含まれる正極活物質Aは、一般式LiαNixMnyCo(1-x-y)2(但し、1.05≦α≦1.15,0.5≦x≦0.6,0.2≦y≦0.3)で表される複合酸化物で、比表面積は0.4〜0.6m2/gで、粒径は10〜20μmである。正極活物質Bは、一般式LiβNisMntCo(1-s-t)2(但し、1.05≦β≦1.10,0.3≦s≦0.5,0.2≦t≦0.4)で表される複合酸化物であり、比表面積は0.8〜1.2m2/gで、粒径は5〜10μmである。これらの複合酸化物を混合物としたとき、混合された複合酸化物全体の比表面積が0.6〜1.0m2/gの範囲とする。 The positive electrode active material A contained in the positive electrode mixture has a general formula Li α Ni x M n y Co (1-xy) O 2 (where 1.05 ≦ α ≦ 1.15, 0.5 ≦ x ≦ 0.0. 6, 0.2 ≦ y ≦ 0.3), the specific surface area is 0.4 to 0.6 m 2 / g, and the particle size is 10 to 20 μm. The positive electrode active material B is represented by the general formula Li β Ni s Mn t Co ( 1-st) O 2 ( where, 1.05 ≦ β ≦ 1.10,0.3 ≦ s ≦ 0.5,0.2 ≦ t ≦ 0.4), the specific surface area is 0.8 to 1.2 m 2 / g, and the particle size is 5 to 10 μm. When these composite oxides are used as a mixture, the specific surface area of the mixed composite oxide as a whole is in the range of 0.6 to 1.0 m 2 / g.

正極活物質を混合するための工程を図2に、正極活物質を混合する概念図を図3に示す。正極活物質Aと正極活物質Bを各々秤量し、活物質のみを混ぜる乾式混合を経て混合正極混合物を作製した。正極活物質AはNi/(Ni+Mn+Co)比が0.5以上0.6以下であることから、大気中の水分と反応し、水酸化リチウム(LiOH)を生成しやすく、pHは10.8から11.0となる。一方で、正極活物質BはNi/(Ni+Mn+Co)比は0.3以上0.5以下であることから、水分との反応は抑制され、pHは10.3から10.6の範囲となる。なお、pH値は1gの活物質を50gの純水に投入し、10分間攪拌後に、濾過し得られた濾液のpHを計測したものである。   FIG. 2 shows a process for mixing the positive electrode active material, and FIG. 3 shows a conceptual diagram for mixing the positive electrode active material. The positive electrode active material A and the positive electrode active material B were weighed, and a mixed positive electrode mixture was prepared through dry mixing in which only the active material was mixed. Since the positive electrode active material A has a Ni / (Ni + Mn + Co) ratio of 0.5 or more and 0.6 or less, it easily reacts with moisture in the atmosphere to generate lithium hydroxide (LiOH), and the pH is from 10.8. 11.0. On the other hand, since the Ni / (Ni + Mn + Co) ratio of the positive electrode active material B is 0.3 or more and 0.5 or less, the reaction with moisture is suppressed, and the pH is in the range of 10.3 to 10.6. The pH value is obtained by measuring the pH of a filtrate obtained by adding 1 g of an active material to 50 g of pure water and stirring the mixture for 10 minutes.

正極活物質A(符号:31)は、残アルカリ値が高いことから、反応性を低下させるために、比表面積を小さくすることが必要であり、0.4〜0.6m2/gが望ましい。正極活物質の充填量を上げ、高容量化するためにも正極活物質A(31)の平均粒子径は10から20μmの範囲であることが望ましい。一方、正極活物質B(符号:32)は、残アルカリ値が低く、比表面積を上げることができることから、出力特性を向上させるために比表面積は0.8から1.2m2/gとした。また、活物質の充填率を上げ、電極密度を増大させるために、その平均粒子径は正極活物質Aの1/2以下となるように5から10μmの範囲であることが望ましい。これらを混合物(符号:33)とした時、高容量と高出力特性を両立させることが可能となる。 Since the positive electrode active material A (symbol: 31) has a high residual alkali value, it is necessary to reduce the specific surface area in order to reduce the reactivity, and is preferably 0.4 to 0.6 m 2 / g. . In order to increase the filling amount of the positive electrode active material and increase the capacity, the average particle size of the positive electrode active material A (31) is desirably in the range of 10 to 20 μm. On the other hand, the positive electrode active material B (symbol: 32) has a low residual alkali value and can increase the specific surface area, so that the specific surface area was set to 0.8 to 1.2 m 2 / g in order to improve output characteristics. . In order to increase the filling rate of the active material and increase the electrode density, the average particle size is desirably in the range of 5 to 10 μm so as to be 1/2 or less of the positive electrode active material A. When these are mixed (symbol: 33), both high capacity and high output characteristics can be achieved.

以下、実施例に基づいて詳細を述べるが、本発明は下記の実施例に限定されるものではない。   Hereinafter, although details are described based on examples, the present invention is not limited to the following examples.

≪実施例1≫
本実施例では、正極活物質Aとして、一般式Li1.05Ni0.60Mn0.20Co0.202で表される活物質(平均粒径:15μm)と、正極活物質Bとして、一般式Li1.05Ni0.34Mn0.33Co0.332で表される活物質平均粒径:5μm)を使用した。正極活物質B/(正極活物質A+正極活物質B)=30%を満たすように、正極活物質Aを1000g、正極活物質Bを428.6gそれぞれ秤量して混合した。
Example 1
In this example, an active material (average particle size: 15 μm) represented by the general formula Li 1.05 Ni 0.60 Mn 0.20 Co 0.20 O 2 as the positive electrode active material A, and a general formula Li 1.05 Ni 0.34 as the positive electrode active material B. An active material average particle diameter represented by Mn 0.33 Co 0.33 O 2 : 5 μm) was used. Positive electrode active material B / (positive electrode active material A + positive electrode active material B) = 1000 g of positive electrode active material A and 428.6 g of positive electrode active material B were weighed and mixed so as to satisfy 30%.

混合した正極活物質A及び正極活物質Bに加えて、導電助剤,バインダとなる結着剤PVdFの重量組成が85:9:6を満たすように、正極活物質を1428.6g、導電助剤を151.3g、PVdFを840.4g秤量して混合した。さらに、有機溶剤としてN−メチル−2−ピロリドン(NMP)を加え、プラネタリミキサを用いて混練し、ペースト状の合剤を作製した。   In addition to the mixed positive electrode active material A and positive electrode active material B, 1428.6 g of the positive electrode active material and the conductive assistant so that the weight composition of the binder PVdF serving as the conductive auxiliary agent and binder satisfies 85: 9: 6. 151.3 g of the agent and 840.4 g of PVdF were weighed and mixed. Further, N-methyl-2-pyrrolidone (NMP) was added as an organic solvent and kneaded using a planetary mixer to prepare a paste-like mixture.

集電体となる厚さ15μmのアルミ箔に、この合剤を100g/m2の塗布量で塗布し、溶剤を乾燥除去した後、スリッターで54mm幅になるように両端を切り落とした。続いて熱ロールプレス機で、ロール温度60℃にて圧縮することで正極を作製した。 This mixture was applied to an aluminum foil having a thickness of 15 μm serving as a current collector at a coating amount of 100 g / m 2 , and after removing the solvent by drying, both ends were cut off to a width of 54 mm with a slitter. Then, the positive electrode was produced by compressing with a hot roll press at a roll temperature of 60 ° C.

得られた正極を用い、18650小形筒形試作電池(18φ,高さ65mm)を作成した。黒鉛負極(56mm幅)は、厚さ10μmのCu箔の両面に黒鉛97%とカルボキシメチルセルロース(CMC)1.5%とスチレンブタジエンゴム(SBR)で構成され、50g/m2の塗布量とし、その密度は1.5g/cm3とした。電解液には、EC,EMC,DMCの体積比がそれぞれ2:4:4で構成される混合溶媒にLiPF6を溶質として1mol/lの濃度のものを用いた。また、セパレータには宇部興産製30μm厚で、58mm幅のものを用いた。なお、試作した電池の設計容量は18650電池仕様で600mAhであった。 Using the obtained positive electrode, a 18650 small cylindrical prototype battery (18φ, height 65 mm) was prepared. The graphite negative electrode (56 mm wide) is composed of 97% graphite, 1.5% carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR) on both sides of a 10 μm thick Cu foil, and has a coating amount of 50 g / m 2 . The density was 1.5 g / cm 3 . As the electrolytic solution, a mixed solvent having a volume ratio of EC, EMC, and DMC of 2: 4: 4, respectively, having a concentration of 1 mol / l with LiPF 6 as a solute was used. A separator having a thickness of 30 μm and a width of 58 mm manufactured by Ube Industries was used. The design capacity of the prototype battery was 600 mAh with 18650 battery specifications.

≪実施例2,3,比較例1〜4≫
正極活物質A,Bの組成を変更した以下の実施例,比較例についても同様にして秤量,混合を行った。表1に検討した実施例,比較例の構成をまとめる。
<< Examples 2 and 3, Comparative Examples 1 to 4 >>
The following examples and comparative examples in which the compositions of the positive electrode active materials A and B were changed were similarly weighed and mixed. Table 1 summarizes the configurations of the studied examples and comparative examples.

Figure 2012074246
Figure 2012074246

≪性能評価方法≫
出力特性は出力=電圧差/抵抗の関係式から求められる。従って、正極活物質の変更による電位差の影響を取り除くため、直流抵抗(DCR)を測定した。DCRは負極の充電深度の影響を除くため、室温で4.1Vまで充電し、−30℃で、600mA,1200mA,2400mAで放電し、その10秒目の電圧から抵抗値を求めた。実施例,比較例の電池について、DCRを測定した結果を表2に示す。
≪Performance evaluation method≫
The output characteristics are obtained from the relational expression of output = voltage difference / resistance. Therefore, the direct current resistance (DCR) was measured in order to remove the influence of the potential difference due to the change of the positive electrode active material. In order to eliminate the influence of the charging depth of the negative electrode, DCR was charged to 4.1 V at room temperature, discharged at −30 ° C. at 600 mA, 1200 mA, and 2400 mA, and the resistance value was obtained from the voltage at 10 seconds. Table 2 shows the results of measuring DCR for the batteries of Examples and Comparative Examples.

また、併せて正極活物質Bの混合比と、比表面積,容量密度をそれぞれ示す。   In addition, the mixing ratio, specific surface area, and capacity density of the positive electrode active material B are shown.

Figure 2012074246
Figure 2012074246

上記の結果より、実施例の電池では、容量密度が高く、かつDCRが大きくなっていないことがわかる。   From the above results, it can be seen that in the battery of the example, the capacity density is high and the DCR is not large.

≪性能評価結果≫
実施例1〜3,比較例1〜4で得られた結果より、Ni組成比に対して容量密度(mAh/cm3)をプロットした特性図を図4に示す。図4よりあきらかな通り、Ni含有率が高く、粒径が大きい程、容量密度が増大する傾向にある。
≪Performance evaluation results≫
FIG. 4 shows a characteristic diagram in which the capacity density (mAh / cm 3 ) is plotted against the Ni composition ratio based on the results obtained in Examples 1 to 3 and Comparative Examples 1 to 4. As is clear from FIG. 4, the capacity density tends to increase as the Ni content increases and the particle size increases.

また、実施例1〜3,比較例1〜4で得られた結果より、正極活物質Aと正極活物質Bの正極混合物の比表面積(m2/g)に対してDCR(mΩ)をプロットした特性図を図5に示す。図5から見てわかるように、正極活物質Aと粉体物性を制御して小粒径化した正極活物質Bを混ぜて正極混合物を作製することで、直線近似することで導き出された交点から0.6m2/gを分岐点として、1.0m2/gまで高比表面積化が可能となり、DCRの低下を確認することができた。比表面積が0.6m2/gより小さい領域ではDCRが高くなる傾向が大きいため、比表面積は0.6から1.0m2/gの範囲であることが望ましい。 Further, from the results obtained in Examples 1 to 3 and Comparative Examples 1 to 4, DCR (mΩ) was plotted against the specific surface area (m 2 / g) of the positive electrode mixture of the positive electrode active material A and the positive electrode active material B. The characteristic diagram is shown in FIG. As can be seen from FIG. 5, the positive electrode active material A and the positive electrode active material B having a reduced particle size by controlling the physical properties of the powder are mixed to produce a positive electrode mixture. From 0.6 m 2 / g to 1.6 m 2 / g, it was possible to increase the specific surface area to 1.0 m 2 / g, and it was confirmed that the DCR was lowered. In the region where the specific surface area is smaller than 0.6 m 2 / g, the DCR tends to be high, and therefore the specific surface area is preferably in the range of 0.6 to 1.0 m 2 / g.

以上のように、組成とpHが異なる2種類のリチウム・ニッケル・マンガン・コバルト複合酸化物を用い、混合比を所定値にすることで、その粉体物性及びpHを制御し、車載用リチウムイオン電池用正極として体積当たりの容量を維持、または向上しつつ、DCRを下げ、出力向上を可能にすることができる。   As described above, by using two types of lithium-nickel-manganese-cobalt composite oxides with different compositions and pH, the powder ratio and pH are controlled by setting the mixing ratio to a predetermined value. While maintaining or improving the capacity per volume as the positive electrode for a battery, the DCR can be lowered and the output can be improved.

1 電池缶
2 ガスケット
3 上蓋
4 上蓋ケース
5 正極集電部品
6 負極集電部品
7 軸芯
8 電極群
11 二次電池
12 正極タブ
13 負極タブ
14 正極電極
15 負極電極
16 正極合剤
17 負極合剤
18a,18b セパレータ
19 テープ
31 正極活物質A(平均粒径:15μm 比表面積:0.4〜0.6m2/g)
32 正極活物質B(平均粒径:5μm 比表面積:0.8〜1.2m2/g)
33 正極混合物(平均粒径:10〜20μm 比表面積:0.6〜1.0m2/g)
DESCRIPTION OF SYMBOLS 1 Battery can 2 Gasket 3 Upper cover 4 Upper cover case 5 Positive electrode current collection component 6 Negative electrode current collection component 7 Axial core 8 Electrode group 11 Secondary battery 12 Positive electrode tab 13 Negative electrode tab 14 Positive electrode 15 Negative electrode 16 Positive electrode mixture 17 Negative electrode mixture 18a, 18b Separator 19 Tape 31 Positive electrode active material A (average particle size: 15 μm, specific surface area: 0.4 to 0.6 m 2 / g)
32 Positive electrode active material B (average particle diameter: 5 μm, specific surface area: 0.8 to 1.2 m 2 / g)
33 Positive electrode mixture (average particle size: 10 to 20 μm, specific surface area: 0.6 to 1.0 m 2 / g)

Claims (5)

正極活物質と結着剤と導電剤とを含む正極合剤層を備えた正極と、負極と、非水電解質とを有する非水電解質二次電池において、
前記正極活物質の比表面積が0.6から1.0m2/gであり、
前記正極活物質は、一般式LiαNixMnyCo(1-x-y)2(但し、1.05≦α≦1.15,0.5≦x≦0.6,0.2≦y≦0.3)で表される正極活物質粒子Aと、一般式LiβNisMntCo(1-s-t)2(但し、1.05≦β≦1.10,0.3≦s≦0.5,0.2≦t≦0.4)で表される正極活物質粒子Bとを有し、
前記正極活物質粒子Bは前記正極活物質粒子Aよりも粒径が小さいことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery having a positive electrode including a positive electrode mixture layer including a positive electrode active material, a binder, and a conductive agent, a negative electrode, and a non-aqueous electrolyte,
The positive electrode active material has a specific surface area of 0.6 to 1.0 m 2 / g;
The positive electrode active material has a general formula of Li α Ni x Mn y Co (1-xy) O 2 (where 1.0 ≦ α ≦ 1.15, 0.5 ≦ x ≦ 0.6, 0.2 ≦ y). a positive electrode active material particles A represented by ≦ 0.3), the general formula Li β Ni s Mn t Co ( 1-st) O 2 ( where, 1.05 ≦ β ≦ 1.10,0.3 ≦ s ≦ 0.5, 0.2 ≦ t ≦ 0.4) and positive electrode active material particles B
The non-aqueous electrolyte secondary battery, wherein the positive electrode active material particles B have a particle size smaller than that of the positive electrode active material particles A.
請求項1に記載された非水電解質二次電池であって、
前記正極活物質粒子Aの平均粒径が10から20μmであり、
正極活物質粒子Bの平均粒径が5から10μmであることを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The positive electrode active material particles A have an average particle size of 10 to 20 μm,
The nonaqueous electrolyte secondary battery, wherein the positive electrode active material particles B have an average particle size of 5 to 10 μm.
請求項1または2に記載された非水電解質二次電池であって、
前記正極活物質粒子Aの比表面積が0.4から0.6m2/gであり、
前記正極活物質粒子Bの比表面積が0.8から1.2m2/gであることを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2,
The positive electrode active material particles A have a specific surface area of 0.4 to 0.6 m 2 / g,
The non-aqueous electrolyte secondary battery, wherein the positive electrode active material particle B has a specific surface area of 0.8 to 1.2 m 2 / g.
請求項1ないし3のいずれかに記載された非水電解質二次電池であって、
前記正極活物質に含まれる正極活物質粒子Bの含有率(B/(A+B)重量%)が、20以上50%以下であることを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3,
A nonaqueous electrolyte secondary battery, wherein the content (B / (A + B) wt%) of the positive electrode active material particles B contained in the positive electrode active material is 20 or more and 50% or less.
請求項1ないし4のいずれかに記載された非水電解質二次電池であって、
前記正極活物質AとBの混合物のpH値がpH10.5から11.0であることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte secondary battery according to any one of claims 1 to 4,
The non-aqueous electrolyte secondary battery, wherein a pH value of the mixture of the positive electrode active materials A and B is pH 10.5 to 11.0.
JP2010218060A 2010-09-29 2010-09-29 Nonaqueous electrolyte secondary battery Active JP5830236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218060A JP5830236B2 (en) 2010-09-29 2010-09-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218060A JP5830236B2 (en) 2010-09-29 2010-09-29 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012074246A true JP2012074246A (en) 2012-04-12
JP5830236B2 JP5830236B2 (en) 2015-12-09

Family

ID=46170208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218060A Active JP5830236B2 (en) 2010-09-29 2010-09-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5830236B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173776A (en) * 2001-12-06 2003-06-20 Sony Corp Positive electrode active material and secondary battery using it
JP2004355996A (en) * 2003-05-30 2004-12-16 Hitachi Maxell Ltd Manufacturing method of positive electrode for non-aqueous secondary battery
JP2005150057A (en) * 2003-11-20 2005-06-09 Hitachi Metals Ltd Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method, and nonaqueous system lithium secondary battery using the material
JP2005197004A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Positive electrode material for lithium secondary battery and lithium secondary battery using the same
JP2008251532A (en) * 2007-03-05 2008-10-16 Toda Kogyo Corp Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010086693A (en) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd Positive electrode material for lithium secondary battery and lithium secondary cell using the same
JP2011216485A (en) * 2010-03-31 2011-10-27 Samsung Sdi Co Ltd Positive active material, and positive electrode and lithium battery including the positive active material
JP2012048959A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173776A (en) * 2001-12-06 2003-06-20 Sony Corp Positive electrode active material and secondary battery using it
JP2004355996A (en) * 2003-05-30 2004-12-16 Hitachi Maxell Ltd Manufacturing method of positive electrode for non-aqueous secondary battery
JP2005150057A (en) * 2003-11-20 2005-06-09 Hitachi Metals Ltd Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method, and nonaqueous system lithium secondary battery using the material
JP2005197004A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Positive electrode material for lithium secondary battery and lithium secondary battery using the same
JP2008251532A (en) * 2007-03-05 2008-10-16 Toda Kogyo Corp Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010086693A (en) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd Positive electrode material for lithium secondary battery and lithium secondary cell using the same
JP2011216485A (en) * 2010-03-31 2011-10-27 Samsung Sdi Co Ltd Positive active material, and positive electrode and lithium battery including the positive active material
JP2012048959A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5830236B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6589856B2 (en) Nonaqueous electrolyte secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2013084395A (en) Lithium ion secondary battery manufacturing method
JP5357517B2 (en) Lithium ion secondary battery
JP6733140B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2020115485A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106558725B (en) Lithium ion secondary battery
JP6572882B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6920639B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP7235405B2 (en) Non-aqueous electrolyte secondary battery
JP5633747B2 (en) Lithium ion secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
CN112689916A (en) Electric storage element
JP5838952B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6728135B2 (en) Non-aqueous electrolyte secondary battery
JP7417055B2 (en) Electrode for non-aqueous electrolyte secondary battery and method for manufacturing the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5830236B2 (en) Nonaqueous electrolyte secondary battery
CN111435746A (en) Negative electrode
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6299771B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP7493165B2 (en) Non-aqueous electrolyte secondary battery
JP2022087470A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery including the positive electrode active material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5830236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250