JP2012073453A - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
JP2012073453A
JP2012073453A JP2010218413A JP2010218413A JP2012073453A JP 2012073453 A JP2012073453 A JP 2012073453A JP 2010218413 A JP2010218413 A JP 2010218413A JP 2010218413 A JP2010218413 A JP 2010218413A JP 2012073453 A JP2012073453 A JP 2012073453A
Authority
JP
Japan
Prior art keywords
heat medium
flow rate
temperature
cooling water
work chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010218413A
Other languages
Japanese (ja)
Inventor
Shinichiro Hayashi
慎一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Technology Co Ltd
Original Assignee
NSK Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Technology Co Ltd filed Critical NSK Technology Co Ltd
Priority to JP2010218413A priority Critical patent/JP2012073453A/en
Publication of JP2012073453A publication Critical patent/JP2012073453A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exposure device able to expose a substrate with high accuracy even in divided simultaneous exposure by controlling the flow rate of a cooling water so that a heating medium at the channel exit of a work chuck has a predetermined temperature and by making the temperature of each part of the work chuck uniform.SOLUTION: The exposure device includes: a plurality of heating medium channels 21, 22, and 23 provided in a work chuck 20 with a pressure accumulator 80 connected thereto, and connected parallel to one another to allow passage of a heating medium W; temperature sensors 31, 32, and 33 provided at the exits of the heating medium channels of them and configured to measure the exit temperatures Two1, Two2, and Two3 of the heating medium W; and flow rate adjustment mechanisms 41, 42, and 43 provided for the corresponding heating medium channels 21, 22, and 23 and configured to control the flow rates Gw1, Gw2, and Gw3 of the heating medium W passing through these heating medium channels. Based on each of the exit temperatures of the heating medium W measured by these temperature sensors, the flow rate adjustment mechanism controls the flow rate of the heating medium W and adjusts the temperature of the work chuck 20 to a predetermined temperature.

Description

本発明は、露光装置に関し、特に、液晶ディスプレイパネルやプラズマディスプレイ等の大型のフラットパネルディスプレイを製造する場合に用いられる露光装置に関する。 The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus used when manufacturing a large flat panel display such as a liquid crystal display panel or a plasma display.

露光装置は、高圧水銀灯などの光源から出射された平行光を、マスクパターンが描かれたマスクを介してワークチャックに保持された被露光材としての基板に照射して露光する。しかし、光源からの熱により基板やワークチャックが伸縮するため、寸法精度やパターンのピッチ精度が損なわれることがある。この問題に対処するため、ワークチャック内に熱媒体である冷却水を通過させて基板の温度上昇を抑制し、これにより寸法精度やパターンのピッチ精度の向上が図られている。 The exposure apparatus irradiates the substrate with the parallel light emitted from a light source such as a high-pressure mercury lamp onto a substrate as an exposed material held on the work chuck through a mask on which a mask pattern is drawn. However, since the substrate and the work chuck expand and contract due to heat from the light source, dimensional accuracy and pattern pitch accuracy may be impaired. In order to cope with this problem, cooling water as a heat medium is passed through the work chuck to suppress the temperature rise of the substrate, thereby improving dimensional accuracy and pattern pitch accuracy.

しかし、近年の基板サイズの大型化に伴ってワークチャックの面積も大きくなっているため、ワークチャック面内の温度に大きなバラツキが生じる可能性があり、高精度の露光を実現する上で問題となっている。そして、従来では、このワークチャック面内での温度のバラツキを抑制するため、冷却水の経路を多系統化して1系統当たりの経路長さを短くして、各経路の注入部と出口の温度差を少なくして温度分布ムラの低減を図る、或いは、経路の注入部側と出口側とを常に隣接させて配置し、注入部側の低温と出口側の高温とを相殺させて温度を平均化するようにした露光方法が知られている(例えば、特許文献1参照)。 However, since the area of the work chuck has increased with the recent increase in substrate size, there is a possibility that the temperature in the work chuck surface will vary greatly, which is a problem in realizing high-precision exposure. It has become. Conventionally, in order to suppress the temperature variation in the work chuck surface, the cooling water paths are multi-systemed to shorten the path length per system, and the temperature of the injection section and outlet of each path is reduced. Reduce the difference in temperature distribution by reducing the difference, or always place the injection side and outlet side of the path adjacent to each other, canceling the low temperature on the injection side and the high temperature on the outlet side, and averaging the temperature There is known an exposure method that is adapted (see, for example, Patent Document 1).

特開2000−98618号公報JP 2000-98618 A

しかしながら、上記特許文献1に記載の露光方法では、例えば、図9に示すように、ワークチャック100の破線で区画された4つの領域101,102,103,104に4系統の冷却水経路111,112,113,114を設ける場合、ワークチャック100の各領域101,102,103,104における熱バランスモデルは、熱量をQn、冷却水の流量をGwn、入口における冷却水の温度をTwin、出口における冷却水の温度をTwon、比例定数をCpとすると、下記の式(数1)のようになる。なお、サフィックス“n”は、各領域の番号を示す。 However, in the exposure method described in Patent Document 1, for example, as shown in FIG. 9, four cooling water paths 111, 4 are provided in four areas 101, 102, 103, 104 divided by broken lines of the work chuck 100. 112, 113, and 114, the heat balance model in each region 101, 102, 103, and 104 of the work chuck 100 has a heat quantity of Qn, a cooling water flow rate of Gwn, an inlet cooling water temperature of Twin, and an outlet. When the temperature of the cooling water is Twon and the proportionality constant is Cp, the following equation (Equation 1) is obtained. The suffix “n” indicates the number of each area.

Figure 2012073453
Figure 2012073453

出口における冷却水の温度Twonは、上記の式(数1)を変形することにより下記の式(数2)のように表される。 The temperature Twon of the cooling water at the outlet is expressed as the following equation (Equation 2) by modifying the above equation (Equation 1).

Figure 2012073453
Figure 2012073453

このようなワークチャック100に保持された基板を一括露光する場合は、ワークチャック100の全面に露光光が均一に照射される、即ち、各領域101,102,103,104が均一に加熱されるので、Q1=Q2=Q3=Q4=Qとなり、出口における冷却水の温度をTwonは、下記の式(数3)のように表される。即ち、冷却水の入口温度Twin、流量Qnが同一であれば(装置の簡素化が可能であるので通常、同一となっている)、冷却水の出口温度Twonは各領域101,102,103,104で同じとなるのでワークチャック面内での温度のバラツキは少なく、寸法精度やパターンのピッチ精度に与える影響は殆どない。 When the substrates held on the work chuck 100 are collectively exposed, exposure light is uniformly irradiated on the entire surface of the work chuck 100, that is, the regions 101, 102, 103, and 104 are uniformly heated. Therefore, Q1 = Q2 = Q3 = Q4 = Q, and the temperature of the cooling water at the outlet Twon is expressed by the following equation (Equation 3). That is, if the cooling water inlet temperature Twin and the flow rate Qn are the same (usually the same because the apparatus can be simplified), the cooling water outlet temperature Twon is set to each of the regions 101, 102, 103, 104 is the same, there is little variation in temperature within the work chuck surface, and there is almost no effect on the dimensional accuracy and pattern pitch accuracy.

Figure 2012073453
Figure 2012073453

一方、基板の大型化に伴って近年主流となりつつある、ワークチャック100に保持された基板を分割逐次露光する場合は、領域1を露光する場合には、Q1=QW1、Q2=Q3=Q4=0であるので、冷却水の出口温度Twonは下記の式(数4)で表されるように領域101と、領域102,103,104とで異なりワークチャック100の温度分布が崩れる。 On the other hand, when the substrate held by the work chuck 100, which is becoming mainstream in recent years with the increase in the size of the substrate, is divided and sequentially exposed, Q1 = QW1, Q2 = Q3 = Q4 = Since it is 0, the outlet temperature Twon of the cooling water is different between the region 101 and the regions 102, 103, and 104 as shown by the following equation (Equation 4), and the temperature distribution of the work chuck 100 collapses.

Figure 2012073453
Figure 2012073453

同様に、領域2を露光する場合には、Q2=QW2、Q1=Q3=Q4=0であるので、冷却水の出口温度Twonは下記の式(数5)で表されるように領域102と、領域101,103,104とで異なりワークチャック100の温度分布が崩れる。 Similarly, when the area 2 is exposed, since Q2 = QW2 and Q1 = Q3 = Q4 = 0, the outlet temperature Twon of the cooling water is equal to the area 102 as expressed by the following equation (Equation 5). Unlike the areas 101, 103, and 104, the temperature distribution of the work chuck 100 collapses.

Figure 2012073453
Figure 2012073453

また、領域3を露光する場合には、Q3=QW3、Q1=Q2=Q4=0であるので、冷却水の出口温度Twonは下記の式(数6)で表されるように領域103と、領域101、102、104とで異なりワークチャック100の温度分布が崩れる。 Further, when the area 3 is exposed, since Q3 = QW3 and Q1 = Q2 = Q4 = 0, the outlet temperature Twon of the cooling water is expressed by the area 103 as expressed by the following equation (Equation 6): Unlike the regions 101, 102, and 104, the temperature distribution of the work chuck 100 collapses.

Figure 2012073453
Figure 2012073453

さらに、領域4を露光する場合には、Q4=QW4、Q1=Q2=Q3=0であるので、冷却水の出口温度Twonは下記の式(数7)で表されるように領域104と、領域101、102、103とで異なりワークチャック100の温度分布が崩れる。 Further, when the region 4 is exposed, since Q4 = QW4 and Q1 = Q2 = Q3 = 0, the outlet temperature Twon of the cooling water is expressed by the region 104 as expressed by the following equation (Equation 7). Unlike the regions 101, 102, and 103, the temperature distribution of the work chuck 100 collapses.

Figure 2012073453
Figure 2012073453

このように、分割逐次露光においては、ワークチャック100に温度分布のバラツキが発生してワークチャック100の熱変形に伴って基板が伸縮し、寸法精度やパターンのピッチ精度が低下する可能性があった。また、1枚目、2枚目、3枚目、4枚目と露光位置を切り替える際、ワークチャック100に非定常な輻射熱の流入があるので、温度分布がさらに複雑となって寸法精度に悪影響を与える可能性があった。 As described above, in the division sequential exposure, there is a possibility that the temperature distribution of the work chuck 100 varies and the substrate expands / contracts due to the thermal deformation of the work chuck 100, thereby reducing the dimensional accuracy and the pattern pitch accuracy. It was. In addition, when switching the exposure position between the first, second, third, and fourth sheets, unsteady radiant heat flows into the work chuck 100, which further complicates the temperature distribution and adversely affects dimensional accuracy. Could give.

また、冷却水経路111,112,113,114を流れる冷却水の流量Gwnは、図10に示すように、ポンプ特性カーブPQと各冷却水経路111,112,113,114の圧力損失カーブRCn(RC1,RC2,RC3,RC4)との交点P1,P2,P3,P4から決まる。圧力損失カーブRCnは、配管構成や、配管内の錆び発生や、スケール付着などの経時変化などにより経路ごとに異なる可能性がある。このように冷却水経路111,112,113,114ごとに流量Gwnが異なると、ワークチャック100に温度分布のバラツキが発生して寸法精度やパターンのピッチ精度が低下する可能性があった。 Further, as shown in FIG. 10, the flow rate Gwn of the cooling water flowing through the cooling water paths 111, 112, 113, 114 is expressed by the pump characteristic curve PQ and the pressure loss curve RCn (for each cooling water path 111, 112, 113, 114). RC1, RC2, RC3, RC4) and intersection points P1, P2, P3, P4. The pressure loss curve RCn may be different for each route depending on the piping configuration, the occurrence of rust in the piping, the change over time such as scale adhesion, and the like. Thus, if the flow rate Gwn is different for each of the cooling water paths 111, 112, 113, 114, the temperature distribution of the work chuck 100 may vary, and the dimensional accuracy and pattern pitch accuracy may decrease.

さらに、何らかの原因により冷却水経路111,112,113,114の一部が閉鎖されると、冷却水が残りの冷却水経路に集中することとなり、冷却水経路内の流速が上昇してしまう。これに伴い、流体の流れに起因する振動が増加して、装置の露光精度が悪化する可能性があった。 Furthermore, if some of the cooling water paths 111, 112, 113, 114 are closed for some reason, the cooling water concentrates on the remaining cooling water paths, and the flow velocity in the cooling water path increases. Along with this, vibration due to the flow of fluid increases, and the exposure accuracy of the apparatus may deteriorate.

本発明は、このような不都合を解消するためになされたものであり、その目的は、ワークチャックの経路出口における冷却水(熱媒体)の温度が所定の温度になるように冷却水の流量を制御し、ワークチャック各部の温度を均一にして、分割逐次露光においても高い寸法精度で基板を露光することができる露光装置を提供することにある。 The present invention has been made to eliminate such inconveniences, and its purpose is to control the flow rate of the cooling water so that the temperature of the cooling water (heat medium) at the exit of the work chuck passage becomes a predetermined temperature. An object of the present invention is to provide an exposure apparatus capable of controlling and uniformizing the temperature of each part of the work chuck and exposing a substrate with high dimensional accuracy even in divided sequential exposure.

本発明の上記目的は、下記の構成により達成される。
(1) ワークチャックに保持される被露光材としての基板にマスクパターンを分割逐次露光する露光装置であって、熱媒体の圧力を一定にする蓄圧器を接続したワークチャックに設けられ、互いに並列接続されて熱媒体を通過させる複数の熱媒体流路と、複数の熱媒体流路の出口側にそれぞれ設けられ、熱媒体の出口温度を測定する温度センサと、複数の熱媒体流路にそれぞれ設けられ、熱媒体流路を通過する熱媒体の流量を制御する流量調整機構と、を備え、温度センサにより測定される熱媒体の出口温度に基づいて、流量調整機構が熱媒体の流量を制御し、ワークチャックの温度を所定の温度に調整することを特徴とする露光装置。
(2) 流量調整機構は、熱媒体流路に対して直列に接続されることを特徴とする(1)に記載の露光装置。
(3) 流量調整機構は、熱媒体流路に対して並列に接続されることを特徴とする(1)に記載の露光装置。
(4) 熱媒体流路は、それぞれの熱媒体流路を流れる熱媒体の流量を測定する流量センサを更に備え、流量センサの測定値が所定の流量を超えたとき、又は所定の流量未満となったとき、異常と判断して警告を発し、又は装置を停止させることを特徴とする(1)〜(3)のいずれかに記載の露光装置。
The above object of the present invention can be achieved by the following constitution.
(1) An exposure apparatus that divides and sequentially exposes a mask pattern on a substrate as an exposed material held by a work chuck, and is provided on a work chuck connected to a pressure accumulator that keeps the pressure of a heat medium constant, and is parallel to each other. A plurality of heat medium passages that are connected and allow the heat medium to pass through, a temperature sensor that is provided on each outlet side of the plurality of heat medium passages, and that measures the outlet temperature of the heat medium, and a plurality of heat medium passages, respectively And a flow rate adjusting mechanism for controlling the flow rate of the heat medium passing through the heat medium flow path, and the flow rate adjusting mechanism controls the flow rate of the heat medium based on the outlet temperature of the heat medium measured by the temperature sensor. And an exposure apparatus for adjusting the temperature of the work chuck to a predetermined temperature.
(2) The exposure apparatus according to (1), wherein the flow rate adjusting mechanism is connected in series to the heat medium flow path.
(3) The exposure apparatus according to (1), wherein the flow rate adjusting mechanism is connected in parallel to the heat medium flow path.
(4) The heat medium flow path further includes a flow sensor for measuring the flow rate of the heat medium flowing through each heat medium flow path, and when the measured value of the flow sensor exceeds a predetermined flow rate or less than the predetermined flow rate When it becomes, the exposure apparatus according to any one of (1) to (3), wherein an abnormality is determined and a warning is issued or the apparatus is stopped.

本発明の露光装置によれば、ワークチャックに熱媒体を通過させる複数の熱媒体流路を互いに並列接続させて設けると共に、熱媒体がワークチャックを通過する前に、供給ポンプから供給される熱媒体の圧力を一定にする蓄圧器と、各熱媒体流路に熱媒体の出口温度を測定する温度センサと、各熱媒体流路を通過する熱媒体の流量を制御する流量調整機構と、をそれぞれ設け、温度センサにより測定される熱媒体の出口温度に基づいて、流量調整機構が熱媒体の出口温度が同じになるように熱媒体の流量を制御するため、ワークチャックの温度分布が所定の温度で均一に制御されるので、ワークチャック及び基板の熱による伸縮を均一化することができる。これにより、一括露光は勿論のこと、分割逐次露光においても高い寸法精度で基板を露光することができる。 According to the exposure apparatus of the present invention, the work chuck is provided with a plurality of heat medium flow paths for allowing the heat medium to pass therethrough in parallel with each other, and the heat supplied from the supply pump before the heat medium passes through the work chuck. A pressure accumulator that makes the pressure of the medium constant, a temperature sensor that measures the outlet temperature of the heat medium in each heat medium flow path, and a flow rate adjustment mechanism that controls the flow rate of the heat medium passing through each heat medium flow path. Since the flow rate adjusting mechanism controls the flow rate of the heating medium so that the outlet temperature of the heating medium becomes the same based on the outlet temperature of the heating medium that is provided and measured by the temperature sensor, the temperature distribution of the work chuck is predetermined. Since the temperature is uniformly controlled, the expansion and contraction due to the heat of the work chuck and the substrate can be made uniform. As a result, the substrate can be exposed with high dimensional accuracy in batch exposure as well as batch exposure.

また、本発明の露光装置によれば、各熱媒体流路は、それぞれ流量調整機構を備えて熱媒体流路ごとに熱媒体の流量を調整するため、従来の熱媒体流路のように設計時に厳密に配管バランスを考慮して各熱媒体流路の流量が同一になるように配慮する必要がなく、配管レイアウトの制約が少なくなって設計の自由度を大幅に向上することができる。これにより、配管部材のコスト低減が可能となって露光装置の製造コストを削減することができる。 In addition, according to the exposure apparatus of the present invention, each heat medium flow path is provided with a flow rate adjusting mechanism and adjusts the flow rate of the heat medium for each heat medium flow path, so that it is designed like a conventional heat medium flow path. Sometimes it is not necessary to strictly consider the piping balance so that the flow rates of the respective heat medium passages are the same, and the restriction on the piping layout is reduced, and the degree of freedom in design can be greatly improved. Thereby, the cost of the piping member can be reduced, and the manufacturing cost of the exposure apparatus can be reduced.

また、本発明の露光装置によれば、流量調整機構が熱媒体流路に対して直列に接続されるため、各熱媒体流路を流れる熱媒体の流量を独立して精度よく調整することができ、ワークチャックの温度分布が均一となるように制御することができる。これにより、露光精度に与える熱の影響を抑制して高精度の露光を行うことができる。 Further, according to the exposure apparatus of the present invention, the flow rate adjusting mechanism is connected in series to the heat medium flow path, so that the flow rate of the heat medium flowing through each heat medium flow path can be adjusted independently and accurately. And the temperature distribution of the work chuck can be controlled to be uniform. Thereby, high-precision exposure can be performed while suppressing the influence of heat on the exposure accuracy.

また、本発明の露光装置によれば、流量調整機構が熱媒体流路に対して並列に接続されるため各熱媒体流路を流れる熱媒体の流量を独立して精度よく調整することができ、ワークチャックの温度分布が均一となるように制御することができる。これにより、露光精度に与える熱の影響を抑制して高精度の露光を行うことができる。 Further, according to the exposure apparatus of the present invention, since the flow rate adjusting mechanism is connected in parallel to the heat medium flow path, the flow rate of the heat medium flowing through each heat medium flow path can be adjusted independently and accurately. The temperature distribution of the work chuck can be controlled to be uniform. Thereby, high-precision exposure can be performed while suppressing the influence of heat on the exposure accuracy.

さらに、本発明の露光装置によれば、熱媒体流路は、それぞれの熱媒体流路を流れる熱媒体の流量を測定する流量センサを更に備え、流量センサの測定値が所定の流量を超えたとき、又は所定の流量未満となったとき、異常と判断して警告を発し、又は装置を停止させるため、ワークチャックの温度分布のバラツキに起因する不良製品の発生を防止して製造ロスをなくすことができる。 Furthermore, according to the exposure apparatus of the present invention, the heat medium flow path further includes a flow sensor for measuring the flow rate of the heat medium flowing through each heat medium flow path, and the measured value of the flow sensor exceeds a predetermined flow rate. Or when the flow rate is less than the predetermined flow rate, it is judged as abnormal and a warning is issued or the device is stopped. Therefore, the production loss is prevented by preventing the occurrence of defective products due to the temperature distribution variation of the work chuck. be able to.

本発明に係る露光装置の第1実施形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating 1st Embodiment of the exposure apparatus which concerns on this invention. 図1に示すワークチャックに配置される3系統の熱媒体流路の配置図である。FIG. 2 is a layout diagram of three heat medium flow paths disposed in the work chuck illustrated in FIG. 1. 第1実施形態の熱媒体の出口温度に基づいて流量を調整する手順を示すフローチャートである。It is a flowchart which shows the procedure which adjusts a flow volume based on the exit temperature of the heat carrier of 1st Embodiment. 第1実施形態の熱媒体の流量超過異常の場合の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the case of the excess flow volume abnormality of the heat medium of 1st Embodiment. 熱媒体の流量低下異常の場合の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the case of the flow volume fall abnormality of a heat medium. 本発明に係る露光装置の第2実施形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating 2nd Embodiment of the exposure apparatus which concerns on this invention. 第2実施形態の熱媒体の出口温度に基づいて流量を調整する手順を示すフローチャートである。It is a flowchart which shows the procedure which adjusts a flow volume based on the exit temperature of the heat carrier of 2nd Embodiment. 第2実施形態の熱媒体の流量超過異常の場合の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the case of the flow volume excess abnormality of the heat medium of 2nd Embodiment. 従来の露光装置のワークチャックを説明するための概略図である。It is the schematic for demonstrating the work chuck | zipper of the conventional exposure apparatus.

以下、本発明に係る露光装置の各実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of an exposure apparatus according to the present invention will be described in detail with reference to the drawings.

まず、図1〜図5を参照して、本発明に係る露光装置の第1実施形態について説明する。
図1は本発明に係る露光装置の第1実施形態を説明するための概略構成図、図2は図1に示すワークチャックに配置される3系統の熱媒体流路の配置図、図3は第1実施形態の熱媒体の出口温度に基づいて流量を調整する手順を示すフローチャート、図4は第1実施形態の熱媒体の流量超過異常の場合の制御手順を示すフローチャート、図5は熱媒体の流量低下異常の場合の制御手順を示すフローチャートである。
First, a first embodiment of an exposure apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic block diagram for explaining a first embodiment of an exposure apparatus according to the present invention, FIG. 2 is a layout diagram of three heat medium flow paths arranged in the work chuck shown in FIG. 1, and FIG. The flowchart which shows the procedure which adjusts a flow volume based on the exit temperature of the heat carrier of 1st Embodiment, FIG. 4 is a flowchart which shows the control procedure in the case of excess flow volume abnormality of the heat medium of 1st Embodiment, FIG. It is a flowchart which shows the control procedure in the case of abnormal flow volume fall.

本実施形態の露光装置11は、被露光材としての基板(不図示)にマスクパターンを分割逐次露光するものであって、図1に示すように、基板を保持するワークチャック20と、ワークチャック20に配設され、互いに並列接続される3系統の熱媒体流路21,22,23と、熱媒体流路21,22,23にそれぞれ配設される温度センサ31,32,33、流量調整機構41,42,43、及び流量センサ51,52,53と、熱媒体流路21,22,23の上流側を1本に統合して蓄圧器80に接続し、供給ポンプ60を介して、冷却水Wが貯留される冷却水タンク61に接続される供給パイプ62と、熱媒体流路21,22,23の出口側(下流側)を1本に統合し、冷却水タンク61に接続される返送パイプ63と、を備える。 The exposure apparatus 11 according to the present embodiment performs exposure by sequentially dividing a mask pattern onto a substrate (not shown) as a material to be exposed. As shown in FIG. 1, a work chuck 20 that holds the substrate, a work chuck, and the like. 20, three heat medium flow paths 21, 22, and 23 connected in parallel to each other, temperature sensors 31, 32, and 33 respectively disposed in the heat medium flow paths 21, 22, and 23, and flow rate adjustment The mechanisms 41, 42, 43 and the flow rate sensors 51, 52, 53 and the upstream side of the heat medium flow paths 21, 22, 23 are integrated into one and connected to the pressure accumulator 80, via the supply pump 60, The supply pipe 62 connected to the cooling water tank 61 in which the cooling water W is stored and the outlet side (downstream side) of the heat medium passages 21, 22, 23 are integrated into one and connected to the cooling water tank 61. And a return pipe 63.

また、熱媒体流路21,22,23は、図2に示すように、仮想線で区画されたワークチャック20の3つの領域20A,20B,20Cに互いに独立して配置されており、熱媒体流路21,22,23の一端から熱媒体である冷却水Wが供給され、他端から流出するように構成される。また、熱媒体流路21,22,23は、各領域20A,20B,20Cの全体に亘って配置されており、各領域20A,20B,20Cの温度が均一になるように構成されている。 Further, as shown in FIG. 2, the heat medium flow paths 21, 22, and 23 are disposed independently of each other in the three regions 20 </ b> A, 20 </ b> B, and 20 </ b> C of the work chuck 20 that are partitioned by phantom lines. The cooling water W, which is a heat medium, is supplied from one end of the flow paths 21, 22, and 23 and flows out from the other end. Moreover, the heat medium flow paths 21, 22, and 23 are disposed over the entire areas 20A, 20B, and 20C, and are configured so that the temperatures of the areas 20A, 20B, and 20C are uniform.

温度センサ31,32,33は、各熱媒体流路21,22,23の下流側にそれぞれ直列に接続されており、サーミスタなどで構成され、各熱媒体流路21,22,23を流れる冷却水Wの出口温度Twon(Two1,Two2,Two3)を測定する。 The temperature sensors 31, 32, 33 are connected in series to the downstream sides of the heat medium flow paths 21, 22, 23, respectively, are composed of thermistors and the like, and are cooled through the heat medium flow paths 21, 22, 23. The outlet temperature Twon (Two1, Two2, Two3) of the water W is measured.

流量調整機構41,42,43は、各熱媒体流路21,22,23の下流側にそれぞれ直列に接続されており、内蔵する不図示の弁機構を開閉して各熱媒体流路21,22,23を流れる冷却水Wの流量Gwn(Gw1,Gw2,Gw3)を調整する。 The flow rate adjusting mechanisms 41, 42, 43 are connected in series to the downstream sides of the heat medium flow paths 21, 22, 23, respectively, and open and close a built-in unillustrated valve mechanism to open each heat medium flow path 21, The flow rate Gwn (Gw1, Gw2, Gw3) of the cooling water W flowing through 22 and 23 is adjusted.

流量センサ51,52,53は、各熱媒体流路21,22,23の上流側にそれぞれ直列に接続されており、各熱媒体流路21,22,23を流れる冷却水Wの流量Gwn(Gw1,Gw2,Gw3)を測定する。 The flow rate sensors 51, 52, 53 are connected in series to the upstream side of the heat medium flow paths 21, 22, 23, respectively, and the flow rate Gwn of the cooling water W flowing through the heat medium flow paths 21, 22, 23 ( Gw1, Gw2, Gw3) are measured.

さらに、温度センサ31,32,33、流量調整機構41,42,43、及び流量センサ51,52,53は、図示しない制御装置に電気的に接続されており、温度センサ31,32,33、及び流量センサ51,52,53による測定結果が制御装置に入力されると共に、流量調整機構41,42,43への作動指令が出力される。即ち、制御装置は、温度センサ31,32,33によって測定された冷却水Wの出口温度Twonに基づいて流量調整機構41,42,43を作動させて冷却水Wの流量Gwnを適宜調整する。また、流量センサ51,52,53によって測定された冷却水Wの流量により露光装置11の異常の有無を判断して露光装置11を制御する。 Further, the temperature sensors 31, 32, 33, the flow rate adjusting mechanisms 41, 42, 43, and the flow rate sensors 51, 52, 53 are electrically connected to a control device (not shown), and the temperature sensors 31, 32, 33, In addition, measurement results from the flow sensors 51, 52, and 53 are input to the control device, and operation commands to the flow adjustment mechanisms 41, 42, and 43 are output. That is, the control device operates the flow rate adjusting mechanisms 41, 42, 43 based on the outlet temperature Twon of the cooling water W measured by the temperature sensors 31, 32, 33, and appropriately adjusts the flow rate Gwn of the cooling water W. Further, the exposure apparatus 11 is controlled by determining whether or not the exposure apparatus 11 is abnormal based on the flow rate of the cooling water W measured by the flow sensors 51, 52, and 53.

このように構成された露光装置11では、冷却水タンク61に貯留されている冷却水Wは、供給ポンプ60によって吸上げられ、供給パイプ62を介して、蓄圧器80によって冷却水Wの圧力を一定にし、熱媒体流路21,22,23に分岐して流入する。そして、各熱媒体流路21,22,23の冷却水Wの流量Gwnが流量センサ51,52,53により測定され、ワークチャック20内を通過した後、各熱媒体流路21,22,23の冷却水Wの出口温度Twonが温度センサ31,32,33によって測定されて、流量調整機構41,42,43によって流量Gwnが調整された冷却水Wは、1本の返送パイプ63に統合されて冷却水タンク61に返送される。 In the exposure apparatus 11 configured as described above, the cooling water W stored in the cooling water tank 61 is sucked up by the supply pump 60, and the pressure of the cooling water W is adjusted by the pressure accumulator 80 via the supply pipe 62. It is made constant and flows into the heat medium flow paths 21, 22, and 23. Then, the flow rate Gwn of the cooling water W in each heat medium flow path 21, 22, 23 is measured by the flow rate sensors 51, 52, 53, and after passing through the work chuck 20, each heat medium flow path 21, 22, 23. The cooling water W whose outlet temperature Twon is measured by the temperature sensors 31, 32, 33 and whose flow rate Gwn is adjusted by the flow rate adjusting mechanisms 41, 42, 43 is integrated into one return pipe 63. And returned to the cooling water tank 61.

次に、本実施形態の露光装置11の制御手順について図3〜図5に従って説明する。
冷却水Wの出口温度の制御は、図3に示すように、まず、冷却水Wの出口温度Twonの水温上限値Tmax及び水温下限値Tminを設定し(S1−1)、露光装置11の運転開始から所定時間経過後(S1−2)、温度センサ31,32,33により測定された各熱媒体流路21,22,23の冷却水Wの出口温度Two1,Two2,Two3と水温上限値Tmaxとを比較する(S1−3)。
Next, the control procedure of the exposure apparatus 11 of this embodiment will be described with reference to FIGS.
As shown in FIG. 3, the outlet temperature of the cooling water W is controlled by first setting the water temperature upper limit value Tmax and the water temperature lower limit value Tmin of the outlet temperature Twon of the cooling water W (S <b> 1-1). After a predetermined time has elapsed from the start (S1-2), the outlet temperatures Two1, Two2, Two3 of the cooling water W of the heat medium passages 21, 22, 23 measured by the temperature sensors 31, 32, 33 and the water temperature upper limit value Tmax Are compared (S1-3).

そして、いずれかの出口温度Two1,Two2,Two3が水温上限値Tmaxを越えている場合には、対応する熱媒体流路21,22,23の流量調整機構41,42,43を作動させて弁開度を開き、対応する熱媒体流路21,22,23の冷却水Wの流量を増加させてワークチャック20の対応部分の冷却力を増大させる(S1−4)。そして、露光装置11が停止しているか否かをチェックする(S1−7)。 When any of the outlet temperatures Two1, Two2, and Two3 exceeds the water temperature upper limit value Tmax, the flow rate adjusting mechanisms 41, 42, and 43 of the corresponding heat medium passages 21, 22, and 23 are operated to operate the valves. The opening degree is opened, and the cooling power of the corresponding part of the work chuck 20 is increased by increasing the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, 23 (S1-4). Then, it is checked whether or not the exposure apparatus 11 is stopped (S1-7).

また、上記(S1−3)において、出口温度Two1,Two2,Two3が水温上限値Tmaxを越えていない場合には、出口温度Two1、Two2、Two3と水温下限値Tminとを比較する(S1−5)。そして、いずれかの出口温度Two1,Two2,Two3が水温下限値Tmin未満となっている場合には、対応する熱媒体流路21,22,23の流量調整機構41,42,43を作動させて弁開度を閉じ、対応する熱媒体流路21,22,23の冷却水Wの流量を減少させてワークチャック20の対応部分の冷却力を抑制させる(S1−6)。そして、露光装置11が停止しているか否かをチェックする(S1−7)。 Further, in the above (S1-3), when the outlet temperatures Two1, Two2, Two3 do not exceed the water temperature upper limit value Tmax, the outlet temperatures Two1, Two2, Two3 and the water temperature lower limit value Tmin are compared (S1-5). ). If any of the outlet temperatures Two1, Two2, and Two3 is less than the water temperature lower limit value Tmin, the flow rate adjusting mechanisms 41, 42, and 43 of the corresponding heat medium passages 21, 22, and 23 are operated. The valve opening is closed and the cooling power of the corresponding part of the work chuck 20 is suppressed by reducing the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, 23 (S1-6). Then, it is checked whether or not the exposure apparatus 11 is stopped (S1-7).

また、出口温度Two1,Two2,Two3が水温上限値Tmaxを越えておらず、且つ水温下限値Tmin未満にもなっていない場合((S1−5)でNoの場合)には、出口温度Two1,Two2,Two3が適正な温度範囲内にあるので、流量調整機構41,42,43を作動させることなく露光装置11が停止しているか否かをチェックする(S1−7)。露光装置11が停止していればメインルーチンにリターンし、運転中であれば(S1−2)の前に戻って再び所定時間経過後に同様の制御を行う。 Further, when the outlet temperatures Two1, Two2, Two3 do not exceed the water temperature upper limit value Tmax and do not become less than the water temperature lower limit value Tmin (in the case of (S1-5) No), the outlet temperature Two1, Since Two2 and Two3 are within an appropriate temperature range, it is checked whether or not the exposure apparatus 11 is stopped without operating the flow rate adjusting mechanisms 41, 42, and 43 (S1-7). If the exposure apparatus 11 is stopped, the process returns to the main routine. If the exposure apparatus 11 is in operation, the process returns to before (S1-2) and the same control is performed again after a predetermined time has elapsed.

上記したように、出口温度Two1,Two2,Two3は、熱媒体流路21,22,23ごとに水温上限値Tmax及び水温下限値Tminで比較され、所定の範囲から外れた熱媒体流路21,22,23の流量調整機構41,42,43を個別に作動させて冷却水Wの流量を調整させる。即ち、水温上限値Tmaxを超えると冷却水Wの流量が増加され、水温下限値Tmin未満であると冷却水Wの流量が減少される。これにより、ワークチャック20の高温部分の冷却力は増大され、低温部分の冷却力は抑制されて、ワークチャック20の全面が所定の温度範囲内となるように制御される。この結果、ワークチャック20の温度分布に起因する基板の露光精度の低下が防止される。 As described above, the outlet temperatures Two1, Two2, Two3 are compared for each of the heat medium flow paths 21, 22, 23 with the water temperature upper limit value Tmax and the water temperature lower limit value Tmin, and the heat medium flow paths 21, The flow rate adjusting mechanisms 41, 42, 43 of 22 and 23 are individually operated to adjust the flow rate of the cooling water W. That is, when the water temperature upper limit value Tmax is exceeded, the flow rate of the cooling water W is increased, and when it is less than the water temperature lower limit value Tmin, the flow rate of the cooling water W is decreased. Thereby, the cooling power of the high temperature portion of the work chuck 20 is increased, the cooling power of the low temperature portion is suppressed, and the entire surface of the work chuck 20 is controlled to be within a predetermined temperature range. As a result, a reduction in exposure accuracy of the substrate due to the temperature distribution of the work chuck 20 is prevented.

次に、図4を参照にして、熱媒体流路21,22,23の冷却水Wの流量が異常に増加して冷却水Wの流速が速くなるような場合の異常検知について説明する。
まず、冷却水Wの流量Gwnの流量上限値Gmaxを設定し(S2−1)、露光装置11の運転開始から所定時間経過後(S2−2)、流量センサ51,52,53により測定された各熱媒体流路21,22,23の流量Gw1,Gw2,Gw3と流量上限値Gmaxとを比較する(S2−3)。そして、いずれかの流量Gw1,Gw2,Gw3が流量上限値Gmaxを超えている場合には、対応する熱媒体流路21,22,23の流量調整機構41,42,43を作動させて弁開度を閉じ、対応する熱媒体流路21,22,23の冷却水Wの流量を減少させる(S2−4)。そして、露光装置11が停止しているか否かをチェックする(S2−5)。
Next, with reference to FIG. 4, the abnormality detection in the case where the flow rate of the cooling water W in the heat medium passages 21, 22, 23 abnormally increases and the flow rate of the cooling water W increases will be described.
First, a flow rate upper limit Gmax of the flow rate Gwn of the cooling water W is set (S2-1), and after a predetermined time has elapsed from the start of operation of the exposure apparatus 11 (S2-2), it is measured by the flow rate sensors 51, 52, and 53. The flow rates Gw1, Gw2, and Gw3 of the heat medium flow paths 21, 22, and 23 are compared with the flow rate upper limit Gmax (S2-3). If any of the flow rates Gw1, Gw2, Gw3 exceeds the flow rate upper limit Gmax, the flow rate adjusting mechanisms 41, 42, 43 of the corresponding heat medium flow paths 21, 22, 23 are operated to open the valves. The degree is closed and the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, 23 is decreased (S2-4). Then, it is checked whether or not the exposure apparatus 11 is stopped (S2-5).

また、上記(S2−3)において、流量Gw1,Gw2,Gw3が流量上限値Gmaxを超えていない場合には、(S2−2)の前に戻って再び所定時間経過後に同様の制御を行う。また、露光装置11が停止していればメインルーチンにリターンし、運転中であれば(S2−2)の前に戻って再び所定時間経過後に同様の制御を行う。この結果、冷却水Wの流速が想定以上になることにより生じる振動が防止されて、露光精度の低下が防止される。 In the above (S2-3), when the flow rates Gw1, Gw2, and Gw3 do not exceed the flow rate upper limit Gmax, the same control is performed after a predetermined time again after returning to (S2-2). If the exposure apparatus 11 is stopped, the process returns to the main routine. If the exposure apparatus 11 is in operation, the process returns to before (S2-2) and the same control is performed again after a predetermined time has elapsed. As a result, vibrations that occur when the flow rate of the cooling water W is higher than expected are prevented, and a reduction in exposure accuracy is prevented.

次に、図5を参照して、熱媒体流路21,22,23の詰まりや、流量調整機構41,42,43の故障などにより冷却水Wの流量が過度に減少するような場合の異常検知について説明する。
まず、冷却水Wの流量Gwnの流量下限値Gminを設定し(S3−1)、露光装置11の運転開始から所定時間経過後(S3−2)、流量センサ51,52,53により測定された各熱媒体流路21、22、23の流量Gw1,Gw2,Gw3と流量下限値Gminとを比較する(S3−3)。そして、いずれかの流量Gw1,Gw2,Gw3が流量下限値Gmin未満である場合には、装置異常が発生したものと判断して露光装置11の動作を停止させる(S3−4)。そして、露光装置11の停止をチェックする(S3−5)。
Next, referring to FIG. 5, an abnormality occurs when the flow rate of the cooling water W excessively decreases due to clogging of the heat medium passages 21, 22, 23, a failure of the flow rate adjustment mechanisms 41, 42, 43, or the like. The detection will be described.
First, the lower limit value Gmin of the flow rate Gwn of the cooling water W is set (S3-1), and after a predetermined time has elapsed from the start of operation of the exposure apparatus 11 (S3-2), the flow rate is measured by the flow rate sensors 51, 52, and 53. The flow rates Gw1, Gw2, and Gw3 of the heat medium flow paths 21, 22, and 23 are compared with the flow rate lower limit Gmin (S3-3). If any one of the flow rates Gw1, Gw2, and Gw3 is less than the flow rate lower limit Gmin, it is determined that an apparatus abnormality has occurred and the operation of the exposure apparatus 11 is stopped (S3-4). Then, the stop of the exposure apparatus 11 is checked (S3-5).

また、上記(S3−3)において、流量Gw1,Gw2,Gw3が流量下限値Gmin未満でない場合には、(S3−2)の前に戻って再び所定時間経過後に同様の制御を行う。また、露光装置11が停止していればメインルーチンにリターンし、露光装置11が停止していない場合には、(S3−2)の前に戻って再び所定時間経過後に同様の制御を行う。この結果、冷却水Wの流量が過度に減少することにより生じるワークチャック20の過熱が防止されて、露光精度の低下が防止される。なお、上記(S3−4)において、装置停止に代えて警告を発するようにしてもよい。 In the above (S3-3), when the flow rates Gw1, Gw2, and Gw3 are not less than the flow rate lower limit Gmin, the same control is performed after a predetermined time again after returning to (S3-2). If the exposure apparatus 11 is stopped, the process returns to the main routine. If the exposure apparatus 11 is not stopped, the process returns to (S3-2) and the same control is performed again after a predetermined time has elapsed. As a result, overheating of the work chuck 20 caused by excessively decreasing the flow rate of the cooling water W is prevented, and deterioration in exposure accuracy is prevented. In the above (S3-4), a warning may be issued instead of stopping the apparatus.

以上説明したように、本実施形態の露光装置11によれば、蓄圧器80に接続したワークチャック20に冷却水Wを通過させる複数の熱媒体流路21,22,23を互いに並列接続させて設けると共に、各熱媒体流路21,22,23に冷却水Wの出口温度Two1,Two2,Two3を測定する温度センサ31,32,33と、各熱媒体流路21,22,23を通過する冷却水Wの流量Gw1,Gw2,Gw3を制御する流量調整機構41,42,43と、をそれぞれ設け、温度センサ31,32,33により測定される冷却水Wの出口温度Two1,Two2,Two3に基づいて、流量調整機構41,42,43が、冷却水Wの出口温度Two1,Two2,Two3が同じになるように、冷却水Wの流量Gw1,Gw2,Gw3を制御するため、ワークチャック20の温度分布が所定の温度で均一に制御されるので、ワークチャック20及び基板の熱による伸縮を均一化することができる。これにより、一括露光は勿論のこと、分割逐次露光においても高い寸法精度で基板を露光することができる。 As described above, according to the exposure apparatus 11 of the present embodiment, the plurality of heat medium flow paths 21, 22, and 23 that allow the cooling water W to pass through the work chuck 20 connected to the pressure accumulator 80 are connected in parallel to each other. The temperature sensors 31, 32, and 33 that measure the outlet temperatures Two1, Two2, and Two3 of the cooling water W are passed through the heat medium passages 21, 22, and 23, and the heat medium passages 21, 22, and 23, respectively. Flow rate adjusting mechanisms 41, 42, and 43 for controlling the flow rates Gw1, Gw2, and Gw3 of the cooling water W are provided, respectively, and the outlet temperatures Two1, Two2, and Two3 of the cooling water W measured by the temperature sensors 31, 32, and 33 Based on the flow rate adjustment mechanisms 41, 42, 43, the flow rates Gw1, Gw2, Gw3 of the cooling water W are set so that the outlet temperatures Two1, Two2, Two3 of the cooling water W are the same. Gosuru Therefore, the temperature distribution of the workpiece chuck 20 is uniformly controlled at a predetermined temperature, it is possible to equalize the stretch by the work chuck 20 and the substrate of the heat. As a result, the substrate can be exposed with high dimensional accuracy in batch exposure as well as batch exposure.

また、本実施形態の露光装置11によれば、各熱媒体流路21,22,23は、それぞれ流量調整機構41,42,43を備えて熱媒体流路21,22,23ごとに冷却水Wの流量Gw1,Gw2,Gw3を調整するため、従来の熱媒体流路のように設計時に厳密に配管バランスを考慮して各熱媒体流路の流量が同一になるように配慮する必要がなく、配管レイアウトの制約が少なくなって設計の自由度を大幅に向上することができる。これにより、配管部材のコスト低減が可能となって露光装置11の製造コストを削減することができる。 Further, according to the exposure apparatus 11 of the present embodiment, each of the heat medium flow paths 21, 22, 23 includes the flow rate adjusting mechanisms 41, 42, 43, and the cooling water is provided for each heat medium flow path 21, 22, 23. Since the flow rates Gw1, Gw2, and Gw3 of W are adjusted, it is not necessary to consider that the flow rate of each heat medium flow path is the same in consideration of the piping balance at the time of design like the conventional heat medium flow path. As a result, restrictions on the piping layout are reduced, and the degree of freedom in design can be greatly improved. Thereby, the cost of the piping member can be reduced, and the manufacturing cost of the exposure apparatus 11 can be reduced.

さらに、本実施形態の露光装置11によれば、熱媒体流路21,22,23は、それぞれの熱媒体流路21,22,23を流れる冷却水Wの流量Gw1,Gw2,Gw3を測定する流量センサ51,52,53を更に備え、流量センサ51,52,53の測定値が所定の流量Gmaxを超えたとき、又は所定の流量Gmin未満となったとき、異常と判断して警告を発し、又は装置10を停止させるため、ワークチャック20の温度分布のバラツキに起因する不良製品の発生を防止して製造ロスをなくすことができる。 Furthermore, according to the exposure apparatus 11 of the present embodiment, the heat medium flow paths 21, 22, and 23 measure the flow rates Gw1, Gw2, and Gw3 of the cooling water W that flow through the heat medium flow paths 21, 22, and 23, respectively. Flow rate sensors 51, 52, and 53 are further provided. When the measured values of the flow rate sensors 51, 52, and 53 exceed a predetermined flow rate Gmax or less than a predetermined flow rate Gmin, an abnormality is determined and a warning is issued. Alternatively, since the apparatus 10 is stopped, the production loss can be prevented by preventing the generation of defective products due to the variation in the temperature distribution of the work chuck 20.

(第2実施形態)
次に、図6〜図8を参照して、本発明に係る露光装置の第2実施形態について説明する。なお、第1実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。
図6は本発明に係る露光装置の第2実施形態を説明するための概略構成図、図7は第2実施形態の熱媒体の出口温度に基づいて流量を調整する手順を示すフローチャート、図8は第2実施形態の熱媒体の流量超過異常の場合の制御手順を示すフローチャートである。
(Second Embodiment)
Next, a second embodiment of the exposure apparatus according to the present invention will be described with reference to FIGS. Note that portions that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals in the drawings, and description thereof is omitted or simplified.
6 is a schematic block diagram for explaining a second embodiment of the exposure apparatus according to the present invention, FIG. 7 is a flowchart showing a procedure for adjusting the flow rate based on the outlet temperature of the heat medium according to the second embodiment, and FIG. These are the flowcharts which show the control procedure in the case of the flow volume excess abnormality of 2nd Embodiment.

本実施形態の露光装置12は、図6に示すように、基板を保持するワークチャック20と、ワークチャック20に配設され、互いに並列接続される3系統の熱媒体流路21,22,23と、各熱媒体流路21,22,23に並列接続されるバイパス流路71,72,73と、バイパス流路71,72,73にそれぞれ配設される流量調整機構41,42,43と、熱媒体流路21,22,23にそれぞれ配設される温度センサ31,32,33及び流量センサ51,52,53と、熱媒体流路21,22,23の上流側を1本に統合して蓄圧器80に接続し、供給ポンプ60を介して冷却水Wが貯留される冷却水タンク61に接続される供給パイプ62と、熱媒体流路21,22,23の出口側(下流側)を1本に統合し、冷却水タンク61に接続される返送パイプ63と、を備える。 As shown in FIG. 6, the exposure apparatus 12 of the present embodiment includes a work chuck 20 that holds a substrate, and three heat medium channels 21, 22, and 23 that are disposed on the work chuck 20 and connected in parallel to each other. And bypass flow paths 71, 72, 73 connected in parallel to the heat medium flow paths 21, 22, 23, and flow rate adjusting mechanisms 41, 42, 43 respectively disposed in the bypass flow paths 71, 72, 73, The temperature sensors 31, 32, and 33 and the flow rate sensors 51, 52, and 53 disposed in the heat medium flow paths 21, 22, and 23, respectively, and the upstream side of the heat medium flow paths 21, 22, and 23 are integrated into one. The supply pipe 62 connected to the accumulator 80 and connected to the cooling water tank 61 in which the cooling water W is stored via the supply pump 60, and the outlet side (downstream side) of the heat medium passages 21, 22, and 23 ) Is integrated into one and the cooling water tank 61 It comprises a return pipe 63 connected.

次に、本実施形態の露光装置12の制御手順について図7及び図8に従って説明する。
冷却水Wの出口温度の制御は、図7に示すように、まず、冷却水Wの出口温度Twonの水温上限値Tmax及び水温下限値Tminを設定し(S4−1)、露光装置12の運転開始から所定時間経過後(S4−2)、温度センサ31,32,33により測定された各熱媒体流路21,22,23の冷却水Wの出口温度Two1,Two2,Two3と水温上限値Tmaxとを比較する(S4−3)。
Next, the control procedure of the exposure apparatus 12 of this embodiment will be described with reference to FIGS.
As shown in FIG. 7, the control of the outlet temperature of the cooling water W is performed by first setting the water temperature upper limit value Tmax and the water temperature lower limit value Tmin of the outlet temperature Twon of the cooling water W (S4-1) and operating the exposure apparatus 12. After the elapse of a predetermined time from the start (S4-2), the outlet temperatures Two1, Two2, Two3 of the cooling water W of the heat medium flow paths 21, 22, 23 measured by the temperature sensors 31, 32, 33 and the water temperature upper limit value Tmax Are compared (S4-3).

そして、いずれかの出口温度Two1,Two2,Two3が水温上限値Tmaxを越えている場合には、対応する熱媒体流路21,22,23に接続されるバイパス流路71,72,73の流量調整機構41,42,43を作動させて弁開度を閉じ、対応する熱媒体流路21,22,23の冷却水Wの流量を増加させてワークチャック20の対応部分の冷却力を増大させる(S4−4)。そして、露光装置12が停止しているか否かをチェックする(S4−7)。 When any of the outlet temperatures Two1, Two2, and Two3 exceeds the water temperature upper limit value Tmax, the flow rates of the bypass passages 71, 72, and 73 connected to the corresponding heat medium passages 21, 22, and 23, respectively. The adjustment mechanisms 41, 42 and 43 are operated to close the valve opening, and the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, and 23 is increased to increase the cooling power of the corresponding part of the work chuck 20. (S4-4). Then, it is checked whether or not the exposure apparatus 12 is stopped (S4-7).

また、上記(S4−3)において、出口温度Two1,Two2,Two3が水温上限値Tmaxを越えていない場合には、出口温度Two1、Two2、Two3と水温下限値Tminとを比較する(S4−5)。そして、いずれかの出口温度Two1,Two2,Two3が水温下限値Tmin未満となっている場合には、対応する熱媒体流路21,22,23に接続されるバイパス流路71,72,73の流量調整機構41,42,43を作動させて弁開度を開き、対応する熱媒体流路21,22,23の冷却水Wの流量を減少させてワークチャック20の対応部分の冷却力を抑制させる(S4−6)。そして、露光装置12が停止しているか否かをチェックする(S4−7)。 Further, in the above (S4-3), when the outlet temperatures Two1, Two2, and Two3 do not exceed the water temperature upper limit value Tmax, the outlet temperatures Two1, Two2, and Two3 are compared with the water temperature lower limit value Tmin (S4-5). ). When any of the outlet temperatures Two1, Two2, and Two3 is less than the water temperature lower limit value Tmin, the bypass channels 71, 72, and 73 connected to the corresponding heat medium channels 21, 22, and 23 The flow rate adjusting mechanisms 41, 42, 43 are operated to open the valve opening, and the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, 23 is decreased to suppress the cooling power of the corresponding part of the work chuck 20. (S4-6). Then, it is checked whether or not the exposure apparatus 12 is stopped (S4-7).

また、出口温度Two1,Two2,Two3が水温上限値Tmaxを越えておらず、且つ水温下限値Tmin未満にもなっていない場合((S4−5)でNoの場合)には、出口温度Two1,Two2,Two3が適正な温度範囲内にあるので、流量調整機構41,42,43を作動させることなく露光装置12が停止しているか否かをチェックする(S4−7)。露光装置12が停止していればメインルーチンにリターンし、運転中であれば(S4−2)の前に戻って再び所定時間経過後に同様の制御を行う。 Further, when the outlet temperatures Two1, Two2, Two3 do not exceed the water temperature upper limit value Tmax and are not less than the water temperature lower limit value Tmin (in the case of (S4-5) No), the outlet temperature Two1, Since Two2 and Two3 are within an appropriate temperature range, it is checked whether the exposure apparatus 12 is stopped without operating the flow rate adjusting mechanisms 41, 42, 43 (S4-7). If the exposure apparatus 12 is stopped, the process returns to the main routine. If the exposure apparatus 12 is in operation, the process returns to before (S4-2) and the same control is performed again after a predetermined time has elapsed.

上記したように、出口温度Two1,Two2,Two3は、熱媒体流路21,22,23ごとに水温上限値Tmax及び水温下限値Tminで比較され、所定の範囲から外れた熱媒体流路21,22,23に接続されるバイパス流路71,72,73の流量調整機構41,42,43を個別に作動させて冷却水Wの流量を調整させる。即ち、水温上限値Tmaxを超えると冷却水Wの流量が増加され、水温下限値Tmin未満であると冷却水Wの流量が減少される。これにより、ワークチャック20の高温部分の冷却力は増大され、低温部分の冷却力は抑制されて、ワークチャック20の全面が所定の温度範囲内となるように制御される。この結果、ワークチャック20の温度分布に起因する基板の露光精度の低下が防止される。 As described above, the outlet temperatures Two1, Two2, Two3 are compared for each of the heat medium flow paths 21, 22, 23 with the water temperature upper limit value Tmax and the water temperature lower limit value Tmin, and the heat medium flow paths 21, The flow rate adjusting mechanisms 41, 42, and 43 of the bypass flow paths 71, 72, and 73 connected to 22 and 23 are individually operated to adjust the flow rate of the cooling water W. That is, when the water temperature upper limit value Tmax is exceeded, the flow rate of the cooling water W is increased, and when it is less than the water temperature lower limit value Tmin, the flow rate of the cooling water W is decreased. Thereby, the cooling power of the high temperature portion of the work chuck 20 is increased, the cooling power of the low temperature portion is suppressed, and the entire surface of the work chuck 20 is controlled to be within a predetermined temperature range. As a result, a reduction in exposure accuracy of the substrate due to the temperature distribution of the work chuck 20 is prevented.

次に、図8を参照にして、熱媒体流路21,22,23の冷却水Wの流量が異常に増加して冷却水Wの流速が速くなるような場合の異常検知について説明する。
まず、冷却水Wの流量Gwnの流量上限値Gmaxを設定し(S5−1)、露光装置12の運転開始から所定時間経過後(S5−2)、流量センサ51,52,53により測定された各熱媒体流路21,22,23の流量Gw1,Gw2,Gw3と流量上限値Gmaxとを比較する(S5−3)。そして、いずれかの流量Gw1,Gw2,Gw3が流量上限値Gmaxを超えている場合には、対応する熱媒体流路21,22,23に接続されるバイパス流路71,72,73の流量調整機構41,42,43を作動させて弁開度を開き、対応する熱媒体流路21,22,23の冷却水Wの流量を減少させる(S5−4)。そして、露光装置12が停止しているか否かをチェックする(S5−5)。
Next, with reference to FIG. 8, the abnormality detection in the case where the flow rate of the cooling water W in the heat medium passages 21, 22, 23 abnormally increases and the flow rate of the cooling water W increases will be described.
First, a flow rate upper limit Gmax of the flow rate Gwn of the cooling water W is set (S5-1), and measured by the flow rate sensors 51, 52, and 53 after a predetermined time has elapsed from the start of operation of the exposure apparatus 12 (S5-2). The flow rates Gw1, Gw2, Gw3 of the heat medium flow paths 21, 22, 23 and the flow rate upper limit Gmax are compared (S5-3). When any one of the flow rates Gw1, Gw2, Gw3 exceeds the flow rate upper limit Gmax, the flow rate adjustment of the bypass flow channels 71, 72, 73 connected to the corresponding heat medium flow channels 21, 22, 23 is performed. The mechanisms 41, 42, and 43 are operated to open the valve opening, and the flow rate of the cooling water W in the corresponding heat medium passages 21, 22, and 23 is decreased (S5-4). Then, it is checked whether or not the exposure apparatus 12 is stopped (S5-5).

また、上記(S5−3)において、流量Gw1,Gw2,Gw3が流量上限値Gmaxを超えていない場合には、(S5−2)の前に戻って再び所定時間経過後に同様の制御を行う。また、露光装置12が停止していればメインルーチンにリターンし、運転中であれば(S5−2)の前に戻って再び所定時間経過後に同様の制御を行う。この結果、冷却水Wの流速が想定以上になることにより生じる振動が防止されて、露光精度の低下が防止される。 In (S5-3), when the flow rates Gw1, Gw2, and Gw3 do not exceed the flow rate upper limit Gmax, the same control is performed again after the elapse of a predetermined time after returning to (S5-2). If the exposure apparatus 12 is stopped, the process returns to the main routine. If the exposure apparatus 12 is in operation, the process returns to before (S5-2) and the same control is performed again after a predetermined time has elapsed. As a result, vibrations that occur when the flow rate of the cooling water W is higher than expected are prevented, and a reduction in exposure accuracy is prevented.

なお、熱媒体流路21,22,23の冷却水Wの流量が過度に減少するような場合の異常検知については、第1実施形態と同様であるので説明を省略する。 In addition, about abnormality detection when the flow volume of the cooling water W of the heat medium flow paths 21, 22, and 23 decreases excessively, since it is the same as that of 1st Embodiment, description is abbreviate | omitted.

以上説明したように、本実施形態の露光装置12によれば、蓄圧器80に接続したワークチャック20に冷却水Wを通過させる複数の熱媒体流路21,22,23を互いに並列接続させて設け、各熱媒体流路21,22,23にバイパス流路71,72,73を並列接続させると共に、各熱媒体流路21,22,23に冷却水Wの出口温度Two1,Two2,Two3を測定する温度センサ31,32,33をそれぞれ設け、各バイパス流路71,72,73に熱媒体流路21,22,23を通過する冷却水Wの流量Gw1,Gw2,Gw3を制御する流量調整機構41,42,43をそれぞれ設け、温度センサ31,32,33により測定される冷却水Wの出口温度Two1,Two2,Two3に基づいて、流量調整機構41,42,43が、冷却水Wの出口温度Two1,Two2,Two3が同じになるように、冷却水Wの流量Gw1,Gw2,Gw3を制御するため、ワークチャック20の温度分布が所定の温度で均一に制御されるので、ワークチャック20及び基板の熱による伸縮を均一化することができる。これにより、一括露光は勿論のこと、分割逐次露光においても高い寸法精度で基板を露光することができる。
その他の構成及び作用効果については、上記第1実施形態と同様である。
As described above, according to the exposure apparatus 12 of the present embodiment, the plurality of heat medium flow paths 21, 22, and 23 that allow the cooling water W to pass through the work chuck 20 connected to the pressure accumulator 80 are connected in parallel to each other. The bypass channels 71, 72, 73 are connected in parallel to the heat medium channels 21, 22, 23, and the outlet temperatures Two 1, Two 2, Two 3 of the cooling water W are supplied to the heat medium channels 21, 22, 23. Temperature sensors 31, 32, 33 to be measured are provided, and flow rate adjustments for controlling the flow rates Gw 1, Gw 2, Gw 3 of the cooling water W passing through the heat medium channels 21, 22, 23 in the bypass channels 71, 72, 73, respectively. Mechanisms 41, 42, and 43 are provided, respectively, and flow rate adjustment mechanisms 41, 42, and, based on the outlet temperatures Two1, Two2, and Two3 of the cooling water W measured by the temperature sensors 31, 32, and 33, respectively. 3 controls the flow rate Gw1, Gw2, Gw3 of the cooling water W so that the outlet temperatures Two1, Two2, Two3 of the cooling water W are the same, so that the temperature distribution of the work chuck 20 is uniformly controlled at a predetermined temperature. Therefore, the expansion and contraction due to the heat of the work chuck 20 and the substrate can be made uniform. As a result, the substrate can be exposed with high dimensional accuracy in batch exposure as well as batch exposure.
About another structure and an effect, it is the same as that of the said 1st Embodiment.

なお、本発明は、上記各実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記各実施形態では、ワークチャックに3系統の熱媒体流路を設けた場合を例示したが、熱媒体流路は3系統に限定されるものではなく、ワークチャックの大きさなどに応じて任意の系統数の熱媒体流路を設けることができる。
また、上記各実施形態では、熱媒体には冷却水を使用しているが、熱媒体流路及びバイパス流路を通過することができる流体であればその種類に制限はない。
In addition, this invention is not limited to what was illustrated by said each embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in each of the above embodiments, the case where the work chuck is provided with the three heat medium flow paths is illustrated, but the heat medium flow path is not limited to the three lines, depending on the size of the work chuck or the like. Any number of heat medium channels can be provided.
Moreover, in each said embodiment, although cooling water is used for a heat medium, if it is the fluid which can pass a heat medium flow path and a bypass flow path, there will be no restriction | limiting in the kind.

11,12 露光装置
20 ワークチャック
21,22,23 熱媒体流路
31,32,33 温度センサ
41,42,43 流量調整機構
51,52,53 流量センサ
60 供給ポンプ
61 冷却水タンク
62 供給パイプ
63 返送パイプ
71,72,73 バイパス流路
80 蓄圧器
W 冷却水(熱媒体)
Gwn(Gw1、Gw2、Gw3) 熱媒体の流量
Twon(Two1、Two2、Two3) 熱媒体の出口温度
DESCRIPTION OF SYMBOLS 11, 12 Exposure apparatus 20 Work chuck 21, 22, 23 Heat medium flow path 31, 32, 33 Temperature sensor 41, 42, 43 Flow rate adjustment mechanism 51, 52, 53 Flow rate sensor 60 Supply pump 61 Cooling water tank 62 Supply pipe 63 Return pipe 71, 72, 73 Bypass flow path 80 Accumulator W Cooling water (heat medium)
Gwn (Gw1, Gw2, Gw3) Heat medium flow rate Twon (Two1, Two2, Two3) Heat medium outlet temperature

Claims (4)

ワークチャックに保持される被露光材としての基板にマスクパターンを分割逐次露光する露光装置であって、
熱媒体の圧力を一定にする蓄圧器を接続した前記ワークチャックに設けられ、
互いに並列接続されて熱媒体を通過させる複数の熱媒体流路と、
複数の前記熱媒体流路の出口側にそれぞれ設けられ、前記熱媒体の出口温度を測定する温度センサと、
複数の前記熱媒体流路にそれぞれ設けられ、前記熱媒体流路を通過する前記熱媒体の流量を制御する流量調整機構と、を備え、
前記温度センサにより測定される前記熱媒体の出口温度に基づいて、前記流量調整機構が前記熱媒体の流量を制御し、前記ワークチャックの温度を所定の温度に調整することを特徴とする露光装置。
An exposure apparatus that divides and sequentially exposes a mask pattern on a substrate as an exposed material held by a work chuck,
Provided in the work chuck connected to a pressure accumulator that makes the pressure of the heat medium constant,
A plurality of heat medium flow paths that are connected in parallel to each other and pass the heat medium;
A temperature sensor provided on each of the outlet sides of the plurality of heat medium flow paths, and measuring an outlet temperature of the heat medium;
A flow rate adjusting mechanism that is provided in each of the plurality of heat medium flow paths and controls the flow rate of the heat medium that passes through the heat medium flow path,
An exposure apparatus characterized in that, based on the outlet temperature of the heat medium measured by the temperature sensor, the flow rate adjusting mechanism controls the flow rate of the heat medium to adjust the temperature of the work chuck to a predetermined temperature. .
前記流量調整機構は、前記熱媒体流路に対して直列に接続されることを特徴とする請求項1に記載の露光装置。   The exposure apparatus according to claim 1, wherein the flow rate adjusting mechanism is connected in series to the heat medium flow path. 前記流量調整機構は、前記熱媒体流路に対して並列に接続されることを特徴とする請求項1に記載の露光装置。   The exposure apparatus according to claim 1, wherein the flow rate adjusting mechanism is connected in parallel to the heat medium flow path. 前記熱媒体流路は、それぞれの前記熱媒体流路を流れる前記熱媒体の流量を測定する流量センサを更に備え、
前記流量センサの測定値が所定の流量を超えたとき、又は所定の流量未満となったとき、異常と判断して警告を発し、又は装置を停止させることを特徴とする請求項1〜3のいずれかに記載の露光装置。
The heat medium flow path further includes a flow rate sensor for measuring a flow rate of the heat medium flowing through each of the heat medium flow paths,
When the measured value of the flow rate sensor exceeds a predetermined flow rate or becomes less than a predetermined flow rate, it is judged as abnormal and a warning is issued or the apparatus is stopped. The exposure apparatus according to any one of the above.
JP2010218413A 2010-09-29 2010-09-29 Exposure device Pending JP2012073453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218413A JP2012073453A (en) 2010-09-29 2010-09-29 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218413A JP2012073453A (en) 2010-09-29 2010-09-29 Exposure device

Publications (1)

Publication Number Publication Date
JP2012073453A true JP2012073453A (en) 2012-04-12

Family

ID=46169673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218413A Pending JP2012073453A (en) 2010-09-29 2010-09-29 Exposure device

Country Status (1)

Country Link
JP (1) JP2012073453A (en)

Similar Documents

Publication Publication Date Title
JP5430621B2 (en) Gas flow verification system and gas flow verification unit
US20120174990A1 (en) Flow rate ratio controlling apparatus
TWI483089B (en) Fluid control device
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
JP5739261B2 (en) Gas supply system
KR101118659B1 (en) Lithographic Apparatus and Method
KR102384046B1 (en) Flow rate control device, program for flow rate control device, and flow rate control method
CN103562797A (en) Optical element
TW201537324A (en) Pressure-type flow rate control device
CN1751280A (en) Semiconductor production system and semiconductor production process
KR20190074930A (en) Mass Flow Controller
JP2016053863A (en) Temperature regulator
CN102650834B (en) Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufaturing method
US8675169B2 (en) Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
JP2012073453A (en) Exposure device
JP2008122673A (en) Exposure apparatus
TW202102961A (en) Flow rate control device
KR20090094758A (en) Regulating device, exposure apparatus and device manufacturing method
JP2004280689A (en) Mass flow controller
KR100924767B1 (en) Gas Integrated Uint
JP4435201B2 (en) Adjustment method of temperature control system
WO2021131577A1 (en) Pressure control device
JP2010045300A (en) Exposure device
KR20230097553A (en) Integrated gas system for substrate processing apparatus
KR100996339B1 (en) Method for controlling bake process