JP2012073089A - Method for measuring degree of polymerization of cellulose - Google Patents

Method for measuring degree of polymerization of cellulose Download PDF

Info

Publication number
JP2012073089A
JP2012073089A JP2010217557A JP2010217557A JP2012073089A JP 2012073089 A JP2012073089 A JP 2012073089A JP 2010217557 A JP2010217557 A JP 2010217557A JP 2010217557 A JP2010217557 A JP 2010217557A JP 2012073089 A JP2012073089 A JP 2012073089A
Authority
JP
Japan
Prior art keywords
cellulose
polymerization
degree
measuring
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217557A
Other languages
Japanese (ja)
Other versions
JP5406152B2 (en
Inventor
Chiaki Tanaka
千晶 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2010217557A priority Critical patent/JP5406152B2/en
Publication of JP2012073089A publication Critical patent/JP2012073089A/en
Application granted granted Critical
Publication of JP5406152B2 publication Critical patent/JP5406152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring degree of polymerization of cellulose by which the degree of polymerization of cellulose can be accurately measured in a simple way without pretreatment such as chemical reaction, and a method for evaluating cloth strength of a cellulose fiber product.SOLUTION: The method for measuring degree of polymerization of cellulose includes: a moisture absorption step of allowing a cloth made of cellulose to absorb moisture; a pulverization step of pulverizing the moisturized cloth to prepare a measurement sample; a weighing step of weighing the measurement sample to measure the weight of the cellulose from the weighed value of the sample and the moisture absorption rate; a dissolving step of preparing a solution for measuring viscosity by dissolving the measurement sample in a copper ethylene diamine solution; a viscosity measurement step of measuring the viscosity of the solution for measuring viscosity using a viscometer; and a polymerization degree calculation step of calculating the degree of polymerization of the cellulose from the viscosity obtained in the viscosity measurement step according to a predetermined relational formula.

Description

本発明は、化学反応等の前処理を行うことなく、簡易な方法で正確にセルロースの重合度を測定することが可能なセルロースの重合度測定方法、及び、セルロース繊維製品の生地強度評価方法に関する。 The present invention relates to a cellulose polymerization degree measuring method capable of accurately measuring the degree of polymerization of cellulose by a simple method without performing a pretreatment such as a chemical reaction, and a fabric strength evaluation method for cellulose fiber products. .

セルロースの物性は、重合度に大きく依存する。従って、セルロースの重合度を測定することは、性質、品質の判定、劣化の程度等の面で大変有用なことである。
今日、目的とするセルロースの重合度を解析するための手段は幾つか存在しており、それらは種々の技術分野において利用されている。
The physical properties of cellulose greatly depend on the degree of polymerization. Therefore, measuring the degree of polymerization of cellulose is very useful in terms of properties, quality determination, degree of deterioration, and the like.
Today, there are several means for analyzing the degree of polymerization of the target cellulose, and they are used in various technical fields.

特許文献1には、綿リンタの重合度を測定する方法が開示されている。しかしながら、この方法では、前処理によってセルローストリニトレートにする工程を行う必要があった。
また、特許文献2には、セルロースシリルエーテル等のセルロース誘導体の平均重合度を、H−NMRを用いて測定する方法が開示されている。しかしながら、シリル化されていないセルロースを重クロロホルムで溶解することは困難であり、綿製品を構成するセルロースの重合度を正確に測定することはできなかった。
更に、特許文献3には、綿セルロースの粘度平均分子量の測定方法が開示されている。しかしながら、この方法では、低分子量のセルロースのみを測定でき、綿等を構成する高分子量セルロースは溶媒に溶解できないことから、粘度測定できないという問題があった。
Patent Document 1 discloses a method for measuring the degree of polymerization of cotton linter. However, in this method, it was necessary to perform a step of making cellulose trinitrate by pretreatment.
Patent Document 2 discloses a method for measuring the average degree of polymerization of a cellulose derivative such as cellulose silyl ether using 1 H-NMR. However, it is difficult to dissolve unsilylated cellulose with deuterated chloroform, and the degree of polymerization of cellulose constituting the cotton product cannot be accurately measured.
Furthermore, Patent Document 3 discloses a method for measuring the viscosity average molecular weight of cotton cellulose. However, this method has a problem in that only low-molecular weight cellulose can be measured, and high-molecular weight cellulose constituting cotton or the like cannot be dissolved in a solvent, so that viscosity cannot be measured.

特開平6−340687号公報JP-A-6-340687 国際公開2008/143322号パンフレットInternational Publication No. 2008/143322 Pamphlet 特開2000−273780号公報JP 2000-273780 A

上述のように、化学反応等の前処理を行うことなく、簡易な方法で正確にセルロースの重合度を測定できる方法が強く要望されていた。 As described above, there has been a strong demand for a method capable of accurately measuring the degree of polymerization of cellulose by a simple method without performing a pretreatment such as a chemical reaction.

本発明は、セルロースからなる生地に吸湿させる吸湿工程、吸湿させた生地を粉砕することにより、測定サンプルを作製する粉砕工程、前記測定サンプルを秤量し、秤量値と吸湿率とからセルロースの重量を測定する秤量工程、前記測定サンプルを銅エチレンジアミン溶液に溶解することで粘度測定用溶液を調製する溶解工程、粘度計を用いて前記粘度測定用溶液の粘度値を測定する粘度測定工程、及び、前記粘度測定工程において得られた粘度値から、所定の関係式に基づいて、セルロースの重合度を算出する重合度算出工程を有するセルロースの重合度測定方法である。
以下に本発明を詳述する。
The present invention relates to a moisture absorption step for absorbing moisture in a fabric made of cellulose, a pulverization step for preparing a measurement sample by pulverizing the moisture-absorbed fabric, the measurement sample is weighed, and the weight of cellulose is determined from the weighed value and the moisture absorption rate. A weighing step for measuring, a dissolving step for preparing a solution for measuring viscosity by dissolving the measurement sample in a copper ethylenediamine solution, a viscosity measuring step for measuring a viscosity value of the solution for measuring viscosity using a viscometer, and This is a method for measuring the degree of polymerization of cellulose having a polymerization degree calculation step of calculating the polymerization degree of cellulose from the viscosity value obtained in the viscosity measurement step based on a predetermined relational expression.
The present invention is described in detail below.

本発明者は、鋭意検討した結果、所定の吸湿工程、粉砕工程、秤量工程、溶解工程、粘度測定工程及び重合度算出工程を行い重合度測定することで、化学反応等の前処理を行うことなく、簡易な方法で正確にセルロースの重合度を測定できることを見出し、本発明を完成するに至った。 As a result of diligent study, the present inventor performs a pretreatment such as a chemical reaction by performing a predetermined moisture absorption process, a pulverization process, a weighing process, a dissolution process, a viscosity measurement process, and a polymerization degree calculation process to measure the polymerization degree. The present inventors have found that the degree of polymerization of cellulose can be accurately measured by a simple method, and have completed the present invention.

本発明のセルロースの重合度測定方法では、セルロースからなる生地に吸湿させる吸湿工程を行う。なお、本発明では、上記吸湿工程を行った後、上記生地の吸湿率を測定する。
上記吸湿率は、JIS L 1018の8.6法に準拠した方法により測定できる。
In the method for measuring the degree of polymerization of cellulose according to the present invention, a moisture absorption step of absorbing moisture in a fabric made of cellulose is performed. In the present invention, the moisture absorption rate of the fabric is measured after the moisture absorption step.
The said moisture absorption rate can be measured by the method based on 8.6 method of JISL1018.

本発明において測定対象として用いられるセルロースとしては、木綿、麻、木材(広葉樹、針葉樹)パルプ、非木材パルプ(バガスパルプ、ワラパルプ)等の天然セルロースや、レーヨン、ポリノジック、キュプラ、テンセル、リヨセル等の再生セルロース、古紙パルプ等が挙げられる。
なかでも、上記木綿を用いることが好ましい。木綿はセルロースを90重量%以上含有するため、本願発明の効果が更に顕著となる。特に、漂白後の木綿を用いることが好ましい。
Cellulose used as a measurement object in the present invention includes natural cellulose such as cotton, hemp, wood (hardwood, conifer) pulp, non-wood pulp (bagasse pulp, walla pulp), and regenerated materials such as rayon, polynosic, cupra, tencel, and lyocell. Examples thereof include cellulose and waste paper pulp.
Especially, it is preferable to use the said cotton. Since cotton contains 90% by weight or more of cellulose, the effect of the present invention becomes more remarkable. In particular, it is preferable to use bleached cotton.

上記セルロースには、酢酸セルロ−スのように、純セルロースを変性した半合成セルロ−スも含まれる。純セルロースは、保水性は高いが、強度が弱いため、上記酢酸セルロ−スの酢化度を制御することで、保水性、強度等を変更させ、最適なセルロースとすることもできる。また、純セルロースと酢酸セルロ−スとを適宜混合したものを用いてもよい。 The cellulose includes semi-synthetic cellulose obtained by modifying pure cellulose, such as cellulose acetate. Pure cellulose has high water retention but low strength. Therefore, by controlling the degree of acetylation of the cellulose acetate, the water retention, strength, etc. can be changed to obtain optimum cellulose. Moreover, you may use what mixed pure cellulose and the cellulose acetate suitably.

上記生地としては、セルロースからなるものであれば特に限定されず、原料セルロースの形態としては、織編物や不織布の布帛に限らず、フィラメント、ステープル、紐等の糸状物であってもよい。また、繊維の構造組織としては、交織、交編したものであってもよい。 The fabric is not particularly limited as long as it is made of cellulose, and the form of the raw material cellulose is not limited to a woven or knitted fabric or a nonwoven fabric, but may be a filamentous material such as a filament, staple, or string. In addition, the structural structure of the fiber may be a woven or knitted fabric.

上記生地に吸湿させる方法としては、例えば、恒温恒湿器内で吸湿させる方法、温度及び湿度が管理されている空間に一定時間生地を調湿させる方法等が挙げられる。 Examples of the method of absorbing moisture in the dough include a method of absorbing moisture in a thermostatic chamber and a method of conditioning the fabric for a certain period of time in a space where temperature and humidity are controlled.

本発明のセルロースの重合度測定方法では、次いで、吸湿させた生地を粉砕することにより、測定サンプルを作製する粉砕工程を行う。 In the method for measuring the degree of polymerization of cellulose according to the present invention, a pulverization step for preparing a measurement sample is then performed by pulverizing the moisture-absorbed dough.

上記粉砕工程において用いる粉砕機としては例えば、ハンマーミル、カッティングミル、ミキサーミル、超遠心粉砕機、ボールミル、ディスクミル、ペレットミル等が挙げられる。これらのなかでは、カッティングミルが好ましい。また、上記カッティングミルの中でも、錠剤等の硬いものも粉砕できるブレンダーがより好ましい。
また、粉砕方法としては、乾式粉砕、湿式粉砕、凍結粉砕等の方法を用いることができるが、湿式粉砕では繊維同士が二次凝集しやすくなり、完全に粉砕できず、本方法では凍結粉砕ではサンプル量を秤量する際に状態が不安定であることから不向きである。従って、乾式粉砕が最も好ましい。
なお、本発明における粉砕工程とは、粉砕機等の粉砕手段を用いて吸湿させた生地を粉砕することを意味し、はさみを用いて裁断したり、手で引き裂いたりする等の方法は含まれない。
Examples of the pulverizer used in the pulverization step include a hammer mill, a cutting mill, a mixer mill, an ultracentrifugal pulverizer, a ball mill, a disk mill, and a pellet mill. Among these, a cutting mill is preferable. Among the above-described cutting mills, a blender that can grind hard materials such as tablets is more preferable.
In addition, as a pulverization method, dry pulverization, wet pulverization, freeze pulverization, and the like can be used. However, wet pulverization tends to cause secondary aggregation of fibers, and complete pulverization. This is not suitable because the state is unstable when weighing the sample amount. Therefore, dry pulverization is most preferable.
The pulverizing step in the present invention means pulverizing the moisture-absorbed dough using a pulverizing means such as a pulverizer, and includes methods such as cutting with scissors and tearing by hand. Absent.

上記粉砕工程における粉砕時間としては、5〜90秒が好ましい。上記範囲内とすることで、粉砕によってセルロースの分子鎖が切断されることを防止することができる。 The grinding time in the grinding process is preferably 5 to 90 seconds. By setting it within the above range, it is possible to prevent the molecular chains of cellulose from being broken by pulverization.

本発明のセルロースの重合度測定方法では、上記吸湿工程及び粉砕工程を行った後、上記測定サンプルを秤量し、秤量値と吸湿率とからセルロースの重量を測定する秤量工程を行う。
従来は、熱をかけて絶乾状態にした後に秤量する方法や、凍結乾燥を行った後に秤量する方法が行われていたが、熱をかけて絶乾状態にした後に秤量する方法では熱によって測定サンプルに負荷が掛かるという問題があり、凍結乾燥を行った後に秤量する方法では測定サンプルの吸湿によって正確なセルロース重量を測定することができなかった。
本発明では、上記吸湿工程及び粉砕工程を行った後に上記秤量工程を行うことで、セルロースが吸湿することによる影響を殆ど受けることなく正確にセルロースの重量を秤量することができる。
In the method for measuring the degree of polymerization of cellulose of the present invention, after performing the moisture absorption step and the pulverization step, the measurement sample is weighed, and the weighing step of measuring the weight of cellulose from the measured value and the moisture absorption rate is performed.
Conventionally, there have been methods of weighing after heat-drying and then drying, and methods of weighing after freeze-drying. There is a problem that a load is applied to the measurement sample, and in the method of weighing after freeze-drying, an accurate cellulose weight cannot be measured due to moisture absorption of the measurement sample.
In the present invention, by performing the weighing step after performing the moisture absorption step and the pulverization step, the weight of the cellulose can be accurately weighed without being substantially affected by the moisture absorption of the cellulose.

上記セルロースの重量は、秤量値及び吸湿率から、下記式(1)を用いて算出することができる。
セルロース重量=秤量値×[1−(吸湿率(%)/100)] (1)
The weight of the cellulose can be calculated from the measured value and the moisture absorption rate using the following formula (1).
Cellulose weight = Weighed value × [1- (Hygroscopic rate (%) / 100)] (1)

本発明のセルロースの重合度測定方法では、次いで、上記測定サンプルを銅エチレンジアミン溶液に溶解することで粘度測定用溶液を調製する溶解工程を行う。 Next, in the method for measuring the degree of polymerization of cellulose according to the present invention, a dissolution step of preparing a viscosity measurement solution by dissolving the measurement sample in a copper ethylenediamine solution is performed.

上記銅エチレンジアミン溶液は、例えば、水酸化銅とイオン交換水との混合液にエチレンジアミンを添加して撹拌することにより、調製することができる。
この際、撹拌工程と同時に冷却工程を行うことが好ましい。
上記銅エチレンジアミン溶液を調製する際、水酸化銅とエチレンジアミンとの混合モル比は1:1であることが好ましい。
The copper ethylenediamine solution can be prepared, for example, by adding ethylenediamine to a mixed solution of copper hydroxide and ion exchange water and stirring.
At this time, it is preferable to perform the cooling step simultaneously with the stirring step.
When preparing the said copper ethylenediamine solution, it is preferable that the mixing molar ratio of copper hydroxide and ethylenediamine is 1: 1.

上記銅エチレンジアミン溶液の調製は10分以下で行うことが好ましい。上記銅エチレンジアミン溶液の調製が10分を超えると、空気中の酸素によって銅が酸化されて析出、沈殿することがある。
また、上記銅エチレンジアミン溶液の調製は、空気にふれないように行うことが好ましい。空気にふれると、空気中の酸素によって水酸化銅が酸化されてしまい、充分にエチレンジアミンで溶解できず、沈殿してしまうことがある。
The copper ethylenediamine solution is preferably prepared in 10 minutes or less. If the preparation of the copper ethylenediamine solution exceeds 10 minutes, copper may be oxidized and precipitated and precipitated by oxygen in the air.
Moreover, it is preferable to prepare the said copper ethylenediamine solution so that it may not touch air. When exposed to air, copper hydroxide may be oxidized by oxygen in the air, and may not be sufficiently dissolved by ethylenediamine and may precipitate.

上記溶解工程における溶解時間は、10〜180分とすることが好ましい。180分を超えると、溶解による重合度の低下が起こり、正確に重合度を測定できないことがある。
なお、溶解温度については特に限定されないが、20〜40℃とすることが好ましい。
上記溶解時間としては、例えば、セルロースの重合度が1000以下のように低い場合は30分程度が好ましく、セルロースの重合度が1500以上のように高い場合は2時間程度が好ましい。
更に、上記溶解工程を行う際にフラスコを用いる場合は、側面や底面に溶解した測定サンプルが付着してしまうため、撹拌子は三角柱型のものを使用するのが好ましい。
The dissolution time in the dissolution step is preferably 10 to 180 minutes. If it exceeds 180 minutes, the degree of polymerization will decrease due to dissolution, and the degree of polymerization may not be measured accurately.
In addition, although it does not specifically limit about dissolution temperature, It is preferable to set it as 20-40 degreeC.
The dissolution time is preferably about 30 minutes when the degree of polymerization of cellulose is as low as 1000 or less, and about 2 hours when the degree of polymerization of cellulose is as high as 1500 or more.
Furthermore, when a flask is used when performing the above-described dissolution step, a measurement sample dissolved on the side surface or the bottom surface is attached, and therefore, the stirring bar is preferably a triangular prism type.

本発明のセルロースの重合度測定方法では、次いで、粘度計を用いて上記粘度測定用溶液の粘度値を測定する粘度測定工程を行う。 In the method for measuring the degree of polymerization of cellulose of the present invention, a viscosity measuring step is then performed in which the viscosity value of the viscosity measuring solution is measured using a viscometer.

上記粘度測定工程において用いる粘度計としては、毛管粘度計を用いることが好ましい。
上記毛管粘度計は、ある圧力で毛管中に液体を押し流し、圧力と流出液量との関係から粘度を求めるものであり、具体的には、オストワルド粘度計、キャノン・フェンスケ型粘度計等が挙げられる。
上記粘度計のなかでは、キャノン・フェンスケ型粘度計が好ましい。上記キャノン・フェンスケ型粘度計を用いることで、比較的少量の試料でも測定することができ、粘度計定数によって絶対評価で測定することができる。
As the viscometer used in the viscosity measuring step, a capillary viscometer is preferably used.
The capillary viscometer is used to push the liquid into the capillary at a certain pressure and obtain the viscosity from the relationship between the pressure and the amount of the effluent, and specifically includes Ostwald viscometers, Canon-Fenske viscometers, etc. It is done.
Among the above viscometers, the Canon-Fenske viscometer is preferable. By using the above-mentioned Cannon-Fenske viscometer, even a relatively small amount of sample can be measured, and it can be measured by absolute evaluation using a viscometer constant.

本発明のセルロースの重合度測定方法では、更に、上記粘度測定工程において得られた粘度値から、所定の関係式に基づいて、セルロースの重合度を算出する重合度算出工程を行う。
上記重合度は、例えば、Staudingerの経験則を用いて算出することができる。
In the method for measuring the degree of polymerization of cellulose of the present invention, a degree of polymerization calculating step for calculating the degree of polymerization of cellulose based on a predetermined relational expression from the viscosity value obtained in the viscosity measuring step is further performed.
The degree of polymerization can be calculated using Staudinger's rule of thumb, for example.

本発明のセルロースの重合度測定方法を用いて重合度を測定することで、従来は測定が困難であったセルロースの重合度を簡易かつ正確に測定することができる。このセルロース重量を正確に測定することで、重合度の算出式中の分母の誤差による測定誤差を極力抑えることができ、正確な重合度を算出できる。 By measuring the degree of polymerization using the method for measuring the degree of polymerization of cellulose of the present invention, it is possible to easily and accurately measure the degree of polymerization of cellulose, which has heretofore been difficult to measure. By accurately measuring the cellulose weight, measurement errors due to denominator errors in the formula for calculating the degree of polymerization can be suppressed as much as possible, and an accurate degree of polymerization can be calculated.

本発明のセルロースの重合度方法で測定された重合度は、セルロース繊維製品の生地強度の評価に応用することができる。このようなセルロース繊維製品の生地強度評価方法もまた本発明の1つである。
肌着等の綿製品においては、柔軟性、洗濯耐久性等のほか、破裂等に対する生地強度が重要となる。綿製品の生地強度は、綿製品を構成するセルロース等の繊維の特性に依存しているものと考えられ、生地強度と繊維特性との関係を解析する方法としては、例えば、SEMを用いた繊維形状解析が行われているが、明確なフィブリル化等が無い生地においては、解析が困難であった。
また、生地強度測定として、JIS法より引張強さ、引裂強さ、破裂強さ、磨耗強さ(L1096、L1018)等で評価できるが、繊維内部や細部までの強度評価を数値がすることは非常に困難である。
これに対して、本発明のセルロース繊維製品の生地強度評価方法を用いることで、生地の種類を選ばず、微小な分子レベルでの生地強度評価を容易に行うことが可能となる。
The degree of polymerization measured by the cellulose polymerization degree method of the present invention can be applied to the evaluation of the fabric strength of cellulose fiber products. Such a method for evaluating the fabric strength of a cellulose fiber product is also one aspect of the present invention.
For cotton products such as underwear, in addition to flexibility and washing durability, fabric strength against rupture is important. The fabric strength of cotton products is considered to depend on the properties of fibers such as cellulose constituting the cotton products. As a method for analyzing the relationship between fabric strength and fiber properties, for example, fibers using SEM Although shape analysis has been carried out, it has been difficult to analyze a fabric that does not have a clear fibrillation.
In addition, as a measure of fabric strength, it can be evaluated by tensile strength, tear strength, rupture strength, wear strength (L1096, L1018), etc., based on JIS method. It is very difficult.
On the other hand, by using the method for evaluating the strength of a cellulose fiber product according to the present invention, it is possible to easily evaluate the strength of the fabric at a minute molecular level regardless of the type of the fabric.

上記セルロース繊維製品としては、セルロースからなるものであれば、特に限定されず例えば、外衣、中衣、内衣等の衣料、寝装品、雑貨用品、インテリア、産業用資材等の製品が挙げられる。具体的には例えば、スポーツウエア、ホームウエア、リラックスウエア、パジャマ、寝間着、コート、ジャケット、ズボン、スカート、ワイシャツ、ニットシャツ、ブラウス、セーター、カーディガン、ナイトウエア、肌着、サポーター、靴下、タイツ、レギンス、腹巻き、ステテコ、バッチ、ペチコート、帽子、スカーフ、マフラー、襟巻き、手袋、服の裏地、服の芯地、服の中綿、作業着、エプロン、食品白衣、看護白衣、患者着、介護衣、厨房衣、ユニフォーム、学童用制服等の衣料、カーテン、布団地、布団綿、枕カバー、シーツ、マット、カーペット、タオル、ハンカチ、こたつカバー、ソファー用側地、ソファーカバー、クッションカバー、便座カバー、便座マット、テーブルクロス等の製品が挙げられる。また、上記セルロース繊維製品には、例えば壁布、フロア外張り、フィルター等の産業資材分野で使用される繊維製品の形態のものも包含される。 As said cellulose fiber product, if it consists of cellulose, it will not specifically limit, For example, products, such as clothing, bedding, miscellaneous goods, interior, and industrial materials, such as outer clothes, a garment, and inner clothes. Specifically, for example, sportswear, home wear, relaxation wear, pajamas, sleepwear, coats, jackets, trousers, skirts, shirts, knitted shirts, blouses, sweaters, cardigans, nightwear, underwear, supporters, socks, tights, leggings , Belly wrap, steteco, batch, petticoat, hat, scarf, muffler, collar winding, gloves, clothes lining, clothes interlining, clothes batting, work clothes, apron, food lab coat, nursing lab coat, patient clothes, nursing clothes, Kitchen clothes, uniforms, uniforms for schoolchildren, curtains, futon mats, futon cotton, pillow covers, sheets, mats, carpets, towels, handkerchiefs, kotatsu covers, sofa linings, sofa covers, cushion covers, toilet seat covers, Examples include toilet seat mats and table cloths. Moreover, the said cellulose fiber product includes the thing of the form of the fiber product used in industrial material fields, such as a wall cloth, a flooring, and a filter, for example.

本発明のセルロースの重合度測定方法を用いることで、化学反応等の前処理を行うことなく、簡易な方法で正確にセルロースの重合度を測定することできる。
また、本発明のセルロースの重合度測定方法を用いて、セルロース繊維製品を評価することで、微小な分子レベルでの生地強度評価を容易に行うことが可能となる。
By using the method for measuring the degree of polymerization of cellulose of the present invention, the degree of polymerization of cellulose can be accurately measured by a simple method without performing pretreatment such as chemical reaction.
In addition, by evaluating the cellulose fiber product using the method for measuring the degree of polymerization of cellulose according to the present invention, it is possible to easily evaluate the fabric strength at a minute molecular level.

実施例1の方法で測定した重合度と破裂強度との相関関係を示すグラフである。2 is a graph showing the correlation between the degree of polymerization measured by the method of Example 1 and the burst strength.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
3cm×3cmのセルロースからなる生地(編生地、漂白後綿100%)を、恒温恒湿器(DKM600、ヤマト科学社製)内に入れ、20℃、65%RHで5時間以上吸湿させた。その後、吸湿後の生地について、JIS L 1018の8.6法に準拠した方法により吸湿率を測定した(吸湿率7.0%)。
なお、吸湿率は、吸湿後の生地について10cm×10cmの試験片を3枚採取し、105℃、2時間で乾燥する場合における、乾燥前の質量と絶乾質量とを測定し、以下の式を用いることで吸湿率(%)を求め、平均値を算出した。
吸湿率(%)=[(乾燥前の質量−絶乾質量)/(絶乾質量)]×100
次いで、吸湿させた生地を、微粉砕機(WARING J−SPEC BLENDER、大阪ケミカル社製)を用いて、回転数25,000rpmで30秒間粉砕した。
粉砕後の生地から測定サンプル0.0400gを正確に秤量した後、秤量値及び吸湿率から、上記式(1)を用いてセルロースの重量を算出した(重量0.0371g)。
その後、測定サンプルを三角フラスコに入れラップした。
Example 1
A 3 cm × 3 cm cellulose fabric (knitted fabric, 100% cotton after bleaching) was placed in a thermo-hygrostat (DKM600, manufactured by Yamato Scientific Co., Ltd.) and allowed to absorb moisture at 20 ° C. and 65% RH for 5 hours or more. Thereafter, the moisture absorption rate of the fabric after moisture absorption was measured by a method based on the method 8.6 of JIS L 1018 (moisture absorption rate 7.0%).
The moisture absorption rate is obtained by measuring the mass before drying and the absolutely dry mass in the case where 3 pieces of 10 cm × 10 cm test pieces are collected from the dough after moisture absorption and dried at 105 ° C. for 2 hours. Was used to determine the moisture absorption rate (%), and the average value was calculated.
Moisture absorption (%) = [(mass before drying−absolute dry mass) / (absolute dry mass)] × 100
Next, the moisture-absorbed dough was pulverized for 30 seconds at a rotational speed of 25,000 rpm using a fine pulverizer (WARING J-SPEC BLENDER, manufactured by Osaka Chemical Co., Ltd.).
After accurately weighing 0.0400 g of the measurement sample from the crushed dough, the weight of cellulose was calculated from the weighed value and the moisture absorption rate using the above formula (1) (weight 0.0371 g).
Thereafter, the measurement sample was put in an Erlenmeyer flask and wrapped.

1Lメスフラスコに、Cu(OH)[MW=97.56]48.78gとイオン交換水約250mLを加え、氷水で冷却しながら、エチレンジアミン(MW=60.1、d=0.898)67.0mLを加えた。その後、充分撹拌し、溶解したらイオン交換水を更に加えて1Lとすることにより、0.5mol/Lの銅エチレンジアミン溶液(Cu(EDA)(OH))を調製した。この時、空気にふれないように密閉した条件で撹拌し、日光等の光によって劣化することを防止するため、黒い袋で覆って保管した。 To a 1 L volumetric flask, 48.78 g of Cu (OH) 2 [MW = 97.56] and about 250 mL of ion exchanged water were added, and while cooling with ice water, ethylenediamine (MW = 60.1, d = 0.898) 67 0.0 mL was added. Then, after sufficiently stirring and dissolving, ion exchange water was further added to make 1 L, thereby preparing a 0.5 mol / L copper ethylenediamine solution (Cu (EDA) 2 (OH) 2 ). At this time, the mixture was stirred in a sealed condition so as not to be exposed to air, and was covered with a black bag and stored in order to prevent deterioration due to light such as sunlight.

粉砕した測定サンプルが入った三角フラスコに0.5mol/Lの銅エチレンジアミン溶液を20mL入れ、三角柱攪拌子にて2時間攪拌し、測定サンプルを溶解して粘度測定用溶液を調製した。
キャノン・フェンスケ型粘度計(毛細管粘度計、相互理化学硝子製作所社製)に粘度測定用溶液を10mL流しこんだ後、25℃に設定した恒温水槽に入れ、3分静置し温度が均衡に達した状態で粘度測定を行った。粘度測定は、ピペッターを用いて、溶液を小球の表線を超えるまで押し上げ、ピペッターを外し、液面が上部標線を過ぎた時から下部標線を過ぎるまでの時間をストップウオッチで測定することにより行った。得られた測定時間及びセルロースの重量値からStaudingerの経験則を用いてセルロースの重合度を測定した。なお、粘度測定は3回繰り返して行い、平均値を粘度値とした。
20 mL of a 0.5 mol / L copper ethylenediamine solution was placed in an Erlenmeyer flask containing the pulverized measurement sample, stirred for 2 hours with a triangular prism stirrer, and the measurement sample was dissolved to prepare a viscosity measurement solution.
After pouring 10 mL of the solution for viscosity measurement into a Canon-Fenske viscometer (capillary viscometer, manufactured by Mutual Rikagaku Glass Co., Ltd.), place it in a constant temperature water bath set at 25 ° C and let stand for 3 minutes until the temperature reaches equilibrium. The viscosity was measured in the state. For viscosity measurement, use a pipetter to push up the solution until it exceeds the surface of the small ball, remove the pipetter, and measure the time from when the liquid level passes the upper gauge line to the lower gauge line with a stopwatch. It went by. The degree of polymerization of cellulose was measured from the obtained measurement time and the weight value of cellulose using Staudinger's rule of thumb. The viscosity measurement was repeated three times, and the average value was taken as the viscosity value.

(実施例2)
セルロースからなる生地(編生地、漂白後綿100%)に代えて、セルロースからなる生地(編生地、レーヨン)を用いた以外は実施例1と同様にしてセルロースの重合度を測定した。
(Example 2)
The degree of polymerization of cellulose was measured in the same manner as in Example 1 except that a fabric made of cellulose (knitted fabric, rayon) was used instead of the fabric made of cellulose (knitted fabric, 100% cotton after bleaching).

(比較例1)
3cm×3cmのセルロースからなる生地(編生地、レーヨン)を、微粉砕機(カッティングミル、WARING J−SPEC BLENDER、大阪ケミカル社製)を用いて、回転数25,000rpmで30秒間粉砕した。
次いで、凍結乾燥機(DRZ350WA、ADVANTEC社製)にて16時間凍結乾燥した。凍結乾燥温度は−40℃であり、減圧度13.3Paであった。
凍結乾燥後の生地から測定サンプル0.0400gを正確に秤量し、これをセルロースの重量とした。その後、測定サンプルを三角フラスコに入れラップした。
得られた測定サンプルを用いた以外は実施例1と同様にして、セルロースの重合度を測定した。
(Comparative Example 1)
A 3 cm × 3 cm cellulose fabric (knitted fabric, rayon) was pulverized for 30 seconds at a rotational speed of 25,000 rpm using a fine pulverizer (cutting mill, WARING J-SPEC BLENDER, manufactured by Osaka Chemical Co., Ltd.).
Subsequently, it was freeze-dried for 16 hours with a freeze dryer (DRZ350WA, manufactured by ADVANTEC). The lyophilization temperature was −40 ° C. and the degree of vacuum was 13.3 Pa.
A measurement sample of 0.0400 g was accurately weighed from the lyophilized dough, and this was used as the weight of cellulose. Thereafter, the measurement sample was put in an Erlenmeyer flask and wrapped.
The degree of polymerization of cellulose was measured in the same manner as in Example 1 except that the obtained measurement sample was used.

(比較例2)
3cm×3cmのセルロースからなる生地(編生地、漂白後綿100%)を、恒温恒湿器(DKM600、ヤマト科学社製)内に入れ、20℃、65%RHで5時間以上吸湿させた。その後、吸湿後の生地について、JIS L 1018の8.6法に準拠した方法により吸湿率を測定した(吸湿率7.0%)。
次いで、吸湿させた生地を、はさみを用いて、5mm×5mm程度に裁断した。
裁断後の生地から測定サンプル0.0400gを正確に秤量した後、秤量値及び吸湿率から、上記式(1)を用いてセルロースの重量を算出した(重量0.0371g)。
その後、測定サンプルを三角フラスコに入れラップした。
得られた測定サンプルを用いた以外は実施例1と同様にして、セルロースの重合度を測定した。
(Comparative Example 2)
A 3 cm × 3 cm cellulose fabric (knitted fabric, 100% cotton after bleaching) was placed in a thermo-hygrostat (DKM600, manufactured by Yamato Scientific Co., Ltd.) and allowed to absorb moisture at 20 ° C. and 65% RH for 5 hours or more. Thereafter, the moisture absorption rate of the fabric after moisture absorption was measured by a method based on the method 8.6 of JIS L 1018 (moisture absorption rate 7.0%).
Next, the moisture-absorbed fabric was cut to about 5 mm × 5 mm using scissors.
After accurately weighing 0.0400 g of the measurement sample from the cut fabric, the weight of cellulose was calculated from the weighed value and the moisture absorption rate using the above formula (1) (weight 0.0371 g).
Thereafter, the measurement sample was put in an Erlenmeyer flask and wrapped.
The degree of polymerization of cellulose was measured in the same manner as in Example 1 except that the obtained measurement sample was used.

(評価)
(1)破裂強度測定値との相関
3cm×3cmのセルロースからなる生地(編生地、漂白後綿100%)について、実施例1の方法でセルロースの重合度の測定を行った。
次いで、同じ生地について、JIS L 1018 8.17A法(ミューレン形法)に準拠した方法で破裂強度を測定した。
これらの破裂強度測定及び重合度測定を、重合度が異なる生地についてn回(n=151)行い、縦軸が重合度、横軸が破裂強度のグラフにプロットし、重合度と破裂強度との相関関係を確認した。グラフを図1に示す。なお、重合度が異なる生地の作製は、漂白条件を変更、又は、アルカリ処理することで行った。
図1の結果から、重合度と破裂強度の間に相関関係があることが確認できた。
(Evaluation)
(1) Correlation with burst strength measurement value The degree of polymerization of cellulose was measured by the method of Example 1 for a 3 cm × 3 cm cellulose fabric (knitted fabric, 100% cotton after bleaching).
Next, the burst strength of the same fabric was measured by a method based on the JIS L 1018 8.17A method (Murlen type method).
These burst strength measurements and polymerization degree measurements were performed n times (n = 151) for fabrics having different polymerization degrees, plotted on a graph with the vertical axis representing the polymerization degree and the horizontal axis representing the burst strength, and the degree of polymerization and the burst strength. The correlation was confirmed. The graph is shown in FIG. In addition, preparation of the dough with different degrees of polymerization was performed by changing the bleaching conditions or performing an alkali treatment.
From the results in FIG. 1, it was confirmed that there was a correlation between the degree of polymerization and the burst strength.

Figure 2012073089
Figure 2012073089

表1に示すように、実施例1及び2では、簡易な方法で重合度を測定可能であることが分かる。一方、比較例1で測定された重合度は、実施例2で測定された重合度に比べて高いものとなっている。これは、凍結乾燥から秤量までの間に水分を吸湿し、セルロースの重量を正確に測定できなかったためであると考えられる。
また、比較例2で測定された重合度は、実施例1で測定された重合度に比べて低いものとなっている。これは、粉砕工程における測定サンプルの粉砕が不充分であり、銅エチレンジアミン溶液に測定サンプルを充分に溶解できなかったためであると考えられる。
加えて、図1のグラフから、破裂強度が高いと重合度も高くなる傾向がみられ、相関係数R=0.87(n=151)より、ミューレン形法の破裂強度測定値と強い相関があると判断できた。
As shown in Table 1, in Examples 1 and 2, it can be seen that the degree of polymerization can be measured by a simple method. On the other hand, the degree of polymerization measured in Comparative Example 1 is higher than the degree of polymerization measured in Example 2. This is probably because moisture was absorbed between freeze-drying and weighing, and the weight of cellulose could not be measured accurately.
Further, the degree of polymerization measured in Comparative Example 2 is lower than the degree of polymerization measured in Example 1. This is considered to be because the measurement sample was not sufficiently pulverized in the pulverization step, and the measurement sample could not be sufficiently dissolved in the copper ethylenediamine solution.
In addition, from the graph of FIG. 1, when the burst strength is high, the degree of polymerization tends to be high. From the correlation coefficient R 2 = 0.87 (n = 151), the measured value of the burst strength of the Murren method is strong. It was judged that there was a correlation.

本発明によれば、化学反応等の前処理を行うことなく、簡易な方法で正確にセルロースの重合度を測定することが可能なセルロースの重合度測定方法、及び、セルロース繊維製品の生地強度評価方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the polymerization degree measuring method of the cellulose which can measure the polymerization degree of a cellulose correctly with a simple method, without performing pretreatments, such as a chemical reaction, and the dough strength evaluation of a cellulose fiber product Can provide a method.

Claims (3)

セルロースからなる生地に吸湿させる吸湿工程、
吸湿させた生地を粉砕することにより、測定サンプルを作製する粉砕工程、
前記測定サンプルを秤量し、秤量値と吸湿率とからセルロースの重量を測定する秤量工程、
前記測定サンプルを銅エチレンジアミン溶液に溶解することで粘度測定用溶液を調製する溶解工程、
粘度計を用いて前記粘度測定用溶液の粘度値を測定する粘度測定工程、及び、
前記粘度測定工程において得られた粘度値から、所定の関係式に基づいて、セルロースの重合度を算出する重合度算出工程を有する
ことを特徴とするセルロースの重合度測定方法。
A moisture absorption process for absorbing moisture from the cellulose fabric,
A crushing step for producing a measurement sample by crushing the moisture-absorbed dough,
Weighing step of measuring the weight of the cellulose from the measured value and the moisture absorption rate of the measurement sample,
A dissolution step of preparing a solution for viscosity measurement by dissolving the measurement sample in a copper ethylenediamine solution;
A viscosity measuring step of measuring the viscosity value of the viscosity measuring solution using a viscometer, and
A method for measuring the degree of polymerization of cellulose, comprising a step of calculating the degree of polymerization of cellulose based on a predetermined relational expression from the viscosity value obtained in the viscosity measuring step.
粘度計として、キャノン・フェンスケ型粘度計を用いることを特徴とする請求項1記載のセルロースの重合度測定方法。 The method for measuring the degree of polymerization of cellulose according to claim 1, wherein a Cannon-Fenske viscometer is used as the viscometer. 請求項1又は2記載のセルロースの重合度測定方法を用いることを特徴とするセルロース繊維製品の生地強度評価方法。
A method for evaluating the strength of a cellulose fiber product, wherein the method for measuring the degree of polymerization of cellulose according to claim 1 or 2 is used.
JP2010217557A 2010-09-28 2010-09-28 Method for measuring the degree of polymerization of cellulose Expired - Fee Related JP5406152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217557A JP5406152B2 (en) 2010-09-28 2010-09-28 Method for measuring the degree of polymerization of cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217557A JP5406152B2 (en) 2010-09-28 2010-09-28 Method for measuring the degree of polymerization of cellulose

Publications (2)

Publication Number Publication Date
JP2012073089A true JP2012073089A (en) 2012-04-12
JP5406152B2 JP5406152B2 (en) 2014-02-05

Family

ID=46169428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217557A Expired - Fee Related JP5406152B2 (en) 2010-09-28 2010-09-28 Method for measuring the degree of polymerization of cellulose

Country Status (1)

Country Link
JP (1) JP5406152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427152B1 (en) 2013-09-12 2014-08-07 한국전력공사 Measuring apparatus for degree of polymerizaiton of insulating paper and measuring method for degree of polymerizaiton of insulating paper thereof
CN104132868A (en) * 2014-07-16 2014-11-05 河南科技大学 Cellulose polymerization degree determination method
CN109142153A (en) * 2018-11-22 2019-01-04 北方天普化工有限公司 A kind of cotton fiber Viscosity Analysis method
CN111077123A (en) * 2019-12-19 2020-04-28 齐鲁工业大学 Method for rapidly determining average polymerization degree of cellulose based on fluorescence technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491606B (en) * 2018-03-13 2019-03-12 东南大学 A kind of strength of materials distribution acquiring method
CN108414398A (en) * 2018-05-21 2018-08-17 亚太森博(山东)浆纸有限公司 A kind of pulp viscosity detection method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340687A (en) * 1993-03-23 1994-12-13 Rhone Poulenc Rhodia Ag Silyation of carbohydrate and use of silylated carbohydrate
JPH10232194A (en) * 1997-02-20 1998-09-02 Nippon Paper Ind Co Ltd Method for measuring relative viscosity of cellulose solution by capillary type viscosimeter and device using the same
JP2000273780A (en) * 1999-03-24 2000-10-03 Japan Science & Technology Corp Low-molecular weight cellulose extracted from elodea nuttallii and its preparation
JP2008156791A (en) * 2006-12-25 2008-07-10 Rengo Co Ltd Cellulose particle for supporting drug
WO2008143322A1 (en) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation Cellulose derivative, cellulose derivative-polylactic acid graft copolymer and method for producing the same, and polylactic acid resin composition
JP2010150388A (en) * 2008-12-25 2010-07-08 Dai Ichi Kogyo Seiyaku Co Ltd Cellulose composition, and gel composition containing the cellulose composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340687A (en) * 1993-03-23 1994-12-13 Rhone Poulenc Rhodia Ag Silyation of carbohydrate and use of silylated carbohydrate
JPH10232194A (en) * 1997-02-20 1998-09-02 Nippon Paper Ind Co Ltd Method for measuring relative viscosity of cellulose solution by capillary type viscosimeter and device using the same
JP2000273780A (en) * 1999-03-24 2000-10-03 Japan Science & Technology Corp Low-molecular weight cellulose extracted from elodea nuttallii and its preparation
JP2008156791A (en) * 2006-12-25 2008-07-10 Rengo Co Ltd Cellulose particle for supporting drug
WO2008143322A1 (en) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation Cellulose derivative, cellulose derivative-polylactic acid graft copolymer and method for producing the same, and polylactic acid resin composition
JP2010150388A (en) * 2008-12-25 2010-07-08 Dai Ichi Kogyo Seiyaku Co Ltd Cellulose composition, and gel composition containing the cellulose composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427152B1 (en) 2013-09-12 2014-08-07 한국전력공사 Measuring apparatus for degree of polymerizaiton of insulating paper and measuring method for degree of polymerizaiton of insulating paper thereof
CN104132868A (en) * 2014-07-16 2014-11-05 河南科技大学 Cellulose polymerization degree determination method
CN109142153A (en) * 2018-11-22 2019-01-04 北方天普化工有限公司 A kind of cotton fiber Viscosity Analysis method
CN111077123A (en) * 2019-12-19 2020-04-28 齐鲁工业大学 Method for rapidly determining average polymerization degree of cellulose based on fluorescence technology

Also Published As

Publication number Publication date
JP5406152B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5406152B2 (en) Method for measuring the degree of polymerization of cellulose
CN104411726B (en) Method and its purposes as compress is made in oxycellulose sill
BR112020026461A2 (en) BIODEGRADABLE TEXTILES, MATRIX BANDS AND METHOD OF MAKING BIODEGRADABLE FIBERS
JP5599147B2 (en) Method for producing water-soluble cellulose ether
KR101548762B1 (en) Antistatic acrylic fiber and method for manufacturing the same
TW200844282A (en) Conjugate fibers excellent in antistatic property, water absorption and cool feeling by contact
JP2019526716A (en) Bio-based PEC compositions as binders for textile substrates, woven, woven and nonwoven materials
CN101906697A (en) The knitted fabric of excellent contact cool feeling and with the contact cool feeling intimate apparel of its formation
JP2021107606A (en) Chitin-modified pp spun-bonded nonwoven fabric, and production method of the same
KR101526267B1 (en) Mask pack composed of the cosmetic cotton-like material produced from a paper mulberry
CN104122165A (en) Quantitative determination method for fiber content of viloft fiber and natural protein fiber blended textiles
CN106012092B (en) A kind of multifunctional protein fiber and preparation method thereof
JP2736868B2 (en) Manufacturing method of chitin fiber and film
CN106185779A (en) Implant and heat insulating products
EP3006614B1 (en) Fibrous structure
JPH0351366A (en) Rayon fiber of carboxymethylated viscose method and production thereof
CN109580705A (en) Moisture releasing cooling fiber and fiber structure containing the fiber
CN108950868A (en) A kind of preparation method of anti-bacterial water prick non-woven cloth
WO2019192897A1 (en) Filling material for washable pillows
Manonmani et al. Effect of ring and compact cotton spun yarn characteristics on physical and comfort properties of knitted fabrics
TWI808966B (en) fiber structure
US20230212799A1 (en) Method for consolidating a fibrous material with a bio-based binder polymer, a consolidated fibrous material and an aqueous binder solution
JP7434881B2 (en) ventilation variable fabric
CN115613215B (en) Non-woven fabric for mask and production process thereof
KR102120710B1 (en) The manufacturing method of cellulose ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

LAPS Cancellation because of no payment of annual fees