JP2012071326A - Method for determining order of manufacturing steps of thick steel plate - Google Patents
Method for determining order of manufacturing steps of thick steel plate Download PDFInfo
- Publication number
- JP2012071326A JP2012071326A JP2010218007A JP2010218007A JP2012071326A JP 2012071326 A JP2012071326 A JP 2012071326A JP 2010218007 A JP2010218007 A JP 2010218007A JP 2010218007 A JP2010218007 A JP 2010218007A JP 2012071326 A JP2012071326 A JP 2012071326A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- order
- thick steel
- manufacturing
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
本発明は、厚鋼板を対象にその製造順序を決定する、厚鋼板の製造順序決定方法に関するものである。 The present invention relates to a method for determining a manufacturing order of thick steel plates, in which the manufacturing order is determined for thick steel plates.
上流側に圧延機があり、下流側に精整設備があるような製造ラインにおいては、上流側と下流側の設備における処理ピッチが異なる。そのため材料の供給と処理のタイミングが合わず、製造ラインの効率が低下することがある。そこで、実際の物品の動きをコンピュータでシミュレーションする物流シミュレーション方法が開発されている。 In a production line having a rolling mill on the upstream side and a finishing facility on the downstream side, the processing pitches on the upstream and downstream facilities are different. Therefore, the timing of material supply and processing may not match, and the efficiency of the production line may decrease. Therefore, a physical distribution simulation method for simulating actual movement of an article with a computer has been developed.
例えば、特許文献1には、精整工程を含む製造ラインの物流を制御するに際して、シミュレーションを繰り返してライン降し・ライン上げを含む物流計画を策定して設備の効率的な運用を図る、製造ラインの物流制御方法と題する技術が開示されている。 For example, in Patent Document 1, when controlling the logistics of a production line including a refining process, a simulation is repeated to formulate a logistics plan that includes line down and line up for efficient operation of equipment. A technology entitled a line logistics control method is disclosed.
しかしながら、厚鋼板の製造順序を決定するにあたっては、圧延と精整に加えて加熱炉という一連の設備のそれぞれが持つ制約条件を同時に考慮しなくてはならならず、上述した特許文献1に開示された技術では、それぞれが持つ制約条件をすべてを充足させることができない(一意に製造順序を決定できない)という場合が生じてしまう。 However, in order to determine the manufacturing order of thick steel plates, in addition to rolling and finishing, the constraints of each of a series of equipment called heating furnaces must be considered at the same time, which is disclosed in Patent Document 1 described above. In such a technique, there are cases in which all of the constraint conditions of each cannot be satisfied (the manufacturing order cannot be uniquely determined).
これは、一連の設備のそれぞれが持つ制約条件が必ずしも互いに調和していないためであり、このような場合には計画者が、計画前提の制約条件の一部を緩和するといった柔軟な運用を試行錯誤的に行って、どうにか製造順序を決めるようにしている。試行錯誤による計画時間の長期化、や計画者による対応のばらつきなどの問題がある。 This is because the constraints of each set of equipment do not necessarily harmonize with each other. In such a case, the planner tries a flexible operation such as relaxing some of the constraints of the planning assumptions. It goes wrong and somehow decides the production order. There are problems such as prolonged planning time due to trial and error, and variations in correspondence among planners.
本発明は、このような事情に鑑みてなされたものであり、制約条件が互いに調和していない場合であっても、制約条件群をダイナミックに変更しながら厚鋼板の製造順序を決定することができる、厚鋼板の製造順序決定方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and even when the constraints are not in harmony with each other, the manufacturing order of the thick steel plates can be determined while dynamically changing the constraints. An object of the present invention is to provide a method for determining the manufacturing order of thick steel plates.
上記課題は次の発明により解決される。 The above problems are solved by the following invention.
[1] 厚鋼板の製造順序を決定する厚鋼板の製造順序決定方法であって、
注文群の寸法や設定温度を入力する注文情報入力ステップと、
製造順序の初期状態を作成する初期解作成ステップと、
該初期解作成ステップ結果の順序の入替を行い実行可能かつ評価関数が改善した場合に解を更新し、最良解を求める解改善ステップと、
前記最良解を出力する製造順序出力ステップとを有することを特徴とする厚鋼板の製造順序決定方法。
[1] A method for determining the manufacturing order of thick steel plates, which determines the manufacturing order of thick steel plates,
An order information input step for inputting the dimensions and set temperature of the order group,
An initial solution creation step for creating an initial state of the production sequence;
A solution improvement step for renewing the solution when the execution of the initial solution creation step result is changed and the evaluation function is improved, and obtaining the best solution;
And a manufacturing sequence output step for outputting the best solution.
[2] 上記[1]に記載の厚鋼板の製造順序決定方法において、
前記解改善ステップでは、
評価関数優先順に基づいて順序変更する対象と位置を決定し、
評価関数違反判定値に基づいて順序変更した解の受理可否を判定することを特徴とする厚鋼板の製造順序決定方法。
[2] In the method for determining the order of production of thick steel plates according to [1] above,
In the solution improving step,
Determine the target and position to be reordered based on the evaluation function priority order,
A method for determining the order of manufacturing thick steel plates, wherein acceptability of a solution whose order has been changed is determined based on an evaluation function violation determination value.
[3] 上記[1]または[2]に記載の厚鋼板の製造順序決定方法において、
前記解改善ステップでは、
解の改善を所定の回数行っても受理できる解が得られない場合に、違反が出ている制約条件について違反判定値の範囲を広げることを特徴とする厚鋼板の製造順序決定方法。
[3] In the method for determining the production order of thick steel plates according to [1] or [2] above,
In the solution improving step,
A method for determining the order of manufacturing thick steel sheets, wherein a range of violation judgment values is expanded for a constraint condition in which a violation occurs when an acceptable solution cannot be obtained even after a predetermined number of improvements of the solution.
[4] 上記[1]ないし[3]のいずれか1項に記載の厚鋼板の製造順序決定方法において、
解の改善を所定の回数行った結果受理成功率が高い場合に、計算値と判定値との差が大きい制約条件の違反判定値の範囲を狭めることを特徴とする厚鋼板の製造順序決定方法。
[4] In the method for determining the order of production of thick steel plates according to any one of [1] to [3],
A method for determining the manufacturing order of thick steel plates, characterized by narrowing the range of violation judgment values for constraints where the difference between the calculated value and the judgment value is large when the acceptance success rate is high as a result of performing the solution improvement a predetermined number of times .
[5] 上記[1]ないし[4]のいずれか1項に記載の厚鋼板の製造順序決定方法において、
解の改善を所定の回数行っても受理できる解が得られない場合に、判定方法を緩和して、1回の違反ではなく複数回違反が連続することを許容し、かつ違反を含む解については暫定解として扱い解の更新対象とはしないことを特徴とする厚鋼板の製造順序決定方法。
[5] In the method for determining the production order of thick steel plates according to any one of [1] to [4],
For solutions that include violations by relaxing the judgment method and allowing multiple violations in succession instead of a single violation when an acceptable solution is not obtained even after a certain number of improvements. Is a provisional solution and is not subject to renewal of the solution.
本発明によれば、複数の評価関数群について優先度の高いものから改善されるような順序変更を行う操作を繰り返す際に、改善操作の成功率を反映して制約条件違反判定値による判定方法を動的に緩和または厳格化するようにしたので、互いに干渉し合うことが多い制約条件群のもとで実行可能解を探すことができるようになった。 According to the present invention, when repeating an operation for changing the order so as to be improved from a higher priority for a plurality of evaluation function groups, the determination method based on the constraint violation determination value reflecting the success rate of the improvement operation Has been dynamically relaxed or tightened so that feasible solutions can be found under constraints that often interfere with each other.
図1は、厚鋼板の製造を行う一連の設備列の一例を示す図である。図中、1は加熱炉、2は圧延機、3は切断機をそれぞれ表す。 Drawing 1 is a figure showing an example of a series of equipment rows which manufacture a thick steel plate. In the figure, 1 represents a heating furnace, 2 represents a rolling mill, and 3 represents a cutting machine.
加熱炉1は、鋼材を設定温度まで加熱してから抽出して、次の圧延工程に供給する。前述した設定温度には、通常、鋼材ごとに上限値と下限値が設定され、この範囲内に加熱炉内温度が入るように操業上管理されている。なお、「温度管理厳格材」と呼ばれる、注文対象の鋼材の製造温度条件が厳しいものにあっては、上限値と下限値が同じ値に設定され、厳しい温度管理が課せられている。 The heating furnace 1 extracts the steel material after heating it to a set temperature and supplies it to the next rolling step. Normally, an upper limit value and a lower limit value are set for the set temperature described above for each steel material, and operation is controlled so that the temperature in the heating furnace falls within this range. In addition, in the case where the manufacturing temperature condition of the steel material to be ordered, which is called “temperature control strict material”, is strict, the upper limit value and the lower limit value are set to the same value, and strict temperature control is imposed.
加熱炉の設定温度変更を行うには時間を要するので、製造能率確保のために、設定温度の異なる温度管理厳格材の間には、通常「温度つなぎ材」と呼ばれる注文材を挟むことが行われる。ここでは、間に挟む温度つなぎ材は、最低1枚は必要であるとの制約を設定する。なお、「温度つなぎ材」となりうる注文材は、昇降温の上下限値が異なっておりかつ前後の温度管理厳格材の設定温度がその昇降温上下限に含まれるという条件を満たすものでなければならない。 Since it takes time to change the set temperature of the heating furnace, in order to secure manufacturing efficiency, it is usually necessary to sandwich custom materials called “temperature binders” between temperature control strict materials with different set temperatures. Is called. Here, a restriction is set that at least one temperature binder is required between the two. In addition, custom materials that can be used as “temperature binders” must have different upper and lower temperature limits, and must not satisfy the conditions that the set temperatures of the strict materials for temperature control before and after are included in the upper and lower limits. Don't be.
圧延機2は、加熱・抽出された鋼材を圧延して最終製品寸法(板厚)まで加工する。圧延加工された鋼材(大板)には、1枚から複数枚の注文材が組み合わさっており、次工程の切断(剪断)にて切断して注文材それぞれの寸法に仕上げる。圧延での制約としては、薄鋼板の場合には圧延幅は降順(幅の大きいものから順に小さいものへ)という比較的強い制約がある。しかし、厚鋼板の場合には、圧延長が短いこともあり上記幅制約は比較的緩いものの、大きな幅逆転を禁止する制約は設けている。 The rolling mill 2 rolls the heated and extracted steel material and processes it to the final product size (sheet thickness). The rolled steel material (large plate) is combined with one to a plurality of order materials, and is cut in the next process (shearing) to finish the dimensions of each order material. As a restriction in rolling, in the case of a thin steel plate, there is a relatively strong restriction that the rolling width is descending (from the largest to the smallest). However, in the case of a thick steel plate, although the rolling length is short and the above width restriction is relatively loose, there is a restriction prohibiting large width reversal.
切断機3は、圧延後の大板を幅・長手方向にそれぞれ切断し、所定の寸法の注文材に仕上げる。長手方向の切断は切断長が大きな材が連続すると材が滞留し、上流の圧延機が停止するリスクがある。例えば、ここでは圧延長38m以上を長尺材と定義し、長尺材が2本連続すると設備停止リスクが発生するとする。 The cutting machine 3 cuts the rolled large plate in the width / longitudinal direction and finishes it into a custom-made material having a predetermined size. In the cutting in the longitudinal direction, when a material having a long cutting length continues, there is a risk that the material stays and the upstream rolling mill stops. For example, here, a rolling length of 38 m or more is defined as a long material, and if two long materials continue, there is a risk of equipment stoppage.
図5は、厚鋼板の注文群17枚の製造順の一例を示す図である。加熱炉で重要な条件である設定温度に注目して、第1優先・設定温度下限の降順、第2優先・設定温度上限の昇順、第3優先・圧延幅の降順によって並べ替えて温度管理厳格材ロットを作っている。ただし温度の異なる厳格材の間に温度つなぎ材が入っていないので、実行可能解ではない。 FIG. 5 is a diagram showing an example of the manufacturing order of the order group of 17 thick steel plates. Strict temperature control by focusing on the set temperature, which is an important condition in the heating furnace, and sorting by descending order of the first priority / setting temperature lower limit, ascending order of the second priority / setting temperature upper limit, third priority / descending order of the rolling width A lot of timber is made. However, it is not a feasible solution because there is no temperature binder between strict materials with different temperatures.
図6は、図5と同一の注文群の設定温度を示す図である。設定温度の上限値と下限値が同じ温度管理厳格材は、黒丸一点で、それ以外は上限値と下限値を実線で結び、上限値に黒丸を記している。同様に、図7は、図5と同一の注文群の圧延幅および圧延長を示す図である。なお、図7では、圧延長38m以上の長尺材6枚を菱形白抜き印で表している
次に、圧延機で重要な圧延幅移行に注目して、同じ注文群を圧延幅の降順に並べ替えることを考える。図8は、図5の厚鋼板の注文群17枚を圧延幅の降順に並べ替えた例を示す図である。これを図6および7と同様に示したのが、図9および10である。すなわち、図9は、図8と同一の注文群の設定温度を示す図である。図10は、図8と同一の注文群の圧延幅および圧延長を示す図である。
FIG. 6 is a diagram showing set temperatures of the same order group as in FIG. Temperature-strict materials with the same upper limit and lower limit of the set temperature are indicated by a single black circle. Otherwise, the upper limit and the lower limit are connected by a solid line, and the upper limit is indicated by a black circle. Similarly, FIG. 7 is a diagram showing the rolling width and rolling length of the same order group as FIG. In FIG. 7, six long materials having a rolling length of 38 m or more are represented by diamonds. Next, paying attention to the important rolling width transition in the rolling mill, the same order group is arranged in descending order of the rolling width. Think about sorting. FIG. 8 is a diagram illustrating an example in which the order group of 17 thick steel plates in FIG. 5 is rearranged in descending order of the rolling width. FIGS. 9 and 10 show this similarly to FIGS. That is, FIG. 9 is a diagram showing the set temperature of the same order group as FIG. FIG. 10 is a diagram showing the rolling width and rolling length of the same order group as in FIG.
図8を見ると、圧延幅については理想的な並び順であるものの、長尺材が集中していたり(図10の最初3枚)、温度つなぎ材が適正に挿入されておらず(図9の3枚目と4枚目、5枚目と6枚目など)、前の例と同様に実行可能解ではないことが分かる。 Referring to FIG. 8, although the rolling width is an ideal arrangement order, long materials are concentrated (first three pieces in FIG. 10), and the temperature binder is not properly inserted (FIG. 9). (3rd, 4th, 5th, 6th, etc.), as in the previous example, it can be seen that it is not a feasible solution.
以上に例を示したように、第3優先まで考えた並び替え、さらに、加熱炉の設定温度順、圧延機の圧延幅順など単純な指標整列では、互いに干渉し合う制約群をすべて充足させられないというのが厚鋼板の製造順序決定問題の特徴であり、従来技術では解決できない点でもある。 As shown in the example above, in the rearrangement considered up to the third priority, and in the simple index alignment such as the order of the set temperature of the heating furnace and the order of the rolling width of the rolling mill, all the constraint groups that interfere with each other are satisfied. This is a feature of the problem of determining the manufacturing order of thick steel plates, and is also a point that cannot be solved by the prior art.
図2は、本発明を実施するためのシステムの構成例を示す図である。図中、4は厚鋼板製造順序決定装置、5はデータベース、6は端末、および7は物流機器をそれぞれ表す。 FIG. 2 is a diagram illustrating a configuration example of a system for carrying out the present invention. In the figure, 4 represents a steel plate manufacturing order determination device, 5 represents a database, 6 represents a terminal, and 7 represents a physical distribution device.
厚鋼板製造順序決定装置4は、各種データの入ったデータベース5、端末6、および厚鋼板のハンドリングを行う物流機器7との情報のやり取り行い、厚鋼板の製造順序を決定する。この厚鋼板製造順序決定装置4が処理の中心となる装置であり、具体的な装置としては計算機で構成される。 The steel plate manufacturing order determination device 4 exchanges information with the database 5 containing various data, the terminal 6, and the physical distribution equipment 7 that handles the steel plates, and determines the manufacturing order of the steel plates. This thick steel plate manufacturing order determination device 4 is a device that is the center of processing, and a specific device is configured by a computer.
図3は、本発明における全体処理手順例を示す図である。先ず、処理の開始が指示されると、Step01の注文情報入力ステップにて、注文情報をデータベ−スから読み取り、注文情報の入力が行われる。 FIG. 3 is a diagram showing an example of the entire processing procedure in the present invention. First, when the start of processing is instructed, in the order information input step of Step 01, the order information is read from the database and the order information is input.
次に、Step02の初期解作成ステップにて、注文情報を基に初期解を作成する。例えば、圧延幅降順という基準で作成すれば、図8に示す製造順が初期解に相当する。 Next, in the initial solution creation step in Step 02, an initial solution is created based on the order information. For example, if it is created on the basis of the rolling width descending order, the manufacturing order shown in FIG. 8 corresponds to the initial solution.
そして、Step03の解変更ステップにて、評価関数優先順ならびに制約条件違反判定値に基いて製造順序の解変更行い、最良解を求める。制約条件違反の状況はデータベースに保存されさらにそれらを参考にしながら、最良解に至る。 Then, in the solution change step of Step 03, the solution of the manufacturing order is changed based on the evaluation function priority order and the constraint violation determination value, and the best solution is obtained. The situation of constraint violations is stored in a database and the best solution is reached while referring to them.
最終的に、Step04の製造順序出力ステップにて、最良解を表示器などの端末やデータベースに出力し処理を終了する。 Finally, in the manufacturing order output step of Step 04, the best solution is output to a terminal such as a display or a database, and the process is terminated.
前述した図5と同一の注文群に対して、本発明を適用した例を以下に示す。全体の処理手順は、図3に従っている。 An example in which the present invention is applied to the same order group as in FIG. 5 will be described below. The entire processing procedure follows FIG.
図4は、解変更ステップにおける処理手順例を示す図である。Step02の初期解作成ステップ以下の処理手順(Step31〜Step38)が、解変更ステップにおける処理手順である。 FIG. 4 is a diagram illustrating an example of a processing procedure in the solution change step. The processing procedure (Step 31 to Step 38) following the initial solution creation step in Step 02 is the processing procedure in the solution change step.
先ず、Step31は終了判定処理である。Step02に引き続き実行される1回目は処理なしで通過するが、Step35、Step37、Step38から戻ってきた場合には、予め設定した解更新上限回数または解更新トライ上限回数と現状を比較して処理終了要否を判定する。 First, Step 31 is an end determination process. The first time following Step 02 is passed without processing, but when returning from Step 35, Step 37, or Step 38, the processing ends after comparing the current number of solution update upper limit times or the solution update try upper limit number with the preset number. Determine if necessary.
次のStep32は違反判定値修正処理である。解更新トライ回数を分母に、解更新成功回数を分子にして成功率を計算する。予め設定した数値に対して成功率が低い場合には、違反判定値を現在よりも緩和して許容範囲を広げ、少しの改善でも許容する方向に変更する。予め設定した別の数値に対して成功率が高い場合には、違反判定値を現在よりも厳しくして許容範囲を狭め、改善量が大きくないと解更新を許容しない方向に変更する。 Next Step 32 is a violation judgment value correction process. The success rate is calculated using the solution update try count as the denominator and the solution update success count as the numerator. If the success rate is lower than the preset numerical value, the violation determination value is relaxed from the current value to widen the allowable range, and the value is changed to allow even a slight improvement. When the success rate is high with respect to another preset numerical value, the violation determination value is made stricter than the current value, the allowable range is narrowed, and the update is not allowed unless the improvement amount is large.
Step33は評価関数に応じた解変更処理である。評価関数優先順ファイルで、1)長尺材の連続箇所最小化、2)温度管理厳格材ロット数の最小化、3)圧延幅逆転箇所の最小化、を設定してある。 Step 33 is a solution change process according to the evaluation function. In the evaluation function priority order file, 1) minimization of continuous parts of long materials, 2) minimization of the number of temperature-controlled strict material lots, and 3) minimization of rolling width reversal parts are set.
図8、9、10の初期解から、評価関数の優先度が最も大きい長尺材連続箇所に注目する。図8では1,2,3行目に長尺材が連続している。3行目の幅3800mm、長さ40.7m材を移動対象とする。 From the initial solutions of FIGS. 8, 9, and 10, attention is paid to the continuous portion of the long material having the highest priority of the evaluation function. In FIG. 8, long materials are continuous in the first, second and third rows. The third row is 3800mm wide and 40.7m long.
移動先は温度管理厳格材ロット数の増加を最小限に抑える場所を選ぶ。3行目の材は1100度の温度管理厳格材なので、移動先はロット数を増やさずに済む1100度の温度管理厳格材に隣接するように探索する。9行目の幅2200mm、長さ35.4m材は1100度の温度管理厳格材なので、この材の直後に3行目の材を移動させる。 Choose a location that minimizes the increase in the number of strict temperature-controlled material lots. Since the material in the third row is a strict temperature control material of 1100 degrees, the destination is searched so as to be adjacent to the strict temperature control material of 1100 degrees, which does not require an increase in the number of lots. The 9th row 2200mm wide and 35.4m long material is 1100 degrees temperature-strict material, so the 3rd row material is moved immediately after this material.
Step34は変更受理判定処理である。Step33の変更後の状態と変更前の状態を比較し、変化を数値評価する。 Step 34 is a change acceptance determination process. Compare the state after Step 33 with the state before the change, and evaluate the change numerically.
Step35は変更受理判定そのものである。前記の変更の結果、長尺材連続が3本から2本に減じ、温度管理厳格材ロット数の増加も抑えられていることから、変更を受理する。 Step 35 is the change acceptance determination itself. As a result of the above change, the number of continuous long materials has been reduced from three to two, and the increase in the number of temperature-controlled strict material lots has been suppressed, so the change is accepted.
Step36は最良解更新判定処理である。初期解作成から解更新の全過程で、評価値が最良の解を更新し続ける。前記の変更結果の評価値と、これまでの最良解の評価値を比較する。 Step 36 is a best solution update determination process. In the whole process from initial solution creation to solution update, the solution with the best evaluation value is continuously updated. The evaluation value of the change result is compared with the evaluation value of the best solution so far.
Step37は最良解更新判定そのものである。前記の変更の結果がこれまでの最良値を更新する場合、解の更新を許容する。 Step 37 is the best solution update determination itself. If the result of the change updates the best value so far, update of the solution is allowed.
Step38は最良解更新処理である。前記変更結果を現在の最良解に上書きし、Step31に戻り終了判定をクリアするまで一連の処理を繰り返す。 Step 38 is the best solution update process. The change result is overwritten on the current best solution, and the sequence returns to Step 31 to repeat the series of processing until the end determination is cleared.
本実施例の処理結果の一例を、図11、12、13に示す。前述した図8、9、10の圧延幅降順を初期解として処理した結果であり、図11は、本実施例による厚鋼板の注文群17枚の製造順の一例を示す図である。図12は、図11と同一の注文群の設定温度を示す図である。図13は、図11と同一の注文群の圧延幅および圧延長を示す図である。 An example of the processing result of the present embodiment is shown in FIGS. FIG. 11 shows the result of processing the rolling width descending order of FIGS. 8, 9, and 10 described above as an initial solution, and FIG. 11 is a diagram showing an example of the manufacturing order of 17 ordered groups of thick steel plates according to this example. FIG. 12 is a diagram showing set temperatures of the same order group as in FIG. FIG. 13 is a diagram showing the rolling width and rolling length of the same order group as in FIG.
初期解の図10では最初の3枚連続していた長尺材がすべて単独で処理されるように改善した(図13)。前述した図5、6では温度管理厳格材ロットは3つだったが、幅逆転箇所の最小化のために6つに倍増している。それでも圧延幅降順のみを重視した図9で温度管理厳格材ロットが10あることに比べれば、1100℃、1150℃、1200℃それぞれ1ロットを2ロットに分割した図12はロット数をむやみに増やさない結果になっているといえる。 In FIG. 10 of the initial solution, the first three continuous long materials were all treated independently (FIG. 13). In FIGS. 5 and 6 described above, there are three temperature control strict material lots, but the number is doubled to six to minimize the width reversal point. Still, in Fig. 9 where only the rolling width descending order is emphasized, there are 10 temperature controlled strict material lots, and in Fig. 12, each lot of 1100 ° C, 1150 ° C and 1200 ° C is divided into 2 lots. It can be said that there is no result.
そして圧延幅降順については図13を見ると、圧延幅2200mm以上の前半9枚と2200mm未満の後半8枚の2グループに分割されており、グループ内では幅逆転があるものの、グループ間では幅降順を実現している。 And as for rolling width descending order, looking at Fig. 13, it is divided into 2 groups of 9 sheets in the first half with a rolling width of 2200mm or more and 8 sheets in the latter half with less than 2200mm. Is realized.
以上、互いに干渉し合う複数の制約条件群を考慮しながら、実行可能な厚鋼板の製造順序を決定できていることが判る。 As described above, it can be seen that the feasible order of manufacturing the thick steel plates can be determined in consideration of a plurality of constraint groups that interfere with each other.
1 加熱炉
2 圧延機
3 切断機
4 厚鋼板製造順序決定装置
5 データベース
6 端末
7 物流機器
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rolling machine 3 Cutting machine 4 Thick steel plate manufacturing order determination apparatus 5 Database 6 Terminal 7 Logistics equipment
Claims (5)
注文群の寸法や設定温度を入力する注文情報入力ステップと、
製造順序の初期状態を作成する初期解作成ステップと、
該初期解作成ステップ結果の順序の入替を行い実行可能かつ評価関数が改善した場合に解を更新し、最良解を求める解改善ステップと、
前記最良解を出力する製造順序出力ステップとを有することを特徴とする厚鋼板の製造順序決定方法。 A method for determining a production order of thick steel plates for determining a production sequence of thick steel plates,
An order information input step for inputting the dimensions and set temperature of the order group,
An initial solution creation step for creating an initial state of the production sequence;
A solution improvement step for renewing the solution when the execution of the initial solution creation step result is changed and the evaluation function is improved, and obtaining the best solution;
And a manufacturing sequence output step for outputting the best solution.
前記解改善ステップでは、
評価関数優先順に基づいて順序変更する対象と位置を決定し、
評価関数違反判定値に基づいて順序変更した解の受理可否を判定することを特徴とする厚鋼板の製造順序決定方法。 In the manufacturing order determination method of the thick steel plate according to claim 1,
In the solution improving step,
Determine the target and position to be reordered based on the evaluation function priority order,
A method for determining the order of manufacturing thick steel plates, wherein acceptability of a solution whose order has been changed is determined based on an evaluation function violation determination value.
前記解改善ステップでは、
解の改善を所定の回数行っても受理できる解が得られない場合に、違反が出ている制約条件について違反判定値の範囲を広げることを特徴とする厚鋼板の製造順序決定方法。 In the manufacturing order determination method of the thick steel plate of Claim 1 or 2,
In the solution improving step,
A method for determining the order of manufacturing thick steel sheets, wherein a range of violation judgment values is expanded for a constraint condition in which a violation occurs when an acceptable solution cannot be obtained even after a predetermined number of improvements of the solution.
解の改善を所定の回数行った結果受理成功率が高い場合に、計算値と判定値との差が大きい制約条件の違反判定値の範囲を狭めることを特徴とする厚鋼板の製造順序決定方法。 In the manufacturing order determination method of the thick steel plate of any one of Claim 1 thru | or 3,
A method for determining the manufacturing order of thick steel plates, characterized by narrowing the range of violation judgment values for constraints where the difference between the calculated value and the judgment value is large when the acceptance success rate is high as a result of performing the solution improvement a predetermined number of times .
解の改善を所定の回数行っても受理できる解が得られない場合に、判定方法を緩和して、1回の違反ではなく複数回違反が連続することを許容し、かつ違反を含む解については暫定解として扱い解の更新対象とはしないことを特徴とする厚鋼板の製造順序決定方法。 In the manufacturing order determination method of the thick steel plate of any one of Claims 1 thru | or 4,
For solutions that include violations by relaxing the judgment method and allowing multiple violations in succession instead of a single violation when an acceptable solution is not obtained even after a certain number of improvements. Is a provisional solution and is not subject to renewal of the solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010218007A JP5707819B2 (en) | 2010-09-29 | 2010-09-29 | Method for determining the manufacturing sequence of thick steel plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010218007A JP5707819B2 (en) | 2010-09-29 | 2010-09-29 | Method for determining the manufacturing sequence of thick steel plates |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012071326A true JP2012071326A (en) | 2012-04-12 |
JP5707819B2 JP5707819B2 (en) | 2015-04-30 |
Family
ID=46167702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010218007A Expired - Fee Related JP5707819B2 (en) | 2010-09-29 | 2010-09-29 | Method for determining the manufacturing sequence of thick steel plates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5707819B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008080395A (en) * | 2006-08-28 | 2008-04-10 | Jfe Steel Kk | Heating furnace charging order determining method and apparatus for the determination |
-
2010
- 2010-09-29 JP JP2010218007A patent/JP5707819B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008080395A (en) * | 2006-08-28 | 2008-04-10 | Jfe Steel Kk | Heating furnace charging order determining method and apparatus for the determination |
Also Published As
Publication number | Publication date |
---|---|
JP5707819B2 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm | |
JP6292309B2 (en) | Rolling simulation device | |
WO2005062145A1 (en) | Manufacturing/distribution schedule creation device and method, manufacturing/distribution process control device and method, computer program, and computer-readable recording medium | |
JP5309882B2 (en) | Schedule creation system, schedule creation method, and schedule creation program | |
JP2011065626A (en) | Apparatus and method for supporting plant construction planning | |
JP2011170496A (en) | Device and method for supporting plant construction plan | |
JP2008027150A (en) | Unit and method for predicting manufacturing load, computer program, and computer readable storage medium | |
Zanoli et al. | Two‐Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization | |
Dong et al. | On the integrated charge planning with flexible jobs in primary steelmaking processes | |
Liu et al. | An integrated preventive maintenance and production planning model with sequence‐dependent setup costs and times | |
JP5435181B1 (en) | Heating furnace extraction order creation device, heating furnace extraction order creation method, and steel plate manufacturing method | |
JP6020366B2 (en) | Mill pacing device, mill pacing method and operation method | |
Zhao et al. | Energy, cost and job-tardiness-minimized scheduling of energy-intensive and high-cost industrial production systems | |
JP5707819B2 (en) | Method for determining the manufacturing sequence of thick steel plates | |
CN104624660B (en) | A kind of method and system reducing iron and steel enterprise's hot rolling slab storehouse collapse of setting amount | |
JP5631619B2 (en) | Work schedule creation device | |
JP2013145521A (en) | Method, device and program for predicting efficiency of manufacturing process | |
CN104102849B (en) | Method for calculating downtime of hot continuous rolling production process | |
JP6652095B2 (en) | Method of rolling steel sheet and method of manufacturing steel sheet | |
JP4980303B2 (en) | Power generation cost evaluation method, power generation cost evaluation apparatus, power generation cost evaluation program, power generation plan creation system, and power generation facility start / stop control system | |
Biswal et al. | Multi-choice multi-objective mathematical programming model for integrated production planning: a case study | |
JP5007630B2 (en) | Product quality control method and control device | |
CN114004388A (en) | Integrated production plan scheduling method suitable for oriented electrical steel production line | |
JP2010077454A (en) | Method and apparatus for planning order of charging into heat-treatment furnace | |
JP6593278B2 (en) | Production plan creation method and production plan creation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5707819 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |